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ON THE SMOOTH COMPACTIFICATION
OF SIEGEL SPACES

WENXIANG WANG

Introduction

Let X — Γ\Ω be a noncompact locally symmetric Hermitian space,
where Ω is a bounded symmetric domain and Γ is an arithmetic sub-
group acting on Ω. It is well known that X is quasiprojective , and the
canonical Bergman metric on X induced from Ω is a Kahler-Einstein
metric of negative curvature if X is smooth (it is the case where Γ is
neat). Since the smooth compactifications of X were introduced in [1]
from the toroidal embeddings, Mumford obtained the following results on
X in his proof of noncompact Hirzebruch's proportionality [12]:

1. X is of logarithmic general type.
2. The Bergman metric g on X is a good singular Hermitian metric on

any smooth toroidal compactification X of X. In other words, assuming
that the boundary D = ~X - X is locally defined as Π*=i z

x\ — ° > t h e n t h e

volume form Φ of g behaves singularly along the boundary D as

for some integer N > 0.
To have broader and deeper applications of the theory on the locally

symmetric Hermitian spaces in algebraic and differential geometry (see the
references [15], [16] and [9]), people would like to understand more about
X and its compactification X besides Mumford's work. One would like
to completely understand the algebraic structures of the boundary divisor
D and the canonical bundle Kj of X and to have a precise singular
description of the canonical volume form Φ along D. The goal of this
paper is to study these questions for the quotient of Siegel upper half spaces
by an intensive investigation of their smooth toroidal compactifications.

Received February 24, 1992. This work is partially supported by the National Science
Foundation grant DMS-8901303.

*A noncompact variety F_is said to be quasiprojective if V is a Zariski open dense
subset of a projective variety V .
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1. Toroidal eompaetification of symmetric varieties

In this section, we briefly recall the construction of smooth compactifi-
cations of a locally symmetric variety from the torus embeddings. For the
further detailed material on this section, see [1] and [13].

1.1. Torus embeddings. Let T be an ^-dimensional complex torus,
i.e,. Γ = (C ) \

Definition, (i) A torus embedding of T is an algebraic variety X such
that (1) X contains T as a Zariski open dense subset;

(2) T acts on X extending the natural action on itself defined by trans-
lation.

(ii) A morphism between torus embeddings X and X' is a map / : X —•
X1 such that the diagram

X

commutes.
We can describe torus embeddings combinatorially.
T = (C*) = SpecίCiη, 7 7 1 , T2, T~x, , Tn, Γ; 1]) as a scheme.

Let M = Hom(Γ, C*) = Character group of T ~ ZΛ = {r = (r{, r 2, ,
rn) E Z " ; χ ' .T^C} w h e r e / ( i l f i 2 , - - , tn) = %%•..%. N =
Hom(C*, T) — group of one-parameter subgroups in T ~ ZΛ = {a =
(a{,a2,. an)eZn; λ a : C* ̂  T} w h e r e λa{t) = ( Λ , Λ , •• , Λ ) . M
and Λ̂  are dual to each other by the pairing ( , ): M x TV -> Z

1=1

then χr(λa(ή) = t{r*a) for r e M, a e N, t e C*.

If we identify χ with monomial Π"=i rf ' a n c ^ ^ is a subsemigroup
of M containing 0, then C[S] = C[χr]reS is a subring of C[M] =
C[T{ ,T~1,'" 9Tn, T~ι], and T = Spec(C[M]) = Nc/N where N c =
N (8) C = Cn . Let σ be a convex rational polyhedral cone (abbreviated to
c.r.p. cone) in NR = iV <g> R = R" not containing a line. Then

; (rl9a) > 0 , / =

σ = {r € MR (r, α) > 0, for all a e σ}.

and the dual of a in ΛfR = M 0 R = Rw is
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If Xσ is defined to be Spec(C[σ n M]), then Xσ is an affine normal
torus embedding of T by Spec(C[Λ/]) c Spec(C[σ ΠM]). Let σΠM =
Z+rχ + + Z + r m , r. e M, i = 1, 2, , m (m > n , since σ not
containing a line); hence

The embedding of Γ into Xσ is given by /: T -> C w , z(7) = (/» (7), ,
/Γ/M(7)) where 7 = (tχ, ίπ) G Γ. Xσ is the scheme-theoretic closure of
i(T) in C m . T acts on ^ σ as

for 7 e Γ, x = (x{, x2, , jtm) e Xσ . Then ^Γσ = the disjoint union of
Γ-orbits in Xσ , and

{Γ-orbits in XJ <ϋ> {all faces of σ}.

