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THE MOMENT MAP AND LINE BUNDLES
OVER PRESYMPLECTIC TORIC MANIFOLDS

YAEL KARSHON & SUSAN TOLMAN

Abstract

We apply symplectic methods in studying smooth toric varieties with a
closed, invariant 2-form ω that may have degeneracies. Consider the
push-forward of Liouville measure by the moment map. We show that
it is a "twisted polytope" in t* which is determined by the winding
numbers of a map Sn~ —> t* around points in t* . The index of an
equivariant, holomorphic line-bundle with curvature ω is a virtual T-
representation which can easily be read from this "twisted polytope".

1. Introduction

A symplectic manifold is a smooth manifold M with a closed 2-form
ω which is everywhere nondegenerate. Let T be a compact torus which
acts effectively, preserving ω. A moment map for (M, T, ω) is a map
Φ: M —• t* such that (dΦ, ξ) — -i(ξM)ω for every ξ e t , where ξM

denotes the corresponding vector field on M. By the Atiyah-Guillemin-
Sternberg convexity theorem [1], [12], the image of the moment map is a
convex polytope Δ. For an excellent introduction to this subject, see [3].

If (M, T, ω) admits a moment map, then the dimension of T cannot
exceed half of the dimension of M. If dim T = \ dim M, then the action
is completely integrable. Delzant [5] classifies these spaces; the polytope Δ
determines (M, T, ω) up to equivariant symplectomorphism. Moreover,
he shows that (M, T) is equivariantly diffeomorphic to a toric manifold,
i.e., a smooth toric variety.

In particular, M admits a complex structure such that T acts holo-
morphically. Let L be an equivariant holomorphic line bundle over M
with curvature ω, where ω is the imaginary part of a Kahler form on M.
Denote the sheaf of holomorphic sections of L by (9L . Then Hι{M, <PL)
is a representation of T. Danilov [4] shows that the weights which occur
in H°(M, <fL) are exactly the lattice points in Δ (with multiplicity one),
whereas H\M, &L) = 0 for i > 0.
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We extend these results to presymplectic forms. A presymplectic form
on (AT, T) is a closed, invariant 2-form ω which may be degenerate.
Although Φ is still defined, ImΦ behaves badly. Instead, we consider
the push-forward of Liouville measure, Φ+ωn , which was introduced by
Duistermaat and Heckman in [6]. It is a measure on t* which is sup-
ported on Δ. As was proved in [6], for symplectic ω , Φ+con is equal to
Lebesgue measure times a piecewise polynomial function. In particular,
in the completely integrable case Φ+ωn is equal to Lebesgue measure on
Δ—up to a universal constant which we shall ignore for the remainder of
this introduction. Even for presymplectic ω, one can prove that the den-
sity function is piecewise polynomial; Φ+con can be expressed as a sum
of polynomial measures on cones [2], [10], [11]. In this case, Φ^ω" is a
signed measure on t*.

In this paper, we give an explicit description of Φ+ωn . M/T is home-
omorphic to a ball. The moment map descends to the quotient, and,
restricting to d(M/T) ~ Sn~ι, we get a map

(1.1) Φ:Sn~l -+t*.

For a e t*, let d(a) be the winding number of (1.1) around a. d has the
shape of a "twisted polytope", as is illustrated in Figure 4 (p. 474). It is
bounded by hyperplanes; however, some faces may go right through other
faces, thus creating a region with a negative density; also, faces may "wrap"
several times around a region which then "counts with multiplicity". The-
orem 1 in §5 states that Φ+ωn is equal to Lebesgue measure times d. If
ω is symplectic, then d(a) is simply one or zero, depending on whether
a lies or does not lie in Im Φ, in agreement with the standard theorem.

Let L be a holomorphic line bundle with curvature form ω. Al-
though Danilov [4] has a recipe for determining Hι(M, @L), there is no
obvious relationship to the moment map. However, consider the index
Σ{-l)ιHι(M, @L) as a virtual representation of Γ; Theorem 2 in §7
states that the weight a ei* occurs with a multiplicity d(a) wherever the
latter is defined. Again, this agrees with the standard theorem. Theorem
3 in §10 tells us the multiplicity of a when d(a) is not defined.

Here is a prototypical example; although it is not compact, it illustrates
these theorems. Let M = C and T = Sι = {λ e C| \λ\ = 1}. Identify
t* with R by sending (d/dθ)* to 1, where (r, θ) are polar coordinates.
The moment map Φ: C -> R is determined by dΦ = -i(d/dθ)ω.

(i) Take the symplectic form, ω = -rdr Λ dθ. Then Φ(rew) = -\r2

and ImΦ is R~ = {a e R|α < 0} . To compute the push-forward measure,
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FIGURE 1

write ω = d(-jr2) Λ dθ = da Λ dθ . Integrating over the θ coordinate,

we have Φ^ω = (-2π)da on R~ .

(ii) Take the presymplectic form ω — (1 - r2)rdr Λ dθ, which is pos-

itive inside the unit disc and negative outside. Then Φ(reιθ) = Φ(r2) =

4(2 - r2). The map Φ: R+ -> R "folds" at r2 = 1 as shown in Figure 1.

