ON THE SMOOTH COMPACTIFICATION OF SIEGEL SPACES

WENXIANG WANG

Introduction

Let $X=\Gamma \backslash \Omega$ be a noncompact locally symmetric Hermitian space, where Ω is a bounded symmetric domain and Γ is an arithmetic subgroup acting on Ω. It is well known that X is quasiprojective ${ }^{1}$, and the canonical Bergman metric on X induced from Ω is a Kähler-Einstein metric of negative curvature if X is smooth (it is the case where Γ is neat). Since the smooth compactifications of X were introduced in [1] from the toroidal embeddings, Mumford obtained the following results on X in his proof of noncompact Hirzebruch's proportionality [12]:

1. X is of logarithmic general type.
2. The Bergman metric g on X is a good singular Hermitian metric on any smooth toroidal compactification \bar{X} of X. In other words, assuming that the boundary $D=\bar{X}-X$ is locally defined as $\prod_{i=1}^{k} z_{i}=0$, then the volume form Φ of g behaves singularly along the boundary D as

$$
\left(\left|z_{1} \cdots z_{k}\right|^{2} \Phi\right)^{-1}=O\left(\log ^{2 N}\left|z_{1} \cdots z_{k}\right|\right)
$$

for some integer $N>0$.
To have broader and deeper applications of the theory on the locally symmetric Hermitian spaces in algebraic and differential geometry (see the references [15], [16] and [9]), people would like to understand more about X and its compactification \bar{X} besides Mumford's work. One would like to completely understand the algebraic structures of the boundary divisor D and the canonical bundle $K_{\bar{X}}$ of \bar{X} and to have a precise singular description of the canonical volume form Φ along D. The goal of this paper is to study these questions for the quotient of Siegel upper half spaces by an intensive investigation of their smooth toroidal compactifications.

[^0]
1. Toroidal compactification of symmetric varieties

In this section, we briefly recall the construction of smooth compactifications of a locally symmetric variety from the torus embeddings. For the further detailed material on this section, see [1] and [13].
1.1. Torus embeddings. Let T be an n-dimensional complex torus, i.e,. $T=\left(\mathbf{C}^{*}\right)^{n}$.

Definition. (i) A torus embedding of T is an algebraic variety X such that (1) X contains T as a Zariski open dense subset;
(2) T acts on X extending the natural action on itself defined by translation.
(ii) A morphism between torus embeddings X and X^{\prime} is a map $f: X \rightarrow$ X^{\prime} such that the diagram

commutes.
We can describe torus embeddings combinatorially.

$$
T=\left(\mathbf{C}^{*}\right)=\operatorname{Spec}\left(\mathbf{C}\left[T_{1}, T_{1}^{-1}, T_{2}, T_{2}^{-1}, \cdots, T_{n}, T_{n}^{-1}\right]\right) \text { as a scheme. }
$$

Let $M=\operatorname{Hom}\left(T, \mathbf{C}^{*}\right)=$ Character group of $T \simeq \mathbf{Z}^{n}=\left\{r=\left(r_{1}, r_{2}, \cdots\right.\right.$, $\left.\left.r_{n}\right) \in \mathbf{Z}^{n} ; \chi^{r}: T \rightarrow \mathbf{C}^{*}\right\}$ where $\chi^{r}\left(t_{1}, t_{2}, \cdots, t_{n}\right)=t_{1}^{r_{1}} t_{2}^{r_{2}} \cdots t_{n}^{r_{n}} . N=$ $\operatorname{Hom}\left(\mathbf{C}^{*}, T\right)=$ group of one-parameter subgroups in $T \simeq \mathbf{Z}^{n}=\{a=$ $\left.\left(a_{1}, a_{2}, \cdots a_{n}\right) \in \mathbf{Z}^{n} ; \lambda_{a}: \mathbf{C}^{*} \rightarrow T\right\}$ where $\lambda_{a}(t)=\left(t^{a_{1}}, t^{a_{2}}, \cdots, t^{a_{n}}\right) . M$ and N are dual to each other by the pairing $\langle\rangle:, M \times N \rightarrow \mathbf{Z}$

$$
\langle r, a\rangle=\sum_{i=1}^{n} r_{i} a_{i}
$$

then $\chi^{r}\left(\lambda_{a}(t)\right)=t^{\langle r, a\rangle}$ for $r \in M, a \in N, t \in \mathbf{C}^{*}$.
If we identify χ^{r} with monomial $\prod_{i=1}^{n} T_{i}^{r_{i}}$, and S is a subsemigroup of M containing 0 , then $\mathbf{C}[S]=\mathbf{C}\left[\chi^{r}\right]_{r \in S}$ is a subring of $\mathbf{C}[M]=$ $\mathbf{C}\left[T_{1}, T_{1}^{-1}, \cdots, T_{n}, T_{n}^{-1}\right]$, and $T=\operatorname{Spec}(\mathbf{C}[M])=N_{\mathbf{C}} / N$ where $N_{\mathbf{C}}=$ $N \otimes \mathbf{C}=\mathbf{C}^{n}$. Let σ be a convex rational polyhedral cone (abbreviated to c.r.p. cone) in $N_{\mathbf{R}}=N \otimes \mathbf{R}=\mathbf{R}^{n}$ not containing a line. Then

$$
\sigma=\left\{a \in N_{\mathbf{R}} ;\left\langle r_{1}, a\right\rangle \geq 0, \quad i=1, \cdots, k, r_{i} \in M\right\}
$$

and the dual of σ in $M_{\mathbf{R}}=M \otimes \mathbf{R}=\mathbf{R}^{n}$ is

$$
\hat{\sigma}=\left\{r \in M_{\mathbf{R}} ;\langle r, a\rangle \geq 0, \text { for all } a \in \sigma\right\} .
$$

If X_{σ} is defined to be $\operatorname{Spec}(\mathbf{C}[\hat{\sigma} \cap M])$, then X_{σ} is an affine normal torus embedding of T by $\operatorname{Spec}(\mathbf{C}[M]) \subset \operatorname{Spec}(\mathbf{C}[\hat{\sigma} \cap M])$. Let $\hat{\sigma} \cap M=$ $\mathbf{Z}^{+} r_{1}+\cdots+\mathbf{Z}^{+} r_{m}, \quad r_{i} \in M, i=1,2, \cdots, m(m \geq n$, since σ not containing a line); hence

$$
X_{\sigma}=\operatorname{Spec}\left(\mathbf{C}\left[\chi^{r_{1}}, \chi^{r_{2}}, \cdots, \chi^{r_{m}}\right]\right) \subset \mathbf{C}^{m}
$$

The embedding of T into X_{σ} is given by $i: T \rightarrow \mathbf{C}^{m}, i(\bar{t})=\left(\chi^{r_{1}}(\bar{t}), \cdots\right.$, $\left.\chi^{r_{m}}(\bar{t})\right)$ where $\bar{t}=\left(t_{1}, \cdots t_{n}\right) \in T . X_{\sigma}$ is the scheme-theoretic closure of $i(T)$ in $\mathbf{C}^{m} . T$ acts on X_{σ} as

$$
\bar{t} \cdot x=\left(\chi^{r_{1}}(\bar{t}) x_{1}, \chi^{r_{2}}(\bar{t}) x_{2}, \cdots, \chi^{r_{m}} x_{m}\right)
$$

for $\bar{t} \in T, x=\left(x_{1}, x_{2}, \cdots, x_{m}\right) \in X_{\sigma}$. Then $X_{\sigma}=$ the disjoint union of T-orbits in X_{σ}, and

$$
\left\{T \text {-orbits in } X_{\sigma}\right\} \stackrel{1-1}{\longleftrightarrow}\{\text { all faces of } \sigma\}
$$

If τ is a face of σ (we write as $\tau<\sigma$), let $N(\tau)$ be the subset $\left\{r_{i} ;\left.\left\langle r_{i},\right\rangle\right|_{\tau}\right.$ $=0\}$ of $\left\{r_{1}, \cdots, r_{m}\right\}$, and O_{τ} be T-orbit in X_{σ} corresponding to τ. Then

$$
\begin{gathered}
O_{\tau}=\left\{\left(x_{1}, x_{2}, \cdots, x_{m}\right) \in X_{\sigma} ; x_{i} \neq 0 \text { if } r_{i} \in N(\tau) ; x_{i}=0 \text { if } r_{i} \notin N(\tau)\right\} \\
\operatorname{dim} \tau+\operatorname{dim} O_{\tau}=n=\operatorname{dim}_{\mathbf{C}} T \\
O_{0}=T
\end{gathered}
$$

If Σ is a finite rational partial polyhedral decomposition (abbreviated to a f.r.p.p. decomposition) of $N_{\mathbf{R}}$ (in the future we always assume cone does not contain a line), such that
(i) the face of σ is in Σ if $\sigma \in \Sigma$;
(ii) for $\sigma_{i}, \sigma_{j} \in \Sigma, \sigma_{i} \cap \sigma_{j}$ is a face of σ_{i} and σ_{j}.

Then we can patch $X_{\sigma_{i}}$ together to form a normal torus embedding of T, X_{Σ}, by the fact that if $\tau<\sigma$, then $X_{\tau} \subset X_{\sigma}$ and $X_{\tau} \rightarrow X_{\sigma}$ is an open immersion:

$$
\begin{array}{ccc}
X_{\tau} & \longrightarrow & X_{\sigma} \\
\cup & & \cup \\
T & = & T
\end{array}
$$

and $X_{\Sigma}=\bigcup\left\{T\right.$-orbits in $\left.X_{\Sigma}\right\}$,

$$
\left\{T \text {-orbits in } X_{\Sigma}\right\} \stackrel{1-1}{\longleftrightarrow} \Sigma
$$

X_{Σ} is smooth if and only if each σ_{i} is regular, i.e., σ_{i} is generated by a part of a basis of N.

On the other hand, if $\alpha: N_{\mathbf{C}} \rightarrow N_{\mathbf{C}}$ is a linear map which preserves lattice N, then it induces an action on $T \simeq N_{\mathbf{C}} / N$ and a map $\alpha^{*}:\left(N_{\mathrm{C}}\right)^{*} \rightarrow$ $\left(N_{\mathbf{C}}\right)^{*}$ where $\left(N_{\mathbf{C}}\right)^{*}=$ dual space of $N_{\mathbf{C}}$ with respect to \langle,$\rangle . If \alpha^{*}$ also preserves the dual lattice M of $N, \sigma \subset N_{\mathbf{R}}$ is a c.r.p cone, then α^{*} maps $(\alpha(\sigma))^{\wedge} \cap M$ to $\hat{\sigma} \cap M$, and $\alpha^{*}: X_{\sigma} \rightarrow X_{\alpha(\sigma))}$ is an extension of α on T.

The construction of torus embedding can be used to resolve some type of singularities.
1.2. Toroidal compactification of the quotient of Siegel spaces. The theory of toroidal compactification was developed for the locally symmetric varieties in general. We introduce it here for the case of Siegel spaces.

Let $M(n ; k)=\{$ all $n \times n$ matrices over $k\}, k=\mathbf{C}, \mathbf{r}, \mathbf{Z}, \cdots$,

$$
\begin{aligned}
S_{n} & =\left\{\tau \in M(n ; \mathbf{C}) ;{ }^{t} \tau=\tau, \operatorname{Im} \tau>0\right\}: \text { the Siegel space of rank } n, \\
G & =\operatorname{Sp}(n ; \mathbf{R}) \\
& =\left\{M=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] ; A, B, C, D \in M(n ; \mathbf{R}),\right. \\
& \left.{ }^{t} M\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right] M=\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right]\right\},
\end{aligned}
$$

the symplectic group of rank n.
G acts on S_{n} by $M \cdot \tau=(A \tau+B)(C \tau+D)^{-1}$ for $M \in G, \tau \in S_{n}$; then $S_{n}=G / K$ as a homogenous space, where $K+\operatorname{Iso}\left(\sqrt{-1} I_{n}\right)$ is a maximal compact subgroup of G. We will discuss the compactifications of locally symmetric Hermitian space $\Gamma \backslash S_{n}=\Gamma \backslash G / K$ for an arithmetic subgroup Γ of G.

First, we can realize S_{n} as a symmetric bounded domain S_{n}^{\prime} in $M_{s}(n ; \mathbf{C})=\{$ all symmetric $n \times n \quad$ C-matrices $\}$ by $\tau \in S_{n} \rightarrow Z=$ $\left(\tau-\sqrt{-1} I_{n}\right)\left(\tau+\sqrt{-1} I_{n}\right)^{-1} \in S_{n}^{\prime}, S_{n}^{\prime}=\left\{Z \in M_{s}(n ; \mathbf{C}) I_{n}-Z \bar{Z}>0\right\}$. (This is a Harish-Chandra realization of homogeneous space.) Then $\tau=$ $\sqrt{-1}\left(Z+I_{n}\right)\left(-Z+I_{n}\right)^{-1} \in S_{n}$ for $Z \in S_{n}^{\prime}$.

For simplicity of notation, we will denote both bounded and unbounded realizations of Siegel space as S_{n} except, if it is needed, we will distinguish their members by τ and Z as above.

Let $\overline{S_{n}}=\left\{Z \in M_{s}(n ; \mathbf{C}) ; I-Z \bar{Z} \geq 0\right\}$ be the topological closure of S_{n} is $M_{s}(n ; \mathbf{C})$. For $p, q \in \overline{S_{n}}$, we say " $p \sim q$ " if there exist holomorphic maps

$$
\alpha_{i}: S_{1}=\{Z \in \mathbf{C} ;|Z|<1\} \rightarrow \overline{S_{n}} \text { for } i=1,2, \cdots, m
$$

such that $\alpha_{1}(0)=p, \alpha_{m}(0)=q$ and $\alpha_{i}\left(S_{1}\right) \cap \alpha_{i+1}\left(S_{1}\right) \neq \varnothing$. " \sim " defines an equivalence relation on $\overline{S_{n}}$.

A boundary component of S_{n} is a maximal subset in $\overline{S_{n}}$ of mutually equivalent points. Then $\overline{S_{n}}=$ disjoint union of boundary components. The action of G on S_{n} extends to $\overline{S_{n}}$ by

$$
\begin{aligned}
M \cdot Z= & ((A-\sqrt{-1} C)(Z+1)+(B-\sqrt{-1} D) \sqrt{-1}(Z-1)) \\
& \cdot((A+\sqrt{-1} C)(Z+1)+(B+\sqrt{-1} D) \sqrt{-1}(Z-1))^{-1}
\end{aligned}
$$

for $M=\left[\begin{array}{ll}A & B \\ C & B\end{array}\right] \in G, Z \in \overline{S_{n}}$.
Fact. (i)

$$
F_{n^{\prime}}=\left\{\left[\begin{array}{cc}
Z^{\prime} & 0 \\
0 & I_{n-n^{\prime}}
\end{array}\right] ; Z^{\prime} \in S_{n^{\prime}}\right\}
$$

is a boundary component of $\overline{S_{n}}$ for any $0 \leq n^{\prime} \leq n$.
(ii) Any boundary component of $\overline{S_{n}}$ has the form $g \cdot F_{n^{\prime}}$ for some $g \in G, 0 \leq n^{\prime} \leq n$.

The boundary component $F=g \cdot F_{n^{\prime}}$ with $g \in \operatorname{Sp}(n ; \mathbf{Q})$ is called rational. Actually, F is rational $\Leftrightarrow \exists g \in \mathbf{S p}(n ; \mathbf{Z})$ such that $F=g \cdot F_{n^{\prime}}$ for some $0 \leq n^{\prime} \leq n$.

