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PINCHING AND CONCORDANCE THEORY

MICHAEL WEISS

Abstract

It is known that a complete simply connected Riemannian manifold
M whose sectional curvature sec(Af) satisfies 1/4 < sec(M) < 1 is
homeomorphic to a sphere. Beyond that, the diffeomorphism type of M
is subject to a symmetry condition formulated in this paper. Methods
from concordance theory and algebraic ^-theory show that many exotic
spheres do not satisfy the condition.

0. Introduction

The sphere theorem of Rauch [20], Berger [1], and Klingenberg [18]
states that a complete simply connected Riemannian manifold M whose
sectional curvature sec(M) satisfies 1/4 < sec(M) < 1 everywhere is
homeomorphic to a sphere. Grove and Shiohama [12] have obtained the
same conclusion from a weaker hypothesis on the Riemannian metric (de-
tails below). Should it not be possible to keep the original hypothesis and
get a stronger conclusion? In connection with this question, the notion of
Morse perfection seems to be useful.

Let Nn be a closed smooth manifold and let W(N) be the set of all
smooth Morse functions on TV having only two critical points (necessarily
of index 0 and ή). Of course, this may well be empty. In any case, Z/2
acts freely on W{N) by / »-> - / (for / e W(N)).

0.1 Definition. The Morse perfection of N is > k if there exists a

smooth Z/2-map q: Sk -> W(N) where Z/2 acts on Sk by the antipodal

action. (By definition, q is smooth if its adjoint # # : S x N —> R is

smooth.)
First examples:
(i) Any N has Morse perfection > - 1 .

(ii) The Morse perfection of Nn is > 0 if and only if W(N) φ 0 , and
in this case iV is homeomorphic to Sn .

(iii) The standard sphere Sn has Morse perfection > n. (Define q by

q*(z, y) = (z, y) for z, y e Sn , using the Euclidean scalar product in

R"+1 p Sn.)
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(iv) The Borsuk-Ulam theorem (see [22]) implies that the Morse perfec-

tion of any Nn is < n . Otherwise, take a smooth q\ Sk —> W(N) with

k > n. Let u: Sk -> N be given by w(z) = critical point of index 0 of

q(z) e W{N). Then u is continuous and satisfies u(z) Φ u(-z) for all

z e Sk . This is impossible in view of (ii).
From now on, any complete Riemannian manifold is understood to be

connected.
0.2. Theorem A. Let Mn be a complete simply Riemannian manifold

with l / 4 < s e c ( M ) < 1 everywhere. Then M has Morse perfection n.
This is interesting because it is possible to give nontrivial upper bounds

for the Morse perfection of some homotopy spheres. Specifically, assume
that N4m~ι = dV, where V4m is a compact smooth parallellized mani-
fold, m > 2, and TV is a homotopy sphere. Then the signature of V is
divisible by 8, and the following implications hold:

signature (V) = odd 8

signature (V) = odd 16

signature (V) = odd 32

signature (V) = odd 64

signature (V) = odd- 128

Morse perfection oΐ N = \

Morse perfection of TV < 5

Morse perfection of TV < 7

Morse perfection of N < 8

Morse perfection of TV < 1 + 8

< 5 + 8

< 7 + 8

< 8 + 8

< 1 + 16

In particular (from Kervaire and Milnor [17]), if TV = dV above has even
order in the group of oriented homotopy spheres modulo diffeomorphism,
then

Morse perfection of TV < dim(TV) - 2 .

Consequently, TV does not admit a metric satisfying the conditions in
Theorem A.

These upper bounds for Morse perfection are much harder to establish
than Theorem A, but they are not really the subject of this paper. Still,
§5 and §6 give some explanations, and §7 is a guide through the published
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parts of the proof (which is part of a larger theory, developed jointly with
Bruce Williams).

The diameter sphere theorem of Grove and Shiohama [12] states the
following. If M is a complete Riemannian manifold which satisfies 1 <
sec(Λ/) everywhere, and the diameter diam(M) is > π/2, then M is
homeomorphic to a sphere. (M is a metric space, with the geodesic dis-
tance; diam(M) is the maximum of the distance function on M x M.)
This admits a generalization which involves Morse perfection.

0.3. Theorem B. Let M be a complete Riemannian manifold satisfying
1 < sec(Λf) everywhere. Assume that there exists a map v: S —• M such
that

dist(v(jc), v(-Jt)) > π/2

for all x e Sk. Then M has Morse perfection > k.

(The case k = 0 is the diameter sphere theorem.)

Example. Suppose that TV is a Riemannian manifold such that 1 <
sec(Λf) everywhere, and (if possible) that N is diffeomorphic to the Mil-
nor homotopy sphere (i.e., N = dV for some smooth compact parallel-
lized V4m of signature 8, where m > 2). Then, for any (continuous) map
υ: S2 -• N, there exists z e S2 such that dist(v(z), v(-z)) < π/2.

Finally, Karsten Grove suggested a "metric explanation" of Theorem A.
Recall that the radius of a compact Riemannian manifold N is

rad(iV) = minmaxdistϋc, v).
x<EN yEN '

(See also [11].)
0.4. Theorem C. Let Mn be a complete Riemannian manifold satis-

fying 1 < sec(M) everywhere, and rad(M) > π/2. Then M has Morse
perfection n.

The point of view taken in this paper is not so very different from that
taken by Gromoll in [9]. GromolΓs starting point is the notion of Gro-
moll filtration of a homotopy sphere. (The terminology is due to Hitchin
[15], not of course to Gromoll.) This is defined as follows. Let iV" be
an oriented homotopy sphere, and let φ: Sn~ι —• Sn~ι be a clutching dif-
feomorphism giving N (so that N is diffeomorphic to the union of two
copies of the π-disk with their boundaries identified under φ). We can
assume that φ is the identity near the north pole. Deleting the north pole,
and identifying its complement with R"" 1 , we get φ: Rn~~ι —> R"" 1 , a
diffeomorphism which agrees with the identity outside a compact set. The
Gromoll filtration of iV, an integer between 1 and n , is given by

(Gromoll filtration of N) > k
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<ΦΦ> φ can be arranged to respect projection to the last k coordinates:

• K

I projection j projection

R k id jpk

commutes.
("Can be arranged" means that it is permitted to change φ by an isotopy
with compact support.)

First examples:
(i) Nn has Gromoll filtration n if and only if it is diffeomorphic to

S\
(ii) Cerf s theorem on pseudo-isotopies alias concordances [5] implies

that any homotopy sphere Nn (Λ > 7) has Gromoll filtration > 1.
0.5. Proposition. The inequality

Morse perfection of N > (Gromoll filtration of N) - 1

holds for any smooth homotopy sphere Nn, with n>l.

(This is proved in §4.) In particular, any upper bound on the Morse
perfection of some N implies an upper bound on the Gromoll filtration
of N. For example, if N4m~ι is the Milnor homotopy sphere mentioned
earlier, then

(Morse perfection of N) = 1 ,

(Gromoll filtration of N) < 2

by 0.5, and
(Gromoll filtration of N) = 2

by the result of Cerf quoted just above. Estimates of this type were not
available to Gromoll in 1964, and this is hardly surprising because they
involve much algebraic AΓ-theory.

