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LOOP SPACES AS COMPLEX MANIFOLDS

LASZLO LEMPERT

1. Introduction

Given a topological space M , its loop space consists of mappings of
the circle S’ into M. Depending on what conditions we impose on the
mappings we get several loop spaces associated with M . If M has more
structure than just topological, the loop spaces tend to inherit this structure:
for example if M is a (Riemannian) manifold, the space of smooth loops
is also a (Riemannian) manifold, albeit infinite dimensional. There is
nothing surprising about this. In some cases, however, it happens that
the interaction of the structures of M and S’ gives rise to a structure
on a loop space. For example with G a compact Lie group, the space
of smooth loops in G modulo the action of G is a complex manifold
(see [20]). Similarly, the manifold Diff $'/S" is also a complex manifold
(see [3], [10]). Here Diff S' stands for the space of smooth, orientation
preserving diffeomorphisms of the circle, hence can be thought of as a
space of embedded smooth loops in s'.

More recently J. Brylinski observed that the manifold of smooth, ori-
ented, unparametrized knots in an oriented Riemannian manifold (M, g)
of dimension 3 also has a complex structure; see [4]. We shall now describe
this complex structure, which naturally lives on the space of immersed
rather than embedded loops (knots).

Thus, let 9 denote the set of equivalence classes of smooth (meaning
C) immersions f: S' - M. Two immersions i hy S' - M are
equivalent if f| = f,op, with ¢ an orientation preserving diffeomorphism
of S'. Elements of 9 are called immersed loops. First we endow 9
with a topology as follows. Fix an immersed loop I' € 9 represented by
f: S' - M. Let v —» S' denote the normal bundle of f:

v=J {veT,,M:v1fTs'},
tes’

and exp the (partially defined) exponential map v — M . v inherits a
Riemannian metric and a connection from 7'M , and so it makes sense
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to speak of C*-norms |s|, of its sections s € C”w) (k=1,2,...).
Given now a small positive € and a positive integer k, put

(1.1) U(f, k,€)={[expos]:s € CT(v), |s|, <€},

where [g] denotes the class of g. By declaring the sets U(f, k,€) a
neighborhood basis of I" we obtain a topology on 1.

In fact, since 4(f, k, €) can be identified with open subsets in Fréchet
spaces (e.g. in the space of smooth mappings s' 5 R? ), we obtain a
Fréchet manifold structure on 9. The tangent space 79t can be identi-
fied with C*(v). Define an endomorphism J: 7,9 — T by Js, =s,
if for every t € st 5,(¢) and s,(¢) are orthogonal and have the same
length, and their vector product s,(¢) x s,(¢) € f,T,S ! points in the direc-
tion of the orientation of I'. Then J°> = —id, and so J defines an al-
most complex structure on 9 (see [16]). The complexified tangent bundle
CoTM splitsas T" "ma 7% 'ont, with T "m (TO’ lEJJI) the eigenspaces
of J corresponding to the eigenvalue i (resp. —i). Brylinski proves that
J is formally integrable, that is for sections X, 9 of T 09 [X, D] is
again a section of T'%m. (Strictly speaking, [4] proves integrability only
on the subset of 9 consisting of [singular] knots, but this subset being
dense, integrability on 9t follows.)

Now the question arises whether this formally integrable almost complex
structure is locally integrable. As a matter of fact, local integrability can be
understood in several different ways. In this context the most natural (and
most restrictive) concept is that of a bona fide complex manifold. This asks
for the existence of a neighborhood 4 of an abitrary point I' € 9 and a
holomorphic C ! diffeomorphism (biholomorphism) F: il — V with V'
some open subset of a Fréchet space over C. Here a C ! mapping F
of an open subset of 9t into a Fréchet space is holomorphic if any local
section X of T°''9 annihilates it: XF,=0.

On the other end of the scale, one can consider the following weak
notion of local integrability (as in [4]): given any " € 9t and X € T,
X #£ 0, there is a neighborhood 4 C 9 of I' and a holomorphic function
F :31 — C such that XF #0.

In finite dimensions formal integrability and the above versions of local
integrability are all equivalent, the difficult implication being the content of
the Newlander-Nirenberg Theorem; see [18]. On Fréchet manifolds, where
even real vector fields may fail to be integrable, the Newlander-Nirenberg
Theorem does not hold. This leaves the question of local integrability of
the complex structure of 9 open.
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Momentarily we shall abandon 9t for another type of loop space. In-
dependently of Brylinski’s work, in 1988-89 I observed that certain loop
spaces associated with Cauchy-Riemann (CR for short) manifolds (for def-
initions see §§2,3) also carry formally integable almost complex structures.
I hoped to use these structures to study the tangential Cauchy-Riemann
equations; however, S. Baouendi pointed out that in my approach I was
tacitly assuming that the structures in question are locally integrable in the
strong (complex manifold) sense.

It soon turned out that this assumption is untenable and, indeed, the
loop spaces I considered are generally speaking not locally biholomorphic
to open subsets of Fréchet spaces. The proof, which will be given in §5
(see also §6), uses a theorem of Hans Lewy about analytic continuation
of solutions of the tangential Cauchy-Riemann equations. But here is a
pleasant twist! The careful reader of Lewy’s paper will notice that his
proof, in turn, revolves around the complex structure of CR loop spaces,
even though the space of all loops never actually appears there (let alone
the complex structure). We shall say a little more about that in §3.

Returning to Brylinski’s loop space 9, we will see that it can be holo-
morphically embedded into some CR loop space M. The construction of
the embedding uses ideas from twistor theory, as advanced by LeBrun in
[13]. That twistor theory should be of use in the study of 9t was first ob-
served by Drinfeld and LeBrun, who, however, restricted their attentions
to spaces of real analytic loops. Anyway, we can use the embedding to
deduce that 9 is not locally biholomorphic to open subsets of Fréchet
spaces, either (see §10).

On the other hand, the almost complex structure of both types of loop
spaces can be shown to be locally integrable in the weak sense, when the
CR manifold in question is embeddable in a complex manifold or when
the Riemannian manifold is real analytic. For the loop spaces associated
with CR manifolds this js quite straightforward (see §4); for 9 it will
then follow since it embeds in a CR loop space; see §9.

2. Cauchy-Riemann manifolds

Let us start with a complex manifold Q of finite dimensions n > 2, and
N c Q a piece of a smooth real hypersurface (of real dimension 2n—1).
The complexified tangent bundle C ® T'Q splits as T! ’OQ oT" 1Q; in
local coordinates T'°°Q (TO’ lQ) is spanned by 0/0z; (resp. 0/0z;).
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Put

H"'N=T"%|,n(CeTN); H”'N=T"'Q|,n({C®TN).
Then we have H'°N = H*'N, H'"°NnH"'N = (0), and
(2.1) (H°N, H"°N1c H"°N,

meaning that the Lie bracket of any two sections of H LON s again a
section of H''°N .