Remark. Let $S_{n}^{*}=\bigcup\{$ all rational components $\}=\bigcup_{0 \leq n^{\prime} \leq n} \operatorname{Sp}(n ; \mathbf{Z})$. $F_{n^{\prime}} \subset \overline{S_{n}}\left(S_{n}^{*}\right.$ is called the rational closure of $\left.S_{n}\right)$. Then $\Gamma \backslash S_{n}^{*}$ with suitable defined topology gives the so-called Stake-Baily-Borel compactification of $\Gamma \backslash S_{n}$.

Let F be a boundary component of $\overline{S_{n}}$, and define:
$N(F)=\{g \in G ; g \cdot F=F\}$ which will be a parabolic subgroup,
$W(F)=$ the unipotent radical of $N(F)$ (i.e. biggest unipotent normal subgroup of $N(F)$),
$U(F)=$ center of $W(F)$,
$V(F)=W(F) / U(F)$.
If $F^{\prime}=g \cdot F$ for $g \in G$, then $N\left(F^{\prime}\right)=g N(F) g^{-1}$. Therefore, it is enough to know the structures of these groups for $F_{n^{\prime}}$.

Fact. For $F=F_{n^{\prime}}, 0 \leq n^{\prime} \leq n$, we have the following:
(i)

$$
N\left(F_{n^{\prime}}\right)=\left\{\left[\begin{array}{cccc}
A^{\prime} & 0 & B^{\prime} & * \\
& u & * & * \\
C^{\prime} & 0 & D^{\prime} & * \\
0 & 0 & 0 & { }^{t} u^{-1}
\end{array}\right] \in G ;\left[\begin{array}{cc}
A^{\prime} & B^{\prime} \\
C^{\prime} & D^{\prime}
\end{array}\right] \in \operatorname{Sp}\left(n^{\prime} ; \mathbf{R}\right)\right.
$$

$$
\left.u \in \mathrm{GL}\left(n-n^{\prime} ; \mathbf{R}\right)\right\}
$$

(ii)

$$
W\left(F_{n^{\prime}}\right)=\left\{\left[\begin{array}{cccc}
I_{n^{\prime}} & 0 & 0 & E \\
{ }^{t} H & I_{n-n^{\prime}} & { }^{t} E & J \\
0 & 0 & I_{n^{\prime}} & -H \\
0 & 0 & 0 & I_{n-n^{\prime}}
\end{array}\right] ;{ }^{t} E H+J={ }^{t} H E+{ }^{t} J\right\}
$$

(iii)

$$
U\left(F_{n^{\prime}}\right)=\left\{\left[\begin{array}{cccc}
I_{n^{\prime}} & 0 & 0 & 0 \\
0 & I_{n-n^{\prime}} & 0 & J \\
0 & 0 & I_{n^{\prime}} & 0 \\
0 & 0 & 0 & I_{n-n^{\prime}}
\end{array}\right]=[J] ;^{t} J=J\right\} \simeq M_{s}\left(n-n^{\prime} ; \mathbf{R}\right)
$$

Then $v\left(F_{n^{\prime}}\right)=W\left(F_{n^{\prime}}\right) / U\left(F_{n^{\prime}}\right) \simeq\left\{E+\sqrt{-1} H ; E\right.$ and H are $n \times\left(n-n^{\prime}\right) \mathbf{R}$ matrices $\}$ as additive groups.

On the other hand, for the homogeneous space $S_{n}=G / K$, let $S_{n}^{c}=$ $G_{\mathbf{C}} / B$ be the compact dual of S_{n} where $G_{\mathbf{C}}$ is the complexification of G, B is a parabolic subgroup of $G_{\mathbf{C}}, S_{n} \subset S_{n}^{c}$.

For a boundary component F, we define $S(F)=U(F)_{\mathbf{C}} \cdot S_{n} \subset S_{n}^{c}$. If $F=F_{n^{\prime}}$, then $U\left(F_{n^{\prime}}\right)_{\mathbf{C}} \simeq M_{s}\left(n-n^{\prime} ; \mathbf{C}\right)=\{$ symmetric \mathbf{C}-matrices of order $\left.n-n^{\prime}\right\}$.

$$
\begin{array}{r}
S\left(F_{n^{\prime}}\right)=U\left(F n^{\prime}\right)_{\mathbf{C}} \cdot S_{m}=\left\{\tau=\left[\begin{array}{cc}
\tau_{1} & \tau_{2} \\
t_{1} \tau_{2} & \tau_{3}
\end{array}\right] \in M(n ; \mathbf{C}) ; \tau_{1} \in S_{n^{\prime}}\right. \\
\left.\tau_{3} \in M_{s}\left(n-n^{\prime} ; \mathbf{C}\right)\right\} .
\end{array}
$$

$S_{n} \rightarrow S\left(F_{n^{\prime}}\right)$ by natural inclusion. $S(F) \simeq F \times V(F) \times U(F)_{\mathbf{C}}$ holomorphically, and $U(F)$ acts on $S(F)$ as the linear translations on the factor $U(F)_{\mathbf{C}}$. In particular,

$$
\begin{aligned}
& S\left(F_{n^{\prime}}\right) \simeq F_{n^{\prime}} \times V\left(F_{n^{\prime}}\right) \times U\left(F_{n^{\prime}}\right)_{\mathbf{C}} \\
& \tau=\left[\begin{array}{cc}
\tau_{1} & \tau_{2} \\
{ }^{t} \tau_{2} & \tau_{3}
\end{array}\right] \longleftrightarrow\left(\tau_{1}, \tau_{2}, \tau_{s}\right), \quad \tau_{1} \in S_{n^{\prime}}, \quad \tau_{2} \in V\left(F_{n^{\prime}}\right), \quad \tau_{3} \in U\left(F_{n^{\prime}}\right)_{\mathbf{C}} \\
& S_{n} \rightarrow S\left(F_{n^{\prime}}\right) \text { characterized by }
\end{aligned}
$$

$$
J=\operatorname{Im} \tau_{3}-^{t}\left(\operatorname{Im} \tau_{2}\right)\left(\operatorname{Im} \tau_{1}\right)^{-1}\left(\operatorname{Im} \tau_{2}\right)>0
$$

as a $\left(n-n^{\prime}\right) \times\left(n-n^{\prime}\right)$ symmetric \mathbf{R}-matrix. (This is called the realization as a Siegel domain of the third kind.)

We define $C\left(F_{n^{\prime}}\right)=\left\{J \in M_{s}\left(n-n^{\prime} ; \mathbf{R}\right) ; J>0\right\} \subset U\left(F_{n^{\prime}}\right)$; then $C\left(F_{n^{\prime}}\right)$ is a cone in $U\left(F_{n^{\prime}}\right), \Phi: S\left(F_{n^{\prime}}\right) \rightarrow U\left(F_{n^{\prime}}\right), \Phi(\tau)=J, S_{n}=\Phi^{-1}\left(C\left(F_{n^{\prime}}\right)\right)$.

We define two subgroups in $N\left(F_{n^{\prime}}\right)$:

$$
\begin{aligned}
& G_{h}\left(F_{n^{\prime}}\right)=\left\{\left[\begin{array}{cccc}
A^{\prime} & 0 & B^{\prime} & 0 \\
0 & I_{n-n^{\prime}} & 0 & 0 \\
C^{\prime} & 0 & D^{\prime} & 0 \\
0 & 0 & 0 & I_{n-n^{\prime}}
\end{array}\right] ;\left[\begin{array}{cc}
A^{\prime} & B^{\prime} \\
C^{\prime} & D^{\prime}
\end{array}\right] \in \operatorname{Sp}\left(n^{\prime} ; \mathbf{R}\right)\right\} \simeq \operatorname{Aut}\left(F_{n^{\prime}}\right) \\
& G_{l}\left(F_{n^{\prime}}\right)=\left\{\left[\begin{array}{cccc}
I_{n^{\prime}} & 0 & 0 & 0 \\
0 & u & 0 & 0 \\
0 & 0 & I_{n^{\prime}} & 0 \\
0 & 0 & 0 & { }^{t} u^{-1}
\end{array}\right] ; u \in \mathrm{GL}\left(n-n^{\prime} ; \mathbf{R}\right)\right\}
\end{aligned}
$$

Let $\operatorname{Aut}\left(U\left(F_{n^{\prime}}\right), C\left(F_{n^{\prime}}\right)\right)=\left\{\right.$ automorphism of $U\left(F_{n^{\prime}}\right)$ which preserves $\left.C\left(F_{n^{\prime}}\right)\right\}$; then $G_{l}\left(F_{n^{\prime}}\right)=\operatorname{Aut}\left(U\left(F_{n^{\prime}}\right), C\left(F_{n^{\prime}}\right)\right)$ with the action

$$
u(J)=u \cdot J \cdot \cdot^{t} u \quad \text { for } u \in G_{l}\left(F_{n^{\prime}}\right), \quad J \in U\left(F_{n^{\prime}}\right)
$$

and $N\left(F_{n^{\prime}}\right)=\left(G_{h}\left(F_{n^{\prime}}\right) \times G_{l}\left(F_{n^{\prime}}\right)\right) \cdot W\left(F_{n^{\prime}}\right)$ with two projections

$$
\begin{aligned}
& p_{l}: N\left(F_{n^{\prime}}\right) \rightarrow G_{l}\left(F_{n^{\prime}}\right), \quad g=\left[\begin{array}{cccc}
A^{\prime} & 0 & B^{\prime} & * \\
& u & * & * \\
C^{\prime} & 0 & D^{\prime} & * \\
0 & 0 & 0 & { }^{t} u^{-1}
\end{array}\right] \rightarrow u, \\
& p_{h}: N\left(F_{n^{\prime}}\right) \rightarrow G_{h}\left(F_{n^{\prime}}\right), \quad g \rightarrow\left[\begin{array}{ll}
A^{\prime} & B^{\prime} \\
C^{\prime} & D^{\prime}
\end{array}\right] .
\end{aligned}
$$

For the embedding $S_{n} \rightarrow F_{n^{\prime}} \times V\left(F_{n^{\prime}}\right) \times U\left(F_{n^{\prime}}\right)_{\mathbf{C}}$, the action of $N\left(F_{n^{\prime}}\right)$ on S_{n} is of the form:

$$
\left(\tau_{1}, \tau_{2}, \tau_{3}\right) \rightarrow\left(g\left(\tau_{1}\right), B\left(\tau_{1}\right) \tau_{2}+b\left(\tau_{1}\right), A\left(\tau_{3}\right)+a\left(\tau_{1}, \tau_{2}\right)\right)
$$

where $\left(\tau_{1}, \tau_{2}, \tau_{3}\right) \in S_{n} \subset F_{n^{\prime}} \times V\left(F_{n^{\prime}}\right) \times U\left(F_{n^{\prime}}\right)_{\mathbf{C}}, g\left(\tau_{1}\right)$ is the action on $F_{n^{\prime}}$ induced by $p_{h}: N\left(F_{n^{\prime}}\right) \rightarrow G_{h}\left(F_{n^{\prime}}\right)$, and $A\left(\tau_{3}\right)$ is the action on $U\left(F_{n^{\prime}}\right)_{\mathbf{C}}$ induced by $p_{l}: N\left(F_{n^{\prime}}\right) \rightarrow G_{l}\left(F_{n^{\prime}}\right)$.

Although some group structures and the fact above are introduced for S_{n} and $F_{n^{\prime}}$ here only, they can be actually generalized for the bounded symmetric domains by using the theory of Lie groups and Lie algebras (see [1]).

With all set-ups above, we are now able to construct the toroidal compactification of $X=\Gamma \backslash S_{n}$ for a given arithmetic subgroups Γ of G.

Let $\Gamma(F)=\Gamma \cap N(F)$ for each rational boundary component F,

$$
\bar{\Gamma}(F)=p_{l}(\Gamma(F)) \subset G_{l}(F)
$$

and let $L(F)=\Gamma \cap U(F)$, which is a lattice in vector space $U(F)$. Then given a rational boundary component F, we have:
$U(F)$: a real vector space which will correspond to $N_{\mathbf{R}}$ as in §1.1, $L(F) \subset U(F)$: a lattice which defines a rational structure on $U(F)$ and corresponds to N as in §1.1,
$C(F) \subset U(F):$ a cone,
$\bar{\Gamma}(F)$: arithmetic subgroup of $\operatorname{Aut}(U(F), C(F))$.
The compactification of $X=\Gamma \backslash S_{n}$ is constructed for a given, so-called, Γ-admissible family of polyhedral decomposition.

Definition. A Γ-admissible family of polyhedral decomposition is a collection of polyhedral $\Sigma=\left\{\Sigma_{F}\right\}_{F \text { rational }}$ such that:

1. Σ_{F} is a $\bar{\Gamma}(F)$-admissible polyhedral decomposition of $C(F)$ for every rational boundary component F (that means: $\left.\Sigma_{F}=\left\{\sigma_{\alpha}^{F}\right\}_{\alpha}\right)$. With the rational structure on $U(F)$ by $L(F)$,
(i) each σ_{α}^{F} is a convex rational polyhedral cone in $\bar{C}(F)$;
(ii) $\sigma_{\alpha}^{F} \in \Sigma_{f}, \sigma<\sigma_{\alpha}^{F}$ (i.e. σ is a fact of $\left.\sigma_{\alpha}^{F}\right) \Rightarrow \sigma \in \Sigma_{F}$;
(iii) $\sigma_{\sigma}^{F}, \sigma_{\beta}^{F} \in \Sigma_{F} \Rightarrow \sigma_{\alpha}^{F} \cap \sigma_{f} \beta^{F}<\sigma_{f} \alpha^{F}, \sigma_{\beta}^{F}$;
(iv) $\gamma \in \bar{\Gamma}(F), \sigma_{\alpha}^{F} \in \Sigma_{F} \Rightarrow \gamma \cdot \sigma_{\alpha}^{F} \in \Sigma_{F}$;
(v) the number of classes of cones module $\bar{\Gamma}(F)$ is finite;
(vi) $C(F) \subset \bigcup_{\alpha} \sigma_{\alpha}^{F}$ (this is called the rational closure of $C(F)$).
2. If $F_{1}=\gamma \cdot F_{2}$ for $\gamma \in \Gamma$, then $\left\{\sigma_{\alpha}^{F_{1}}\right\}=\left\{\gamma \cdot \sigma_{\alpha}^{F_{2}}\right\}$ by the map

$$
\gamma: U\left(F_{2}\right) \rightarrow U\left(F_{1}\right), \quad g \rightarrow \gamma g \gamma^{-1},
$$

which is a linear transformation under the realizations of $U\left(F_{1}\right)$ and $U\left(F_{2}\right)$ as vector spaces.
3. If $F_{1}<F_{2}$ (i.e., $F_{1} \subset \overline{F_{2}}$), then $\Sigma_{F_{2}}=\left.\Sigma_{F_{1}}\right|_{U\left(F_{2}\right)}$ by inclusion $U\left(F_{2}\right) \subset U\left(F_{1}\right)$.

The reduction theory of selfadjoint cones gives us the existence of such a Γ-admissible family since each $C(F)$ is a self-adjoint cone with respect to some inner product on $U(F)$. In fact, it is clear from the definition that a Γ-admissible family is essentially determined by a $\bar{\Gamma}\left(F_{0}\right)$-admissible polyhedral decomposition of $C\left(F_{0}\right)$ for the smallest standard rational boundary component F_{0}.

Now, supposedly, we are given a Γ-admissible family; then a toroidal compactification is constructed by the following processes:

Step 1. Partial torus compactification for each rational boundary component.