If τ is a face of σ (we write as τ < σ), let N(τ) be the subset {r. (rf., ) | τ

= 0} of {Γj, ••• , r m } , and Oτ be Γ-orbit in Xσ corresponding to τ .
Then

Oτ = {(xl9x29... , xm) e Xσ; x^O if η e N(τ)-9 xi = 0 if r

dim τ -h dim Oτ = n = dim c T,

If Σ is a finite rational partial polyhedral decomposition (abbreviated
to a f.r.p.p. decomposition) of NR (in the future we always assume cone
does not contain a line), such that

(i) the face of σ is in Σ if σ e Σ
(ii) for a{, a, E Σ, a{ Π σ is a face of cr. and o..

Then we can patch Xσ together to form a normal torus embedding of Γ,

XΣ, by the fact that if τ < σ, then Xχ c Xσ and Xχ —• Xσ is an open

immersion:

Γ = Γ

and XΣ = U{ Γ-orbits in XΣ} ,

{Γ-orbits in XΣ} Λ Σ .

Z Σ is smooth if and only if each cr is regular, i.e., σ- is generated by a
part of a basis of TV.
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On the other hand, if a: Nc —> Nc is a linear map which preserves
lattice N, then it induces an action on T ~ Nc/N and a map α*: (Nc)* —•
(Nc)* where (Nc)* = dual space of Nc with respect to ( , ) . If a* also
preserves the dual lattice M of TV, σ c NR is a c.r.p cone, then α* maps
(α(σ))~nAf to σΓ)M, and a*: Xσ -» ^α(σ )) is an extension of α on Γ.

The construction of torus embedding can be used to resolve some type
of singularities.

1.2. Toroidal compactification of the quotient of Siegel spaces. The the-
ory of toroidal compactification was developed for the locally symmetric
varieties in general. We introduce it here for the case of Siegel spaces.

Let M(n k) = {all n x n matrices over fc},/c = C , r , Z , ,

Sn = {τ e M(n C) %τ = τ, Im τ > 0} : the Siegel space of rank n,

G = Sp(«;R)

the symplectic group of rank n .
G acts on Sn by M-τ = (Aτ+B){Cτ+D)~ι for M e G, τeSn; then

Sn ='G/K as a homogenous space, where K + ISO(Λ/-T/Π) is a maximal
compact subgroup of G. We will discuss the compactifications of locally
symmetric Hermitian space T\Sn = Γ\G/K for an arithmetic subgroup
Γ o f G .

First, we can realize 5^ as a symmetric bounded domain S'n in
M 5(n;C) = {all symmetric n x n C-matrices} by τ e Sn —• Z .=

( τ - v ^ T / J ί τ + V^T/J- 1 G ^ , ^ = {Z G M8(n; C)In - ZZ > 0}.
(This is a Harish-Chandra realization of homogeneous space.) Then τ =
V=ϊ(Z + IH){-Z+In)-\eSn for ZeSf

n.
For simplicity of notation, we will denote both bounded and unbounded

realizations of Siegel space as Sn except, if it is needed, we will distinguish
their members by τ and Z as above.

Let 5^ = {Z e Ms(n C) I-ZZ > 0} be the topological closure of Sn

is Ms(n C). For p, q e Sn , we say " p ~ q " if there exist holomorphic
maps

α ^ S ^ ί Z e C I Z ^ l } - ^ for i = 1, 2, ••• , m,

such that α^O) = p , αw(0) = q and a^SJ Π «/+1(5Ί) / 0 . " ~ " defines

an equivalence relation on Sn .
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A boundary component of Sn is a maximal subset in Sn of mutually

equivalent points. Then Sn = disjoint union of boundary components.

The action of G on Sn extends to Sn by

M'Z = ({A- \ΓAC){Z + \) + {B-SΓ

• ((A + V-ΪC)(Z + 1) + (B + y/^

for M = [^]eG, ZeTn.
Fact, (i)

- 1))

- I))" 1

is a boundary component of Sn for any 0 <ri <n .

(ii) Any boundary component of Sn has the form g i^/ for some
g £G, 0<ri <n.

The boundary component F = g Fn, with g 6 Sp(« Q) is called
rational. Actually, F is rational &3g e Sp(« Z) such that F = g Fn,
for some 0 < n < n .

Remark. Let S* = \J{ all rational components } = [J0<n><n Sp(« Z)
Fn, c 5; (5* is called the rational closure of Sn). Then~ Γ\5* with
suitable defined topology gives the so-called Stake-Baily-Borel compactifi-
cation of Γ\Sn.