In general, a smooth manifold N of odd dimension 2n — 1 equipped
with two smooth subbundles H''°N , H>'NCcC®TN ofrank n—1 is
called a Cauchy-Riemann manifold if the bundles H Loy R H®'N have
the properties listed above. Of course, to define a CR manifold, it suffices
to specify H LON or HO'N , and the other bundle is then determined.
Thus hypersurfaces in complex manifolds are CR manifolds (but not every
CR manifold can be embedded into a complex manifold).

A C' function u: N — C is a CR function if

(2.2) Xu=0  whenever X € H"'N.

Equations (2.2) are called tangential Cauchy-Riemann equations. When N
is embedded in a complex manifold Q, traces of holomorphic functions
defined on Q are examples of CR functions on N C Q. Lewy’s theorem
is a converse to this; it applies when N is not very degenerate in the
following sense:

Definition 2.1. A point p € N is said to be Levi flat if for any smooth
section X of H''°N, defined near D,

(2.3) [X, X\(p) € H,°No H)'N.

We remark here that whether for a given X (2.3) holds or not depends
only on ( N and) the value of X at p.

This definition applies to abstractly defined CR manifolds, but let us
now assume that N is a hypersurface in a complex manifold Q.

Lewy’s Theorem (See [14],[22]). Any non-Levi flat point p € N has a
neighborhood basis consisting of open sets G C Q such that G\ N has two
components and one of them, say G,, has the following property. Given
a CR function u on GN N there is a function o € CI(Gl U(GnNnN)),
holomorphic on G,, which agrees with u on GN N .

3. Loop spaces associated with CR manifolds

Let N be a CR manifold as in §2, and with notation as there, put
HN =TNnN (HI’ON ® HO’IN). This is a real vector bundle of rank
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2n -2 over N. Levi flatness at p € N is equivalent to [X, Y](p) € HN
whenever X, Y are local sections of HN. Thus p € N is not Levi
flat if HN defines a contact structure near p; the converse is also true
when dim N = 3. As real vector bundles, HN, H"'°N,6 and H*>'N
are isomorphic, for example H '"O¥ 5 X — ReX € HN establishing
an isomorphism between the first two. HN comes equipped with an
endomorphism J that maps ReX € HN to —ImX € HN for any
XeH"N. Obviously, J 2-_id. In particular, we see that the bundle
HN has a canonical orientation.

By a transverse loop I' in N we shall mean an equivalence class of
smooth immersions f: §' — N such that for every ¢ € S', f(S') is
transverse to H f(t)N . Two immersions f,, f, are equivalent if f, =
fop,with ¢ : S ' 8! a smooth orientation preserving diffeomorphism.
Somewhat abusively, we shall also denote by I" the image f(S 1) C N of
an f representing I' = [f]. Denote the set of transverse loops in N by
N.

M is a topological space, indeed a Fréchet manifold. To define these
structures, endow N with a Riemannian metric. It will be convenient to
assume the metric is complete, although this is not essential; the stucture
on M will be independent of the metric.

Let I' C N be a transverse loop in N, represented by f : S 'S N,
Denote by exp the exponential map f"HN — N. This is an immersion
when restricted to a sufficiently small neighborhood of the zero section.
Again, f*HN inherits a metric and a connection from the metric on N,
so we can introduce C* norms |s|, for sections s € C*°(f"HN). Given
now a small positive € and a positive integer k, put

(3.1) U(f, k,€)={[expos]:s € C*(fTHN), |s|, <e€}.

By declaring the sets (3.1) a neighborhood basis of I" we obtain a topology
on 9. Again, there is an obvious way to identify $(f, k, €) with open
sets in Fréchet spaces (namely C*(f*HN) = space of smooth mappings
S' = R*7?), and this identification turns 9 into a Fréchet manifold.
The tangent space T is simply C*(f"HN).

We can also introduce an endomorphism J of 79 by Js, = s, if
s;, 8, € C¥(f"HN) are such that Js,(¢) = s,(t) for every point ¢ € st
Then 32 = —id, so J defines an almost complex structure. The =+i
eigenspaces of J determine a splitting C ® T9t = "% e 7% '9, and
so again we have the notion of holomorphicity of a c! mapping from
an open set  C N into a, say, Fréchet space, and also the notion of
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holomorphicity of a C ! mapping of an (almost) complex manifold into
M. For later use let us record the fact that for a loop I' = [f] € 91 tangent
vectors X € T''°9 can be identified with sections s € C C(f*H Loy ).

At this point we could discuss formal integrability, but we would first
like to exhibit examples of holomorphic mappings into and from 0. For
this purpose we shall assume N is a hypersurface in a complex manifold
Q. Suppose furthermore that with somé domain 4 C C we are given a
holomorphic immersion g : 4 — Q that is transverse to N, and moreover
the smooth curve y = g_l(N ) is compact and connected. In this case g
restricted to y defines a transverse loop I" € M. (Observe that, as a simple
closed curve in C, y has a canonical orientation.) Conversely, any real
analytic transverse loop I" € 91 comes from a holomorphic immersion of
some annulus 4 C C as above.

Assume now that we are given a complex manifold M and a holo-
morphic mapping G : M x A — Q such that G(p,, {) = g({) for some
Py €M and all { € 4. Put gp(C) = G(p, {). Then for- p € M close
to py, g, define transverse loops l"p C N (essentially l"p =NnN gp(A) ).
It is straightforward to check that the map p — Fp € N is holomorphic.
In particular, suppose N is a real analytic hypersurface in Q, I' = [f]
is a real analytic transverse loop in N, and s is a real analytic section
of f*H Y , which determines a tangent vector X € Tlf’o‘ﬁ. Then there
is a holomorphic curve in 9N through I' in direction X; i.e., there is a
neighborhood ¥V of 0 € C and a holomorphic mapping ¢ : V — N
with ¢(0) =T and ¢_(0)(0/0() = X. We shall see later that without the
assumption of real analyticity such holomorphic curves need not exist.

Next we will produce (local) holomorphic functions on 9t. To this end
fix a holomorphic (1, 0) form a on Q.

Proposition 3.1. The formula

(3.2) F(T) = /r o

defines a holomorphic function F : Mt — C.
Proof Let X € TyM be given by a section s € C*(f"HN) with f:

S'o N representing I'. For brevity, put © = f,0/dt, t denoting the
coordinate on S'. We claim

XF = / (da, s(t) AT(1)) dt + d{a, 5(1)))

(3.3) s

- / (da, s(t) A (1)) dt.
Sl
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This would prove the proposition, since then
JXF = /1<da’ Js(t)AT(t))dt =i /|<da’ s(t) At(t))dt = iXF
s s

(for da isa (2, 0) form).