This paper is organized as follows. In §1, the hierarchy

Theorem B =*• Theorem C =*• Theorem A

is established. (The first implication uses critical point theory as in Grove
and Shiohama [12] and Grove [10], [11], and the second uses a well-known
theorem due to Klingenberg [18].) The proof of theorem B occupies §§2
and 3. Again, this uses critical point theory and comparison theory (To-
ponogov's theorem [23]). §4 relates Morse perfection to Gromoll filtration.
§5 relates both Morse perfection and Gromoll filtration to concordance
theory. Algebraic Λ>theory enters in the not-so-rigorous §6, which is an
attempt to explain where the upper bounds for the Morse perfection of
specific homotopy spheres come from. Finally, §7 points out that certain
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claims made in §6 can be reduced to results stated in the three long papers
by Weiss and Williams [29], [30], [31].

1. The hierarchy

Let Mn be a complete Riemannian manifold satisfying sec(Af) > 1
everywhere, and rad(M) > π/2. For x e M, let

Lχ = {yeM\dist(x,y)>π/2}.

By assumption, Lχ Φ 0 for all x.
1.1. Lemma. Let z e Lχ have the maximum distance from x. Then

Lχ-{z} consists of points which are regular for the distance function distx .
(Here dist^ is given by distx(y) = dist(.x,y). Regular and critical

points for distx are defined as in Grove and Shiohama [12], Grove [10],

[Π].)
Proof Fix y e Lχ-{z}. We have to show that there exists a nonzero

tangent vector w e TyM making an angle > π/2 with any minimal
geodesic segment joining y to x (in M).

Let (γχ, γ2, a) be a "hinge" in M consisting of minimal (unit speed)
geodesic segments γ.: [0, λt] —• M for / = 1, 2, where γχ(0) = z,
yj(Aj) = y2(0) = y9 Y2(λ2) = x , and a is the angle enclosed by -yx(λχ)
and γ2(0) in T M. (See Cheeger and Ebin [6, Chapter 2] or Grove
[11].) We have to prove that a > π/2 (because then w = —y{{λx) will
do). By Toponogov's theorem (the hinge version), there exists a hinge
(7j, γ2, a) in the standard sphere sf of constant curvature 1, such that
length γ. = λ( for i = 1, 2, and such that distpc, ~z) > dist(x, z), where
x and z are the hinge endpoints in S2. We have λ2 > π/2 by as-
sumption, and π > λx, λ2 by Myers theorem. If also a < π/2, then we
conclude dist(x, ~z) < λ2 , in contradiction to

dist(x, z) > dist(x, z) > λ2 = dist(x, y).

1.2. Corollary. There is only one point z e Lχ at the maximum dis-
tance from x. (Weshall write z = A(x).)

Proof By Berger's lemma (6.2 in Cheeger and Ebin [6], 1.6 in Grove
[11]), such a z is critical for dist^..

1.3. Lemma (see also Gromoll [9, Lemma 3]). The map Δ: M —• M
defined in Corollary 1.2 is continuous.

Proof I t s g raph is closed by definition.
N o w let E : = {(x, y) e M x M\ d i s t ( x , y) > π/2} a n d define f:M ->

E by f{x) = {x,A{x)).
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1.4. Lemma. There exists a smooth vector field μ on E - f(M) with
the following properties:

(i) μx(x9y) = 0, μ2(x,y) φ 0 for all {x,y) e E - f(M), where
μχ(x, y) and μ2{x, y) are the components of μ(x, y) in

TχMxTyM^T{χy)E.

(ii) For (x9y)eE- f{M), the tangent vector μ2(x, y) e TyM makes

an angle > π/2 with any minimal geodesic segment from y to x.
Proof. It follows from Lemma 1.1 that such a vector field can be con-

structed locally, in a small neighborhood of any point (x, y) e E - f(M).
Use partitions of unity to construct a global example.

1.5. Corollary. The set f(M) is a deformation retract of E.
Proof Fix (χ,y)eE- f(M), and let σ{χ > y ) : [0,c[-+E- f(M) be

the partial solution curve of μ with σ,χ *(0) = (x, y) and c maximal.

By Lemma 1.4(i), the values σ,x yΛt) belong to p r " 1 ^ ) , where p r t :
E — f(M) —> M is the projection to the first coordinate. So we can regard
σ(jc yj as a solution curve of a certain vector field on

By Lemma 1.4(ii), this vector field μ2(x, -) is gradient-like (see Grove
[11]) for the distance function dist , and it follows easily that σ. At)
converges to A(x) e Lχ as t approaches c. Thus the map

(ί, (x, y)) ι-> < κ '
I (x,

h: [0, +oo]x E->E,
i f defined,

Δ(x)) otherwise

is continuous. Here [0, +oo] is the one point compactification of [0, +oo[.
Note that h is the required deformation retraction.

1.6. Corollary. The inclusion y.E-*M x M- diagonal is a homotopy
equivalence {and a Z/2-map).

Proof The composition

f{M) ^E-UMxM- diagonal

is a homotopy equivalence since M is homeomorphic to Sn , by Grove-
Shiohama [12].

Now choose a homeomorphism h: Sn -> Mn . Then

h: Sn -> M x M-diagonal,
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is another homotopy equivalence (and a Z/2-map, where Sn has the
antipodal involution). Using this fact, Corollary 1.6, and induction over
the skeletons Sk c Sn , construct a Z/2-map v: Sn —> E such that joy
and A are Z/2-homotopic. Finally, let v: Sn -> M be the composition

o « F Γ PΓi Ά/f

S -^ E —> M.
Then Ϊ; satisfies dist(v(z), υ(-z)) > π/2 for all z , because
(v(z), v(-z)) = v(z) e E. What is more, the degree of υ is ±1 by
construction; see Remark 1.8.

We have now shown that the hypotheses in Theorem C imply those in
Theorem B, with k = n . Therefore Theorem B implies Theorem C.
, 1.7. Remark. Theorems C and A would be easier to prove if the map
Δ in Corollary 1.2 were involutory. But it is not.

1.8. Remark. Let cQ: W{Mn) -> M be given by

co(f) = critical point of index 0 of / .

When we construct a Z/2-map q: Sn -> W{Mn) in §§2 and 3, say from
the assumptions in Theorem C, then we construct it in such a way that
c0o q is a smooth approximation to Δ υ . We have just seen that υ can
be chosen to have degree ± 1 . Also, Δ has degree (-1)"+ 1 since it is fixed
point free. Thus we conclude that q can be chosen in such a way that
c0 o q has degree ± 1.

Presumably this imposes further restrictions on the diffeomorphism type
of M .

To prove that Theorem C implies Theorem A, we first have to change
scales. Then we only need to prove that a manifold M satisfying the
hypothesis in Theorem A has radius > π. This follows at once from a
theorem due to Klingenberg [18], stating that the exponential map TχM ->
M has injectivity radius > π for any x e M.

2. A useful flow

Assume throughout this section that Mn is a complete Riemannian
manifold such that sec(M) < 1 everywhere (strict inequality). Let

E = {(x,y)eMxM\ dist(jc, y) > π/2},

U = {{x,y)eE\ Bπ/2(x) u Bπ/2(y) = M},

where Bπ/2(x) is the open metric ball in M with radius π/2 and center
x . Clearly U is open in E. What we do in this section is to construct a
smooth action of the semigroup R (with addition) on E, such that
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(a) t-U cU for all t > 0,
(b) for any compact K c E, there exists / > 0 such that / K c 17,
(c) the action commutes with the standard involution on E. Of course,

such an action is the positive semiflow of some smooth vector field on E.
2.1. Proposition. There exists a smooth vector field ξ on E satisfying

the following conditions:
(i) For any (x,y) eE, the components ξ{ (x, y) e TχM and ξ2(x, y)

€ TM ofζ(x, y) € T, ΛΛE have scalar product < 0 with the appropriate
boundary tangent vectors {explanation just below) of any minimal geodesic
segment joining x and y.