Let F be a boundary component of Sn , and define:
N(F) = {g e G\ g F = F} which will be a parabolic subgroup,
W(F) = the unipotent radical of N(F) (i.e. biggest unipotent normal

subgroup of N(F)),
U(F)= center of

If F' = g F for g eG, then Λ^(F') = gN(F)g~ι. Therefore, it is
enough to know the structures of these groups for Fn,.

Fact. For F = Fn,, 0 < n <n , we have the following:

(i)

[A' 0 B' *

u * *

C' 0 £>' *

0 0 0 V

] eSp(«';R),

M e GL(w - «' R)
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Ή i,
o
0

0 E

Έ J
In, -H

n—n

o
0 0 /

ΈH + J=HE+'J

0 0
0
0

0

/ ,n—n
0

0

Q

0

0
J

0
= J\~M(n-n;R).

^ΪH; E and H are nx(n-n')R-Then v(Fn.) = W(Fn,)/U(FH.) c?
matrices} as additive groups.

On the other hand, for the homogeneous space Sn = G/K, let Sc

n =
Gc/B be the compact dual of Sn where Gc is the complexification of
G, B is a parabolic subgroup of Gc, Sn c Sc

n .

For a boundary component F, we define S(F) = U(F)C Sn C Sc

n .

If F = Fn,, then U(Fn,)c ~ Ms(n - n C) = {symmetric C-matrices of

order n - n) .

S{Fn,) = U{Fn')c.Sm = {τ=\j^ τ^ e M(n; C); τ{ e Sn>,

τ3eMs(n-n;C)\ .

Sn -> S(Fn.) by natural inclusion. S(F) - F x V(F) x U(F)C holomor-
phically, and U(F) acts on S(F) as the linear translations on the factor
U(F)C. In particular,

S(FH.)*Fn.xV(FH.)xU(Fn,)C9

= ί '
characterized by

/ = Imτ 3 - ( 0

as a (n - n) x(n- n) symmetric R-matrix. (This is called the realization
as a Siegel domain of the third kind.)

We define C(Fn,) = {J e Ms(n-ri R) / > 0} c U(Fn,) then C{Fn,)

is a cone in U{Fn.), Φ: S{Fn.) - U{Fn.), Φ(τ) = / , Sn=φ-\C{Fn,)).
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We define two subgroups in N(Fn ) :

0 B' 0
0 0

n—n

0 D' 0
0 0 / _

r,, o o o i
0 M 0 0
0 0 / . , 0
o o o V

u € GL(« - n R)

Let Aut(C/(Fn;), C{Fn )) — {automorphism of U{Fn,) which preserves
C(FH,)} then G,(FH.) = Aut( # ( / ; , ) , C(FΠO) with the action

u(J) = u J 'u for u e G,(FH.), JeU(FH.),

and iV(Fn.) = (Gh(Fn,) x G,{Fn,)) W{Fn,) with two projections

Ά' 0 5 ' *

g

c'
0

u
0
0

D'
0

*
*

tu

C'

For the embedding Sn -+ Fn> x K(.FΛ/) x U(Fn,)c , the action of tf Cfy) on
5Π is of the form:

' τ 2 '

t ' l ewhere (τι, τ 2 , τ3) e Sn c i^/
on Fπ/ induced by ph: N(Fn,) -»> Gh(Fn,), and ^4(τ3) is the action on
C/(iV)c induced by P / : Λ r ^ ) - ^ ( F ^ ) .

Although some group structures and the fact above are introduced for
Sn and Fn> here only, they can be actually generalized for the bounded
symmetric domains by using the theory of Lie groups and Lie algebras (see

[1]).
With all set-ups above, we are now able to construct the toroidal com-

pactification of X = T\Sn for a given arithmetic subgroups Γ of G.
Let T(F) = Γ Π N(F) for each rational boundary component F ,

T(F)=pι(Γ(F))cGι(F),

and let L(F) = Γ n U(F), which is a lattice in vector space U(F). Then
given a rational boundary component F , we have:
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U(F): a real vector space which will correspond to NR as in §1.1,
L(F) c U(F): a lattice which defines a rational structure on U(F) and
corresponds to N as in §1.1,

C{F) c U(F): a cone,
Γ(F): arithmetic subgroup of Aut(U(F), C(F)).
The compactification of X = T\Sn is constructed for a given, so-called,

Γ-admissible family of polyhedral decomposition.
Definition. A Γ-admissible family of polyhedral decomposition is a

collection of polyhedral Σ = {Σ^}^ r a t i o n a l such that:

1. ΣF is a Γ(F)-admissible polyhedral decomposition of C(F) for

every rational boundary component F (that means: ΣF = {σa }α). With

the rational structure on U(F) by L(F),

(i) each σF is a convex rational polyhedral cone in C(F)

(ii) σF € Σy, σ <σζ (i.e. cr is a fact of σf) => σ e ΣF

(iii) σf, σF e ΣF =» σf n o y ^ < σ ^ , σF

β

(iv) y€Γ(F), σf €Σ F =>y.σf € Σ F ;
(v) the number of classes of cones module T(F) is finite;

(vi) C(F) c \Ja σF (this is called the rational closure of C{F)).

2. If Fχ = γ F2 for y e Γ, then {σf1} = {γ σ^2} by the map

which is a linear transformation under the realizations of U(Fχ) and
U(F2) as vector spaces.

3. If Fx < F2 (i.e., Fx c F 2 ) , then Σ F = Σ ^ l ^ j by inclusion

The reduction theory of self adjoint cones gives us the existence of such a
Γ-admissible family since each C(F) is a self-adjoint cone with respect to
some inner product on U(F). In fact, it is clear from the definition that a
Γ-admissible family is essentially determined by a Γ(iΓ

0)-admissible poly-
hedral decomposition of C(FQ) for the smallest standard rational bound-
ary component FQ.

Now, supposedly, we are given a Γ-admissible family; then a toroidal
compactification is constructed by the following processes:

Step 1. Partial torus compactification for each rational boundary com-
ponent.

Let F be a rational boundary component, and ΣF = {σF}a be a Γ(F)-
admissible polyhedral decomposition of C(F). Then

S(F) cFx V(F) x U(F)C, Sn c S(F).



ON THE SMOOTH COMPACTIFICATION OF SIEGEL SPACES 359

Let S(F)' = S(F)/U(F)C; then S(F)f ~ F x V(F), and U'F:
 S(F) -

S(F)' is a principal t/(F)c-bundle.
If T{F) = L(F)\U(F)C is an algebraic torus, then

L(F)\S(F) , F x V(F) x (L(F)\U(F)C) Πς S(F)' cFx V(F),

and Y\F is a principal bundle with fibre T(F).

The Γ(F)-admissible polyhedral decomposition ΣF defines a torus em-
bedding:

T(F) c XΣp.

Then we can construct a fibre bundle

(L(F)\S(F))ΣF = (L(F)\S(F)) xτ{F) XΣF

over S(F)' with fibre Z Σ . Let

(L(F)\Sn)Σ = the interior of the closure of L(F)\Sn in (L(F)\S(F))Σ .

Step 2. Gluing.
By the definition of Γ-admissible family and the construction of partial

torus compactification, we have the following properties:
(1) if Fj < F2 , F{, F 2 are two rational boundary components, then

Σ F 2 = Σ f , W 2 ) ' U{Ft)DU{F2),

UFJXS,,, * Σ J S - * V

and there is an etale map

Π : (LiFOXSJ -, (L(F,)\5J
1,2 2 '

(2) if F2 = γ ^ for γ e Γ, then y induces an isomorphism

y:U{Fx) » [/(F2)

u u

> C(F2),

and by the definition, ΣF =γ ΣF . Hence, the action of γ on Sn extends

to an isomorphism
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Let (T\SnΓ = U F : rationai(L(/ r)\^)iF

 A n equivalence relation can
be defined on (Γ\Sn)~ as follows: XX,X2 e (Γ\Sn)~, assuming that

Xx e {L{FX)\SH)ZFI, X2 6

Xx ~ X2 & (l)3F, rational and γ e Γ, s.t. ^ < F, γF2<F,

Σ s.t.

ΣF - (L(γF2)\Sn)Σf ,
y , 2 " 2 y , 2

It can be proved that " ~ " is an equivalence relation.

Let σW=(rvsMr/~.
Theorem 1.1 [13]. (Γ\Sn) is a Hausdorff analytic variety containing

T\Sn as an open dense subset, and (T\Sn) is a compact algebraic space.
(T\Sn) is called a toroidal compactification of T\Sn and sometimes also a
Mumford's compactification.

It is clear that the compactification constructed above depends on the
choice of Γ-admissible family of polyhedral decompositions and in general
only on a compact algebraic variety. For the smoothness and projectivity
of these compactifications, we need the following definitions.