Let F be a rational boundary component, and $\Sigma_{F}=\left\{\sigma_{\alpha}^{F}\right\}_{\alpha}$ be a $\bar{\Gamma}(F)$ admissible polyhedral decomposition of $C(F)$. Then

$$
S(F) \simeq F \times V(F) \times U(F)_{\mathbf{C}}, \quad S_{n} \subset S(F)
$$

Let $S(F)^{\prime}=S(F) / U(F)_{\mathbf{C}} ;$ then $S(F)^{\prime} \simeq F \times V(F)$, and $\Pi_{F}^{\prime}: S(F) \rightarrow$ $S(F)^{\prime}$ is a principal $U(F)_{\mathbf{C}}$-bundle.

If $T(F)=L(F) \backslash U(F)_{\mathbf{C}}$ is an algebraic torus, then

$$
L(F) \backslash S(F) \simeq F \times V(F) \times\left(L(F) \backslash U(F)_{\mathbf{C}}\right) \xrightarrow{\bar{\Pi}_{F}^{\prime}} S(F)^{\prime} \simeq F \times V(F),
$$

and $\bar{\Pi}_{F}^{\prime}$ is a principal bundle with fibre $T(F)$.
The $\bar{\Gamma}(F)$-admissible polyhedral decomposition Σ_{F} defines a torus embedding:

$$
T(F) \subset X_{\Sigma_{F}}
$$

Then we can construct a fibre bundle

$$
(L(F) \backslash S(F))_{\Sigma_{F}}=(L(F) \backslash S(F)) \times_{T(F)} X_{\Sigma_{F}}
$$

over $S(F)^{\prime}$ with fibre $X_{\Sigma_{F}}$. Let $\left(L(F) \backslash S_{n}\right)_{\Sigma_{F}}=$ the interior of the closure of $L(F) \backslash S_{n}$ in $(L(F) \backslash S(F))_{\Sigma_{F}}$.

Step 2. Gluing.

By the definition of Γ-admissible family and the construction of partial torus compactification, we have the following properties:
(1) if $F_{1}<F_{2}, F_{1}, F_{2}$ are two rational boundary components, then

$$
\begin{gathered}
\Sigma_{F_{2}}=\left.\Sigma_{F_{1}}\right|_{U\left(F_{2}\right)}, \quad U\left(F_{1}\right) \supset U\left(F_{2}\right), \\
L\left(F_{2}\right) \backslash S_{n} \rightarrow L\left(F_{1}\right) \backslash S_{n}, \quad X_{\Sigma_{F_{2}}} \rightarrow X_{\Sigma_{F_{1}}},
\end{gathered}
$$

and there is an étale map

$$
\prod_{1,2}:\left(L\left(F_{1}\right) \backslash S_{n}\right)_{\Sigma_{F_{2}}} \rightarrow\left(L\left(F_{1}\right) \backslash S_{n}\right)_{\Sigma_{F_{1}}}
$$

(2) if $F_{2}=\gamma \cdot F_{1}$ for $\gamma \in \Gamma$, then γ induces an isomorphism

$$
\begin{array}{rll}
\gamma: U\left(F_{1}\right) & \longrightarrow U\left(F_{2}\right) \\
\cup & & \cup \\
L\left(F_{1}\right) & \longrightarrow & \longrightarrow\left(F_{2}\right) \\
\left.\gamma\right|_{C\left(F_{1}\right)}: C\left(F_{1}\right) & \longrightarrow C\left(F_{2}\right),
\end{array}
$$

and by the definition, $\Sigma_{F_{2}}=\gamma \cdot \Sigma_{F_{1}}$. Hence, the action of γ on S_{n} extends to an isomorphism

$$
\gamma:\left(L\left(F_{1}\right) \backslash S_{n}\right)_{\Sigma_{F_{1}}} \rightarrow\left(L\left(F_{2}\right) \backslash S_{n}\right)_{\Sigma_{F_{2}}}
$$

Let $\left(\Gamma \backslash S_{n}\right)^{\sim}=\bigcup_{F}$: rational $\left(L(F) \backslash S_{n}\right)_{\Sigma_{F}}$. An equivalence relation can be defined on $\left(\Gamma \backslash S_{n}\right)^{\sim}$ as follows: $X_{1}, X_{2} \in\left(\Gamma \backslash S_{n}\right)^{\sim}$, assuming that $X_{1} \in\left(L\left(F_{1}\right) \backslash S_{n}\right)_{\Sigma_{F_{1}}}, X_{2} \in\left(L\left(F_{2}\right) \backslash S_{n}\right)_{\Sigma_{F_{2}}}$,

$$
\begin{array}{cc}
X_{1} \sim X_{2} \Leftrightarrow(1) \exists F, \text { rational and } \gamma \in \Gamma, \text { s.t. } & F_{1}<F, \gamma F_{2}<F, \\
& (2) \exists X \in\left(L(F) \backslash S_{n}\right)_{\Sigma_{F}} \text { s.t. } \\
\prod_{1}:\left(L(F) \backslash S_{n}\right)_{\Sigma_{F}} \rightarrow\left(L\left(F_{1}\right) \backslash S_{n}\right)_{\Sigma_{F_{1}}}, \quad & \prod_{\gamma}(X)=X_{1}, \\
\prod_{\gamma, 2}:\left(L(F) \backslash S_{n}\right)_{\Sigma_{F}} \rightarrow\left(L\left(\gamma F_{2}\right) \backslash S_{n}\right)_{\Sigma_{\gamma F_{2}}}, & \prod_{\gamma, 2}(X)=\gamma \cdot X_{2} .
\end{array}
$$

It can be proved that " \sim " is an equivalence relation.
Let $\overline{\left(\Gamma \backslash S_{n}\right)}=\left(\Gamma \backslash S_{n}\right)^{\sim} / \sim$.
Theorem 1.1 [13]. $\left(\Gamma \backslash S_{n}\right)$ is a Hausdorff analytic variety containing $\Gamma \backslash S_{n}$ as an open dense subset, and $\left(\Gamma \backslash S_{n}\right)$ is a compact algebraic space. $\overline{\left(\Gamma \backslash S_{n}\right)}$ is called a toroidal compactification of $\Gamma \backslash S_{n}$ and sometimes also a Mumford's compactification.

It is clear that the compactification constructed above depends on the choice of Γ-admissible family of polyhedral decompositions and in general only on a compact algebraic variety. For the smoothness and projectivity of these compactifications, we need the following definitions.

Definition. 1. A subgroup Γ of G is said to be neat if the subgroup of \mathbf{C}^{*} generated by the eigenvalues of all $\gamma \in \Gamma$ is torsion free. (Then, $\Gamma \backslash S_{n}$ will be smooth.)
2. A Γ-admissible family of polyhedral decomposition is said to be projective if there exists a continuous convex piecewise linear function $f: \Omega \rightarrow \mathbf{R}$ where $\Omega=\bigcup_{F \text { rational }} C(F)$ such that
(1) $f(X)>0$ for $X \neq 0$,
(2) for each $\sigma_{\alpha} \in \Sigma_{F}$, there is a linear function l_{α} on $U(F)$ such that
(a) $l_{\alpha} \geq f$ on $C(F)$,
(b) $\sigma_{\alpha}=\left\{X \in \bar{C}(F) ; l_{\alpha}(X)=f(X)\right\}$,
(3) $f(\Gamma \cap \Omega) \subset \mathbf{Z}$ (a function f with (1), (2) and (3) is called a polar function),
(4) f is Γ-invariant.

Theorem 1.2 [13]. 1. If Γ is neat and all cones σ_{α}^{F} in Σ_{F} are regular with respect to Γ, i.e., each cone σ_{α}^{F} is generated by a part of a Z-basis of $L(F)=U(F) \cap \Gamma$, then the compactification $\overline{\left(\Gamma \backslash S_{n}\right)}$ constructed before is smooth.
2. If $\Sigma=\left\{\Sigma_{F}\right\}_{F \text { rational }}$ is a projective Γ-admissible family, then $\overline{\left(\Gamma \backslash S_{n}\right)}$ is projective.

Remarks. 1. Any arithmetic subgroup Γ contains a neat subgroup of finite index. Also, the principal congruence subgroups $\Gamma(k)$ of $\operatorname{Sp}(n ; \mathbf{Z})$ are neat for $k \geq 3$:

$$
\Gamma(k) \stackrel{\text { Def }}{=}\{X \in \operatorname{Sp}(n ; \mathbf{Z}) ; X \equiv I \quad(\bmod k)\}
$$

2. For any Γ-admissible decomposition Σ, there exists a refinement Σ^{\prime} such that all cones in Σ^{\prime} are regular, and the toroidal compactification constructed from Σ^{\prime} is a blowing-up of the one from Σ.
3. A special projective Γ-admissible family can be obtained from the reduction theory. The resulting family is called the central cone decomposition which we will discuss later in detail.
4. Therefore, for any neat arithmetic subgroup Γ, there is a nonsingular and projective toroidal compactification of $\Gamma \backslash S_{n}$.
5. In each partial compactification $\left(L(F) \backslash S_{n}\right)_{\Sigma_{F}}$, there is an orbit decomposition with respect to the members of Σ_{F}. Let

$$
\begin{gathered}
O(F)=\bigcup_{\substack{\sigma_{\alpha} \cap C(F) \neq \varnothing}} O(\alpha) \subset\left(L(F) \backslash S_{n}\right)_{\Sigma_{F}} \\
\bar{O}(F)=(\Gamma(F) / L(F)) \backslash O(F)
\end{gathered}
$$

Recall $\Gamma(F)=\Gamma \cap N(F), L(F)=U(F) \cap \Gamma$. Then, $\overline{\left(\Gamma \backslash S_{n}\right)}=\bigcup_{F \bmod \Gamma} \bar{O}(F)$ as a set where F runs through all rational boundary components, and the $\operatorname{map} \prod_{F}$ from $\left(L(F) \backslash S_{n}\right)_{\Sigma_{F}}$ to $\overline{\left(\Gamma \backslash S_{n}\right)}$ factors through

$$
\prod_{F}:\left(L(F) \backslash S_{n}\right)_{\Sigma_{F}} \rightarrow(\Gamma(F) / L(F)) \backslash\left(L(F) \backslash S_{n}\right)_{\Sigma_{F}} \xrightarrow{\bar{\Pi}_{F}} \overline{\left(\Gamma \backslash S_{n}\right)},
$$

where $\bar{\Pi}_{F}$ is injective near $\bar{O}(F)$, and $\Gamma(F) / L(F)$ acts on $\left(L(F) \backslash S_{n}\right)_{\Sigma_{F}}$ properly discontinuously.

Notice that $O(F)=S_{n}$ and $\bar{O}(F)=\Gamma \backslash S_{n}$ if $F=S_{n}$.

2. The boundary divisors of $\overline{\left(\Gamma \backslash S_{n}\right)}$

Let $X=\Gamma \backslash S_{n}$ with Γ neat, and \bar{X} be a smooth projective toroidal compactification of X constructed from a Γ-admissible family. Then $\bar{X}-X$ is a divisor of \bar{X} with normal crossing, i.e., $D=\bar{X}-X=\sum_{i=1}^{m} D_{i}$ where each D_{i} is an irreducible smooth divisor of \bar{X}, and D_{1}, \cdots, D_{m} intersect transversally. In this section, we will discuss the structure of D in the case $\Gamma=\Gamma(k)$ for $k \geq 3$, since those $\Gamma(k)$ are neat.
2.1. Central cone decomposition. It is known that, up to $\operatorname{Sp}(n ; \mathbf{Z})$, $\left\{F_{n^{\prime}} ; 0 \leq n^{\prime} \leq n\right\}$ are only rational boundary components of S_{n}. Therefore, $\left\{(\operatorname{Sp}(n ; \mathbf{Z}) / \Gamma(k)) \cdot F_{n^{\prime}} ; 0 \leq n^{\prime} \leq n\right\}$ will be all inequivalent classes of rational boundary components of S_{n} under $\Gamma(k)$. Since $F_{0}=\{I=n \times n$ identity matrix $\} \leq F_{n^{\prime}}$ and $C\left(F_{n^{\prime}}\right)<C\left(F_{0}\right)$ for any $0 \leq n^{\prime} \leq n$, $\gamma \cdot F_{0}<\gamma \cdot F_{n^{\prime}}$ and $\gamma \cdot C\left(F_{n^{\prime}}\right) \subset \gamma \cdot \bar{C}\left(F_{0}\right)$ for any $\gamma \in \operatorname{Sp}(n ; \mathbf{Z}) / \Gamma(k)$. Then, by the definition, finding a $\Gamma(k)$-admissible family of polyhedral decomposition is reduced to finding a $\bar{\Gamma}\left(F_{0}\right)$-admissible polyhedral decomposition of $C\left(F_{0}\right)$.

Recall the following:

$$
\begin{aligned}
& F_{0}=\{I\} \\
& N\left(F_{0}\right)=\left\{\left[\begin{array}{cc}
u & * \\
0^{t} u^{-1}
\end{array}\right] \in \operatorname{Sp}(n ; \mathbf{R}), u \in \mathrm{GL}(n ; \mathbf{R})\right\} \\
& U\left(F_{0}\right)=\left\{\left[\begin{array}{ll}
I & J \\
0 & I
\end{array}\right]=:[J] ; J={ }^{t} J\right\} \simeq M_{s}(n ; \mathbf{R})
\end{aligned}
$$

$$
C\left(F_{0}\right)=\left\{J \in U\left(F_{0}\right) ; J>0\right\}=\text { the set of all positive definite } n \times n
$$ symmetric \mathbf{R}-matrices,

$\Gamma\left(F_{0}\right)=\Gamma \cap N\left(F_{0}\right)$,
$L\left(F_{0}\right)=\Gamma \cap U\left(F_{0}\right)=\left\{J \in M_{s}(n ; \mathbf{Z}), J \equiv 0(\bmod k)\right\}$,
$\bar{\Gamma}\left(F_{0}\right)=p_{l}\left(\Gamma\left(F_{0}\right)\right)=\{u \in \operatorname{GL}(n ; \mathbf{Z}), u \equiv I(\bmod k)\}=\mathrm{GL}(n ; \mathbf{Z})(k)$, where $p_{l}: N\left(F_{0}\right) \rightarrow G_{l}\left(F_{0}\right)=\operatorname{Aut}\left(U\left(F_{0}\right), C\left(F_{0}\right)\right)$.

Since $\bar{\Gamma}\left(F_{0}\right)=\mathrm{GL}(n ; \mathbf{Z})(k)$, it will be enough if we can find a $\operatorname{GL}(n ; \mathbf{Z})$ admissible decomposition of $C\left(F_{0}\right)$. There are several types of such decompositions. We introduce one here, called "central cone decomposition", for our purpose.

Let $V=M_{s}(n ; \mathbf{R})$ be the vector space of all $n \times n$ symmetric \mathbf{R} matrices, and $C=C\left(F_{0}\right)$ be the cone in V. We may consider V as the Lie algebra of $U\left(F_{0}\right)$ and V is isomorphic to $U\left(F_{0}\right)$ by the exponential map. If $B($,$) is the killing form on V$, then

$$
B(X, Y)=\operatorname{Tr}(X Y) \stackrel{\text { Def }}{=}\langle X, Y\rangle
$$

It induces a quadratic form on $U\left(F_{0}\right)$, and C is a self-dual cone in V with respect to 〈, 〉.