The image of the moment map is (-00, | ] , but in Φ^ω the contributions

of the overlapping pieces cancel; again, Φ^ω = (~2π)da on R~ .
Consider the space of holomorphic functions on C as a representation

of Sι under the action (λf)(z) = f(λ~ιz). In particular, for f(z) =
zn we have (λf)(z) = λ~nf(z), so zn spans a one-dimensional weight
space corresponding to the weight — n . The multiplicity diagram of this
representation can be drawn as

-© © © © 1 1 1
- 3 - 2 - 1 0 1 2 3 t* =

Notice its similarity to the measure Φ^ω.
The paper is organized as follows. In §2, we introduce toric manifolds

{M, T). In §3, we describe the quotient M/T .In §4, given a presymplec-
tic form ω on M, we define a function d on t*. In §5, we prove that
the push-forward of Liouville measure by the moment map is given by the
function d (Theorem 1). In §6, we give an alternative description of d,
as a "twisted polytope", and show that it only depends on the cohomology
class of ω. In §7, we state Theorem 2, that the index of a line bundle
over M is given by the function d. In §8, we establish the relationship
between the index over M and an index over a subset UΣ c C^. In §9,
we compute the index over UΣ. In § 10, we complete the proof of Theorem
2 and Theorem 3.
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2. Toric manifolds

A toric manifold is a smooth toric variety. Although this an algebraic
object, we shall only consider its complex analytic structure. For instance,
let M be any real 2«-dimensional manifold with (1) an «-dimensional
compact torus T which acts effectively, and (2) an invariant symplectic
form ω which is Hamiltonian. By a theorem of Delzant [5], (M, T) is
equivariantly diffeomorphic to a toric manifold. In contrast, some toric
manifolds do not admit any invariant symplectic form.

Toric manifolds can explicitly be constructed as subquotients of C .
Let us review this construction, following Michele Audin [3]:

Let t be an ^-dimensional real vector space with a lattice t . Consider
a set {x{, , JC^} of primitive elements in ί which span t . Let E +

denote the nonnegative real numbers, and denote {1, , N} by N .
Definition 2.1. For / c N , the cone over {xJz G 7 is Λ7 = £ / € / R

+xi

Aj is a smooth cone if {x^i£l can be extended to a Z-basis of t .
Definition 2.2. A (smooth) fan Σ over {x{, , JC^} is a collection

of smooth cones of the form &ι such that:

(i) Any face of a cone in Σ is itself a cone in Σ, i.e., ΔCj e Σ,

(ii) The intersection of two cones in Σ is a common face, i.e., Λ 7 , άCj

(iii) Λ { / } e Σ 7 v / /

Definition 2.3. The fan Σ is complete if U ^ € Σ Λ7 = t .
A toric manifold is constructed from a fan Σ as follows. Define a linear

projection π: RN —> t by π(et) = xt let t — kerπ. Then we have dual
exact sequences:

Identify K^/Z* with (Sιf and C^/Z* with (CX)N by the map

eίp: (C,, , ζN) •-> (e2πiζι ,•••, e2πiζ") then π induces a map (SY -»

ί/l and, similarly, (C x ) Λ f —• ic/έ , where t c = t <g> C. Denote the kernel

by K and G respectively. Then,

K = {c^p(ζ)\ζ€RN, π(ζ)ee};

G = {eϊp(OIC € C", π(C)e/}.

Now define

t/j = { ze CN\z( φ 0 Vi ^ /} = C1 x ( C x ) i V V ,
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and

Let T = (Sι)N/K as i/ί let Tc = (CX)N/G ^ iji . The toric manifold
associated to Σ is (M, T), where M = UΣ/G. One can prove (see [3])
that Λf is an ^-dimensional complex manifold; T acts effectively and
analytically on M and M is compact if and only if Σ is a complete fan.
Additionally,

(ii) Stab(/?) c T is connected for every p e M.

Remark 2.6. One can construct a fan Σ from any rational polytope
A c t * . This fan encodes the directions of the faces of Δ but not their
location in t* it also specifies which faces intersect; see [3]. Faces of
Δ correspond to cones in Σ of the complementary dimension. Although
some fans do not arise in this way, this intuition is useful. If (M, T) is
the toric manifold associated to Σ, ω is an invariant Kahler form, Φ is
a moment map, and Δ = Im(Φ), then Σ is the fan which corresponds to
Δ.

Example 2.7. The following fan produces the manifold CF1 ĉ  S2 with
T = Sι acting by rotations; in homogeneous coordinates, λ [z 0, z j =
[Az0, z j .

Example 2.8. T = (S1)2 acts in a standard way on CP2 (λx, λ2)
[Zj, z2, z3] = \λχzχ, λ2z2, z 3 ] . In Figure 2, take the fan which contains
every two-dimensional cone generated by two consecutive vectors. This



470 YAEL KARSHON & SUSAN TOLMAN

fan produces a manifold M which is the blowup of CP2 at the three
fixed points; the action of T extends to M.

Example 2.9. An interesting class of toric manifolds is the Bott-Samel-
son manifolds; these arise in the study of Lie groups and their representa-
tions; see [8], [9].