As to (3.3), only the first equality needs to be proved. Assume first I"
is an embedded loop, and construct a vector field X on a neighborhood
of I'C N such that X, = s(¢). Denote by hy (|0] <€) the local flow

of X. Then 4 p
xF = _leho Le(r)a = ‘—1—0'1":0‘/1:}10(1

=/rLXa=/F(XJda+a’(XJa)),

which is equivalent to (3.3). If I" is not embedded, we can represent it as
a union of embedded arcs I' =T", U---UT’, ; applying the above argument
to the subarcs T’ > We obtain (3.3) for an arbitrary immersed loop.

Remark 3.2. There is an alternative way to reduce the case of a nonem-
bedded I" = [f] to embedded loops. Endow Q with a (complete) Rie-
mannian metric, and let v = f'TQo TS ! denote the normal bundle of
f. Using the exponential map from v to @, we can pull back the com-
plex structure of Q to a neighborhood Q C v of the zero section. We
can also pull back a to get a holomorphic (1, 0) form & on Q. As a
result we can work on the complex manifold Q with embedded loops.
This argument also shows that even if a is a multivalued holomorphic
(1, 0) form, formula (3.2) (understood as F([f]) = [ f,) still defines
a holomorphic function on the open set of those loops I' = [f] for which
f.a (asaformon f*TQ) can be made single valued.

It is clear that in Proposition 3.1 only properties of a|, matter. In
particular, (3.2) defines a holomorphic function F if a = udv with u,
v smooth CR functions on N . Putting together this construction of holo-
morphic functions on 9t with our previous construction of holomorphic
mappings into 9, we see that for certain families {y,} of closed curves
in N, parametrized by points { in a complex manifold A, the integrals
fyc udv depend holomorphically on {, if u, v are smooth CR functions.
This circumstance has been known and exploited for a long time, first by
Lewy, and then by others; see [1], [8], [14], [21]; the idea can be traced
back to F. John; see [9].

Formula (3.2) can be thought of as an infinite dimensional Radon trans-
formation. It follows that F will satisfy an infinite system of second order
partial differential equations. Consequently (3.2) cannot describe all holo-
morphic functions on 1. More holomorphic functions can be constructed
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by a generalization of (3.2) in the spirit of Chen’s iterated integrals [5].
For this purpose choose a positive integer k and consider those k-
tuples (¢,,t,,--- , ) of distinct points in S! that follow each other

according to the orientation of S!. The set of these k-tuples will be
denoted A, C (S')k ; thus A, is a generic orbit of the diagonal action of

Diff S! on (Sl)k . In particular, A = s! , Ay = S! x Sl\diagonal, but
‘when k>2, (S l)k \ A, has nonempty interior. Let a be a holomorphic
"(k,0) foormon Qx---xQ = Qk (k factors). If f: s' - Q is any

mapping, define f, : (S") = @ by f(t,, -+, 1) = (f(t)), -+, (1))
Then we can construct a holomorphic function F on 9t by the formula

F(r>=/A fra,  T=[A1

Finite sums of functions thus constructed form an algebra; we conjecture
that locally on 91 this algebra is dense in the space of holomorphic func-
tions.

There is another way of generalizing the construction of holomorphic
functions on 2 as given in Proposition 3.1. This is based on a remark
by Brylinski to the effect that an integral like the one in (3.2) should be
thought of as a holonomy. Accordingly, instead of a holomorphic (1, 0)
form on @, consider a holomorphic principal G-bundle P — Q with a
holomorphic connection. Here G is a complex Lie group. If f: S'o N
is a transverse immersion, horizontal lift along f defines a holonomy
gNeG. If pe Diff S', g(fop)=g(f),so g in fact descends to a
group valued function F : 91 — G; and it is not hard to check that F is
holomorphic.

As a matter of fact, this construction can be made more intrinsic to
N, if, instead of a holomorphic principal bundle over Q, one takes a CR
principal G-bundle over N ( G still complex Lie group) with a CR connec-
tion. Holonomy again will define a holomorphic function F : N — G. In
this fashion one can even construct holomorphic functions on loop spaces
of nonembeddable CR manifolds, at least in principle. The difficulty of
course lies in finding CR bundles with CR connections over N. We hope
to return to this question in a later publication.

4. Weak integrability

Again we shall assume that our CR manifold N is a hypersurface in a
complex manifold Q. We shall prove that the almost complex structure
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J on M is locally integrable in a weak sense, hence it is also formally
integrable.

Theorem 4.1. Any I' € Mt has a neighborhood WM, such that for any
nonzero X € TN there is a holomorphic function F on N, with XF #0.

We will prove this theorem after some preparation.

Proposition 4.2. Let A be a doubly connected Riemann surface, y C A
a smooth Jordan curve, not null homotopic. Given a continuous 1-form ¢
on y such that fy ¢ = 0 and a positive €, there exists a holomorphic
function h on A such that |dh — 9| < € on y. Here the uniform norm
| | ofa 1-form is measured using some fixed Riemannian metric on A.

Proof. By the uniformization theorem we can assume that 4 = {{ €
C:r<|{| <R}. Write ¢ = ¢,d{, with ¢, a continuous function on
7. We can uniformly approximate ¢, by Laurent polynomials of form

v, (§) = Z'ik ajCj (see, e.g., [15]). Here

1 1
a_l=m /; ‘/’1dC—m /y('/’l_%)dc’

which is small, so that y, — a_lC'l is also close to ¢, on y. Hence
h(§) = [(¥,(£) — a,L™")d¢ will do.

Proposition 4.3.  Any smooth Jordan curve y C C™ has a neighborhood
U with the following property. Given a continuous 1-form ¢ = Z;" 9; dz ;
along v such that fyqojdzj =0 (j=1,---,m),and € >0, thereis a
holomorphic function h on U such that |dh — ¢| < € along y.

Proof. By a generic linear change of coordinates we can achieve that
the coordinate projections @ I C" — C restrict to immersions on y. Then
the fibers of 7 ; are transverse to 7, SO we can find a neighborhood U of

y such that any connected component of U N n;'(C ) intersects y at one
point at most (j = 1,--- , m). Pick now a j. Let A; denote the leaf
space of the holomorphic foliation of U determined by the fibers of 7 Iz
This is a Riemann surface (spread over C). After shrinking U, we can
assume A, is doubly connected. With o;: U—- A4 ; denoting the canonical
projection, aj(y) cA ; is a smooth Jordan curve, not null homotopic. By
Proposition 4.2 there is a holomorphic function %, on A4 ; such that dh ;
approximates (the push forward to o,(y) of) ¢ ; dz ;- Then h= Zhj °0;
will do.

Proof of Theorem 4.1. Assume first that I" is an embedded loop rep-
resented by f : S' = N. With an arbitrary Riemannian metric on Q
put r(q) = distz(q ,I) (g € Q). This is a strictly plurisubharmonic func-
tion in a neighborhood of I' C Q, whence for € > 0 sufficiently small
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Q,={q€Q:r(q) <€} is a Stein manifold and so embeds into some Eu-
clidean space C™. (For these matters, see [2], [6], [17]). Accordingly, we
shall think of Q, and N, = NN Q, as submanifolds of C™ . In addition
we can assume that the coordinate projections restrict to immersions on
r.