Let $L=M_{s}(n ; \mathbf{Z})$ be the standard lattice in V, L^{*} be the dual lattice of L w.r.t. \langle,$\rangle ; then$

$$
\begin{gathered}
L_{\mathbf{R}}=L \otimes \mathbf{R}=V \\
L^{*}=\left\{Y ; 2 Y \in M_{s}(n ; \mathbf{Z}), \quad Y=\left(y_{i j}\right), y_{i i} \in \mathbf{Z}\right\}
\end{gathered}
$$

For $X \in \bar{C}$ and $Y \in C \cap L^{*}$, define

$$
\begin{gathered}
\phi(X)=\min _{Y \in C \cap L^{*}} \operatorname{Tr}(X Y) \\
\sigma(Y)=\{X \in \bar{C} ; \phi(X)=\operatorname{Tr}(X Y)\}
\end{gathered}
$$

Theorem 2.1 [13]. $\Sigma_{\text {cent }} \stackrel{\text { Def }}{=}\left\{\sigma=\sigma(Y) ; Y \in C \cap L^{*}\right\}$ is a $\mathrm{GL}(n ; \mathbf{Z})$ admissible polyhedral decomposition of C with rational structure by L, and $\Sigma_{\text {cent }}$ is projective with the polar function $\phi(X)$.
$\sigma(Y)$, which has same dimension as C, is called a central cone, such a Y is called a central element, and $\Sigma_{\text {cent }}$ is called the central decomposition.

Since the rational structure of C induced by $L\left(F_{0}\right)=k L$ is equivalent to one induced by $L, \Sigma_{\text {cent }}$ actually also gives us a projective $\bar{\Gamma}\left(F_{0}\right)$ admissible polyhedral decomposition of $C\left(F_{0}\right) . \Sigma_{\text {cent }}$ is not regular in general; in fact, it is only regular for $n \leq 3$. We may assume a regular decomposition by refining $\Sigma_{\text {cent }}$ in a suitable way.

There is a regular central cone in $\sum_{\text {cent }}$ for all n, which is called the principal cone σ_{0} :

$$
\sigma_{0}=\sigma\left(Y_{0}\right) \quad \text { where } Y_{0}=\left[\begin{array}{cccc}
1 & 1 / 2 & \cdots & 1 / 2 \\
1 / 2 & 1 & \cdots & 1 / 2 \\
\cdot & \cdot & \cdots & \cdot \\
1 / 2 & 1 / 2 & \cdots & 1
\end{array}\right] \in C \cap L^{*}
$$

Then

$$
\begin{aligned}
\sigma_{0} & =\left\{X=\left(x_{i j}\right) ; X=^{t} X, x_{i j} \leq 0(i \neq j), \sum_{j=1}^{n} x_{i j} \geq 0\right\} \\
& =\left\{\sum_{1 \leq i, j \leq n} \lambda_{i j} e_{i j} ; \lambda_{i j} \in \mathbf{R}^{+}\right\},
\end{aligned}
$$

where

$$
\begin{gathered}
e_{i j}=\left[\begin{array}{ccccc}
& \vdots & & \vdots & \\
\ldots & 1 & \ldots & -1 & \ldots \\
& \vdots & & \vdots & \\
\ldots & -1 & \ldots & 1 & \ldots \\
& \vdots & & \vdots &
\end{array}\right]_{j}^{i}, \quad 1 \leq i<j \leq n \\
e_{i i}=\left[\begin{array}{ccc}
& \vdots & \\
\ldots & 1 & \ldots
\end{array}\right] i, \quad 1 \leq i \leq n
\end{gathered}
$$

2.2. The boundary divisor of \bar{X} where $X=\Gamma(k) \backslash S_{n}, k \geq 3$. Let $F_{0}=\left\{I_{n}\right\}$ be the standard rational boundary component of rank 0 . Then $U\left(F_{0}\right), C\left(F_{0}\right), L\left(F_{0}\right), \Gamma\left(F_{0}\right)$ and $\bar{\Gamma}\left(F_{0}\right)$ are groups mentioned in $\S 2.2$. Moreover,

$$
\begin{aligned}
& \quad \bar{\Gamma}\left(F_{0}\right) \simeq \Gamma\left(F_{0}\right) / L\left(F_{0}\right), \\
& \quad S\left(F_{0}\right)=U\left(F_{0}\right)_{\mathbf{C}} \cdot S_{n} \simeq U\left(F_{0}\right)_{\mathbf{C}}+M_{s}(n ; \mathbf{C}) \simeq \mathbf{C}^{N}, N=\frac{n(n+1)}{2}, \\
& S_{n} \rightarrow S\left(F_{0}\right), \tau=X+\sqrt{-1} Y \rightarrow \tau, Y>0, \\
& L\left(F_{0}\right) \backslash S_{n} \rightarrow L\left(F_{0}\right) \backslash S\left(F_{0}\right) \simeq\left(\mathbf{C}^{*}\right)^{N}, \\
& S_{n} \rightarrow L\left(F_{0}\right) \backslash S_{n} \text { by } \tau=\left(\tau_{1}, \cdots, \tau_{N}\right) \rightarrow W=\left(w_{1}, \cdots, w_{N}\right), w_{j}= \\
& e^{i(2 \pi / k) \tau_{j}}, \\
& \quad U\left(F_{0}\right) \text { acts on } S_{n} \text { as } J \cdot \tau=\tau+J \text { for } J \in U\left(F_{0}\right), \tau \in S_{n} . \\
& \text { As in } \S 2.2, \text { we view: }
\end{aligned}
$$

$V=U\left(F_{0}\right)=\mathbf{R}^{N}$ as a vector space,
$C=C\left(F_{0}\right)$ as a cone in V,
\langle,$\rangle : the bilinear form on V$, then C is self-dual,
$\bar{\Gamma}\left(F_{0}\right)=\mathrm{GL}(n ; \mathbf{Z})(k) \subset \operatorname{Aut}(V, C)$,
$L=L\left(F_{0}\right)=k \cdot M_{s}(n ; \mathbf{Z})=(k \mathbf{Z})^{N}$, a lattice in V,
$L^{*}=$ dual lattice of L w.r.t. $\langle\rangle=,\left\{\frac{1}{k}\left(x_{i j}\right)_{n \times n} ; x_{i j} \in \frac{1}{2} \mathbf{Z}\right.$ for $i \neq j$, $\left.x_{i i} \in \mathbf{Z}\right\}$,
$T \stackrel{\text { Def }}{=} L\left(F_{0}\right) \backslash S\left(F_{0}\right)=L \backslash V_{\mathbf{C}}=\left(\mathbf{C}^{*}\right)^{N}$, a torus.
If we take $\left\{e_{1}, e_{2}, \cdots, e_{N}\right\}$ as a basis for L such that, for any $a=$ $k\left(a_{i j}\right) \in L, a_{i j} \in \mathbf{Z}$, then $a=\sum_{i=1}^{N} a_{i} e_{i}$ where

$$
\left(a_{1}, a_{2}, \cdots, a_{N}\right)=\left(a_{11}, a_{12}, \cdots, a_{1 n}, a_{22}, \cdots, a_{2 n}, \cdots, a_{n n}\right)
$$

(In fact, e_{l} is of form $k\left(b_{s t}\right)_{n \times n}$ where $b_{i j}=b_{j i}=1$ for some pair (i, j), $i \leq j$ and all others $b_{s t}$ are 0 .) Let $\left\{e^{1}, e^{2},-\cdots, e^{N}\right\}$ be the dual basis for L^{*}. Then, for $r=\frac{1}{k}\left(r_{i j}\right) \in L^{*}$ with $r_{i i} \in \mathbf{Z}, r_{j i} \in \frac{1}{2} \mathbf{Z}$ for $i \neq j$, $r=\sum_{i=1}^{N} r_{i} e^{i}$ where

$$
\left(r_{1}, r_{2}, \cdots, r_{N}\right)=\left(r_{11}, 2 r_{12}, \cdots, 2 r_{1 n}, r_{22}, 2 r_{23}, \cdots, 2 r_{2 n}, \cdots, r_{n n}\right)
$$

Under these bases, $\langle a, r\rangle=\sum_{i=1}^{N} a_{i} r_{i}$, and we can identify L with $\operatorname{Hom}\left(\mathbf{C}^{*}, T\right)$, denoted as N in $\S 1.1$, and L^{*} with $\operatorname{Hom}\left(T, \mathbf{C}^{*}\right)$, denoted as M in $\S 1.1$, by the following maps:

$$
\begin{gathered}
a=\left(a_{1}, \cdots, a_{N}\right) \in L \rightarrow \lambda_{a}: \mathbf{C}^{*} \rightarrow T, \quad \lambda_{a}(t)=\left(t^{a_{1}}, \cdots t^{a_{N}}\right), \\
r=\left(r_{1}, \cdots, r_{N}\right) \in L^{*} \rightarrow \chi_{r}: T \rightarrow \mathbf{C}^{*}, \quad \chi_{r}\left(\left(t_{1}, \cdots, t_{N}\right)\right)=t_{1}^{r_{1}} t_{2}^{r_{2}} \cdots t_{n}^{r_{N}} .
\end{gathered}
$$

Therefore, $\chi_{r}\left(\lambda_{a}(t)\right)=t^{\langle a, r\rangle}$ for $a \in L, r \in L^{*}, t \in \mathbf{C}^{*}$, and

$$
T=\operatorname{Spec}\left(\mathbf{C}_{r \in L^{*}}\left[\chi_{r}\right]\right)
$$

If σ is a rational regular polyhedral cone of maximal dimension in \bar{C},

$$
\sigma=\left\{\sum_{i=1}^{N} \lambda_{i} v_{i} ; \lambda_{i} \geq 0\right\}
$$

with vertices $v_{1}, v_{2}, \cdots, v_{n}$ such that $\left\{v_{1}, v_{2}, \cdots, v_{N}\right\}$ is an integral basis for the lattice L, let $\left\{r^{1}, \cdots, r^{N}\right\}$ be dual basis of $\left\{v_{1}, \cdots, v_{n}\right\}$; then $r^{i} \in L^{*}$. Thus
$\hat{\sigma} \cap L^{*}=\sum_{i=1}^{N} r^{i} \mathbf{Z}^{+}$,
$X_{\sigma}=\operatorname{Spec}\left(\mathbf{C}\left[\hat{\sigma} \cap L^{*}\right]\right)=\operatorname{Spec}\left(\mathbf{C}\left[\chi_{r^{1}}, \cdots, \chi_{r^{N}}\right]\right) \simeq \mathbf{C}^{N}$,
$T \rightarrow X_{\sigma}$ by $t=\left(t_{1}, \cdots, t_{N}\right) \rightarrow\left(\chi_{r^{1}}(t), \cdots, \chi_{r^{N}}(t)\right)$.
Moreover, $u=\left(u_{1}, \cdots, u_{N}\right)$ where $u=\chi_{r^{i}}(t)=t_{1}^{r^{i}} \cdots t_{n}^{r_{N}^{i}}$ and $r^{i}=$ $\left(r_{1}^{i}, \cdots, r_{n}^{i}\right)$ will give the complex coordinate system in X_{σ}.

Proposition 2.1. The irreducible components of the boundary $D=\bar{X}-$ X are in one-one correspondence with the vertices of all maximal dimensional cones in the Γ-admissible family.

Proof. Let v be a vertex of a maximal dimensional cone in the Γ admissible family. We may assume, without loss of generality, that $v \in$ $\bar{C}\left(F_{0}\right)$.

Case 1. If $v \in C\left(F_{0}\right)$, i.e., v lies in the interior of $\bar{C}\left(F_{0}\right)$, it follows that v must be surrounded by finite number of maximal regular cones $\left\{\sigma_{1}, \cdots, \sigma_{m}\right\}$ up to $\bar{\Gamma}\left(F_{0}\right)$. Let $\tau=\mathbf{R}^{+} v$; then τ is a common face of σ_{i} 's, $1 \leq i \leq m$, and $\tau \cap C\left(F_{0}\right) \neq \varnothing$. This implies

$$
O(\tau) \subset O\left(F_{0}\right) \rightarrow \bar{\Gamma}\left(F_{0}\right) \backslash O\left(F_{0}\right)=\bar{O}\left(F_{0}\right)
$$

Since $\operatorname{dim} \tau=1$, the closure $\bar{O}(\tau)$ is a divisor. In fact, if $u^{i}=\left(u_{1}^{i}, \cdots, u_{N}^{i}\right)$ is the complex coordinates for each $X_{\sigma_{i}}$ such that u_{1}^{i} is the component associated to vertex v, then the divisor D_{v} associated with $O(\tau)$ is covered by these m coordinate charts, and D_{v} is defined by $\left\{u_{1}^{i}=0\right\}$ in each $X_{\sigma_{i}}$.

Case 2. If $v \in \bar{C}\left(F_{0}\right)-C\left(F_{0}\right)$, then there exists a rational boundary component F of rank $n-1$, i.e., $F=\gamma F_{n-1} 0$, such that $C(F)=\mathbf{R}^{+} v$. For any rational boundary component F^{\prime} such that $F^{\prime}<F$, we will have the following:

$$
\begin{gathered}
U\left(F^{\prime}\right) \supset U(F), \quad \bar{C}\left(F^{\prime}\right) \supset C(F), \\
\prod^{\prime}:\left(L(F) \backslash S_{n}\right)_{\Sigma_{F}} \rightarrow\left(L\left(F^{\prime}\right) \backslash S_{n}\right)_{\Sigma_{F^{\prime}}} \\
O_{F}(\tau)=O(F) \rightarrow O_{F^{\prime}}(\tau), \quad \tau=\mathbf{R}^{+} v .
\end{gathered}
$$

Thus, the closure of $(\Gamma(F) / L(F)) \backslash O(F)=\bar{O}(F)$ in \bar{X} produces an irreducible divisor D_{v} on the boundary.

The divisors from Cases 1 and 2 represent the different components by Remark 5 at the end of $\S 1.2$. On the other hand, from the same remark, the whole boundary D is obtained as the union of all $\bar{O}(F)$ where F runs through all proper rational boundary components of S_{n}. Therefore, each irreducible component of D is obtained from a vertex of either Case 1 or Case 2 above for some rational boundary component F_{0}^{\prime} of rank 0 .

Hence the proposition is proved. q.e.d.
Now, we assume that \bar{X} is the compactification of $X=\Gamma(k) \backslash S_{n}, k \geq$ 3, from a $\Gamma(k)$-admissible family given by $\Sigma_{\text {cent }}$ or a refinement of $\sum_{\text {cent }}$ if necessary, and $D=\bar{X}-X$. When $n \leq 4$, we have the following.