(ii) For (x, y) e E and z e M such that

dist(x, z) > π/2 and dist(y, z) > π/2,

the vectors ξχ{x, y) e TχM and ξ2(x, y) e TyM have scalar product > 0
with the appropriate boundary tangent vectors of arbitrary minimal geodesic
segments joining x and z, or y and z.

(iii) ξ is invariant under the involution (x, y) ^ (y, x) on E.
Terminology. The boundary tangent vectors of a smooth curve

γ: [0, λ] -> M are γ(0) and -y{λ).
Proof of Proposition 2.1. Conditions (i) and (ii) make sense locally in

E. They are also convex in the following sense: if ζ, ζ are smooth
vector fields defined in an open set V c E, satisfying (i) and (ii), and
/> g- V -» R are nonnegative smooth functions such that f + g = 1,
then the vector field /^ + g£ also satisfies (i) and (ii). Further, if ξ is
defined on all of E and satisfies (i) and (ii), then ζ + I*ξ satisfies (i), (ii)
and (iii). Here /: E —> E is the involution.

Therefore Proposition 2.1 will follow (by means of partitions of unity)
from the local statement: For any (x, y) e E, there exist an open neigh-
borhood V of (x, y) in E and a smooth vector field ξ on V satisfying
conditions (i) and (ii), in so far as they make sense.

Fix (JC , y) E E. If (x, y) e U, then U is an open neighborhood
of (x, y) and the zero vector field ξ on U satisfies conditions (i) and
(ii) insofar as they make sense. From now on, we can assume that (x9y)
belongs to E-U. We consider three classes of minimal geodesic segments:

Class A consisting of those joining x and y
Class B consisting of those joining x with a point z which satisfies

dist(jc, z) > π/2 and dist(>>, z) > π/2;
Class C consisting of those joining y with a point z which satisfies

dist(jc, z) > π/2 and dist(y, z) > π/2.
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Claim. Any member of class A makes an angle > π/2 with any member
of class B (at the point x). Any member of class A makes an angle > π/2
with any member of class C (at the point y). (The angles here are angles
between the appropriate boundary tangent vectors.)

This follows easily from Toponogov's comparison theorem (again the
hinge version). Note that the comparison manifold should not be the stan-
dard sphere Sχ of constant curvature 1, but the sphere S 1 + e of constant
curvature 1 + ε . Here ε > 0 is such that sec(M) > 1 + ε everywhere, and
it exists because we assumed sec(M) > 1 everywhere.

The claim implies that there exists a linear form φχ: TχM -* R such
that φx(w) > 0 if w is the boundary tangent vector at x of any member
of class B, and φx{w) < 0 if w is the boundary tangent vector at x of
any member of class A. (This is a not-so-trivial exercise.) Similarly, there
exists a linear form φ : TyM —• R such that φ (w) > 0 if w is the
boundary tangent vector at y of any member of class C, and φ (w) < 0
if w is the boundary tangent vector at y of any member of class A.

Now choose any neighborhood V* of (x, y) in E, and a smooth
vector field ξ on V* such that

ξ{(x, y) = gradient of φχ9

ξ2{x, y) = gradient of φy.

Then ξ satisfies conditions (i) and (ii) at the point (x, y), by construc-
tion. In fact, the scalar products mentioned in condition (i) (now evaluated
only at x and y) are < 0, not just < 0. It follows (from an easy con-
tinuity argument) that ξ still satisfies conditions (i) and (ii) in a smaller
open neighborhood V c K* of (x, y). This completes the local part of
the proof of Proposition 2.1, and thereby the entire proof.

2.2. Observation. The function (x, y) »-» dist(;c, y) on E is nonde-
creasing along solution curves of the vector field ξ in Proposition 2.1.

Proof Let β: [0, ε] -> E be a (partial) solution curve of ξ, and as-
sume dist(/?(O)) > dist(/?(ε)) if possible (where dist is still the distance
function on E c M x M). Then

dist(j»(O))-dist(i»(β))>fl β

for some a > 0. By Dirichlet's "drawer" principle (Schubfachprinzip) we
can find arbitrarily short subintervals [t, t + δ] c [0, ε] such that

dist(jϊ(O) - dist(/?(ί + δ))>a-δ

for the same a > 0. On the other hand, a simple variational argument
together with condition (i) in Proposition 2.1 shows that we cannot find
arbitrarily short subintervals of this type.
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For c > π/2 let

Ec = {(x,y)eE\dist(x,y)>c}.

The sets Ec are compact, and E is the union of the Ec for c > π/2. By
Observation 2.2, any solution curve β: [0, ε] -* E of £ will stay in isc

where c = dist(/J(O)). Therefore the domain of the solution curve extends
from [0, ε] to [0, +oo[.

2.3. Corollary. There exists a unique smooth semigroup action of R+

on E such that

-T- (x , y) = ξ(x, y) € T(χ y)E (from Proposition 2.1)

for all t>0 and all (x,y)eE.
It remains to check that the action has the properties stated at the be-

ginning of this section. Clearly it respects the standard involution on E.
2.4. Proposition. We have t U c U for all t > 0. Moreover, if K c E

is compact, then t K c U for some t > 0.
Proof Assume first that t U <£ U for some t > 0. Choose (x0, y0) e

[/ such that £ (x0, j/0) ^ [/. Also choose s > 0 minimal such that
(x5, ys) := ^ (x0, y0) does not belong to U. Then there exists z e M
such that dist(x5, z) > π/2 and dist(y5, z) > π/2. Apply condition
Proposition 2.1(ii) to conclude that {xs_τ, y5_τ) = (s- τ ) ( *o, y^) does not
belong to U for sufficiently small τ , where 0 < τ < 5. This contradicts
the minimality of s.

Next, let K c E be compact. Without loss of generality, assume
K = Ec for some c > π/2 then we have t K c K for all t > 0.
Let Λ? c M x M consist of all ((x, y), z) such that dist(x, z) and
dist(y, z) are > π/2. Note that Kι is compact. Using condition (ii)
of Proposition 2.1 we can find, for any ((x0, yQ), z) in K , a number
ε > 0 such that the difference quotients (dist(x0, z) - dist(x,, z))/t,
(dist(y0, z) - distQ;,, z))/t are > ε for all sufficiently small t > 0 here

Note that if ε works for ((x 0 , j>0), z) e K[, then β/2 works for all

((x, y), z) in a small neighborhood of ((x 0 , yQ), z) in Kι. Since AΓ!

is compact, we can also find a δ > 0 which works for all ((x,y), z) in

K simultaneously. In fact, this means the following. If ( x 0 , yQ) e K and

((x 5 , ys), z)eKι, where (x 5 , y5) := s-{x0, y0), iA^«

((xt,yt),z)eK] f o r a U ί G [ 0 , j ] ,
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and the functions t »-> dist(x,, z), i n dist(yr, z) on [0, 5] decrease
with speed faster than δ .

If we now let s := dmm(M)/δ , then we certainly have s K c t7.

3. Constructing Morse functions

In order to prove Theorem B, we should start with the following.