The vector X € T is represented by a section s € C(f"HN), [f]1=
I'. There is an interval on which s does not vanish, which we can take
to be [n/2, 3n/2] C s! (now we think of S' as R mod 27 ). Choose a
real valued function p € C°°(S1) , suppp C [®n/2, 3n/2], p(n)=1. Put
©(t) = f,(1)0/0t € TT as before. Since for ¢t € [n/2, 3n/2], ©(t), s(t) €
Tf(t)(Cm are independent, we can construct smooth (1, 0) forms ¢ =
Y 9;dz;, y =2 y;dz; on C™ so that we have

(4.1) (p(f(0),s@®) =p@1), (2(f(1),7())=0 (0<1<37/2),

(42) (w(f(0),s)=0, (w(f@®), () =p@>) (n/2<1<27).

Conditions (4.1), (4.2) do not restrict ¢(f(2)), w(f(¢)) for 3n/2 <t <
2n, resp. 0 < ¢t < m/2. We can use this freedom to arrange that in
addition to (4.1), (4.2) also

fojdz,= [vdz=0 (=1, m)

hold.

By virtue of Proposition 4.3 on I" we can approximate ¢ (resp. ¥ ) by
du (resp. dv ) with u, v holomorphic functions on a fixed neighborhood
UcC” of T'. Put a=udv. If y €M is sufficiently close to I', then
its image in N (also denoted y) lies entirely in U, so we can define a
holomorphic function F in a neighborhood 9, of I' € M by F(y) = fy a,
as in Proposition 3.1.

According to (3.3), we have

XF = | ({du,s())dv, 1(2)) - (du, 1())(dv, s(1)))dt,
s
which, by appropriate choice of #, v can be made arbitrarily close to

/S.W(f(’))’ s (f(), ©(1)) — (p(f (1), 1O W (S (1)), s(1))) dt

=/ p2()dt > 0.
Sl

Thus, with an appropriate choice of u, v ¥F #0.
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The above argument can be enhanced to take care of general immersed
loops, as explained in Remark-3.2.

Corollary 4.4. The almost complex structure J on N is formally inte-
grable.

Proof. Let 2, 3 be local sections of T'%n, and write D, 3] =
90 + X with 90 a section of T Oy , X a section of TOQ. For any local
holomorphic function F we have

XF =9 3F -39F -F =0.
Hence X =0 by Theorem 4.1.

Remark 4.5. With a little more work Theorem 4.1 can be strengthened
as follows. Any I' € 9% has a neighborhood M, such that, in addition
to Theorem 4.1, for any I') , ', € M, (T, #I',) there is a holomorphic
F: 9, — C with F(T')) # F(I',).

Remark 4.6. We do not know if Theorem 4.1 remains true without the
assumption that N can be embedded in a complex manifold. On the other
hand Corollary 4.4 is true for any CR manifold N, as can be checked by
direct computations (or by approximating the CR structure of N, locally
near a loop, by embeddable CR structures).

5. Failure of strong integrability

Again assume N is a hypersurface in a complex manifold Q, dim;Q =
n.
Theorem 5.1. Suppose N has a non-Levi flat point. Then N is not
locally biholomorphic to open sets in Fréchet spaces.

It is not hard to show that when N is everywhere Levi flat, it is locally
CR equivalent to S’ x C"~! and hence M is locally biholomorphic to
C™(S N (C"'l) . We remark that in this case (and only in this case, cf.
Proposition 5.5) 9t can be empty.

The proof of Theorem 5.1 is based on the following observation, which
is true even when N is not embedded in a complex manifold.

Proposition 5.2. Let D c C"' be an open set, and ® : D — N a
holomorphic mapping (of class C l). Suppose that for points q in some
open set U C N there is a unique { = u(q) € D such that the (range of
the) loop ®(() contains q. Assume furthermore that u: U — C* ' is of
class C'. Then u is a CR function and a submersion.

Proof. Llet gy € U, {, = u(q,). After possibly shrinking D, we can
construct a C' mapping f: D x S' - N such that the mappings fc =
f(¢, ) are smooth immersions and represent the loops ®({). Put also
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f'=f(,t (te€S"). Let ¢, be such that f({,,¢,) = q,. For ({,?)
close to (CO, t,) we have

(5.1) u(f(§, 1) =¢,

whence rku, = 2n — 2, so u is a submersion. By reparametrization we
can arrange that f*"’(TCOD) C H, N. Then (5.1) implies that f*'OlT( , and
0
u, |y n areinverses of one another. Since by virtue of the holomorphicity
q(

of @ the former intertwines the almost complex endomorphisms J,, of
D and J of N, the same holds for the latter, whence u indeed satisfies
the tangential Cauchy-Riemann equations.

In the following proposition we shall think of S ! as R mod 27 . Hence-
forward we shall need that N is a hypersurface in a complex manifold Q.

Proposition 5.3. Suppose f : S' — N is a smooth immersion such
that for some t; € st p = f(t,) € N is a non-Levi flat point, and
Spy 58, € CO(f*HVON) are such that s,(t), - ,s,_,(t,) form
a basis of H}’ON. S definesaloop T e and s, --- ,s,_, determine
tangent vectors X,,--- , X, _| € Tr"°m. If there is a holomorphic mapping

®:D - MN of class C', with D some neighborhood of 0 € c"', such
that ®(0) =T, and ®,(0)0/0(;=X; (j=1,---,n—-1), then

(a) there is a Riemann surface £ C Q with C Y boundary such that 8%
contains an arc f(t,—¢€, ty+¢€) of I, for some € > 0;

(b) there are continuous sections X ; of T ! ’OQI,:, holomorphic on intX,
such that

(5.2) X,(f(1)) =s,(t) mod Tf‘(;fz, ty—€<t<ty+e,

j=1,2,--- ,n—1.

Proof. (a) Assume f is an embedding (we already know how to lift
merely immersed loops to embedded ones). The implicit function theo-
rem (on N) implies that for g in a neighborhood U C N of p there is
a unique { = u(q) in a neighborhood D, C D of 0 such that the loop
®({) passes through g; furthermore u : U — Cc"! is of class C'. By
Proposition 5.2 u is CR, and so by Lewy’s theorem there are a neighbor-
hood G C Q of p cutin two by N, and a holomorphic mapping # on
one of the components, say G,, C ' on G,U(NNG), such that & = u
on NN G. Obviously (if G is sufficiently small) # is still a submersion,
whence X = ﬁ_l(O) C Q@ is a Riemann surface with C ' boundary. The
boundary near p € £ agrees with an arc f(f, —¢€, f, +¢€) of the loop I'.
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(b) Fix j. For g € X the vectors in qu’oQ that u, (¢) mapsto 9/9¢; €
Tol "0¢™~! form an equivalence class in qu ’OQ / qu 0% . From (5.1) one can
read off that when ¢ = f(1) e ZN N, s].(t) is in this equivalence class.
When we let g vary on X, these equivalence classes define a continuous
section of the normal bundle of ¥ in Q, holomorphic on intX. This
section can be lifted to a continuous section X ; of T! ’0Q|}: , holomorphic
on intX. Clearly X ; has the required property.