3. The structure of M/T

Local structure. Let (M, T) be a toric manifold. The smooth struc-
ture of M/T is defined by declaring a function smooth if its pullback
to M is smooth. A diffeomorphism is, by definition, a homeomorphism
which induces a bijection on the sets of smooth functions. For example,
any Sι invariant smooth function on C is of the form f(\z\2) where /
is smooth on R. Therefore, z H+ \Z\2 is a diffeomorphism C/Sι —• R + ,
where the smooth functions on R+ are the restrictions of smooth functions
on R.

Lemma 3.1. Topologically, M/ T is a manifold with boundary MύnJ T,
where M is the set of points with nontrivial stabilizers. Differentiably, it

is a manifold with corners, i.e., it is locally diffeomorphic to Rn~ι x (R + ) / .
Proof Choose any p e M and let H = Stab(/?). The normal bundle

of the orbit (9 = T-p in M is TxHV, where V = TpM/Tp@ and H acts
on V by the isotropy action. By the "slice theorem" [3], a neighborhood
of 0 in M is equivariantly diffeomorphic to a neighborhood of the zero
section in T xH V, where T acts on the latter from the left. Therefore, a
neighborhood of [p] in M/T is diffeomorphic to V/H. Because H is a
torus which acts effectively on V, we can identify V with R ^ θ d and
H with Tι, where Tι acts on Cι in the standard way and fixes R"~7.
Then, V/H = Rn~ι x (R + ) 7 .

Global structure. If (M, T) admits an invariant symplectic form with
a_ moment map Φ: M -> t*, then Φ descends to a homeomorphism
Φ: M/T -+ Δ, where Δ = ImΦ is a convex polytope in t*. More gener-
ally, we have

Lemma 3.2. Let (M, T) be a compact toric manifold. Then M/T is
homeomorphic to a closed ball with boundary Mύng/T.

Proof Let Σ be a complete fan and let M = UΣ/G be the correspond-
ing toric manifold. Consider the map φ: exp(£ + /μ) ^ π(μ) from (CX)N

onto t . The preimage of every point is, by (2.5), an orbit of the group
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generated by (Sι)N and G. Therefore, φ descends to a homeomorphism

(3.3) sing

Now define a map from t into t as follows; on &ι e Σ,

(3.4) Σw^Σv-''")*!-
iei iei

This defines a homeomorphism of t with D: a bounded star-shaped
domain around 0, which is homeomorphic to an open ball. Let φ :
(M \ Mήng)/T -* D be the composition of (3.3) with (3.4). We will
extend φ to a homeomorphism of M/T with the closure of D. We first
need

Definition 3.5. Let Σ be a fan in t and fix άCj e Σ. Let t =
t/(span Aj). Let x. be the image of x. in t . Let L = {/ e N I Λ ^ r ^ e

Σ}, and let L = L\ J. Define Σ as follows: ZJc7 e Σ if and only if
J Πl = 0 and A / L ) / e Σ . This is a fan over { */}/e£, and it is called the
fan relative to &j .

Remark 3.6. Think of the relative fan as what you see if you stand on
Δij and look around in t . Alternatively, if Σ is the fan associated to a
polytope Δ, then Σ is the fan associated to the /th face of Δ.

To complete the proof, take any w e UΣ. Let J = {j\wj = 0} then

ΔCjEΣ. Write wk = e2πi{ζ'k+iμ'k) for k i J and consider ΣkeN\j f^Ά i n

t . It lies in some cone Δr e Σ and is equal to ΣieI βixi for some μ. > 0.

If [w] is the image of w in M/T, then define φ([w]) = Σj^jxj +

Σie/C " e~βi)xi - O n e c a n check that φ is a homeomorphism, though
not in general a diffeomorphism.

4. Degree of the moment map

Let (M, T) be a toric manifold; let ω be any closed, invariant 2-form
on M. As in the symplectic case, a moment map is a map Φ: M —• t*
such that

(rfΦ, //) = -i(ηM)ω for all */ e t,

where τ/M is the vector field on M corresponding to η. This condition

determines Φ up to a translation in t*. For a toric manifold Hι (M) =

{0} therefore, such a Φ exists.
As in the symplectic case, Φ is a Γ-invariant. Therefore it splits as
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Definition 4.1. Take a e t*, a £ Φ(d(M/T)). Denote {a} by α .
Define d(ά) be the degree of the map φ: d(M/T) —• t* \ α .

Explicitly, Φ induces a map [Φ] from the reduced homology group
Hn_{(d(M/T)) to Hn_χ(C \ α ) . Both of these groups are isomorphic to
Z d(a) is the image of 1 under the map [Φ].

Of course, d(a) depends on the orientations chosen; we use the follow-
ing conventions. As a complex manifold, M is oriented. Any orientation
for T induces an orientation on t, and hence on t*. For later conve-
nience, let the orientation of M/T, followed by that of T, be equal to
that of M times ( - i ) ^ " 1 ) / 2 . An outward normal to M/T followed
by the orientation of d(M/T) gives the orientation of M/T', a similar
relation picks a generator of Hn_χ(C \ α ) . Then d(a) does not depend
on the orientation of T.