3.1. Assumption. The smooth connected manifold Mn admits a com-

plete Riemannian metric g with sec(M) > 1 everywhere, and there exists

a continuous map v: Sk —> M such that dist(v(z), v(-z)) > π/2 for all

z e S . Here dist is the geodesic distance, measured with respect to g .
The conclusion should be that M has Morse perfection > k. Now

the main result of the previous section shows that it is permitted to add
another assumption:

3.2. Addendum. Furthermore,

Bπ/2(v(z))uBπ/2(v(-z)) = M

for all zeSk.
Justification. If Assumption 3.1 can be fulfilled for M, then it can also

be fulfilled with sec(M) > 1 everywhere (strict inequality), by scaling. We
thus have the smooth action of R+ on E described at the beginning of

§2. If υ: Sk -> M in Assumption 3.1 does not fulfill Addendum 3.2, let

v: Sk -> E be given by v(z) = (v(z), v(-z)). This respects standard

involutions. Let vt: Sk —> E be given by vt(z) = t ϋ(z) for t eR+ and

z e S . This also respects standard involutions. Let vt: S —> M be the
first component of vt. For sufficiently large t > 0, the map vt satisfies
Addendum 3.2. (End of justification.)

As in §1, let

Lχ = {yeM\dist(x,y)>π/2}

for x e M. This time our assumptions do not imply that Lχ Φ 0 for
all x. But if Lχ Φ 0 for a particular x e M, then there exists a unique
element Δ(JC) e Lχ having maximum distance from x. This is proved as
in §1. The map x H+ A(X) is continuous where defined; it is defined on
an open subset of M. Continuity is also proved as in § 1.

3.3. Terminology. A smooth vector field η defined on an open subset

G c Sk x M is vertical if η(z, x) belongs to

{0} x TχM c TzS
k x TχM * T{z^χ)(Sk x M)
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for all (z, x) e G. In this case the vector field η restricts to a smooth
vector field ηz on Gz = Gn ({z} x M), for all z e Sk . This ηz may be
called the slice of η over z . Further, Gz will usually be identified with
the open subset {x e M\(z, x) e G} c M.

3.4. Terminology. Let x e M, y e M - {x}, and w e TyM. Call
it; gradient-like for dist^ if the scalar product (w , y(0)) is < 0 for any
minimal geodesic segment γ: [0, /I] —• M with y(0) = y and γ(λ) = x .
If such a w exists in TyM, then y is regular for distχ .

Here is some motivation for the construction just below, which essen-
tially completes the proof of Theorem B. We have M and v: S —> M as
in Assumption 3.1 and Addendum 3.2. In particular, for any z e S we
have points υ(z), v(-z) e M such that

dist(t;(z), v{-z)) > π/2, Bπ/2(v(z)) U Bπ/2(υ(-z)) = M.

Using this configuration we should somehow produce a Morse function
fz: M -> R with only two critical points. We should ensure that this
depends continuously on z, and that -fz = f_z . So far, so good;
but where in M should the Morse function fz have its two critical
points? At υ(z) and at v(-z) ? No; rather, at A(υ(z)) and at A(v(-z)).
That is what experience suggests, e.g., the experience from Lemma 1.1.
Further, but this is less surprising, we construct the Morse function fz

by first constructing (approximately) its gradient field. We do not lose
much by regarding this as a nonzero vector field ηz on M - {A(v(z)),
A(v(-z))}.

3.5. Proposition. Assumptions being as in Assumption 3.1 and Adden-
dum 3.2, let

G := {(z, x) e Sk x M\x φ A(v(z)), x φ A(v(-z))}.

Then there exists a smooth vertical vector field η on G c Sk x M whose
slices ηz (on Gz c M) satisfy the following:

(i) -η2 = r\-z on Gz = G_zJorall z e Sk .
(ii) The vector ηz(x) is gradient-like for distv (_z ) if x e Bπ/2(υ(z)).

(iii) The vector ηz{x) is gradient-like for distΔ(ί ; (z)) if x φ

Bπ/2(v(z)).

Proof Note that (i) and (ii), (iii) together imply:

(ii)* the vector -ηz(x) is gradient-like for distυ(z) if x e Bπj2(υ(-z)),

(iii)* the vector —ηz(x) is gradient-like for distΔ ( v (_z ) ) if x £
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Conversely, if η is a smooth vertical vector field on G which satisfies (ii),
(iii), (ii)*, and (iii)*, then ή given by

ήz = ηz- η_z for z G Sk

satisfies (ii), (iii), and (i). So it is sufficient to construct an η satisfying
(ii), (iii), (ii)*, and (iii)*. For the usual reasons it suffices to do this
locally, in a small neighborhood of any point (z, x) e G c Sk x M. Fix
therefore (z, x) e G. There are three cases to consider.

Case 1. x e Bπ/2(
v(z)) a n d x e Bπii(v(~z)) W e t h e n h a v e t o w a t c h

conditions (ii) and (ii)*. For the usual reasons, it suffices to show:
Fact 1. If γ{: [0, λ{] —> M and γ2: [0, λ2] -* M are minimal geodesic

segments with ^(0) = υ(z), γx(λγ) = γ2(0) = x, y2{λ2) = v(-z), then
the angle between the boundary tangent vectors of γχ, γ2 at x is > π/2.

(Thus one can find a linear form φ: TχM -» R whose value on the ap-
propriate boundary tangent vector of any minimal geodesic segment from
v(z) to x is > 0, and from υ(-z) to x is < 0. One can then define η
in a neighborhood of (z, x) in such a way that ηz{x) = gradient of φ .)

Fact 1 follows at once from Toponogov's comparison theorem (the
hinge version) and our assumption dist(v(jc), v(—x)) > π/2, by assum-
ing the angle a under investigation to be < π/2 and comparing the hinge
(ϊι 9 ϊ2 j a) with a suitable hinge in s\ .

Case 2. x £ Bπ,2(v(z)) and x e Bπ,2(υ(-z)). We now have to watch
conditions (iii) and (ii)*. Moreover, if dist(x, v(z)) = π/2, then any
neighborhood of x will intersect Bπ,2(v(z)), so we also need to watch
condition (ii) in this very special case. As in the proof of Proposition 2.1,
we consider two classes of minimal geodesic segments.

Class A: those joining x and Δ(v(z)). If the distance between x and
v(z) is π/2, allow also those joining x and v(-z).

Class B: those joining x and υ(z). For the usual reasons, it suffices to
show:

Fact 2. Any member of class A makes an angle > π/2 with any member
of class B, at x.

Proof of Fact 2. If γ{ joins A(v(z)) and x, and γ2 joins x and v(z),
then form the hinge {γ{, γ2, a) in M and a comparison hinge (γι, y2, a)
in S\. Note that λ2 := length y2 > π/2 (because we are in Case 2), and the
distance between the hinge endpoints in M is > λ2 (because A(v(z)) has
maximum distance from v(z)). The same must be true for the comparison
hinge in S^, and therefore a > π/2.

If dist(jc, υ(z)) = π/2, γχ joins v(-z) and x, and γ2 joins x and
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v(z), t h e n form again the hinge (y{9 γ2, a) a n d a compar i son hinge

(γι,γ2,a) in S2

X . Thus

λ2 := length γ2 = π/2, λχ := length ^ < π/2,

because
Bπ/2(v(z))uBπ/2(v(-z)) = M.

The distance between the hinge endpoints in M is still > π/2. The same
must be true for the comparison hinge in S* , and therefore a > π/2.

Case 3. x e Bπ/2(v(z)) and x φ Bπ/2(v(-z)). This is analogous to
Case 2 by interchanging z and -z .

3.6. Lemma. Lei γ: ]a, Z>[—> Gz c M be a maximal solution curve of

the vector field ηz in Proposition 3.5, for some z e Sk . Then

),

G]α, ft[, α CΛAI 6e -oo, and b can be +oo. In other words: γ is
injective, alias nonperiodic, and has closed image.