Remark 5.4. When N is strictly pseudoconvex, a converse to Propo-
sition 5.3 is also true. Suppose f : S' - N defines a loop 'e 9 and f
has a holomorphic continuation f to I, ={teC:0<Imt <€} such
that f (I1,) lies on the pseudoconvex side of N. Let X,,--- ,X,_, €
T"%% be determined by sections Sysctr > 8, € C®(f*H"°N) that
have, mod ﬁT"Ol'I6 , holomorphic continuations to Il, (as sections of
f* T! ’OQ ). Then there is a smooth holomorphic mapping ® : D — 9t with
D c C"' a neighborhood of 0 such that ®(0) =T and ®,(0)(9/0¢;) =
X..
]Indeed (when T is an embedded loop), the loops ®({) can be obtained
as fibers N N 12_1(() , with @ a suitable holomorphic submersion of the
pseudoconvex side of N, into c! , which is smooth up to N .

To prove Theorem 5.1, we shall need one more result.

Proposition 5.5. Suppose N has a non-Levi flat point p,. Then there
isaloop [f]=T € N and sections 5; € Cw(le’oN) defining tangent

vectors X; € Tll’o‘ﬁ (j=1,---,n—1) such that for every t € st
f(t) € N is not Levi flat, s,(t),--- ,s,_,(t) are independent and for no
ty € S' and € > 0 are (a) and (b) of Proposition 5.3 simultaneously
satisfied.

Proof. First transversely intersect N with a two-dimensional complex
manifold Q, C @, p, € Q,, sothat NNQ, = N, still be non-Levi flat at
D, - Since dim N, = 3, this in fact means p, is a strictly pseudoconvex
point of N,. Therefore by shrinking N and Q we can assume that
NccC”,

Ny ={zeN: z;=---=2,=0}
is a strictly convex hypersurface in c? x {0} (see, e.g., [11]), and indeed
N, is given by equations

Imz, = C(z,, Rez,), zy=-=2,=0,

where C is a smooth, nonnegative, strictly convex function defined on
some ball {(z,, x,): |z, +x; <r}, C(0) =0, grad C(0) = 0.
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If 6 > 0 is sufficiently small, the line L = {z € C" : z, = id, z; =

- =z, = 0} intersects N,, hence N, in a smooth Jordan curve y,
which is transverse to the plane field {H,N,}, and so also to the plane field
{HpN }. Therefore y is the image of some embedded loop [f]=T € M.
The projection of y on the z -axis is a smooth Jordan curve y, . Choose a
nowhere vanishing function » € C*°(y,) which cannot be holomorphically
continued to any one-sided neighborhood of any point of y,. For every
j=1,---,n—1 there is a unique smooth function hj € C™(y,) such
that the vector field YJ defined along y by

. ) )
(5.3)  Yi(z,,i6,0,---,0)= hj(zl)a—zl +h(z)) 5=

f (zy€7)

j+1
becomes a section of C°°(H1’0N|y). sj(t) = Yj(f(t)) now defines s; €
C®(f"H"'°N) and so determines X, € ;9. Clearly s,(1), - , 5,_,(¢)

> “n—1
are independent forevery t € S ! | We claim that with these X, %X,
and arbitrary {, € S ! , € >0, both (a) and (b) of Proposition 5.3 cannot
be satisfied.

Indeed, suppose ¥ and X ;= 2k hjk(a /0z,) are as in that Propo-
sition. Since L N 8X contains an arc, it follows that X C L, hence
hjk = hjk(zl ,10,0,---,0) are holomorphic functions of z, for z, in
a one-sided neighborhood of a point w € y, . Since T'%% is spanned by
0/0z,, (5.2), (5.3) imply hj,j+l(zl’ i6,0,---,0) = h(z,) for z; € p,
close to w, which contradicts the impossibility of analytic continuation
of h.

Proof of Theorem 5.1. Let I', X,,--- , X,_, as in Proposition 5.5. If
a neighborhood of I" € 9 were biholomorphic to an open set in a Fréchet
space, there would exist a neighborhood D of 0 € Cc"! and a holomor-
phic mapping ® : D — 91 such that ®(0) =T and ®,(0)(9/9¢;) = X;.
This, however contradicts Proposition 5.3, and the choice of I', X IE

6. The case of nonembeddable CR manifolds
Theorem 5.1 remains true for not necessarily embeddable CR mani-
folds, if we require a little more regularity of local biholomorphic maps.
For example we have
Theorem 6.1. Suppose an arbitrary CR manifold N has a non-Levi flat
point. Then M is not locally biholomorphic to open sets in Fréchet spaces
via smooth biholomorphisms.
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Sketch of proof. Construct an embedded loop I' = [f] € M that passes
through a non-Levi flat point p € N. Suppose a neighborhood U of I
is smoothly biholomorphic to an open set in a Fréchet space. Then for

given tangent vectors X,,--- , X, | € T"%N there is a neighborhood D
of 0 € C"! and a smooth holomorphic mapping ® : D — 9N such that
o0) =T, <I>*(O)(6/8Cj) =X; (j=1,---,n-1). Anappropriate choice

of X; would then yield a neighborhood U C N of p and a smooth CR
submersion ¥ = (4, -+ ,u,_;): U — ¢!, Now perturb I' slightly to
get a loop I € 4 that still passes through p but has different direction
there. We again obtain a smooth CR submersion u' = (u'1 , u;_l)
near p. The kernel of u (p) (resp. u'* (p)) is given by the direction of
I (resp. I') in p; it follows that for some k (u;c, -+ ,u, ;) CR
embeds a neighborhood N, C N of p as a smooth hypersurface in c".
By Theorem 5.1 the loop space 9, of N, is not locally biholomorphic to
open sets in Fréchet spaces. Since 9, is open in 9, Theorem 6.1 follows.

7. Brylinski’s loop space

In this section we shall fix some notation and then describe holomorphic
curves in Brylinski’s loop space 9, that is, holomorphic mappings of some
open subset of C into 9.