Additionally, Φ induces a map from Hn(M/T, d(M/T)) to
" π ( t * ' ** \ α ) These groups are also isomorphic to Z and, by a stan-
dard homological argument, d(a) is the image of 1 under this map.

Let a be a regular value of Φ . A fortiori, a is not in the image of

d(M/T). Near Φ (α), M/T is an H-dimensional manifold, and Φ is

smooth in the usual sense. Regularity implies that for any [p] e Φ (α) ,

dΦr ,: TJM/T) —• Ta(C) is an isomorphism. Therefore, there exists

some neighborhood U of a such that Φ~ (U) is a disjoint union of
open sets which are mapped diffeomorphically to U by Φ . Therefore, we
have

Lemma 4.2. If a e t* is a regular value for Φ, then

d ( o ) = 2^ sign(detdΦ|w).

[p]€Φ"'(α)

5. Push-forward of Liouville measure

We define a signed measure on M, called Liouville measure, by assign-
ing the number /^ ωn to the set U c M. Its push-forward Φ^ω" assigns
the number fφ-iA con to the set Act*.

Remark 5.1. We say that ωn > 0 if and only if it is compatible with the
orientation of M . A typical situation is that ωn = 0 along a hypersurface
and has opposite signs on each side. Liouville measure takes negative
values in the region where ωn < 0.

Theorem 1. Let (M, T) be a tone manifold. Let ω be an invariant,
closed 2-form; let Φ be its moment map. Then
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(5.2) Φ*ωΛ = (-2π)nnl d(a) (Lebesgue measure on t*),

where d(a) is the degree as in Definition 4.1.

Remark 5.3. Lebesgue measure on t* is normalized so that the quo-
tient of t* by t has volume 1. The right-hand side of (5.2) is well defined
because the singular values of Φ have measure zero.

Proof. By Lemma 4.2 it suffices to show that if p is a regular point of
Φ, then

(i) in a neighborhood ofp,T acts freely and ω is nondegenerate,
(ii) there exists an invariant neighborhood U of T p such that

(5.4)

Φ*(ω"lt/) = (—2π)πn! sign(detrfΦ|^,) (Lebesgue measure on Φ(C/)).

Proof of (ϊ). Let p e M be a regular point of Φ . Because dΦ\ is onto,
for any nonzero ηei, i(ηM)ω\p = (dΦ\p, η) φ 0 , so ηM\p $ N\xll(ω\p).

In particular, ηM\p Φ 0, so the orbit of p is n dimensional. Since Stab(p)
is connected, T acts freely at p. In addition, the tangent to the orbit
at p descends to an A2-dimensional subspace of 7^Af/Null(ω| ) . This
subspace is isotropic because the restriction of ω to an orbit is zero, just
as in the symplectic case. Since an isotropic subspace of a symplectic space
is at most half the dimension of the vector space, Null(ω| ) = 0.

Proof of '(ii). By (i) and invariance, ω is symplectic in a neighborhood
of the orbit of p. Because the signs of both sides of (5.4) depend in the
same way on the orientation of U, we can assume that this orientation
is compatible with the symplectic structure. The rest is standard; by the
Darboux-Weinstein "local normal form" [14], U is equivariantly symplec-
tomorphic to a neighborhood of T x {0} in the cotangent bundle T x t*,
where T acts by left translation on the first factor, and ω is the standard
symplectic form on the cotangent bundle. The moment map is projection
to the second factor. The Liouville measure ωn is the product of the vol-
ume form on T with total measure (-2π)nnl, and Lebesgue measure on
t*. q.e.d.

We now describe the function d for various examples.
Example 5.5 {Archimedes). Let T = Sι act on M = S2 by rotations

around the z-axis, as in Example 2.7, and take -ω to be the standard
area form. Then the moment map is the height function on S2. For a
general ω, d is supported on an interval whose length is jz\fMco\, and
the value of d on this interval is sign(- fM ώ) (see Figure 3, next page).

Example 5.6. Let M be the blow-up of CP2 at three points, as in
Example 2.8. Figure 4 shows several possibilities for d for various ω's.
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1 R

FIGURE 3

FIGURE 4

Notice that the locations of the "faces" change but their slopes do not
change.

6. Twisted polytopes

In this section we show that Φ^ωn only depends on the cohomology
class of ω. (This was proved in [13] under more general assumptions). In
the process, we obtain an algorithm for constructing Φ^ωn from [ω]. We
describe Φ^con as a "twisted polytope", which we compute by induction
on the dimension of M. First, we stratify M. by lower dimensional
toric manifolds.

In the symplectic case, Δ = Im Φ is a polytope. Each face is itself a
lower dimensional polytope which spans an affine plane, F, in t*. Let
MF denote Φ " 1 ^ ) . Let H be the subtorus of T perpendicular to F.
Then T/H acts effectively on MF , and ω\M is an invariant symplectic
form. By Delzant [5], MF is a toric manifold. M is the union of the
M/s.
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A similar stratification holds in general. Let M = UΣ/G as in §2. For
/ such that Aj eΣ, consider the coordinate plane Ej = {0}J x CN^J .
Let Mj be (UΣΠEj)/G. Let H be the image of spanΛ, in T. Then,
T/H acts effectively o n ¥ ; . M is stratified by the sets (Mj \ (Mj)ύng).
We must show the following lemma:

Lemma 6.1. (Mj, T/H) is a toric manifold.