Proof If γ(tQ) e Bπ/2(υ(z)) for some tQ with a < tQ < b, then γ(t)
belongs to a fixed compact subset of Bπ.2(υ(z)) for all t with t0 < t <
b, by Proposition 3.5(ii)* and Addendum 3.2, since Proposition 3.5(ii)*
leaves only one way to escape, and that is barred by Addendum 3.2. Thus
by Proposition 3.5(ii), the values γ(t) must converge to A(v(~z)) for
t -> b; otherwise, b = +oc and the function dist,_ z ) has no upper
bound.

On the other hand, if the solution curve never meets Bπ,2{v(z)), then
Proposition 3.5(Hi) applies. This shows that the curve stays away from
Δ(v(z)) for t —• b, that b = +oo, and that the function distΔ ( υ ( z ) ) has no
upper bound. This is absurd, so

limy(ί) =A(v(-z)).

Now apply Proposition 3.5(i) to complete the proof.
The next lemma is related to uniqueness of collars (see 13.7 in Brόcker

and Janich [3]). It will facilitate the construction of Morse functions from
the vector fields ηz in Proposition 3.5.

3.7. Lemma. Let N be a closed smooth manifold, let Y c N x[0, 1]
be a neighbourhood of Nx {0}, and let f: Y —• [0, 1] be a smooth regular
function (no critical points) such that f~l(0) = N x {0} . Then there exists
a smooth regular function F: N x [0, 1] -> [0, 1] which agrees with f
near N x {0}, and with the projection to [0, 1] near N x {1} .
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Proof. Choose ε > 0 small, and k > 0 large. Also choose a smooth
nondecreasing function g: [0, 1] -• [0, 1] such that g{t) = 0 for t near
0,and g(t) = 1 for te[ε, 1]. Then J:Nx[Q, l ] ^ [ 0 , f c ] given by

is smooth regular if ε is small and k is large. / agrees with / near
N x {0}, and with k projection near TV x {1}. Compose / with a
diffeomorphism from [0, k] to [0, 1], which is the identity near 0, and
multiplication by \jk near k. The composite map is F .

3.8. Addendum. If N in Lemma 3.7 is the total space of a smooth
fiber bundle p: N —• B where B is another smooth closed manifold, and
f: Y —• [0, 1] isfiberwise regular, i.e., still regular as a smooth function on
Y Π (p~ (x) x [0, 1]), for all x e B, then F can also be chosen fiberwise
regular.

Proof As above.
Now, to conclude the proof of Theorem B, let us return to Assumption

3.1 and Addendum 3.2.
Step 1. Choose a small δ > 0 such that

Bδ(A(v(z)))ΠBπ/2(v(z)) = 0

for all z eSk ,so that

Bδ(A(v(z)))cBπ/2(v(-z)),

by Addendum 3.2, and therefore

Bδ(A(υ(z)))nBδ(A(v(-z))) = 0.

Further, δ should be smaller than the injectivity radius of exp: TχM -> M
at all points x e M.

To see what δ does for us, fix z e Sk . The vector field ηz in Proposi-
tion 3.5 is transverse to the spheres Sδ(A(v(z))) and Sδ(A(v(-z))), con-
sisting of all points at distance δ from A(v(z)) and A(v(-z)), respec-
tively. This follows from Proposition 3.5(iii) and 3.5(iii)* in the proof of
Proposition 3.5. Further, by Lemma 3.6 any solution curve of ηz which
starts at time t = 0 somewhere in Sδ{A(v(z))) will stay (for t > 0) in
M-Bδ(A(v(z)))-Bδ(A(v(-z))) until, after a finite time interval, it reaches
Sδ(A(υ(-z))).

Step 2. Choose a smooth map u: Sk —• M close to A o v: S -> M.
(Note that Δ need not be smooth, and v was never assumed to be
smooth.) This map u should be at least ί/2-close to Δ o i ; , and such
that, for all z e Sk, the vector field ηz is still transverse to Sδ(u(z))
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and Sδ(u(-z)). Then any solution curve of ηz, starting at time t = 0
somewhere in Sδ(u(z)), will still stay in M - Bδ(u(z)) - Bδ(u(-z)) for
positive t until it reaches Sδ(u(—z)) after a finite time interval.

Fix z e Sk again. We can construct a smooth regular function
f2: Gz -> R with Gz = M - {Δ(v(z)), Δ(v(-z))} such that

f;\-l) = Sδ{u(z)) and /

as follows. For x e Gz let 7: ]a, &[-> (JZ be the unique maximal solution
curve of ηz passing through x and crossing Sδ{u{z)) at time t = 0, so
<z < 0 < b. This curve will pass through x at time tQ , say, and will cross
Sδ(u(-z)) at time tx > 0, say. Let

All we need to know about Gz in the following is that it is a neighborhood
of M - Bδ(u(z)) - Bδ(u(-z)). Note that f_z = -fz .

Step 3. Apply Lemma 3.7 and Addendum 3.8. To this end, fix z e

S again. Let Aδ.2 δ{u(z)) c M be the closed annulus bounded by

Sδ(u{z)) and Ss/2(u(z)). Let r z : ^ ( κ ( z ) ) -> R be given by rz(x) =

(dist(x, w(z)) — 2. (This is a smooth Morse function with one critical
point of index 0: prove it by composing with exp: T,,M —• M.) Since
δ is small, the map exp: T,z)M —• M gives rise to a canonical diffeo-
morphism

Aδ/2>β(u(z)) $Sδ(u(z))x [δ/2,δ].

Using Lemma 3.7, it is now easy to find a smooth regular function

which agrees with f2 near 5rf(M(z)), and with rz near 5^ ,2(M(Z)) . Us-

ing the parametrized, alias fibered, version Addendum 3.8, we can even

construct hz simultaneously for all z e Sk , in such a way that the map

(z, x) ι-> hz(x) is smooth where defined. Now let fz':M—>R be such

that

rz on Bδ/2(u(z)),

K on Aδ/2J(u(z)),

fz = { fz onM- Bδ{u{z)) - Bδ(u(-z)),

-h_z onAδ/2J(u(-z)),

- r_z on Bδ/2(u(z)).
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Then fz is a smooth Morse function on M with exactly two critical

points, at u(z) and at u(—z). The map Sk —• W{M) z H+ /Z

! is smooth

and respects Z/2-actions (because / ' = - / ; ) . This proves Theorem B.

4. Gromoll filtration and Morse perfection

The proof of Proposition 0.5 involves some manipulations with subsets
of Rn+ι the first and last coordinates of the points in R"+1 will play a
special role. Here is some notation:

Sn c Rn+ is the standard sphere,

^ = ^ - { ( 0 , 0 , . . . , 0 , - 1 ) } ,

V_=Sn-{(0,0,... ,0

C = Sn~l x] - 1, +1[ C Rn x R ^ R"+ 1,

P = ( 1 , 0 , 0 , . . . ,0)eSn~l c R " .

Further, j : C -> V+ and j _ : C -+ V_ are the smooth embeddings given
by one and the same formula

for zeSn~ι and te]- l , -h l [ .
Observe that 5" is the pushout (in the category 3 of smooth manifolds

and smooth maps) of the diagram V_ ^ C -+ V+ . Any diffeomorphism

φ: Sn~ι -> Sn~ι gives rise to a homotopy sphere Σ" in the usual way
(glueing two disks). For our purposes Σ" is best described as the pushout
of

where

φxid:Sn-ιx]-l,+l[ -> Sn~ιx]-l,+l[

II II
c c

sends (z, t) to (φ(z), t).