Theorem 2.2. Let $D=\sum_{i=1}^{m} D_{i}$ be the irreducible decomposition of D; then the following hold:
(1) Each D_{i} is algebraically isomorphic to $\overline{\Gamma^{\prime} \backslash\left(S_{n-1} \times \mathbf{C}^{n-1}\right)}$ where $\Gamma^{\prime}=$ $\operatorname{Sp}(n-1 ; \mathbf{Z})(k) \times_{\text {semiproduct }}(k \mathbf{Z})^{2(n-1)}$ with group structure such that Γ^{\prime} acts on $S_{n-1} \times \mathbf{C}^{n-1}$ by

$$
\begin{aligned}
& \left(\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right],(a, b)\right):\left(Z_{1}, Z_{2}\right) \\
& \quad \rightarrow\left(\left(A Z_{1}+B\right)\left(C Z_{1}+D\right)^{-1},\left(a Z_{1}+Z_{2}+b\right)\left(C B_{1}+D\right)^{-1}\right)
\end{aligned}
$$

if $\left[\begin{array}{cc}A & B \\ C & D\end{array}\right] \in \operatorname{Sp}(n-1 ; \mathbf{Z})(k),(a, b) \in(k \mathbf{Z})^{2(n-1)}$ as two row-vectors, and $\overline{\Gamma^{\prime} \backslash\left(S_{n-1} \times \mathbf{C}^{n-1}\right)}$ is the compactification of $\Gamma^{\prime} \backslash\left(S_{n-1} \times \mathbf{C}^{n-1}\right)$ induced from same $\Gamma(k)$-admissible family.
(2) All D_{i} intersect along the boundary

$$
\overline{\left(\Gamma^{\prime} \backslash\left(S_{n-1} \times \mathbf{C}^{n-1}\right)\right.}-\left(\Gamma^{\prime} \backslash\left(S_{n-1} \times \mathbf{C}^{n-1}\right)\right)
$$

Proof. It is known that, for $n \leq 3, \sum_{\text {cent }}$ is regular and all vertices of maximal dimensional cones in $\sum_{\text {cent }}$ are on the boundary of cone $C\left(F_{0}\right)$ (see [7]). In his thesis [11], McConnell showed that there exists a regular refinement of $\sum_{\text {cent }}$ for $n=4$ such that all vertices of maximal dimensional cones are also on the boundary of cone $C\left(F_{0}\right)$. Therefore, all irreducible boundary components here are obtained in the manner of Case 2 in Proposition 2.1. Since the vertex in Case 2 of Proposition 2.1 corresponds to a rational boundary component F of rank $n-1$ and all boundary components of same rank are equivalent under the action of $\operatorname{Sp}(n ; \mathbf{Z})$, we have that all D_{i} are isomorphic with each other.

Without loss of generality, we only need to consider the component of D which is produced from the vertex v where

$$
v=\left[\begin{array}{cccc}
& & & 0 \\
& 0 & & \vdots \\
& & & 0 \\
0 & \ldots & 0 & 1
\end{array}\right] \in \bar{C}\left(F_{0}\right)
$$

Note that v is a vertex of principal cone σ_{0}.
Let $F=F_{n-1}=\left\{\left[\begin{array}{cc}Z & 0 \\ 0 & 1\end{array}\right] ; Z \in S_{n-1}\right\}$; then

$$
\begin{gathered}
U(F)=\left\{\left[\begin{array}{cc}
I & a^{\prime} \\
0 & I
\end{array}\right] ; a^{\prime}=\left[\begin{array}{ccc}
& & 0 \\
& 0 & \vdots \\
& & 0 \\
0 & \ldots & 0
\end{array}\right], a \in \mathbf{a}, I=I_{n \times n},\right\} \subset U\left(F_{0}\right), \\
C(F)=\mathbf{R}^{+} v \subset \bar{C}\left(F_{0}\right), \quad \text { a 1-dimensional cone }, \\
L(F)=\Gamma(k) \cap U(F) .
\end{gathered}
$$

As described in $\S 1.2$, the following hold:

$$
V(F)=\mathbf{C}^{n-1}
$$

S_{n} is embedded in $S(F) \simeq S_{n-1} \times V(F) \times U(F)_{\mathbf{C}}=S_{n-1} \times \mathbf{C}^{n-1} \times \mathbf{C}$ as a Siegel domain of the third kind,
$\left(L(F) \backslash S_{n}\right)_{\Sigma_{F}}$ is embedded in $(L(F) \backslash S(F))_{\Sigma_{F}} \simeq S_{n-1} \times \mathbf{C}^{n-1} \times \mathbf{C}^{*}$, and $O(F) \simeq S_{n-1} \times \mathbf{C}^{n-1} \times\{0\}$.

Since $\Gamma(F) / L(F) \simeq \Gamma^{\prime}$ and $\Gamma(F) / L(F)$ acts properly discontinuously on $O(F)$ as defined in the theorem, we have

$$
(\Gamma(F) / L(F)) \backslash O(F) \simeq \Gamma^{\prime} \backslash\left(S_{n-1} \times \mathbf{C}^{n-1}\right)
$$

$\Gamma^{\prime} \backslash\left(S_{n-1} \times \mathbf{C}^{n-1}\right)$ has a fiber structure over $\Gamma_{n-1}(k) \backslash S_{n-1}$ where $\Gamma_{n-1}(k)=\operatorname{Sp}(n-1 ; \mathbf{Z})(k)$. As shown in Proposition 2.1, the irreducible component D_{v} of D produced from the vertex v is the closure of $(\Gamma(F) / L(F)) \backslash O(F)$ in \bar{X}. Notice that $\Gamma^{\prime} \backslash\left(S_{n-1} \times \mathbf{C}^{n-1}\right)$ is itself a locally symmetric space, and a $\Gamma(k)$-admissible family induces a Γ^{\prime}-admissible family. Due to the structure of the orbit decomposition in the compactification as stated in Remark 5 of $\S 1.2$, the closure of $(\Gamma(F) / L(F)) \backslash O(F)$ in the compactification \bar{X} of the whole space X is the same as the induced compactification of $\Gamma^{\prime} \backslash\left(S_{n-1} \times \mathbf{C}^{n-1}\right)$. This proves part (1) of the theorem.

Let $D_{v_{1}}$ and $D_{v_{2}}$ be two components of D corresponding to two vertices v_{1} and v_{2} respectively. Then, by considering the orbit decomposition, $D_{v_{1}}$ intersects $D_{v_{2}}$ if and only if v_{1} and v_{2} span a 2-dimensional face σ of some maximal cone in the $\Gamma(k)$-admissible family. The

2-dimensional face σ defines a subvariety V of codimension 2 of \bar{X} in $D_{v_{1}}$ and $D_{v_{2}}$ respectively. On the other hand, since v_{1} is a vertex of σ, this subvariety V is contained in the boundary of $D_{v_{1}}$ if $D_{v_{1}}$ is regarded as a compactified space. Similarly, V is also contained in the boundary of $D_{v_{2}}$. This completes the proof of Theorem 2.2.

We will discuss this theorem in more detail for $n=2$ next.
2.3. The structure of divisor for $n=2$. Let \bar{X} be the toroidal compactification of $X=\Gamma(k) \backslash S_{2}, k \geq 3$, by $\sum_{\text {cent }}$. We are going to discuss the boundary divisor of \bar{X} in detail. We will carry out here for $k=3$, for simplicity of notation. It can be generalized to $\Gamma(k)$ for any $k \geq 3$ without any difficulty.

In the case of $n=2$, the principal cone σ_{0} is the only maximal cone of $\bar{C}\left(F_{0}\right)$ up to $\mathrm{GL}(2 ; \mathbf{Z})$ in $\sum_{\text {cent }}$, and

$$
\sigma_{0}=\left\{\lambda_{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\lambda_{2}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]+\lambda_{3}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] ; \lambda_{i} \geq 0,1 \leq i \leq 3\right\}
$$

It can be checked that there are four independent maximal cones up to $\mathrm{GL}(2 ; \mathbf{Z})(3)=\bar{\Gamma}\left(F_{0}\right)$. By choosing suitable representatives, they can be pictured as shown in Figure 1.

Then, in the orbits decomposition,

$$
\left(\Gamma\left(F_{0}\right) / L\left(F_{0}\right)\right) \backslash\left(L\left(F_{0}\right) \backslash S_{2}\right)_{\Sigma_{F_{0}}} \rightarrow \bigcup_{i=0}^{3} X_{\sigma_{i}}=\bar{\Gamma}\left(F_{0}\right) \backslash X_{\Sigma_{F_{0}}}
$$

Figure 1. Vertices v_{4}^{\prime} and $v_{4}^{\prime \prime}$ are equivalent to v_{4} UNDER $\bar{\Gamma}\left(F_{0}\right)$, AND THE CONES $A=\sigma_{0}, B=\sigma_{1}$, $C=\sigma_{2}$ AND $D=\sigma_{3}$.

Figure 2
(as shown in Figure 2), each face of the tetrahedrons corresponds to a $O_{F_{0}}\left(v_{i}\right)$ for $1 \leq i \leq 4$ and each vertex of the tetrahedrons corresponds to a $O_{F_{0}}\left(\sigma_{i}\right)$ for $0 \leq i \leq 3$.

First, we have the following.
Theorem 2.3. \bar{X} is the minimal smooth toroidal compactification of $\underset{\sim}{X}$, namely, if \tilde{X} is another smooth toroidal compactification of X, then \widetilde{X} is a blowing-up of \bar{X}.

Proof. By assuming that \tilde{X} is a smooth toroidal compactification of X from a Γ-admissible family Σ, Σ must be regular (see [13]). If σ is a maximal cone of $\bar{C}\left(F_{0}\right)$ in $\Sigma_{F_{0}}($ such σ exists for any $\Sigma), \sigma$ is regular and $\sigma \cap$ Int $\sigma_{0} \neq \varnothing$, it can be verified that $\sigma \subset \sigma_{0}$ because of the position of σ_{0} and the regularity of σ_{0} and σ. Thus
$\sigma_{0}=$ union of some σ_{α} in ΣF_{0}
$\Rightarrow \Sigma \tilde{\sim}$ is a refinement of $\Sigma_{\text {cent }}$
$\Rightarrow \tilde{X}$ is a blowing-up of \bar{X}.
Hence the theorem is proved. q.e.d.
If $F_{1}=\left\{\left[\begin{array}{cc}Z & 0 \\ 0 & 1\end{array}\right] ; Z \in \mathbf{C}, Z \bar{Z}<1\right\}$ is the rational boundary component of rank 1 , then $F_{0}<F_{1}$ and

$$
S\left(F_{1}\right)=U\left(F_{1}\right)_{\mathbf{C}} \cdot S_{2} \simeq F_{1} \times V_{1} \times U\left(F_{1}\right)_{\mathbf{C}}=H \times \mathbf{C} \times \mathbf{C}
$$

where H is the upper half-plane, $V_{1} \simeq \mathbf{C}, U\left(F_{1}\right)_{\mathbf{C}} \simeq \mathbf{C}$. From the structures used in the proof of previous theorem, it follows that

$$
C\left(F_{1}\right)=\mathbf{R}^{+} v_{2} \stackrel{\text { Def }}{=} C_{1}, \quad \Gamma_{1}=\Gamma \cap N\left(F_{1}\right), \quad L\left(F_{1}\right)=3 \cdot \mathbf{Z} \stackrel{\text { Def }}{=} L_{1},
$$

$\Gamma_{1} / L_{1}=S L(2 ; \mathbf{Z})(3) \times(3 Z)^{2} \stackrel{\text { Def }}{=} \Gamma_{1}^{\prime}$ with induced group structure from Γ_{1}, so that

$$
\begin{gathered}
S_{2} \rightarrow S\left(F_{1}\right), \quad \tau=\left[\begin{array}{ll}
\tau_{1} & \tau_{2} \\
\tau_{2} & \tau_{3}
\end{array}\right] \rightarrow\left(\tau_{1}, \tau_{2}, \tau_{3}\right), \\
S_{2} / L_{1} \xrightarrow{\exp (i 2 \pi / 3)} S\left(F_{1}\right) / L_{1} \simeq H \times \mathbf{C} \times \mathbf{C}^{*}
\end{gathered}
$$

Since C_{1} is a 1 -dimensional cone and $\bar{\Gamma}=\bar{\Gamma}\left(F_{1}\right)=\{1\}, \Sigma_{F_{1}}=\{\sigma\}$

Figure 3
where $\sigma=C_{1}$. Thus

$$
\left(S_{2} / L_{1}\right)_{\Sigma_{F_{1}}}=\left(S_{2} / L_{1}\right) \cup H \times \mathbf{C} \times\{0\}
$$

and

$$
\begin{gathered}
O_{F_{1}}(\sigma)=H \times \mathbf{C} \times\{0\} \\
\left(\Gamma_{1} / L_{1}\right) \backslash O_{F_{1}}(\sigma)=\Gamma_{1}^{\prime} \backslash O_{F_{1}}(\sigma) \simeq \Gamma_{1}^{\prime} \backslash(H \times \mathbf{C}),
\end{gathered}
$$

where Γ_{1}^{\prime} acts on $H \times \mathbf{C}$ as defined in Theorem 2.2. Since $\sigma=\mathbf{R}^{+} v_{2} \subset$ $\bar{C}\left(F_{0}\right)$,

$$
O_{F_{1}}(\sigma) \rightarrow O_{F_{0}}\left(v_{2}\right) \subset \bar{\Gamma}\left(F_{0}\right) \backslash X_{\Sigma_{F_{0}}}
$$

Let $X_{1}=\Gamma_{1}^{\prime} \backslash(H \times \mathbf{C}), X_{2}=S L(2 ; \mathbf{Z})(3) \backslash H$; then $X_{1} \rightarrow X_{2}$ is a fiber space with elliptic fibers. To get the closure of $\left(\Gamma_{1} / L_{1}\right) \backslash O_{F_{1}}(\sigma)$ in $\bar{\Gamma}\left(F_{0}\right) \backslash X_{\Sigma_{F_{0}}}$, we need to understand the compactification of the fiber space $X_{1} \rightarrow X_{2}$.

First, actually, X_{2} is nothing but $\Gamma(3) \backslash S_{1}$. The fundamental domain of H with respect to $S L(2 ; \mathbf{Z})(3)$ is shown in Figure 3. Therefore, the compactification of X_{2} is obtained by adding four cusps, i.e.,

$$
\overline{X_{2}}=X_{2} \cup\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}
$$

There is a natural compactification of $\overline{X_{1}}$ of X_{1}, such that $\overline{X_{1}}$ is an elliptic surface over $\overline{X_{2}}$ with singular fiber over each cusp; each singular fiber is a rational 3 -gons (see [1]). On the other hand, each cusp of $\overline{X_{2}}$ corresponds to a rational boundary component of S_{2} of rank 0 , and they are all $\Gamma(3)$-independent. For example, cusp $c_{1}=\infty$ represents the boundary component F_{0} (in fact, $\overline{X_{2}}$ is a part of the Baily-Borel boundary

Figure 4
of $\left.\Gamma(3) \backslash S_{2}\right)$. The rational 3-gon over c_{1} is nothing but just the boundary of $O_{F_{0}}\left(v_{2}\right)$ in $\bar{\Gamma}\left(F_{0}\right) \backslash X_{\Sigma_{F_{0}}}$.

Moreover, if F_{0}^{2}, F_{0}^{3} and F_{0}^{4} are the other three boundary components of rank 0 which correspond to c_{2}, c_{3} and c_{4} respectively, then $F_{1}>$ $F_{0}^{i}, i=2,3,4$. The cone $C\left(F_{1}\right)$ must be a 1 -dimensional member in each $\Sigma_{F_{0}^{i}}$. As in the case of F_{0}, each rational 3-gon over c_{i} for $i=$ $2,3,4$ comes from $O_{F_{0}^{i}}\left(C\left(F_{1}\right)\right)$. It is clear that $\left\{F_{0}, F_{0}^{2}, F_{0}^{3}, F_{0}^{4}\right\}$ are only boundary components of rank 0 which are less than F_{1}. Therefore, the elliptic surface $\overline{X_{1}}$ is a component of boundary $\overline{\left(\Gamma(3) \backslash S_{2}\right)}-\Gamma(3) \backslash S_{2}$. Since all boundary components of rank 0 are equivalent under $\operatorname{Sp}(2 ; \mathbf{Z})$, and the same is true for those of rank 1 , all components of $\overline{\left(\Gamma(3) \backslash S_{2}\right)}-$ $\Gamma(3) \backslash S_{2}$ are the same elliptic surface $\overline{X_{1}}$.