Let T' = [f] be an immersed loop in an oriented three-dimensional
Riemannian manifold (M, g). On the normal bundle v = v, of f,
as defined in the Introduction, construct an endomorphism J = J [ by
putting Jv, = v, if v, v, € Tf(t)M are orthogonal and of the same
length, and their vector product v, x v, € Tf(t)M points in the direction

of the orientation of I'. Then J? = —id. The complexified bundle
C @ v splits as v 091" where v!° (resp. v 1) consists of vectors
of form v — iJv (resp. v + iJv), v € v. Both v"? and %! are
complex line bundles over s! , and Tll’oim, Tlg ‘!9 can be identified
with C®(v"*%), C®(°'"). Further, let v* = v} denote the subbundle of
f*T*M consisting of those one-forms o € T*°M that annihilate f,8/9¢.
Clearly v* is the dual of v, but it also comes with a fixed embedding
v* C f*T*M . Again we have a splitting C® v* = v*""* @ "% | where
formsin »*'"° (resp. v*o’l) annihilate vectors in v (resp. ul’o) . The
complexification of the metric g endows C®v with a complex quadratic
form, again denoted g. Vectors v in v 0 u %! are isotropic vectors,
i.e.,, g(v, v) = 0; moreover these are the only isotropic vectorsin CQ v .
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Similarly, the dual metric g’ on T*M endows C ® v* with a complex
quadratic form, and the set of isotropic forms in C ® v* coincides with
v* 100! Whether an isotropic form « is in V:-l,o or I/t*o’l depends
on whether Rea, Ima and the dual of f, (¢#)0/dt constitute a positively
or negatively oriented basis of T;(t)M .

The following result parallels Proposition 5.2.

Proposition 7.1. Let D C C be an open set, ® : D — M a holomorphic
mapping. Suppose that for points q in some open set U C M there is a
unique { = u(q) such that the (range of the) loop ®({) passes through q .

Assume furthermore that u : U — C is of class C ', For some (o €D let
D({,) be represented by f : s' - M. If f(t,) € U then (du)(f(ty)) €
l/;l’o. Consequently,

(7.1) g(grad u, grad u) = 0.

The proof is analogous to that of Proposition 5.2 and will be omit-
ted. We shall, however, state a converse result (and leave its proof to the
interested reader):

Propesition 7.2. Let U Cc M be an open set, and u: U — C a smooth
submersion that satisfies (7.1). Assume that for points { in some open set
D c C the curves u'l(C ) C M are simple and closed. Then these curves
u'l(C ) can be oriented so that they represent embedded loops ®({) with
®: D — M a smooth holomorphic mapping.

When the metric of M is real analytic, we can apply the Cauchy-
Kovalevskaya theorem to conclude equation (7.1) has many real analytic
solution. This implies there are many holomorphic curves in 9, which
are, at the same time, real analytic. A few explicit solutions can also be
given. As an example, let M = s c? , with the standard round met-
ric, and u(z) = z,/z,. u satifies (6.1) and so defines an entire curve
®:C — M. In fact, since u is a submersion onto P, , we get a rational
curve & : P, —m.

By composing u with stereographic projection we get a solution of (7.1)
in Euclidean space R? ,

2 2 2
x|+ Xy + (X3 —10)

Ulx s X X5) = = S

In Euclidean space R (7.1) reduces to

() )
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The following construction of smooth solutions of (7.2) we owe to L.

Nirenberg. Fix a smooth closed curve y in the plane Ril " Let v(x,, x,)

denote signed distance to y. This v is smooth in a neighborhood V R?
of y and satisfies (c’i?v/axl)2 + (611/(’)x2)2 = 1. Hence u(x, x,, x;) =
v(X,, X,) + ix, satisfies (7.2), and u is obviously a submersion. If @ :
D — 9 is the corresponding holomorphic curve, then the range of the
loop ®({) (¢ € D) is the curve

3
{x eR :x;=Im{, (X, X,) € Ype;}s

where y, denotes the set of points in R? at (signed) distance d to y. A
similar construction is available when M is isometric to a product.

We could now embark on an in depth study of equation (7.1), and the
paucity of its solutions could be used to argue that 9t is not locally bi-
holomorphic to open sets in Fréchet spaces, as in the case of CR loop
spaces 9. However, we were able to do this only for flat metrics. In-
stead, we shall use “twistor theory” to connect 9 with spaces of loops in
CR manifolds. That twistors should play a role in the study of 9% was
first observed by Drinfeld and LeBrun (apparently, the idea, in a simpler
context, goes back to Hitchin [7]). This should certainly not come as a
surprise in light of equation (7.1). Indeed, if (M, g) is real analytic,
we can complexify it to get a complex manifold M € with a holomorphic
quadratic form (still denoted g ), and real analytic solutions u of (7.1)
will extend to holomorphic solutions of the same equation (but now re-
garded on MC ). Differentiation of (7.1) gives that the trajectories of the
gradient field of u are isotropic (or: null) geodesics of the holomorphic
Riemannian manifold (MC , &) (as discussed in [12]), and level sets of u
are null surfaces: surfaces on which g restricts to a degenerate quadratic
form. At this point enters twistor theory, a science of isotropic geodesics,
null surfaces, and such (see, e.g., [19]).

8. Twistor CR manifolds

In [13] LeBrun associates with a three-dimensional Riemannian mani-
fold (M, g) a five-dimensional CR manifold (N, H*'N ) and, in view
of some analogy of this construction with another one due to Penrose, calls
N the twistor CR manifold of M . In this section we shall recall LeBrun’s
construction, and describe some properties of N .

The metric g defines a dual quadratic form on T°M, and even on
E = C® T"M . We shall denote this latter complex quadratic form g’.
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Let
N={veE:g'(v,v)=0}\zero section.
N is a seven-dimensional smooth manifold on which ﬁberwiAse multipli-
cation by nonzero complex numbers A € C* acts. Put N = N/C*. Thus
N Cc P(C®T"* M) consists of isotropic codirections. It is a five-dimensional
manifold, indeed a locally trivial smooth fiber bundle over M , with fibers
quadrics in P,, i.e., Riemann spheres. Let 7 : N — M denote the pro-
jection; for the projection E = C® T*M — M we shall use the notation
7.
There is a canonical one-form 6 on E defined by

(8.1) (6,v)=(a, #,v), veT,E.

In usual coordinates x,, x,, X5, P, P,, Py (With p; € C)on CRT'M,
6 becomes Xp jdxj . d6 = @ is then the (complexified) “symplectic” form
Zdp;Adx; on E. Let H®'N denote the kernel of @|, i.e.,

H"'N={veC®TN:a{,w) =0 for every w € TN}.
This endows N with a CR structure, for rkcHO’IIV =3, H"'N n
HY'N = (0), and [H*'N, H"'N] c H>'N (because & is closed).
The C* action of multiplication in the fibers is a free CR action in the
sense that C* x N — N is a CR map, and so the CR structure of N
projects down to define a CR structure H%'N of N. This manifold
(N, H"'N ) is the twistor CR manifold of M .

LeBrun proves that at no point is this CR structure Levi flat. In fact
its Levi form is indefinite, of signature (+, —); in particular HN defines
a contact structure on N . This signature has the consequence that if
N is a hypersurface in a complex manifold Q, Lewy’s theorem implies
that any CR function defined on a neighborhood of a p € N extends
holomorphically to a neighborhood of p in Q.