Proof. Let Σ be the fan relative to A y . As in Definition 3.5, we will
always use " ~ " to denote objects associated to this fan. Following §2,
we construct the associated toric manifold (U^/G, f). We claim that

(Mj , T/H) is equivariantly diffeomorphic to (Uς/G, f).

First, the natural embedding of (Sι)L in (Sι)N descends to an iso-

morphism of f with T/H. Similarly, the embedding of CL in C^

by CL -+ {0}J x CL x {1}NXL also embeds U~ into UΣnEj. De-

fine an injection from G to G as follows: Given g e G and I e L

there exists ξι such that e2πιζι = gι. Then there exist (ζj)jej such that

Σ/€2;{/*/ + Σye/<v*/ i s i n ί- L e t ^ = 0 Vl* ^ L then simply send g to

exp(£). Together, these two maps define an isomorphism of U^/G with

Mj C UΣ/G . q.e.d.

Because H acts trivially on Mj, O(M7) lies in a plane F , C t*,

which is perpendicular to Aj . As an affine space, F3 is isomoφhic to

t*. The restriction Φ | M : Mj -> Fj is a moment map for the triple

{Mj,TIH,ω\Mj).

ω determines the location of the i^'s in t* up to a global translation.

Their exact location can be encoded by an element c e (RN)* choose c

so that

(6.2) / r = j F { . } = { α . € t K α , Λ . ) = c . } β

In fact, the map ω ^ c gives an isomorphism of H2(M, R) with 6* =

(R")7t' (see [5, §3]).

Remark 6.3. Fix a e t* which is not in any F.. Let ω be another

closed 2-form—one which has a moment map Φ' which corresponds to

a c € (R^)* such that (1) (α,*,) ^ c), and (2) (a, xt) < c\ exactly

if (a, x.) < ct. Let d! be the associated degree function. Then Φ and

φ ' induce homotopic maps from d(M/T) to t* \ α . Therefore, d\oί) =

d(a);

Fix α € t* which is not in any Ft. Choose β e Sn ι c t * so that the

ray r = a + R*β avoids all F / s for | / | > 2 . This is possible because
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these are planes of codimension > 2 in t*.
Lemma 6.4.

d(a)=

where di is defined with respect to the map Φ\M : M{ —• Ft, as in Definition

4.1. ' _ _

Proof. Define Φ: M^JT -> Sn~ι by Φ(p) = (Φ(p) -α)/ | |Φ(p) - a\\.

Assume β is a regular value of Φ . Then, the degree of φ is given by

d(a)= Σ sign(det</Φy.

Finally, signίdetέ/ΦI^) = sign(β, Λ^signίdetrfΦI^) and

Remark 6.5. (1) By Lemma 6.4, d is locally constant on t* \ \JFi.
(2) Additionally, suppose that for aχ, a2 e t* the interval cFjΈ^ intersects
the wall F. transversely at γ, and does not intersect any other ¥•. Then

d(a2) - d(a{) = sign(αj - a2,

Two walls may coincide; in this case, the right-hand side should be replaced
by the sum of their individual contributions. Any function which satisfies
(1) and (2) differs from d by a global constant.

The following definition is a formal recipe for constructing the pictures
in Figure 4.

Definition 6.6. A twisted polytope Δ consists of the following data:

(i) a fan Σ in t* over {xγ, , xN}

(ii) a vector c e (RN)*.

This data determines a "degree" function which is constructed inductively
in the following way. For / e N, let Ft. = {a e t*|(α, xt) = c j . Let
Σ be the fan relative to Δci as in Definition 3.5. Choose any β e Fi

this induces an isomorphism of F. with t*, which sends β to zero. Let
cι = cι - {β, xz) for all I e L. Then by hypothesis we can construct the
twisted polytope Δ̂ . in F. from Σ, c. Note that Δ. are independent of
the choice of β . The Δ. are the "faces" of Δ. If we denote by d and
d{ the degree functions on Δ and Δf respectively, then d is defined on
t* \ IJ F. by the formula in Lemma 6.4.

Example 6.7. Take the fan in Figure 2 and let c = (2, - 1 , 2, - 1 ,
2 , - 1 ) . To get the twisted polytope, first draw the hyperplanes F. in
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t* = R 2, see Figure 5. We drew them inaccurately; not through the lattice
dots but on their edges; so that F. is pushed a bit in the direction of
xi. The reason for this will be revealed in Theorem 3. The vertices are
v. = Ft_{ n F cyclically, and the edges are viυi+ι.

Lemma 6.8. Let (M, T) be a toric manifold. Let ω{, ω2 be invariant,
closed 2-forms on M and let Φχ, Φ 2 be the corresponding moment maps.
Assume that Φx(p) = Φ2(p) for every p e M which is fixed by T. Then
Φuω\ = Φ 2 χ .