Furthermore, if we set the following notation:
"•" \leftrightarrow representing rational boundary component of rank 1 ,
"○" \leftrightarrow representing rational boundary component of rank 0 ,
" $\bullet \circ$ " \leftrightarrow if " \bullet " $>$ " \circ ", then under $\Gamma(3)$, the graph of rational boundary components will be as shown in Figure 4.

The certain part of boundary D arising from each of these rational components if illustrated by Figure 5 (next page).

All possible surfaces from Figure 5a gluing together by tetrahedrons from Figure 5 b according to the relation in the graph form the boundary D. For example, if two surfaces M_{1} and M_{2} associated with two "•", say d_{1}, d_{2}, and d_{1}, d_{2}, are connected by a "o" e

$$
\stackrel{\left.\right|^{\bullet}}{\dot{d}_{2}}
$$

then M_{1} and M_{2} are glued at one end by the tetrahedron associated to e (see Figure 6).

Figure 5a

Figure 5b

Figure 6
On the other hand, if $\left(\Gamma(3) \backslash S_{2}\right)^{*}$ is the Baily-Borel compactification, then $\overline{\left(\Gamma(3) \backslash S_{2}\right)}$ is the blowing-up of $\left(\left(\Gamma(3) \backslash S_{2}\right)^{*}-\Gamma(3) \backslash S_{2}\right)=\sum_{i=1}^{m} C_{i}$ where each C_{i} is a curve isomorphic to $\overline{X_{2}}$. If $\alpha: \overline{\left(\Gamma(3) \backslash S_{2}\right)} \rightarrow\left(\Gamma(3) \backslash S_{2}\right)^{*}$ is the blowing-up map, then $\alpha: D=\sum_{i=1}^{m} D_{i} \rightarrow \sum_{i=1}^{m} C_{i}$ and $\alpha: D_{i} \rightarrow C_{i}$ are given by the fiber map from $\overline{X_{1}}$ to $\overline{X_{2}}$.

We summarize the discussion above in the following theorem.
Theorem 2.4. Let $X=\Gamma(k) \backslash S_{2}$ be the complex quotient manifold of dimension 3, and let \bar{X} be the minimal smooth projective toroidal compactification of X, and $D=\bar{X}-X$; then the following hold:
(1) $D=\sum_{i=1}^{m} D_{i}$ is a divisor with normal crossings only, each D_{i} is a elliptic surface S with some singular fibers of type ${ }_{1} I_{b}$ (see [10] for the notation), and $\left\{D_{i}\right\}_{i=1}^{m}$ intersect along the singular fibers.
(2) $D=\sum_{i=1}^{m} D_{i}$ can be blowing-down to a singular curve $C=\sum_{i=1}^{m} C_{i}$ where each C_{i} is a smooth curver, and the contraction of D into C is given by the fiber map of S.

Remarks. 1. The number m is computable by the formula from number theory.
2. The similar structures can be stated for $\Gamma(k), k \geq 3$, if we replace rational 3 -gons by rational k-gons in general.
3. The structures described in Theorem 2.4 were obtained by Igusa in [7] by studying the desingularization of the Siegel modular forms of genus 2.
3. The canonical line bundle of the compactified space for $n=2$

Let $X=\Gamma(k) \backslash S_{2}, k \geq 3, X^{*}$ be the Satake-Baily-Borel compactification of X, and let \bar{X} be the minimal smooth toroidal compactification of X. As we have shown in the previous section, \bar{X} is, in fact, the toroidal compactification of X from the central cone decomposition, and \bar{X} is projective. We are going to discuss the canonical line bundle of \bar{X} in this section.

First, we shall recall how X^{*} can be constructed. Let $A(\Gamma)_{l}$ be the vector space of all Siegel modular forms of weight l with respect to Γ where $\Gamma=\Gamma(k)$ for some $k \geq 3$, i.e.,
$A(\Gamma)_{l}=\left\{f:\right.$ holomorphic function on S_{2},

$$
\left.f(M \cdot \tau)=\operatorname{det}(C \tau+D)^{l} f(\tau), \quad \forall \tau \in S_{2}, \quad M=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \in \Gamma\right\} .
$$

Let $A(\Gamma)=\bigoplus_{l \geq 0} A(\Gamma)_{l}$. Then $A(\Gamma)$ is a positively graded ring and finitely generated over $A(\Gamma)_{0}=\mathbf{C}$, and the projective variety associated with $A(\Gamma)$ is the Satake-Baily-Borel compactification of X. It has been proved by Igusa in [7] that the minimal toroidal compactification \bar{X} is nothing but the normalization of the blowing-up of X^{*} with respect to the sheaf of ideals \mathscr{J} defined by all cusp forms in $A(\Gamma)$.

The line bundle $L=\mathscr{O}(1)$ on X^{*} which corresponds to modular forms of weight one is ample, and

$$
\Gamma\left(X^{*}, \mathscr{O}(l L)\right)=A(\Gamma)_{l}
$$

Let $\alpha: \bar{X} \rightarrow X^{*}$ be the blowing-up with respect to \mathcal{I}, and $\bar{L}=\alpha^{*}(L)$. Then

$$
\Gamma(\bar{X}, \mathscr{O}(l \bar{L})) \simeq \Gamma\left(X^{*}, \mathscr{O}(l L)\right),
$$

since X^{*} is normal.

On the other hand, Igusa constructed in [6] a cusp form $\varphi=\theta^{2}$ of weight ten with respect to $\operatorname{Sp}(2 ; \mathbf{Z})$ where θ is a function formed by the theta-constants. Therefore

$$
\varphi \in \Gamma\left(X^{*}, \mathscr{O}(10 L)\right)=\Gamma(\bar{X}, \mathscr{O}(10 \bar{L})) .
$$

If we let $\Delta=$ the diagonal set of S_{2}, i.e., if

$$
\Delta=\left\{\tau=\left[\begin{array}{cc}
\tau_{1} & 0 \\
0 & \tau_{2}
\end{array}\right] ; \operatorname{Im} \tau_{i}>0\right\}
$$

Hammond found that the zero set of θ is the set of $\operatorname{Sp}(2 ; \mathbf{Z}) \cdot \Delta$ (see [5]). Let $\Delta^{\prime}=\Gamma \backslash(\operatorname{Sp}(2 ; \mathbf{Z}) \cdot \Delta)$, and let D^{\prime} be the induced compactification of Δ^{\prime} in \bar{X}, and $D^{\prime}=\sum D_{i}^{\prime}$ be the decomposition of irreducible components. By the similar discussion in $\S 2.4$, it can be verified that each D_{i}^{\prime} is isomorphic to $W_{1} \times W_{2}$ where $W_{i}=(S L(2 ; \mathbf{Z})(k) \backslash H) \cup\{$ some cusps $\}$ is the standard compactification of $S L(2 ; \mathbf{Z})(k) \backslash H$. Note that W_{i} is nonsingular. If $D=\bar{X}-X=\sum D_{j}$ as in the previous section, then the zero divisor defined by $\varphi=\theta^{2}$ in \bar{X} is $k D+2 D^{\prime}$ for $\Gamma=\Gamma(k)$, which implies that

$$
10 \bar{L}=k[D]+2\left[D^{\prime}\right] .
$$

Let $K_{\bar{X}}$ be the canonical line bundle of \bar{X}. For

$$
\tau \in S_{2}, \quad M=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \in \operatorname{Aut}\left(S_{2}\right)=\operatorname{Sp}(2 ; \mathbf{R}),
$$

it can be derived by direct calculations that

$$
d V_{M \tau}=\operatorname{det}(C \tau+D)^{-3} d V_{\tau}
$$

where $d V_{(*)}$ is the standard volume element in the coordinate system (*). (Actually, as we will point out in the next section, the bi-invariant volume form Φ on S_{2} is given by $c d V_{\tau} /(\operatorname{det} Y)^{3}$ if $\tau=X+i Y \in S_{2}$.) Therefore, $\phi^{3}(\tau)\left(d V_{\tau}\right)^{l}$ produces a Γ-invariant l-ple 3 -form on S_{2} for a $\phi(\tau) \in$ $A(\Gamma)_{l}$. If we start with a cusp form ϕ, then $\phi^{3}(\tau)\left(d V_{\tau}\right)_{l}$ defines a l-ple 3-form on \bar{X}.

On the other hand, if $\tau=\left[\begin{array}{c}\tau_{2} \tau_{3} \tau_{3}\end{array}\right] \in S_{2}$ and we let

$$
w_{1}=\tau_{1}, \quad w_{2}=\tau_{2}, \quad w_{3}=e^{i(2 \pi / k) \tau_{3}}
$$

then, as we have demonstrated in $\S 2.4$, the boundary component of \bar{X} arises as $w_{3} \rightarrow 0$ in the coordinate system (w_{1}, w_{2}, w_{3}), and the whole boundary D of \bar{X} is produced from this manner. Thus

$$
\begin{gathered}
d V_{\tau}=d \tau_{1} \wedge d \tau_{2} \wedge d \tau_{3} \\
d V_{w}=\frac{k}{i 2 \pi} w_{3}^{-1} d w_{1} \wedge d w_{2} \wedge d w_{3}
\end{gathered}
$$

and therefore

$$
10 K_{\bar{X}}=30 \bar{L}-10[D]
$$

by using $\varphi \in A(\Gamma)_{10}$ from above, and hence

$$
10 K_{\bar{X}}=30 \bar{L}-10[D]=(3 k-10)[D]+6\left[D^{\prime}\right]
$$

The complete understanding of D^{\prime} and its intersections with D can be achieved by similar discussions as in the previous section.

Therefore, we have proved the following theorem.
Theorem 3.1. Let X, \bar{X} and D be the same as in Theorem $2.4, K_{\bar{X}}$ be the canonical line bundle of \bar{X}, and D^{\prime} be the closure of the diagonal set of S_{2} in \bar{X}. Then D^{\prime} is a divisor in \bar{X} and

$$
10 K_{\bar{X}}=(3 k-10)[D]+6\left[D^{\prime}\right]
$$

Now we are going to consider an application to the Kodaira dimension of space X. We recall that a smooth compact variety V of dimension n is of general type if the transcendence degree of the ring

$$
\bigoplus_{m=0}^{\infty} \Gamma\left(V, m K_{V}\right)
$$

is $n+1$ (i.e., the Kodaira dimension of V is n), where $\Gamma\left(V, m K_{V}\right)$ denotes the space of holomorphic sections of $m K_{V}$ over V. A variety Y is said to be of general type if the smooth compact variety \bar{Y} birational to Y is of general type. Y is said to be of logarithmic general type if there is a smooth compactification \bar{Y} of Y such that $D=\bar{Y}-Y$ is a divisor with normal crossings and the transcendence degree of the ring

$$
\bigoplus_{m=0}^{\infty} \Gamma\left(\bar{Y}, m\left(K_{\bar{Y}}+D\right)\right)
$$

is $n+1$ (i.e., the logarithmic Kodaira dimension of Y is n). Note that saying Y is of logarithmic general type is weaker than saying Y is of general type. By his generalized Hirzebruch's proportionality principle, Mumford proved that a locally symmetric Hermitian variety $\Gamma \backslash \Omega$ with neat arithmetic group Γ acting on bounded symmetric domain Ω is always of logarithmic general type; see [12]. Furthermore, a theorem of Tai in [1] implies that $\Gamma \backslash \Omega$ is of general type if Γ is sufficiently small. We prove the following.

Theorem 3.2. $\quad X=\Gamma(k) \backslash S_{2}$ is of general type for $k \geq 4$.
Proof. We are going to show that the minimal smooth toroidal compactification \bar{X} of X is of general type for $k \geq 4$. It is enough to prove
that (see [8]),

$$
c m^{3} \leq \operatorname{dim} \Gamma\left(\bar{X}, m m_{0} K_{\bar{X}}\right)
$$

for some positive constant $c, m_{0} \in \mathbf{Z}^{+}$and $m \gg 0$.
Let $\varphi=\theta^{2}$ be the cusp form of weight ten constructed by Igusa. Then, as we have seen in the proof of Theorem 3.1, $s_{0}=\varphi^{3}(\tau)\left(d V_{\tau}\right)^{10}$ is a section of $10 K_{\bar{X}}$ and the divisor defined by s_{0} is given by

$$
\operatorname{div}\left(s_{0}\right)=(3 k-10) D+6 D^{\prime}
$$

where D and D^{\prime} are divisors of \bar{X} in Theorem 3.1. Therefore, $s_{0} \in$ $\Gamma\left(\bar{X}, 10 K_{\bar{X}}\right)$ if $k \geq 4$.

Furthermore, if f is a cusp form of weight m with respect to $\Gamma=$ $\Gamma(k)$, then $s_{0}^{m} f^{3}(\tau)\left(d V_{\tau}\right)^{m}$ is a section of $11 m K_{\bar{X}}$ and is holomorphic when $k \geq 4$, i.e.,

$$
s_{0}^{m} f^{3}(\tau)\left(d v_{\tau}\right)^{m} \in \Gamma\left(\bar{X}, 11 m k_{\bar{X}}\right)
$$

Let $d_{m}=\operatorname{dim}\{$ cusp forms of weight m with respect to $\Gamma\}$. A theorem of Mumford in [12] implies that

$$
d_{m} \simeq m^{3} \quad \text { for } m \gg 0
$$

Hence, we conclude that

$$
c m^{3} \leq \operatorname{dim} \Gamma\left(\bar{X}, 11 m K_{\bar{X}}\right)
$$

for some positive constant c and $m \gg 0$.
This proves the theorem.
Remark. Theorem 3.2 is sharp since G. van der Geer has shown in [4] that $\Gamma(3) \backslash S_{2}$ is rational.

4. The canonical volume form on X

In this section, we discuss the canonical volume form of X as a singular volume form on \bar{X} after compactification. In the case of rank 1 , it just appears as the Poincaré metric on punctured disc near each cusp. Since the coordinate systems induced from torus embeddings with respect to maximal cones are always related by $\mathrm{Sp}(n ; \mathbf{Z})$ (in fact, every $\Gamma(k)$ admissible family is induced from a $\operatorname{Sp}(n ; \mathbf{Z})$-admissible family), we can restrict ourself only on $\Gamma(3)$ for the analysis of canonical volume form over those coordinates. Thus

$$
\begin{gathered}
S_{n}=\left\{\tau=X+\sqrt{-1} Y ; \tau=^{t} \tau, Y>0\right\} \subset M(n ; \mathbf{C}) \\
N=\operatorname{dim}_{\mathbf{C}} S_{n}=\frac{n(n+1)}{2}
\end{gathered}
$$

The canonical metric (or Bergman metric) on S_{n} is given by (see [14])

$$
d S_{\tau}^{2}=\operatorname{Tr}\left(Y^{-1} d \tau Y^{-1} d \bar{\tau}\right)
$$

and induces a metric on $\Gamma(3) \backslash S_{n}$ which is a complete Kähler-Einstein metric with negative Ricci curvature.

Let $\Phi=\left(d S_{\tau}^{2}\right)^{N}=\left(\operatorname{Tr}\left(Y^{-1} d \tau Y^{-1} d \bar{\tau}\right)\right)^{N}$ be the volume form from $d S_{\tau}^{2}$; then a direct calculation shows that

$$
\Phi=\frac{c d V_{\tau}}{(\operatorname{det} Y)^{n+1}}
$$

where c is a positive constant, and $d V_{\tau}$ is the standard volume form in term of coordinate system τ.