We can always assume that φ is the identity in the complement of a

small disk around P e Sn~ι. If Σn has Gromoll filtration > k, then we
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may also assume that the diagram

α α
I proj I proj

R k id T$k
» K

commutes. Here "proj" is the projection to the last k coordinates:

Suppose now that A: Rn+ι -> R is a linear map of norm 1 which van-
ishes on Rn~k c M n + 1 (the "first n-k coordinates"). Then with our
assumptions including commutativity of (*), the diagram

j+o(yxid)

ΐ
_ R n + 1

K_ ^ R

Λ + 1 Λ R

commutes. By the pushout description of Σn, this fact gives rise to a
smooth map λ,: Σ" —• R. Since the critical points of λ} on the patches
V+, V_ c Σn are all nondegenerate of index 0 and n respectively, we
see that λ, is a smooth Morse function having critical points of index 0
and n only. Using 7.4 in Milnor [19], it is easily seen that A, has just
two critical points. Therefore the rule A ι-> A, is a map from the unit
sphere in (Rn+ι/Rn~k)* to the space W(Σn) of Morse functions with just
two critical points. Since the map is smooth, and respects standard Z/2-
actions, we conclude:

Morse perfection of Σn > k

by the assumption

Gromoll filtration of Σn > k.

Hence Proposition 0.5 is proved.

5. Some concordances

A nonstandard definition of concordance spaces, very convenient here,
is given as follows. Let Nn be a smooth compact manifold. The smooth
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concordance space W(N) is the space of all smooth regular functions (no
critical points)

which agree with the projection to [-1, +1] on an infinitesimal neigh-
borhood of d(N x [-1, +1]). (The "infinitesimal neighborhood" means
that g should have the same values and the same higher derivatives as
the projection, at any point of d(N x [-1, +1]).) Equip &(N) with the
C°°-topology (see Chapter 2 of Hirsch [14]).

The standard involution on W(N) sends g to ~g, with

~g(x, t) = -g(x, -t) ΐoτ xe N anάte [-1, +1].

5.1. Description. The construction below provides, for fixed n > 2,
(i) a fiber bundle p: E 2

to the concordance space

(i) a fiber bundle p: E —> Sn~2 with fibers weakly homotopy equivalent

(ii) an involution on E, covering the antipodal involution on Sn~2

(iii) for any diffeomorphism φ: Dn~ι —> Dn~ι which is the identity near
dDn~ι = Sn~2 , a section ω(φ): Sn~2 —> E of p which respects standard
involutions.

Item (i). Let E consist of all pairs (JC, /) where x e Sn~2 and /
is a smooth regular function on Dn~ι, which agrees with the linear form
λχ: z H+ (z, x) on an infinitesimal neighborhood of Sn~2. Topologize
E as a subspace of Sn~2 x C°°(Dn~ι), where C°° denotes spaces of
smooth functions with the C°°-topology. Define the bundle projection p
by p(x, f) = x.

Item (ii). The standard involution on E sends (x, /) to (—x, -f).
Item (iii). Define the section ω(φ) by

ω(ψ)(x) = (x,λχoφ) ep~\x),

with λχ as above.
This construction already appears in Weiss [28], in French and in a

paper which contains too many misprints. Note that the section ω(φ) in
Item (iii) can also be regarded as a section of a certain fiber bundle over
RPn~2 , whose total space is the quotient of E by Z/2 . From this point
of view, ω(φ) tells us how much φ fails to respect the various orthogonal
projections Dn~ι c Rn~ι —• L to one-dimensional linear subspaces L
of R*" 1. In this connection, note also that p: E -> Sn~2 has a trivial
section respecting standard involutions. This is ω(id), given by i ^
(x, λ ) . Finally, note that for n > 7 an isotopy class of diffeomorphisms
φ: Dn~ι —• Dn~ι which agree with the identity near Sn~2 is worth as
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much as an oriented diffeomorphism class of homotopy spheres Σ" . We
can therefore write ω(Σn), meaning ω(φ), a well-defined homotopy class
of Z/2-sections of p: E —• Sn~2 .

Construction 5.1 is a systematic way of extracting concordances (and
therefore, by the work of Waldhausen, algebraic ^-theory) from homotopy
spheres. All we need to know now is that it has something to do with Morse
perfection and Gromoll filtration.

5.2. Proposition. If Σn has Gromoll filtration > k, then ω(Σn) is

Z/2-homotopic to a section which is trivial over Sk~x c Sn~2.

Proof. If Σn has Gromoll filtration > k, then we can assume that

the glueing diffeomorphism φ: Dn~ι —> Dn~ι respects the projection to

the last k coordinates, Dn~ι c Rn~ι -> Rn~ι/Rn~ι~k . This means that

Xχ . φ = λχ for any x e Sn~2 c Rn~l which is orthogonal to the subspace

Rn~ι~k c R"" 1 . In other words, ω(φ) = ω(Σn) is actually trivial over the

(k - l)-sphere consisting of the unit vectors orthogonal to R*"1" .

5.3. Proposition. If ω(Σn) is Z/2-homotopic to a section which is

trivial over Sk~ι c Sn~2, then the Morse perfection of Σn is >k.
(Of course, Proposition 0.5 follows from Propositions 5.2 and 5.3, but

it would have been unwise to prove Proposition 5.3 before proving Propo-
sition 0.5.)

5.4. Notation (for the proof of Proposition 5.3). As in §4, think of Σ"
as the pushout of

• v_

where φ: Sn~l —• Sn~ι is a diffeomorphism which is the identity outside

a small disk Dε around P = ( 1 , 0, . . . , 0) e Sn~ι. Points in Σn will be

denoted by ( z , t)+ or ( z , t)_ , where ( z , t)+ and ( z , t)_ are the images

of

(z,t) = (zlfz2,... ,zn,t)eV+cRn+ι

and

( z , t ) = {zl9z2,... , z n , t ) e V _ c R n + ι

under the canonical embeddings F+ -> Σ" and V_ -> Σn , respectively.

Proof of Proposition 5.3. Let S:k~ι c Sn~ι c Rn consist of all unit
vectors whose first n-k coordinates are zero. The assumption in Propo-
sition 5.3 can be recast as follows: There exists a (continuous) family of
smooth functions

{μχt: S
n
~

X
 - R|JC € S:k~l, t G [ - 1 , +1]}

such that
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μχ t = λχ for t < -1/2 and all x
μχ t = λχ o φ for t > 1/2 and all x
μχ t agrees with the linear form λχ outside Dε, and is regular inside

Dε, for all x and t
//_JC , = -μχ t for all x and ί. We may even assume that the family

is smooth, i.e., the function

S:k~l x [-1, +1] x Sn~l -> R; (x, t, z) » μχί(z)

is smooth.
Now, for x e S:k~ι, let fx: Σ " -• R be given by

(to be read as 0 if z = 0). See §5.4 for notation. Claim: fχ is a smooth
Morse function having critical points of index 0 and n only. /V00/: if
z φ 0 and z/||z|| £ £>β, then / χ ((z, t)_) agrees with / χ ((z, ί)+) and
with λχ(z, t). At points (z, ί ) + or (z, t)_ where z/||z|| belongs to D ε ,
the function fχ is regular by our assumptions. Near the north pole (z, t)+

with z = 0 and / = 1, the function fχ agrees with Ax on K+ near the
south pole (z, ί)_ with z = 0 and ί = - 1 , the function ^ agrees with
λχ on F_ .

Since also f_χ = —fχ , we have a smooth Z/2-mapχ

This shows that the Morse perfection of Σn is > k - 1, which is a little
below the target.

Fortunately, there is another g e W(Σn) which we have not used yet:
it is given by

g((z,t)+) = t, g((z,ή_) = t.