We want to be a little more explicit about (0, 1) vectors to N (resp.
N). Let o € E, #t(a) = g € M. Since E,=C®T,M CEisa
submanifold with a complex structure, C® TE 2 C CQ® TE has a splitting
T! ’OEq o T"'E o In local coordinates as before the two subbundles are
spanned by 8/dp ; (resp. 8/0p j) . From the local expressions it is clear

that TO?’ 'E . = Ker®. If now a € N, then complexified tangent vectors
to N which are in TS’IE . (the space of such vectors will be denoted
T>'N ) are even more in Ker @| 5 . Thus we identified a rank-2 subbundle

a q
{Tf’qu} of H>'N; it consists of vertical (0, 1) vectors.



LOOP SPACES AS COMPLEX MANIFOLDS 537

A vector in Hg’ "N\ TS’ 'N , can be obtained as follows. Observe that

@ defines a nondegenerate pairing on C® T, E/ Tf’lE a° hence also de-
termines an isomorphism between this latter space and its dual. The dual
in question consists of those covectors ¢ € T; E that vanish on Tf 'E .

One such covector is d g'la; by what has just been said, there is a vector
v € C® T E such that

(8.2) (dg',w)y=ow,w), weTeE.

This v is determined mod To’lE Hence, we can choose v so that in

addition to (8.2) (dg v)=0,ie; v e C®TN. Comparing (8.2) with
the definition of H*''N we find v € HO N. This v is not in Tf’qu
for we can show

(8.3) Av=2a#0,

where a € C® T,M is the vector dual to a € C® Tq* M (under the
duality determined by g ). Indeed, choose normal coordinates X, , x,, X,

centered at ¢, so that g = Ef (dxj)2 +0(|x|?), whence

3
g((x,p), (x,p) =Y p;1+0(x")  (x—0);
1

hence dg’ = 22? p; dpj at points of E . The dual of a covector o =
Zf p; dxj is a= E? p;(0/0x;), and it is straightforward to check that,
viewing Zi p;j(0/0x;) as a tangent vector to E in a,

3
oW, w)=(dg,w)= @(ZZ pja—(} ,w) foranyw e T E.
1 j

This proves (8.3). Since HS’IN is spanned by Tf’lﬁq and v, and
it*TS’qu = {0}, we have
Proposition 8.1. Forany a € N

A, H'N={ia:1ecC},
where a € C® TM is the dual of a € CQ T* M . Similarly, forany B € N,
0,1, _
nHy N=b,

where the line b ¢ C® TM is dual to the line f cCQ T*M .
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LeBrun also defines a so-called CR contact structure on N. We will
not need the general definition of this notion; in the case at hand it is a
subbundle K C TN of rank 3. Its fiberat S € N is

(8.4) Ky={veT,N: (g, mv)=0},

where (B, m,v) = 0 means that for a covector o with codirection g we
have (a, m,v)=0.

Definition 8.2. If an immersion ¢ : S 'L N s everywhere tangential
to the distribution {K ﬂ} , we shall say ¢ is Legendrean. Further, a vector
field along a Legendrean immersion will be called Legendrean if it can serve
as the variation of a one-parameter family of Legendrean immersions.

If M is oriented, Legendrean immersions ¢ : S ' » N can be positive,
negative, or singular according to whether for nonzero covectors ¢(t) €
¢(t) Rep(t), Im¢@(¢t) and the dual of (mo @) 8/0t € TM constitute a
positively or negatively oriented basis of T;( ¢(t))M , or for some ¢ do not
form a basis at all.

Observe that a Legendrean immersion ¢ is singular if and only if nog
is not an immersion. Indeed, isotropy implies that Re ¢(¢), Im ¢(¢) are
independent, and both are orthogonal to the dual of (mog), (9/0t) because
of (8.4). The only case where the three do not constitute a basis is that
where this latter covector is zero.

9. Embedding Brylinski’s loop space into a CR loop space

From now on assume the smooth Riemannian three-manifold (M, g)
is also oriented. Let (N, H'N ) be its twistor CR manifold. With any
smooth immersion f:S' — M we can associate an immersion f:S' —

*|

N asfollows. Forany ¢t € S ! the fiber (vfo’ 1), C <C®T;(,)M is an isotropic

line (codirection), hence a point in N, . Let f(t) be this point. Clearly
nof=f.

Proposition 9.1. Let ¢ : S' — N be a smooth mapping. Then ¢ = f
for some immersion f:S' — M ifand only if @ is negative Legendrean
in the sense of Definition 8.2.

Proof. If ¢ = f then any covector in C® V; annihilates f,0/0t =
m,9,0/0t by definition of u} , 50 ¢ is Legendrean by (8.4). Also, the
definition of u}o’l implies negativity (cf. §7).

Conversely, if ¢ is negative Legendrean, then 7 o ¢ = f is an immer-
sion. Further, the isotropic codirections ¢(¢) annihilate f, (¢)8/0t, so
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@(t) is either (1/}1 %), or (u}o’ '), . By negativity it must be the latter.

We shall call f the (Legendrean) lift of f.

Proposition 9.2. n*H})(’t;N =@y,

Proof. This follows from Proposition 8.1 along with the observation
that the dual of the line /(1) = (v}"'"), cCRT"M is (v]"),.

Proposition 9.3. The lift f of any smooth immersion [ is transverse
t0 the CR structure, i.e., to the distribution {HyN}.

Proof. Taking real parts in Proposition 9.2 we obtain n*Hf(t)N =
(v;), - Since n*f*(t)a/at = f.(t)0/0t is transverse to (v;), , the proposi-
tion follows.

Because the operation of lifting is Diff s! equivariant, it induces a
smooth mapping O : 9 — 9 of the space of loops in M into the space
of transverse loops in N. A smooth left inverse IT : 91 — 9t of 6
is obtained by associating with a transverse immersion ¢ : s' - N its
projection mo g : .S 'L M. (Note that transverse immersions ¢ into N
project down to M as immersions, for the fibers of 7 : N — M, i.e., the
manifolds N, (g € M), are tangential to the distribution HN, hence
transverse to ¢ ; cf. Proposition 8.1). It follows from Proposition 9.1
that the image ©(9M) is the set £ C M consisting of negative Legendrean
loops.

Theorem 9.4. £ is a smooth submanifold of M, and © is a diffeomor-
phism between M and £.

Proof Let T" € £ be arbitrary, and suppose I' = II(I") € M is repre-
sented by f:S' — M. Then I is represented by the lift / of f. Let
Cc™(S 1) denote the Fréchet space of smooth complex valued functions on
S'. We shall construct neighborhoods Y € M of I', UV C C°°(S') of
zero, and 20 c M of ", and a smooth diffeomorphism A : 4 x ¥ — 20
such that A(Y x {0}) = £N2W. This will show £ is a submanifold. Since
the restriction of A to U x {0} will be ©, we will conclude that © is a
diffeomorphism.