After compactification, Φ will be a singular form on $\overline{\left(\Gamma(3) \backslash S_{n}\right.}$ with singularity over the boundary D of the compactification. We are interested in the singular behavior of it. By the observations about divisor in earlier sections, we only need to deal with $\left(\Gamma\left(F_{0}\right) / L\left(F_{0}\right)\right) \backslash\left(L\left(F_{0}\right) \backslash S_{n}\right)_{\Sigma_{F_{0}}}$, and to understand the singular behavior of Φ at a point which is the intersection of N components of D. In other words, it is enough to see the behavior of Φ at 0 in X_{σ} for each maximal member of $\Sigma_{F_{0}}$ up to $\bar{\Gamma}\left(F_{0}\right)$.

As we have seen in previous sections, we first take a projection from

$$
S_{n} \rightarrow L\left(F_{0}\right) \backslash S_{n} \subset T=\left(\mathbf{C}^{*}\right)^{N}
$$

by $w_{j}=e^{i 2 \pi \tau_{j} / 3}$, where $\tau=\left(\tau_{1}, \tau_{2}, \cdots, \tau_{N}\right)$ and $w=\left(w_{1}, w_{2}, \cdots\right.$, w_{N}) are coordinate systems in S_{n} and T respectively. If we order τ by

$$
\tau=\left(\tau_{11}, \tau_{12}, \cdots, \tau_{1 n}, \tau_{22}, \cdots, \tau_{2 n}, \cdots, \tau_{n n}\right)
$$

for the symmetric matrix

$$
\tau=\left[\tau_{i j}\right]_{i, j=1}^{n} \in S_{n}
$$

Then, in terms of w,

$$
\Phi_{w}=\frac{c_{1} d w_{1} \wedge \cdots \wedge d w_{N} \wedge d \bar{w}_{1} \wedge \cdots \wedge d \bar{w}_{N}}{\prod_{j=1}^{N}\left|w_{j}\right|^{2}(\operatorname{det} \log |w|)^{n+1}}
$$

where c_{1} is a positive constant, and

$$
\log |w|=\left[\begin{array}{llll}
\log \left|w_{1}\right| & \log \left|w_{2}\right| & \ldots & \log \left|w_{n}\right| \\
\log \left|w_{2}\right| & \log \left|w_{n+1}\right| & \ldots & \log \left|w_{2 n-1}\right| \\
\cdot & \cdot & \ldots & \cdot \\
\log \left|w_{n}\right| & \log \left|w_{2 n-1}\right| & \ldots & \log \left|w_{N}\right|
\end{array}\right]
$$

which is symmetric.

Theorem 4.1. Let $\sigma=\left\{\sum_{i=1}^{N} \mathbf{R}^{+} a_{i}\right\}$ be a regular cone in $C\left(F_{0}\right)$ with vertices $\left\{a_{1}, a_{2}, \cdots, a_{N}\right\}$ and

$$
a_{i}=\left[a_{j k}^{i}\right]_{j, k=1}^{h}=\left[C_{1}^{i}, C_{2}^{i}, \cdots, C_{n}^{i}\right]
$$

where each a_{i} is symmetric, and $\left\{C_{1}^{i}, \cdots, C_{n}^{i}\right\}$ are column vectors of a_{i}. Let $s=\left(s_{1}, \cdots, s_{N}\right)$ be the coordinate system in X_{σ} such that $\left\{s_{i}=0\right\}$ is the divisor corresponding to vertex a_{i}. Then, in terms of s system,

$$
\Phi_{s}=\frac{c d s_{1} \wedge \cdots \wedge d s_{n} \wedge d \bar{s}_{1} \wedge \cdots \wedge d \bar{s}_{N}}{\prod_{i=1}^{N}\left|s_{i}\right|^{2}\left(\sum_{\substack{\left(i_{1}, i_{2}, \cdots, i_{n}\right) \\ 1 \leq i_{1}, \cdots, i_{n} \leq N}} c_{i_{1} \cdots i_{n}} \log \left|s_{i_{1}}\right|^{2} \log \left|s_{i_{2}}\right|^{2} \cdots \log \left|s_{i_{n}}\right|^{2}\right)^{n+1}}
$$

where constant $c>0$ and $c_{i_{1} \cdots i_{n}}=\operatorname{det}\left[C_{1}^{i_{1}}, C_{2}^{i_{2}}, \cdots, C_{n}^{i_{n}}\right]$.
Before proving the theorem, we first would like to consider two applications of the theorem.

Corollary 1. If all vertices a_{i} are in $\bar{C}\left(F_{0}\right)-C\left(F_{0}\right)$, and $a_{i}=A_{i}{ }^{t} A_{i}$ for an integral vector A_{i} in \mathbf{R}^{n} for each i. Then

$$
\Phi_{s}=\frac{c d s_{1} \wedge \cdots \wedge d s_{N} \wedge d \bar{s}_{1} \wedge \cdots \wedge d \bar{s}_{N}}{\prod_{i=1}^{N}\left|s_{i}\right|^{2}\left(\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{n} \leq N} c_{i_{1} \cdots i_{n}} \log \left|s_{i_{1}}\right|^{2} \log \left|s_{i_{2}}\right|^{2} \cdots \log \left|s_{i_{n}}\right|^{2}\right)^{n+1}}
$$

where constant $c>0$ and $c_{i_{1} \cdots i_{n}}=\left(\operatorname{det}\left[A_{i_{1}}, A_{i_{2}}, \cdots, A_{i_{n}}\right]\right)^{2}$.
Proof. Assuming

$$
A_{i}=\left[\begin{array}{c}
a_{i}^{1} \\
a_{i}^{2} \\
\vdots \\
a_{i}^{n}
\end{array}\right]
$$

we have $a_{i}=\left[a_{i}^{1} A_{i}, a_{i}^{2} A_{i}, \cdots, a_{i}^{n} A_{i}\right]$ and $C_{j}^{i}=a_{i}^{j} A_{i}$, so

$$
\operatorname{det}\left[C_{1}^{i_{1}}, C_{2}^{i_{2}}, \cdots, C_{n}^{i_{n}}\right]=a_{i_{1}}^{1} \cdots a_{i_{n}}^{n} \operatorname{det}\left[A_{i_{1}}, A_{i_{2}}, \cdots, A_{i_{n}}\right]
$$

Applying these identities to the formula in the theorem gives the corollary directly.

Remark. From the reduction theory, there is an admissible family for $n \leq 4$ such that all cones in the family have the form in Corollary 1 (see the proof of Theorem 2.2).

The geometric interpretations of Corollary 1 can be seen by the next proposition. First, from the discussion about the structures of divisor, we
know that if D_{1} is a component of D, which is associated to a vertex v on the boundary of cone, then $D_{1} \simeq \overline{\left(\Gamma^{\prime} \backslash S_{n-1} \times \mathbf{C}^{n-1}\right)}$. Moreover, D_{1} is a fiber space over $\overline{\left(\Gamma_{n-1}(k) \backslash S_{n-1}\right)}$ which is the induced compactification of $\Gamma_{n-1}(k) \backslash S_{n-1}$. On the other hand, as we have pointed out earlier, \bar{X} is a blowing-up of Satake-Baily-Borel compactification $X^{*}=X \bigcup_{i=0}^{n-1} X_{i}$ of X along $\bigcup_{i=0}^{n-1} X_{i}$ where each X_{i} is the quotient of $\Gamma(k)$-inequivalent classes of S_{i} of rank i. Let $\alpha: \bar{X} \rightarrow X^{*}$ be the blowing-up. Then we have

Proposition 4.1. Let $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ be the set of vertices from the corollary, and $\left\{D_{a_{1}}, D_{a_{2}}, \cdots, D_{a_{n}}\right\}$ be the components of D associated to $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ respectively. Then, $\operatorname{det}\left[A_{1}, A_{2}, \cdots, A_{n}\right] \neq 0 \Leftrightarrow D_{a_{1}} \cap$ $D_{a_{2}} \cap \cdots \cap D_{a_{n}}$ is in the inverse image of α over a copy of S_{0} only.

Proof. Let F_{n-1}^{i} be the rational boundary component of rank $n-1$, such that $C\left(F_{n-1}^{i}\right)=\mathbf{R}^{+} a_{i} \subset \bar{C}\left(F_{0}\right)$ (remembering that $\left.F_{n-1}^{i}=S_{n-1}\right)$. From the construction of compactifications, we may claim that if there exists a rational boundary component $F_{n^{\prime}}$ of rank n^{\prime} for some $0 \leq n^{\prime} \leq$ $n-2$, such that $F_{n^{\prime}} \subset \bar{F}_{n-1}^{i} \forall i$, then $D_{a_{1}} \cap D_{a_{2}} \cap \cdots \cap D_{a_{n}}$ corresponds to the fibers over the quotient of some $S_{n^{\prime}}$, and vice versa. Therefore, proving the proposition is equivalent to proving that $\operatorname{det}\left[A_{1}, A_{2}, \cdots, A_{n}\right]=0 \Leftrightarrow$ $\exists F_{n^{\prime}}$ with $0<n^{\prime} \leq n-2$ such that $F_{n^{\prime}} \subset \bar{F}_{n-1}^{i}$ for $1 \leq i \leq n$.

First, let

$$
a_{i}=A_{i}^{t} A_{i}, \quad A_{i}=\left[\begin{array}{c}
a_{i}^{1} \\
a_{i}^{2} \\
\vdots \\
a_{i}^{n}
\end{array}\right] \in \mathbf{Z}^{n}
$$

then there exists a $B \in \operatorname{GL}(n ; \mathbf{Z})$ such that

$$
B \cdot\left[A_{1}, A_{2}, \cdots, A_{n}\right]=\text { upper triangular. }
$$

Let $B \cdot\left[A_{1}, A_{2}, \cdots, A_{n}\right]=\left[A_{1}^{\prime}, A_{2}^{\prime}, \cdots, A_{n}^{\prime}\right]$, i.e., $B A_{i}=A_{i}^{\prime}$. Then $B A_{i}{ }^{t}\left(B A_{i}\right)=B a_{i}{ }^{t} B=A_{i}^{\prime t} A_{i}^{\prime}$, and B acts on a_{i} 's just exactly as the action of $\mathrm{GL}(n ; \mathbf{Z})$ on the cone $\bar{C}\left(F_{0}\right)$.

If $\operatorname{det}\left[A_{1}, A_{2}, \cdots, A_{n}\right]=0$, we can assume that $A_{n}^{\prime}=\left[\begin{array}{c}* \\ \vdots \\ * \\ 0\end{array}\right]$. Since σ
is chosen up to $\mathrm{GL}(n ; \mathbf{Z})$, we may assume that

$$
\begin{aligned}
& {\left[A_{1}, A_{2}, \cdots, A_{n}\right]=\left[\begin{array}{ccc}
\cdot & * & * \\
0 & \ddots & * \\
0 & 0 & 0
\end{array}\right] \quad \text { (upper triangular) }} \\
& \quad \Rightarrow a_{i} \in\left\{\left[\begin{array}{llll}
* & & \vdots \\
& & & 0 \\
0 & \ldots & 0 & 0
\end{array}\right]\right\} \cap \bar{C}\left(F_{0}\right)
\end{aligned}
$$

Let

$$
F_{1}=\left\{\left[\begin{array}{llll}
1 & & 0 & \\
& \ddots & & \\
0 & & 1 & \\
& & & Z
\end{array}\right] ; Z \in S_{1}\right\}
$$

be the rational boundary component of rank 1. Then

$$
\begin{gathered}
C\left(F_{1}\right)=\left\{\left[\begin{array}{ccc}
& & 0 \\
& b & \vdots \\
0 & \ldots & 0
\end{array}\right] ; b \in M_{s}(n-1 ; \mathbf{R}), b>0\right\} \subset \bar{C}\left(F_{0}\right) . \\
C\left(F_{n-1}^{i}\right)=\mathbf{R}^{+} a_{i} \subset \bar{C}\left(F_{1}\right) \\
\Rightarrow F_{1}<F_{n-1}^{i}, \quad \text { i.e., } S_{1} \simeq F_{1} \subset \bar{F}_{n-1}^{i} .
\end{gathered}
$$

Conversely, if there exists a $F_{n^{\prime}}$ such that $F_{n^{\prime}} \subset \bar{F}_{n-1}^{i}$ for some $0<n^{\prime} \leq$ $n-2$ and any i, then we may assume

$$
\begin{aligned}
F_{1} & =\left\{\left[\begin{array}{llll}
1 & & 0 & \\
& \ddots & & \\
0 & & 1 & \\
& & & Z
\end{array}\right] ; Z \in S_{1}\right\}<F_{n-1}^{i} \quad \forall i, \\
& \Rightarrow C\left(F_{n-1}^{i}\right)=\mathbf{R}^{+} a_{i} \subset \bar{C}\left(F_{1}\right), \quad a_{i} \in \bar{C}\left(F_{1}\right) \forall i, \\
& \Rightarrow A_{i}=\left[\begin{array}{c}
* \\
\vdots \\
* \\
0
\end{array}\right] \quad \forall i .
\end{aligned}
$$

Thus $\operatorname{det}\left[A_{1}, \cdots, A_{n}\right]=0$, and the proof of Proposition 4.1 is complete.

Corollary 2. Let \bar{X} be the minimal smooth projective compactification of $X=\Gamma(k) \backslash S_{2}$ from toroidal embeddings, and $D=\bar{X}-X=\sum_{i=1}^{m} D_{i}$ be
a divisor with normal crossings only. Then the canonical volume form $\boldsymbol{\Phi}$ of X can be represented by

$$
\frac{d V}{\prod_{i=1}^{m}\left|s_{i}\right|^{2}\left(\sum_{\substack{i \neq i, j \leq m \\ 1 \leq i, j \leq m}} \log \left|s_{i}\right|^{2} \log \left|s_{j}\right|^{2}\right)^{3}}
$$

for some Hermitian metric on each $\left[D_{i}\right]$, where $d V$ is a volume form on \bar{X}, and $s_{i} \in \Gamma\left(\bar{X},\left[D_{i}\right]\right)$ is a section which defines D_{i}.

Proof. By the reduction theory, the principle cone σ_{0} is the only maximal cone in the case of rank 2 , and it can be checked that all $c_{i_{1} \cdots i_{n}}=1$ in Corollary 1 for all possible index $\left(i_{1}, \cdots, i_{n}\right)$. Thus Corollary 2 is proved by considering the singularity of the canonical volume form Φ of X over \bar{X} which is described in Corollary 1.