This g is transverse to the functions fχ above, in the sense that afχ + bg

belongs to W(Σn) for all x e S:k~{ and all (a, b) e Sι c R 2 . (We have

proved this for b = 0 the general case is similar.) Let S:k c Rn+ι consist

of all unit vectors whose first n - k coordinates vanish. Write points in

S:k in the form

ax + by (y = (0,0,... , 0 , l ) e l n + 1 ) ,

where x e S:k~ι and (a, b) e Sι c R 2 . Map such a point ax + by

to af + bg e W(Σn). This gives a continuous Z/2-map from S:k to
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W(Σn). [Continuous refers to the C°°-topology on W(Σn).) It can eas-
ily be approximated by a smooth Z/2-map. This shows that the Morse
perfection of Σn is indeed > k .

Obstruction theory gives a good way to illuminate Proposition 5.3.

5.5. Question. Given an oriented homotopy sphere Σn , and a Z/2-

map (smooth or continuous) q: Sk —• W(Σn), what is the obstruction to

extending q to a Z/2-map q: Sk+ι -> W(Σn)Ί
(We assume k < n - 1 the case k = n - 1 is special, and does not

have so much to do with Proposition 5.3.)
Answer. The obstruction is an element in nk{&{Sn~~1)).
Explanation. We use the commutative diagram of Z/2-maps

W{Σn)
ϊc

Sk — > Σ* x Σ" - diagonal

where c assigns to g e W(Σn) the ordered pair consisting of the two
critical points of g (ordered by their index). Let

* = ( l , 0 , . . . ,0)eSk,

(x 9 y) = c(f) = M(*) e Σn x Σn - diagonal.

We can assume that f(x) < - 1 and f(y) > + 1 .
The target of u is (n — l)-connected, so u — cq extends to a Z/2-map

ύ: S + 1 —• Σn x Σn-diagonal.

The extension is unique up to homotopy (relS*). Further, c is a fiber
bundle, and therefore the obstruction to finding the extension q is an
element in

πfc(fiber of c) = πk(c~\x, y)).

We use / € c~ι(x, y) as the base point for the fiber. Write

and let

Y := {g e W(Σn)\g agrees with / outside N}.

The inclusion Y c c~ι(x, y) is a weak homotopy equivalence. Further, Y
is identified with the space of smooth regular functions on N, which agree
with / on an infinitesimal neighborhood of dN. Use the orientation of
Σn to choose a diffeomorphism of degree +1 from f~\-l) to Sn~ι
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(note that /~ (—1) bounds an embedded disk in Σn , containing x).
Using the fact that / is regular on JV, extend this to a diffeomorphism

such that
/ = projection o ψ.

This identifies Y with the concordance space W(Sn~ι).

Let a: Sn~2 -> E be a Z/2-section of p: E -> Sn~2 in §5.1. Restric-

tion produces a partial section ak of p over Sk c Sn~2 , for k < n - 2.

By a Z/2-nullhomotopy of a over Sk is meant a Z/2-homotopy (through

partial sections over S ) deforming ak into the trivial section.

5.6. Question. Let h be a Z/2-nullhomotopy over S ~ of the section
ω(φ) — ω(Σn) in §5.1. What is the obstruction to extending h to a Z/2-

k

nullhomotopy over S ?
Answer. The obstruction is an element in πk(^?(Dn~ )). (This is ob-

vious.)
One would expect that the obstruction groups in Questions 5.5 and 5.6

are related by a homomorphism

induced by a suitable map

Namely, a Z/2-homotopy h as in Question 5.6 determines an obstruction

o(h) e πk(β?(Dn~2)) it also determines, by the proof of Proposition 5.3, a

Z/2-map qh\ Sk —• W(Σn) which in turn determines, by Question 5.5, an

obstruction o{qh) e πk(W(Sn~1)). It would be nice to be able to predict

(!) o(gh)=jk(o(h)).

Now it is not hard to find a candidate for j : the composite of the sta-
bilization map W(Dn~2) -> &(Dn~ι) (see, e.g., Hatcher [13]) with the
map Ψ{Dn~x) -> &(Sn~ι) induced by an embedding Dn~ι -> Sn~ι. It is
harder to show that (!) works with this choice of j . The proof (left to
the reader) follows the lines of Proposition 5.3.

The map above from W{Dn~ι) to %{Sn~x) is about 2«-connected
(see Burghelea, Lashof and Rothenberg [4, Chapter 3, Theorem A']). The
stabilization map from W(Dn~2) to W(Dn~ι) is about n/3-connected by
Igusa's stability result [16]. So it can happen that
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(for k < n-\) loses information: namely, if k > n/3 . But most of what is
known today about homotopy groups of concordance spaces comes from
an analysis of the stabilized concordance spaces (by means of algebraic
ΛΓ-theory, as in Waldhausen's work [27], [24], [25], [26], or by means of
Goodwillie's calculus of functors [7], [8]). In particular, the assumptions

(1) Morse perfection of Σn > k ,

(2) ω(Σn) is Z/2-nullhomotopic over Sk~ι c Sn~2 on a homotopy
sphere Σn, with n > 1 and k < n, have the same AΓ-theoretic implica-
tions.

6. Some algebraic K-theory

In [24]-[27], Waldhausen constructs maps from concordance spaces to
algebraic if-theory spaces:

where N is compact, connected, smooth, and K means the algebraic
^-theory functor (from rings to spaces). Of course, Waldhausen does
more than that: for example in the case where N is a disk, he does not
use the ring Z but the "ring space" of self-maps from Sm to Sm for
large m. This has Z as ring of components. However, discrete rings
are easier to handle and give interesting results, too. So we have a map
<S>{Dn~2) -• Ω2K(Z), for example. This factors through the stabilization
maps

2

mentioned at the end of §5.
In the setting of §5.1, one would like to have such a map for each fiber

of p: E —• Sn~2 . More precisely, one might hope to be able to construct a
fibration p: E —• Sn~2 with fibers homotopy equivalent to Ω2K(Z), and
an involution on Έ covering the antipodal map on Sn~2 , and a fiberwise
Waldhausen map χ: E -> Έ respecting the Z/2-actions and the projection
to Sn~2.

All this can be arranged. What follows is, firstly, a description of
p: E —> Sn~2 secondly, for some homotopy spheres Σn , a description
of the Z/2-section χ o ω(Σn) of p. Here ω(Σn) comes from §5.1 and
sequel.

Description 1. The fibration p .
Dividing by Z/2, think of p as a fibration over RPn~2, with fibers

homotopy equivalent to Ω2AΓ(Z).
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One way to construct K(Z) is as follows: Take the groups GL(ra, Z)
for all m > 0, their classifying spaces BGL(m, Z), and their disjoint
union

Tl= ]jBGL(m,Z).
m>0

ffl is an associative topological monoid with a unit. The multiplica-
tion is by direct sum, so it maps BGL(m1, Z) x BGL(ra2,Z) to
BGL(mj + m2, Z). There is a canonical map 9Jt -> Ω59JI, where BWl is
the classifying space of Wl, and we let

K(Z) = ΩBdJl.

This space ΩB9JI is also known as the group completion of UJl.
Now Z/2 acts on GL(m, Z) by A ι-* (Λ"1)' for an invertible (mxm)-

matrix A . Therefore Z/2 acts on BGL(ra, Z), on the monoid 9Jί, and
on ΩB9JI = K(Z). Take the projection map K(Z) x Sn -> Sn and divide
by Z/2 on both sides to get

po:K(Z)xz/2S
n-+RP\

a fibration over RPn with fibers homotopy equivalent to K(Z). This is not

quite what we want: we want a fibration over RPn~2 with fibers homotopy

equivalent to Ω2K(Z). However, think of RPn~2 as a subspace of RPn ,

with orthogonal subspace L c RPn (so L = RPι). Sections of ^ 0 which

are trivial over L determine sections of a certain fibration over RPn~

with fibers homotopy equivalent to Ω2K(Z). This fibration is p .