Proof. Assume this for toric manifolds of lower dimensions. Noting
that both maps send M. to the same hyperplane Ft, we apply the in-
duction hypothesis; Φ ^ ί ^ " 1 ^ ) = Φ2*(ω2~!lM) a s m^asures on F..
Therefore, the result follows from Lemma 6.4 and Theorem 1.

Corollary 6.9. Let (M, T) be a toric manifold. Let ω{, ω2 be invari-
ant, closed 2-forms on M which represent the same class in H2(M). Let
Φ j , Φ 2 be the corresponding moment maps. Then ΦUCU" and Φ2*ω2
differ by a translation in t*.

Proof Write ω2 = ωχ + dθ, for some Γ-invariant 1-form θ . Define
Φ 2 : M - t * by

( Φ 2 , ξ ) = ( Φ l 9 ξ ) + i ( ξ M ) θ f o r a l l ζet.

Φ 2 is a moment map for (A/, Γ, ω2), so it differs from Φ 2 by a transla-

tion. By the preceding lemma, it is enough to show that Φj (p) = Φ2{p) for

every fixed point p . But this is easy; if p is a fixed point, then ζM\p = 0,

so (Φϊ-Φ2,ξ)p = -i(ξM)θ\p = 0.
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7. The index
Let (M , Γ) be a tone manifold. Let L be a Γ-equivariant holomor-

phic line bundle over M and let (9L be the sheaf of holomorphic sections.

Definition 7.1. The index of L is Σϋ^-tf H* iM> ^ J τ h e f u n c "
tion ι/: t -> Z assigns to each weight a its multiplicity in the index,
considered as a virtual representation of T.

Let 0 be any invariant connection 1-form on L with curvature ω .
The lifting of the Γ-action from M to L determines a moment map
Φ: M -> t* for (M, 7\ ω) by (Φ, >/) = 1^0 for all ηet.

Theorem 2. If a el* \ Im(Sn~ι), *Λen i/(α) = rf(α).

As stated, this theorem only applies to a φ lm(Sn~ι). In fact, using a
small technical trick, we can determine v(a) for all a e ί* see Theorem
3 in §10.

Remark 7.2. Let L be a Γ-equivariant holomorphic line bundle over
M . Then the action can be uniquely extended to a holomorphic action
of Tc generated by the vector fields ξM and (iζ)M = JξM, where ξ eί,
and / : TM —> ΓΛf is the complex structure. Therefore we may restrict
our attention to Γc-equivariant holomorphic bundles.

8. Upstairs/downstairs

In this section we show that we can carry out computations in UΣ in-
stead of in M. It is easier to work with the space UΣ.

Remember that (CX)N acts naturally on UΣ c CN, G C (CX)N acts

freely on UΣ, M = UΣ/G, and Tc = (CX)N/G. Therefore, we can pull

back any holomorphic 7^-equivariant line bundle over M to a holomor-

phic (Cx)^-equivariant line bundle over UΣ. Conversely, if L is any

(Cx)ΛΓ-equivariant line bundle over UΣ, then L/G is a Γc-equivariant

line bundle over M. These constructions give an isomorphism between

the equivariant Picard groups of M and UΣ.

Let c be any weight of (CX)N , i.e., c e (ZN)*. Let p be the character

with weight c, i.e., p(λ) = λc = λ\ι •••λ̂  for any λ e (CX)N. Then

we construct an equivariant line bundle Lc over UΣ: As a holomorphic

line bundle, Lc = UΣ x C ( C x ) ^ acts by λ{z, x) = (λz, p(λ)x) for any

λe(Cxf.
Remark 8.1. Fix / e N, and embed C x = C x C {CX)N as the zth

factor. If z e UΣ and z. = 0, then λ e C x acts on the fiber above
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z as multiplication by λCi. Moreover, let p be the image of z in M ,
i.e., p e Mr The image of C* in T£ is exp(Cxz), and acts on the fiber
(LJG)\p with weight cr

Lemma 8.2. Let L be an equivariant holomorphic line bundle over UΣ.

Then L is isomorphic to Lc for some weight c e (ZN)*.
Proof. Let z e UΣ. If z. = 0, then C* acts on the fiber above z by

λ: x ι-» λCix for some ci eZ. ct is independent of the choice of z{. In
this way we determine c = (c,.) e (ZN)*. It suffices to show that L<8> L~ι

is trivial, i.e., that is has a global, invariant, nonvanishing holomorphic
section. It is easy to find such a section over the subset (C*)^ take any
nonzero (C ) orbit. Moreover, this section extends continuously to a
section over all of UΣ with the desired properties.

Remark 8.3. Recall, from §6, that Φ^ω" is determined by a vector
c e (RN)*. As we shall see in Lemma 10.1, this is the same as the c € (ZN)*
associated to a line bundle L over M, when ω is the curvature of L.

Let @ be the sheaf of holomorphic functions on UΣ (with (CX)N act-
ing trivially on the fiber). For any representation R and weight a, denote
the corresponding weight space by RQ . Recall that π*: t* -»(RN)* sends
t into (ZN)*.