To prove Theorem 4.1, we need two lemmas.
Lemma 1. If σ_{1} and σ_{2} are two regular cones with vertices $\left\{e_{i}^{1}\right\}_{1 \leq i \leq N}$ and $\left\{e_{i}^{2}\right\}_{1 \leq i \leq N}$ respectively, and $\left(e_{1}^{2}, \cdots, e_{N}^{2}\right)=\left(e_{1}^{1}, \cdots, e_{N}^{1}\right)\left(a_{i j}\right)$ where $\left(a_{i j}\right)$ is a \mathbf{Z}-matrix with $\operatorname{det}\left(a_{i j}\right)= \pm 1$, and $\left\{u_{1}^{i}, \cdots, u_{N}^{i}\right\}$ is the complex coordinate system in $X_{\sigma_{i}}, i=1,2$, such that u_{j}^{i} is corresponding to vertex e_{j}^{i}. Then

$$
u_{i}^{1}=\prod_{j=1}^{N}\left(u_{j}^{2}\right)^{a_{i j}}
$$

in particular,

$$
\left[\begin{array}{c}
\log \left|u_{1}^{1}\right| \\
\vdots \\
\log \left|u_{n}^{1}\right|
\end{array}\right]=\left(a_{i j}\right)\left[\begin{array}{c}
\log \left|u_{1}^{2}\right| \\
\vdots \\
\log \left|u_{N}^{2}\right|
\end{array}\right]
$$

Proof. Let $\sigma_{1}=\left\{\sum_{i=1}^{N} \mathbf{R}^{+} e_{i}^{1}\right\}, \sigma_{2}=\left\{\sum_{i=1}^{N} \mathbf{R}^{+} e_{i}^{2}\right\}$, and let $\left\{r_{1}^{i}, \cdots, r_{N}^{i}\right\}$ be the dual basis of $\left\{e_{1}^{i}, \cdots, e_{N}^{i}\right\}, i=1,2$, i.e., let

$$
r_{j}^{1}\left(e_{k}^{1}\right)=\delta_{j k}, \quad r_{j}^{2}\left(e_{k}^{2}\right)=\delta_{j k}
$$

Since $\left\{e_{1}^{1}, \cdots, e_{N}^{1}\right\}$ and $\left\{e_{1}^{2}, \cdots, e_{N}^{2}\right\}$ are two integral bases, we have

$$
\hat{\sigma}_{1}=\left\{\sum_{i=1}^{N} \mathbf{R}^{+} r_{i}^{1}\right\}, \quad \hat{\sigma}_{2}=\left\{\sum_{i=1}^{N} \mathbf{R}^{+} r_{i}^{2}\right\}
$$

and

$$
\begin{gathered}
\hat{\sigma}_{j} \cap L^{*}=\left\{\sum_{i=1}^{N} \mathbf{Z}^{+} r_{i}^{j}\right\} \text { for } j=1,2, \\
{\left[\begin{array}{c}
r_{1}^{1} \\
\vdots \\
r_{N}^{1}
\end{array}\right]=\left(a_{i j}\right)\left[\begin{array}{c}
r_{1}^{2} \\
\vdots \\
r_{N}^{2}
\end{array}\right] .}
\end{gathered}
$$

By the construction of $X_{\sigma_{i}}$,

$$
u_{j}^{i}=\chi_{r_{j}^{i}}, i=1,2 \Rightarrow u_{i}^{1}=\prod_{j=1}^{N}\left(u_{j}^{2}\right)^{a_{i j}}
$$

Lemma 2. Let σ_{0} be the principle cone defined in $\S 2.1$, i.e.,

$$
\begin{aligned}
\sigma_{0} & =\left\{\sum_{i=1}^{N} \mathbf{R}^{+} v_{i}\right\} \quad \text { with }\left(v_{1}, v_{2}, \cdots, v_{N}\right) \\
& =\left(e_{11}, e_{12}, \cdots, e_{1 n}, e_{22}, \cdots, e_{2 n}, \cdots, e_{n n}\right)
\end{aligned}
$$

Let $u=\left(u_{1}, u_{2}, \cdots, u_{N}\right)$ be the coordinate system on $X_{\sigma_{0}}$ with the induced order from v_{i} 's. Then, in terms of u system on $X_{\sigma_{0}}$,

$$
\Phi_{u}=\frac{c d u_{1} \wedge \cdots \wedge d u_{N} \wedge d \bar{u}_{1} \wedge \cdots \wedge d \bar{u}_{N}}{\prod_{j=1}^{N}\left|u_{j}\right|^{2} f_{u}}
$$

where $c>0$ constant and $f_{u}=\operatorname{det} \mathscr{M}, \mathscr{M}$ denoting the matrix

$$
\left[\begin{array}{lllll}
\log \left|u_{1} \cdots u_{n}\right| & -\log \left|u_{2}\right| & -\log \left|u_{3}\right| & \ldots & -\log \left|u_{n}\right| \\
-\log \left|u_{2}\right| & \log \mid u_{2} u_{n+1} u_{n+2} & -\log \left|u_{n+2}\right| & \cdots & -\log \left|u_{2 n-1}\right| \\
-\log \left|u_{3}\right| & -\log \left|u_{n+2}\right| & \log \mid u_{2 n-1} u_{n+2} u_{2 n} & \ldots & -\log |3 n-3| \\
& & \cdots & \cdots u_{3 n-3} \mid & \ldots \\
\cdots & \cdots & \cdots & \cdots \\
-\log \left|u_{n}\right| & -\log \left|u_{2 n-1}\right| & -\log \left|u_{3 n-3}\right| & \cdots & \log \mid u_{n} u_{2 n-1} u_{3 n-3} \\
& & & & \cdots u_{N} \mid
\end{array}\right] .
$$

Proof. Let $\sigma_{0}=\left\{\sum_{i=1}^{N} \mathbf{R}^{+} v_{i}\right\}$. If $\left\{r_{1}, r_{2}, \cdots, r_{N}\right\}$ is the dual set of $\left\{v_{1}, v_{2}, \cdots, v_{N}\right\}$, i.e., if $r_{i}\left(v_{i}\right)=\delta_{i j}$, then

$$
\hat{\sigma}_{0}=\left\{\sum_{i=1}^{N} \mathbf{R}^{+} r_{i}\right\}
$$

With respect to the inner product defined by the trace formula, $\left\{r_{i}\right\}$ can be represented by matrices in the following way

$$
\left\{r_{1}, r_{2}, \cdots, r_{N}\right\}=\left\{r_{11}, r_{12}, \cdots, r_{1 n}, r_{22}, r_{23}, \cdots, r_{2 n}, \cdots, r_{n n}\right\}
$$

where

$$
\begin{aligned}
& r_{i i}=\left[\right]_{i}, \quad 1 \leq i \leq n, \\
& r_{i j}=\left[\begin{array}{ccccc}
& \vdots & & \vdots & \\
\cdots & 0 & \ldots & -1 / 2 & \cdots \\
& \vdots & & \vdots & \\
\ldots & -1 / 2 & \ldots & 0 & \cdots \\
& \vdots & & \vdots &
\end{array}\right]_{j}^{i}, \quad 1 \leq i<j \leq n .
\end{aligned}
$$

Then, as we discussed in $\S 2.2$,

$$
\begin{gathered}
\hat{\sigma}_{0} \cap L^{*}=\left\{\sum_{i=1}^{N} \mathbf{Z}^{+}\left(\frac{1}{3} r_{i}\right)\right\}, \\
X_{\sigma_{0}}=\operatorname{Spec}\left(\mathbf{C}\left[\chi_{r_{1} / 3}, \cdots, \chi_{r_{N} / 3}\right]\right) \simeq \mathbf{C}^{N}=\left\{\left(u_{1}, \cdots, u_{N}\right)\right\}, \quad u_{i}=\chi_{r_{i} / 3}
\end{gathered}
$$

Let $w=\left(w_{1}, \cdots, w_{N}\right)$ be the coordinate system on $L\left(F_{0}\right) \backslash S_{n}$ as before such that $w=\left(w_{1}, \cdots, w_{N}\right)=\left(w_{11}, w_{1}, \cdots, w_{1 n}, w_{22}, w_{23}\right.$, $\cdots, w_{n n}$) where

$$
w_{k j}=e^{i(2 \pi / 3) \tau_{k j}}
$$

If we set $\left(u_{1}, \cdots, u_{N}\right)$ to be $\left(u_{11}, u_{12}, \cdots, u_{1 n}, u_{22}, u_{2 n}, \cdots, u_{n n}\right)$, then

$$
\begin{gathered}
u_{i i}=\chi_{r_{i i} / 3}\left(w_{11} \cdots w_{n n}\right)=w_{1 i} w_{2 i} \cdots w_{i i} w_{i i+1} \cdots w_{i n}, \quad 1 \leq i \leq n, \\
u_{i j}=w_{i j}^{-1}, \quad 1 \leq i<j \leq n, \\
\Rightarrow w_{i j}=u_{i j}^{-1} \quad \text { for } 1 \leq i<j \leq n, \\
w_{i i}=u_{1 i} u_{2 i} \cdots u_{i i} u_{i i+1} \cdots u_{i n} \quad \text { for } 1 \leq i \leq n . \\
\frac{d w_{1} \wedge \cdots \wedge d w_{n} \wedge d \bar{w}_{1} \wedge \cdots \wedge d \bar{w}_{N}}{\prod_{i=1}^{N}\left|w_{i}\right|^{2}}=\frac{d u_{1} \wedge \cdots \wedge d u_{N} \wedge d \bar{u}_{1} \wedge \cdots \wedge d \bar{u}_{N}}{\prod_{i=1}^{N}\left|u_{i}\right|^{2}}
\end{gathered}
$$

and

$$
\operatorname{det}\left[\begin{array}{llll}
\log \left|w_{1}\right| & \log \left|w_{2}\right| & \ldots & \log \left|w_{n}\right| \\
\log \left|w_{2}\right| & \log \left|w_{n+1}\right| & \ldots & \log \left|w_{2 n-1}\right| \\
\ldots & \ldots & \ldots & \ldots \\
\log \left|w_{n}\right| & \log \left|w_{2 n-1}\right| & \ldots & \log \left|w_{N}\right|
\end{array}\right]=\operatorname{det} \mathscr{M} .
$$

This proves the lemma by the expression of Φ_{w}.
Now we are going to prove Theorem 4.1.
Proof of Theorem 4.1. Let $\sigma=\left\{\sum_{i=1}^{N} \mathbf{R}^{+} a_{i}\right\}$ be a regular cone. Then

$$
a_{i}=\left[a_{j k}^{i}\right]_{j, k=1}^{n}=\left[C_{1}^{i} C_{2}^{i} \cdots C_{n}^{i}\right], \quad n \times n \text { symmetric } \mathbf{Z}-\text { matrix }
$$

If $\left\{v_{1}, \cdots, v_{N}\right\}=\left\{e_{11}, e_{12}, \cdots, e_{1 n}, e_{22}, \cdots, e_{n n}\right\}$ is an integral basis used in Lemma 2, then

$$
a_{i}=\left(v_{1}, \cdots, v_{N}\right) B_{i}
$$

where

$$
B_{i}=\left[\begin{array}{c}
a_{11}^{i}+a_{12}^{i}+\cdots+a_{1 n}^{i} \\
-a_{12}^{i} \\
\vdots \\
-a_{1 n}^{i} \\
a_{12}^{i}+a_{22}^{i}+\cdots+a_{2 n}^{i} \\
-a_{23}^{i} \\
\vdots \\
-a_{2 n}^{i} \\
\vdots \\
a_{1 n}^{i}+a_{2 n}^{i}+\cdots+a_{n n}^{i}
\end{array}\right] .
$$

Let

$$
B=\left[B_{1}, B_{2}, \cdots, B_{n}\right]=\left(b_{i j}\right)_{N \times N} .
$$

Then $\left(a_{1}, a_{2}, \cdots, a_{N}\right)=\left(v_{1}, v_{2}, \cdots, v_{N}\right) \cdot B$.
If $\left\{u_{1}, \cdots, u_{N}\right\}$ and $\left\{s_{1}, s_{N}\right\}$ are the coordinate systems associated with $\left\{v_{1}, \cdots, v_{N}\right\}$ and $\left\{a_{1}, \cdots, a_{N}\right\}$ respectively, then by Lemma 1 we obtain

$$
u_{i}=\prod_{j=1}^{N} s_{j}^{b_{i j}}
$$

It can be checked directly that

$$
\frac{d u_{1} \wedge \cdots \wedge d u_{N} \wedge d \bar{u}_{1} \wedge \cdots \wedge d \bar{u}_{N}}{\prod_{i=1}^{N}\left|u_{i}\right|^{2}}=\frac{d s_{1} \wedge \cdots \wedge d s_{N} \wedge d \bar{s}_{1} \wedge \cdots \wedge d \bar{s}_{N}}{\prod_{i=1}^{N}\left|s_{i}\right|^{2}}
$$

and

$$
\left[\begin{array}{c}
\log \left|u_{1}\right| \\
\log \left|u_{2}\right| \\
\vdots \\
\log \left|u_{N}\right|
\end{array}\right]=B \cdot\left[\begin{array}{c}
\log \left|s_{1}\right| \\
\log \left|s_{2}\right| \\
\vdots \\
\log \left|s_{N}\right|
\end{array}\right] .
$$

Thus

$$
\begin{aligned}
f_{u} & =\operatorname{det} \mathscr{M}=\operatorname{det}\left[\sum_{k=1}^{N} a_{i j}^{k} \log \left|s_{k}\right|\right] \\
& =\operatorname{det}\left[\sum_{i=1}^{N} \log \left|s_{i}\right| C_{1}^{i}, \cdots, \sum_{i=1}^{N} \log \left|s_{i}\right| C_{n}^{i}\right] \\
& =\sum_{1 \leq i_{1}, \cdots, i_{n} \leq N} \operatorname{det}\left[C_{1}^{i_{1}}, C_{2}^{i_{2}}, \cdots, C_{n}^{i_{n}}\right] \log \left|s_{i_{1}}\right| \log \left|s_{i_{2}}\right| \cdots \log \left|s_{i_{n}}\right| .
\end{aligned}
$$

Hence the theorem is proved by using Lemma 2.

Acknowledgment

This paper is partially based on the author's Ph.D. thesis at Princeton University. The author would like to thank Professor Shing-Tung Yau for his interest in the problem and for his continual encouragement.

References

[1] A. Ash, D. Mumford, M. Rapoport \& Y. Tai, Smoothy compactification of locally symmetric varieties, Math. Sci. Press, Brookline, MA, 1975.
[2] W. Baily \& A. Borel, Compactifications of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 84 (1966) 442-528.
[3] S. Y. Cheng \& S. T. Yau, Inequality between Chern numbers of singular Kähler surfaces and characterization of orbit space of discrete group of $S U(2,1)$, Contemporary Math., No. 49, Amer. Math. Soc., Providence, RI, 31-43.
[4] G. van der Geer, Note on abelian schemes of level three, Math. Ann. 278 (1987) 401-408.
[5] W. F. Hammond, On the graded ring of Siegel modular forms of genus two, Amer. J. Math. 87 (1965) 502-506.
[6] J. Igusa, On Siegel modular forms of genus two. II, Amer. J. Math. 86 (1964) 392-412.
[7] __, A desingularization problem in the theory of Siegel modular function, Math. Ann. 168 (1967) 228-260.
[8] S. Iitaka, Algebraic geometry, Springer, Berlin, 1982.
[9] R. Kobayashi, Kähler-Einstein metric on an open algebraic manifold, Osaka J. Math. 21 (1984) 399-418.
[10] K. Kodaira, On compact analytic surfaces. II-III. Ann. of Math. (1) 77 (1963) 563-626; 78 (1963) 1-40.
[11] M. McConnell, Classical projective geometry and arithmetic groups, Math. Ann. 290 (1991) 441-462.
[12] D. Mumford, Hirzebruch's proportionality theorem in the non-compact case, Invent. Math. 42 (1977) 239-272.
[13] Y. Namikawa, Toroidal compactifications of Siegel spaces, Lecture Notes in Math., Vol. 812, Springer, Berlin, 1980.
[14] C. F. Siegel, Symplectic geometry, Academic Press, New York, 1964.
[15] G. Tian \& S. T. Yau, Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry, Math. Aspects of String Theory (S. T. Yau, ed.) Advanced Series Math. Phys., Vol. 1, World Scientific, Singapore, 1987.
[16] H. Tsuji, A numerical characterization of ball quotients, preprint.
State University of New York, Stony Brook

[^0]: Received February 24, 1992. This work is partially supported by the National Science Foundation grant DMS-8901303.
 ${ }^{1}$ A noncompact variety V is said to be quasiprojective if V is a Zariski open dense subset of a projective variety \bar{V}.