Description 2. The sections associated to some homotopy spheres.
Assume that Σn = dV, where F " + 1 is smooth, compact, with trivial-

ized tangent bundle, and n + 1 is divisible by 4. Then Σ" is determined
up to oriented diffeomorphism by the signature of V in particular, by
the intersection form on // ( w + 1 ) / 2 (F) /torsion. Choosing a basis for this
free abelian group, we can express the intersection form by a symmetric
matrix A with integer entries and det = ± 1.

Claim. Such a matrix A gives rise to a section σ(A) of

pQ:K(Z)xz/2S
n^RP\

Proof. Assume that A has size r x r. Form the semidirect product
GL(r, Z) xi Z/2, where Z/2 acts as before (by transpose o inverse). Send-
ing the generator 1 e Z/2 to (A, 1) defines a homomorphism Z/2 —>
GL(r, Z) xi Z/2 because A is symmetric. This homomorphism splits the
projection GL(r, Z) x Z/2 —> Z/2. So it gives rise to a section of the map
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of classifying spaces

B(GL(r, Z) x Z/2) -> B(Z/2),

which is really the same as the map

BGL(r, Z) x z / 2 S°° -> RP°°.

We can regard the section just constructed as a section of 9JI x z / 2 S°° —•

RP°° or of A'(Z) x z / 2 5°° -> RP°° or, by restriction, as a section cr(v4)

of ^ 0 : K(Z)xz/2S
n -+RPn .

6.1. Theorem. /« ί/ze notation above,

where H = (J J) w α hyperbolic matrix of the same size as A.
Notice that each fiber of ~p0 is an infinite loop space in its own right,

so that the subtraction of sections is possible and well defined up to ho-
motopy.

In other words, the "Waldhausenization" of the geometric section ω(Σn)
constructed in §5.1 and sequel is the algebraic section σ(A) constructed
just before Theorem 6.1, minus a correction term σ(H). The purpose of
the correction term is to neutralize the rank (alias "size") of A, without
spoiling the signature. Also, one can show that σ(A) - o{H) is nullhomo-
topic over RP 1 c RPn therefore it can be regarded as a section of the
fibration p with base space RPn~ and fibers Ω K(Z). (Hence Theorem
6.1 makes sense.)

Using the stable classification of symmetric nondegenerate forms over
Z (see Serre [21]), one can get a more explicit formulation:

6.2. Reformulation of Theorem 6.1. With the same assumptions as in
Theorem 6.1,

χ o ω(Σn) = 1/2 signature(V) -(ε-η),

where ε is the "trivial line bundle", and η is the "canonical line bundle".

Explanation, ε = σ((+l)) and η = σ ( ( - l ) ) , where (+1) and (-1)
are 1 x 1-matrices.

To see how Theorem 6.2 follows from Theorem 6.1, suppose for exam-
ple that A in Theorem 6.1 has signature 8 and rank 8. Then arguments
involving stabilization show that

σ(A) = Sε and σ{H) = 4ε + 4η.

Therefore
σ(A) - σ{H) = 4ε - 4η.
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6.3. Corollary (same assumptions as in Theorem 6.1). If the Gro-

mollfiltration of Σn is > k, then the section 1/2 signature(V) (e - η)

ofp0: K(Z) x z / 2 Sn -> RPn is nullhomotopic over RPk+ι.
This follows from Theorem 6.2 and Proposition 5.2 (remember also

the little difference between p0 and p). With more work, along the lines
suggested at the end of §5, the hypothesis can be weakened:

6.4. Corollary (same assumptions as in description 2). If Σn has Morse

perfection k < n, then the section 1/2 signature(V) (g - η) of p0 is

nullhomotopic over RPk+ι.
Example. Let Σn be the Milnor homotopy sphere; so Σn = d V where

V has signature 8. Let us first calculate in real topological AΓ-theory
A:top(R) instead of K(Z). Then

π vtoptia>\ v c" i p "p o .A (Mjx z / 2Λ -> Rr

becomes a product fibration because Z/2 acts trivially on # t o p(M) =
BO x Z, because orthogonal matrices are equal to the transposes of their
inverses. Therefore

1/2 signature(F) (g - η) = 4(ε - η)

is a map from RPn to BO, and ε, η can be interpreted as the trivial
line bundle and the canonical line bundle in the usual sense. In this set-
ting, 4(g — η) is trivial over RP , but not over RP there is a nonzero
obstruction in π4(BO) = Z.

If we now return to the ΛΓ(Z)-setting, then we see that 4(g - η) must be
nontrivial over RP3. (Assume it is trivial; then the above obstruction in
π4(BO) = Z comes from an obstruction in K4(Z). But this is impossible,
because K4(Z) is finite by BoreΓs result [2], so K4(Z) -> π4(BO) is the
zero homomorphism.) Conclusion:

Morse perfection of Σn < 1,

and therefore

Morse perfection of Σn = 1

because this is the minimum possible perfection. Also,

Gromoll filtration of Σn = 2.

7. A guide

The labels WW I, WW II, and WW III used below refer to Weiss and
Williams [29]-[31], respectively.
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For a manifold M, closed for simplicity, let TOP(Λf) be the topolog-
ical block automorphism space of M, and let DIFF(Λf) be the smooth
block automorphism space of M if M is smooth. See the introduc-
tion to WW I for details. Write TOP(M) and DIFF(Λf) for the hon-
est topological automorphism and smooth automorphism spaces respec-
tively. In WW I the (group-theoretic) quotients TOP(M)/TOP(Λf) and
DIFF(M)/DIFF(M) are analysed in terms of the concordance theory of
M. As TOP(M) and DIFF(M) are closely related to the L-theory of
Z[πχ(M)], this provides a way to get from the L-theory of Z[π{(M)] to
the concordance theory alias if-theory of M.

In WW II, we construct a map from the L-theory of Z[nx(M)] to a
descendant of the algebraic AΓ-theory of M by algebraic methods. This
is based on the simple idea (of Thomason, Giffen, Karoubi, etc.) that the
quadratic forms which one uses in defining L-groups can also be regarded
as "free finitely generated modules identified with their duals", and there-
fore give rise to homotopy fixed points in the algebraic ΛΓ-theory under a
suitable duality involution. So we now have two ways of getting from L
to K, one geometric (WW I) and the other algebraic (WW II).

The main result in WW III is that these two ways give the same re-
sult: there is a very large commutative diagram somewhere. This is the
commutative cube at the end of the introduction to WW III.

Now specialize by taking M to be a point; this is a smooth manifold.
Then DIFF(M) is also a point, but DIFF(ΛQ^is not. In fact, it fol-
lows directly from the definitions that πA:_1(DIFF(*)) is isomorphic to
the group of oriented homotopy λ>spheres modulo oriented diffeomor-
phism, if k > 7. Therefore WW I gives ΛΓ-theoretic invariants for such
homotopy spheres. Moreover, if the homotopy spheres under investigation
come from the L-theory of Z (as in Kervaire and Milnor [17]), then WW
III says that their algebraic AΓ-theory invariants can be obtained directly
from the L-theory, without any geometry. Of course, this implies that
they can sometimes be computed. Hence we have Theorem 6.1 in this
paper.
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