Lemma 8.4. For a e t , H°(M, &L)a = H°(UΣ, &)π*{a)_c.
Proof The sections of L = Lc/G are exactly the G-invariant sections

of Lc. A section of Lc is given by a holomorphic function / o n UΣ.
{CX)N acts on sections by (λf)(z) = p(λ)f(λ~ιz). f is given by its
Laurent series, and it is G-invariant if and only if each monomial in the
series is invariant.

Consider f(z) = z~ξ where ξ € (ZN)*. Then (λf)(z) = λξ+cf{z)\
this monomial is an eigenvector with weight ξ + c. Therefore / is G~
invariant if and only if λξ+c = 1 for all λ € G. Equivalently, by (2.5),
(S5φ(C))^c = e

2πi{ζ'ξ+c) = 1 for all ζ e CN such that π(ζ) e l . So /
is G invariant if and only if Mike's dog really ate his frog [8] if and only
if π(ζ) e i implies (ζ, ξ + c) e Z, i.e., ξ + c = π*(α) for some α € I *.
The weight for the action of T on / as a section of L is a. In contrast,
ζ = π*(α) - c is the weight of (CX)N on / as a section on the trivial
bundle over UΣ.

Lemma8.5. For a e t , H\M, @L)a = H\UΣ, &)π*{a)_c

Proof Define an open cover for UΣ.

21 = {UJ\AJ e Σ}, where Uί = CI x ( C X ) N V .
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(Z 2 )*,

m m

t*
FIGURE 6

The Cech cochains corresponding to this cover are £'(21,^) =

0// o (£/ 7 Π n t / p ^ ) . Arguing as in Lemma 8.4, C'(2l/G, ^ L ) α =

C'(2l, ^) π *( α )_ c . These isomorphism commute with the boundary maps,
so

Moreover , Uτ Π Π £/, a n d (Uτ n-- Γ\Ur)/G a re p r o d u c t s of C's a n d
*0 ι i J0 λi

C x ' s (see [3, §5.2]); thus 21 and α/G are good covers. Therefore, by
Leray's theorem [7, §0.3],

and , (9) = Hι{Uτ,

Definition 8.6. The function μ: (Z )* —• Z associates to each weight

ζ its multiplicity in the index over UΣ μ(£) = Σ ( - l ) 1 dim(Hι(UΣ, ^ ) ^ ) .

By Lemma 8.2, the equivariant line bundle L over M gives rise to an

embedding j : t* —• R^ which sends a to π*(a) - c. Then, for a e t ,

(8.7) i/(α) = μ(;(α))

by Lemma 8.5. Therefore, it will be sufficient to compute the function μ.

Example 8.8. Consider the action of Sι on CP1 as in Examples 2.7

and 5.5. The map π*: sends α to (α, - α ) . Let L be the
tangent bundle of CP 1 . The Sι action naturally lifts to L. Let c =
(1, 1) e (Z2)*, i.e., let ( C x ) 2 act on UΣxC by {λ09λx)(z09 zl9x) =
(λQz0 ,λ{z{, λoλχx). Then L = LJG. Therefore, j(α) = (α - 1, -α - 1)
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embeds R in R2 as the solid diagonal line in Figure 6 where the black
dot is the origin of R.

9. The index over UΣ

In this section we compute the function μ defined in Definition 8.6.

Because each Cz(2l, 0)^ is finite dimensional, μ(ξ) = Σ ( - 1 )'£'(&, <f)ξ

this is easier to compute.

Example 9.1. In Example 8.8, UΣ = C2 \ {0} . Consider the covering

21 = {Uχ, U2}, where U{ = C x C x and ί72 = C x x C. The essential

idea is very simple: z is a holomorphic function on C x and on C. In

contrast, z" 1 is holomorphic on C x but is not holomorphic on C. The

monomial z~ιz~j is holomorphic on Uχ if and only if i < 0 and it is

holomorphic on U2 if and only if j < 0. Every monomial is holomorphic

on Uλ Π U2 . Therefore, dim C1 (21, <?). . = 1 for all /, j and

( 2 i f / < 0 a n d 7 < 0 ,

1 if / > 0 and j < 0, or vice versa,

0 if / > 0 and j > 0.

Taking the alternating sum:

i f / < 0 a n d ; < 0 ,

= { - 1 if i > 0 and > 0,

0 otherwise.

This is illustrated in Figure 6, where circles represent multiplicity 1, and
squares represent multiplicity - 1 . Notice that the index of the tangent
bundle is three-dimensional. As an additional example, the dotted line
represents the tautological bundle over CP 1, for which Hι = 0 for all /.

In the general case, let H{ be the half-space {ζ e (ZN)*\ζi < 0}. Let

Hj = f|, e/ H.. The monomial z~ξ is holomorphic on Uj exactly if ξ is
in Hj . Any holomorphic function on Uj is given by its Laurent series:

Therefore, the multiplicity of ξ in the representation Γ(ί//5 0) is 1 if

ξ G Hj, and is 0 otherwise. Since ί/7 n Π £/7- = C/7 n . . n / , we have
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Lemma 9.2. Hι(UΣ, 0)^, and hence μ(ζ), depends only on whether

ξi < 0 or ίf. > 0 for / e N.