Let us start by pulling back the bundle N — M along f to get a

Riemann sphere bundle Bf over S'. This is the bundle of isotropic

. . . 1,0 1,0 0,1 0,1
codirections along f, of which v* " = u}‘ and v = I/; form

two disjoint sections. Fix a smooth isotropic codirection field @ in a

neighborhood of f(S') such that for every 1 € ' w(f(t)) # v},

v, 10, f*® then defines a third section of B /> disjoint from prOt o
Suppose 4 is a fourth section of B.. Since on a Riemann sphere the

cross ratio of four points is well defined (as long as three of the four are
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distinct), the cross ratio u* = (u, f*w, v*®", v*"%) defines a smooth

function ,u# :S'scu {0}, and the correspondence u — u# is one-to-
one and onto. Furthermore, u# has finite values if u # v*! ’0; it is zero
when p=0v""",

Similarly, if 4 : S' — M is close to f, and u is a section of the
pullback bundle B, , we can define =, ho, V;O’l , V;I’O) .

To construct the diffeomorphism A, let s € C°(v) determine an im-
mersion h = expos:S' — M close to f (cf. (1.1)),and let p € C°°(Sl)
be arbitrary. There is a unique smooth section x of B, such that u# =p.
If p=0,then u:S ! - N becomes a negative Legendrean immersion,
hence it is transverse to the CR structure. It follows that for p in a neigh-
borhood U of 0 € C°(S 1) 1 is still transverse, hence defines a transverse
loop [u] € M. Put A([A], p) = [u]. It is a simple exercise to check that
A is indeed a locally defined diffeomorphism 9t x C°°(S‘) — N, and its
restriction to 9t x {0} is 6.

Theorem 9.5. O is holomorphic.

Proof Let T € 9 be represented by f : S' — M; then I" = 6(I)
is represented by the Legendrean lift f : S' = N of f. Since T, 19’1931
(resp. T{''91) can be identified with C™(v}") (resp. C™(f"H*'N)),
Proposition 9.2 implies II, TIQ ) - TIQ’ 'om , 1.e., I'I*(f“) intertwines the
almost complex structure tensors J,, , J,, . This being true for any Feg,
it follows that £ is a complex submanifold (in the sense that 7€ is J
invariant), and II|, and its inverse, ©, are holomorphic.

Corollary 9.6. 9 and £ are biholomorphic via a smooth biholomor-
phism. If (M, g) is real analytic, then both are locally integrable in a weak
sense. For example, any T € M has a neighborhood 1 C M such that for
any nonzero X € T.9M there is a holomorphic F : 4 — C with XF #0.

This clearly follows from Theorem 4.1 and the fact that the twistor CR
manifold of an analytic Riemannian three-manifold is itself real analytic,
and hence embeddable into a complex manifold as a hypersurface.

10. Failure of strong integrability

Theorem 10.1. Assume that (M, g) is real analytic. Then no open
subset 4 C M, U # O is biholomorphic to an open subset of a Fréchet
space.

Instead of 9@ we can work with the manifold £ of transverse nega-
tive Legendrean loops in N. We shall need some information about the



LOOP SPACES AS COMPLEX MANIFOLDS 541

tangent bundle of £. In the following Propositions we do not assume
(M, g) to be analytic.

Proposition 10.2. If [f1=Te £, and TN is identified with C*(f"HN),
then T.£ corresponds to the subset A, C C “(f*HN) consisting of smooth
Legendrean vector fields along f (in the sense of Definition 8.2).

Proof. If f : S' — N is a one-parameter family of transverse neg-
ative Legendrean immersions such that f, = f, and o = df,/de|,_, €
C™(f"HN) represents a tangent vector in T1.£, then by definition o is
a Legendrean vector field. Conversely, if ¢ € C™(f"HN) is Legendrean,
then its image under the projection 7 : N — M is

o0
no=1€C (umf).

Let ¢, be a family of immersions S' - M such that 9, =mo f, and
de,/de|._, = ©. Then the velocity vector of the Legendrean lifts f =
¢, :df,/de|_, is o, ie., g corresponds to a vector in T.£.

Corollary 10.3. A, is a vector subspace of C*(f*HN). If 0 € A,
then Jo € A = Further, complexified tangent vectors in C ® T.L corre-
spond to elements of C® A 7 and tangent vectors in Tll’os (resp. T;? 12)
correspond to vector fields of form o —iJa (resp. a+iJa), c € A I

We shall denote the space of vector fields of form o —iJg (0 € A))
by A;°.

Proposition 10.4. Given [f]=Tc £, t,€S', and veC® H, N,
there is a (complexified) Legendrean vector field 0 € C® A, such that
o(ty) =v.

Proof. 1t suffices to treat the case v € H f(to)N . Issue a smooth curve
p, in N with p, = f(¢,), dp./de|,_, = v. There is a smooth family
of immersions ¢, : S' — M such that 9o =mof, o/(t) = n(p,),
and ¢,,()0/0t € T, M is in the kernel of p, € C® T,:(pz)M, for
every €. Denote the (Legendrean) lift of ¢, by f.. Then f, = f, and
o =df [de|,_o € A, doesit.

Proof of Theorem 10.1. If (M, g) is analytic, then so is (N, H" 'NY,
so that this latter can be embedded as a hypersurface in a complex manifold
Q. Given an open set 4 C M, U # J, fix a nonanalytic embedded loop
[, € 4. Then O(I)) = I' = [f] is nonanalytic either. Let #, € S !
be such that for no € > 0 is f(f, — €, t, + €) an analytic arc. Choose
two independent vectors v,, v, € H fl(’tg)N ,and 0,0, € Alf’o such that
aj(to) =v; (j = 1,2); cf. Proposition 10.4. g,, o, correspond to

tangent vectors X, X, € Tr”°2.
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If {4 were biholomorphic to an open subset of a Fréchet space, then
so would be U = O(4), which is an open subset of £. In this case
there would exist an open neighborhood D of 0 € C? anda holomorphic
mapping ®: D — U C N with ®0) =T, <I>*(0)8/6§j =X, (Jj=1,2).
As in the proof of Proposition 5.3, we could find a neighborhood U C N
of f(t,) € N and a CR submersion u: U — c? (of class C ! ) such that
{u = 0} agrees with the portion of the (range of the) loop I' in U . As said
before, the Levi form of N has signature (+, —) , whence any CR function
on U extends to a holomorphic function on some neighborhood G C Q of
f(t;) . In particular u extends to a holomorphic submersion #: G — c’.
Then {&z = 0} = X is a Riemann surface whose transverse intersection
with N contains an arc f(t,—€, t,+¢€). But this is a contradiction, since
N c Q is an analytic hypersurface, so XN N is an analytic arc. This
contradiction proves the theorem.

Similarly as in §6 we can prove a slightly weaker statement for smooth
Riemannian manifolds; details will be left to the reader.

Theorem 10.5. If (M, g) is a smooth Riemannian manifold, then no
open subset s\ C M, U # O, is smoothly biholomorphic to an open subset
of a Fréchet space.
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