We now determine how μ(ζ) changes as ξ passes through the coordi-

nate hyperplanes. Let ξ, ξ' e (ZN)*. Without loss of generality, ξf. = ξi

for all i φ I, but ξ[ < 0 whereas ξχ > 0. Let Σ be the fan relative to

jCj, as in Definition 3.5; let UI = CI x ( C X ) A / , and let 21 = {f77|^7 e Σ} .

Define ξ e (ZL)* by ξι = ξt for all / e L, and μ: (ZL)* -> Z by

μ(ξ) = Σ ( - l ) ί C / ( δ , ^*)ί. This is the multiplicity of ξ in the index of

Lemma 9.3. μ(ξf) - μ(ξ) = μ(ξ).

Proof Let / C N, such that Δcι e Σ. If 1 ^ / , then z~^ is holo-

morphic on Uj exactly if z~ξ is holomorphic. If 1 e I, then z~ξ is not

holomorphic on ί/7 . In contrast, let / = / \ {1}, then, since / C L, z~^

will be holomorphic on Uι if and only if z"^ is holomorphic on C/7. So

dim(Γ({77, ^)^/) - dim(Γ(C/7, ̂ )*) = dim(Γ([^, 0)s). Therefore,

/=0

i = 0

10. Proof of Theorem 2
We can now prove Theorem 2 by induction; assume that v = d for

(π - l)-dimensional toric manifolds.
Let us review some notation. (M, T) is the toric manifold associated

to the fan Σ. L = Lc/G is an equivariant holomorphic line bundle over
M (§8). Construct ω, θ, and Φ as in §7. For any i e N , Mi is the
corresponding toric submanifold of dimension n - 1, as in §6. F. C t* is
the hyperplane perpendicular to x. which contains Φ(M.).

We know how d and v change as we cross the walls F. and j~1(Ei)
respectively. To show that v = d, we first need:

Lemma 10.1. Let Et be the ith coordinate plane in {RN)* then
ι

Proof. Choose any p e Mt and let a = Φ(p). Let ξ be the vector

field on M which generates the action of the circle (Sι)i = expίRx,.) c T.
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By Remark 8.1, (Sι)i acts on the fiber over p with weight c{, so iξθ\p =
ci. But this is exactly (Φ{p), xt), by the construction of Φ . Therefore,
(π*(α) - c, et) = (Φ(p), xt) - cx = 0, i.e., j(a) G E{. q.e.d.

If x. = -Xj, then it is possible that F. = F . . For simplicity, we will
assume that this does not happen. By Remark 6.5, the following three
lemmas imply that v = d.

Lemma 10.2. H (M, (9j)a and v{a) only depend on whether (a, x.)
< ct or > ct for all i e N.

Proof. This follows immediately from Lemmas 10.1 and 9.2, and (8.7).
Lemma 10.3. Assume that for aχ, a2 G t the interval aχ , α 2 intersects

the wall F{ transversely at γ, and does not intersect any other F.. Then

v{a2) - i/(ax) = sign^j - α 2 ,

Proof Define c G (ZL)* by cι = ct V/eL. Then L\M = Ld/G, in

the notation of Lemma 6.1. By the induction hypothesis, for any a e ί*,
rf.(α) = ϋ(a). By (8.7), ύ(a) = μ(π*(a) - c ) . Let α G t be the image
of a under the natural map from t* to t*. Let ξ = π*(a) - c, and
ξ = ft* (a) — c. Then ξι = ξι for all / e L. The lemma now follows from
Lemma 9.3 and (8.7).

Lemma 10.4. There exists a e t such that v{μ) = d(a).

Proof Choose any β e ί* such that (β, xt) Φ 0 for all i. Choose

m G Z such that m\(β, χ.)\ > \ct\ for all i. By the previous lemma, n eZ

and n > m imply that H\M^L)mβ = H\M,ffL)nβ. Because M is

compact, Hι(M, #L) is finite dimensional; therefore, Hι(M, <^L)mo = 0.
On the other hand, d(mβ) = 0 for large m because d is compactly
supported. Thus, v{mβ) — 0 = d(mβ).

We are now almost finished. However, we still wish to determine v{a)
for a e Ft; we do this by shifting the walls F. slightly in the "positive"

direction. Formally, define c in (ZN)* by c\ = c. + \ for all i G N .
Remember that a degree function is determined by any iV-tuple in (ΊLN)*,
as in Definition 6.6. Let df be the degree function associated to c . Then
d\a) is defined for all a e t , and d'{ά) = d(a) wherever the latter is
defined.

Theorem 3. ι/(α) = d'{a) for all a G t .
PAΌO/ Let ξ = π*(α) - c. Define c in (Z*)* by c. = ς. if ^ ^ 0 ,

c. = cjf + 1 if ξt, = 0. Let J be the degree function associated to c. Let
ξ = π*(a)-c. It is clear from Lemma 9.2 that μ(ξ) = μ(ξ). Then, i/(α) =
μ(ζ) = μ(ξ) = ί>(a) where v = μ(π*(a)-c). By Theorem 2, rf(α) = v(a).
Finally, it follows directly from Remark 6.3 that d{a) = d\a). q.e.d.
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