Definition. 1. A subgroup Γ of G is said to be neat if the subgroup
of C* generated by the eigenvalues of all γ e Γ is torsion free. (Then,
Γ\Sn will be smooth.)

2. A Γ-admissible family of polyhedral decomposition is said to be
projective if there exists a continuous convex piecewise linear function
/ : Ω -> R where Ω = \JF r a t i o n a l C(F) such that

(1) f(X)>0 for XφO,
(2) for each σa e ΣF , there is a linear function la on U(F) such that

(a) /α>/onC(f),

(b) σa = {XeC(F) Ja(X) = f(X)},

(3) / ( Γ n Ω) c Z (a function / with (1), (2) and (3) is called a polar
function),

(4) / is Γ-invariant.

Theorem 1.2 [13]. 1. If Γ is neat and all cones σf in ΣF are regular

with respect to Γ, i.e., each cone σ^ is generated by a part of a Z-basis of

L(F) = U(F) n Γ, then the compactification (Γ\5Π) constructed before is

smooth.
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2. / / Σ = {ΣF}F r a t i o n a l is a projective T-admissible family, then (Γ\Sn)
is projective.

Remarks. 1. Any arithmetic subgroup Γ contains a neat subgroup of
finite index. Also, the principal congruence subgroups Γ(k) of Sp(« Z)
are neat for k > 3:

Γ(k) ^ f {X e Sp(« ; Z ) ; I Ξ / (mod k)}.

2. For any Γ-admissible decomposition Σ, there exists a refinement
Σ' such that all cones in Σ' are regular, and the toroidal compactification
constructed from Σ' is a blowing-up of the one from Σ.

3. A special projective Γ-admissible family can be obtained from the
reduction theory. The resulting family is called the central cone decompo-
sition which we will discuss later in detail.

4. Therefore, for any neat arithmetic subgroup Γ, there is a nonsingular
and projective toroidal compactification of Γ\Sn .

5. In each partial compactification (L(F)\Sn)Σ , there is an orbit de-

composition with respect to the members of Σf . Let

O(F)= U O(a)c(L(F)\Sn)Σ
σaΠC(F)ϊ0

Ό = (Γ(F)/L(F))\O(F).

Recall Γ(F) = TnN(F), L(F) = U(F)nΓ. Then, (Γ\Sn) = [JFmoάΓO(F)
as a set where F runs through all rational boundary components, and the

from (L{F)\Sn)Σ to (T\Sn) factors through

: (L(F)\SΛ)ΣF - (Γ(F)/L(F))\(L(F)\Sn)ΣF Π4 (Γ\5J,
F

where Y\F is injective near 0{F), and Γ(F)/L(F) acts on (L(F)\Sn)Σ

properly discontinuously.
Notice that 0{F) = Sn and Ό(F) = Γ\Sn if F = Sn .

2. The boundary divisors of (T\Sn)

Let X = Γ\Sn with Γ neat, and Ύ be a smooth projective toroidal
compactification of X constructed from a Γ-admissible family. Then
Ύ-X is a divisor of Ύ with normal crossing, i.e., D = X-X = Σ™=1 D(

where each D is an irreducible smooth divisor of X, and Dx, --- , Dm

intersect transversally. In this section, we will discuss the structure of D
in the case Γ = T(k) for k > 3, since those Γ(k) are neat.
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2.1. Central cone decomposition. It is known that, up to Sp(n Z),
{Fn> 0 < Λ' < n} are only rational boundary components of Sn . There-
fore, {(Sp(« Z)/Γ(k))-Fn> 0 < n < n} will be all inequivalent classes of
rational boundary components of Sn under Γ(fc). Since FQ = {I = n x n
identity matrix} < Fn, and C{Fn.) < C(FQ) for any 0 < n < n,
γ F0 < γ.Fn, and γ-C{Fn,) c y C(F?) for any γ e Sp(/i Z)/Γ(fc). Then,
by the definition, finding a Γ(fc)-admissible family of polyhedral decompo-
sition is reduced to finding a Γ(iΓ

0)-admissible polyhedral decomposition
of C(F0).

Recall the following:

o) = {[! '„-'] e Sp(π; R), u e GUn; R)} ,

C(FQ) = {J e U(F0) / > 0} = the set of all positive definite n x n
symmetric R-matrices,

Γ(FO) = ΓΠN(FO),
L(F0) = Γ n U(F0) = {Je Ms(n Z), / = 0 (mod k)} ,

Γ(F0) = ̂ (Γ(F 0)) = {u € GL(n Z), u = / (mod fc)} = GL(n Z)(fc),
where p 7 ^ ( F 0 ) - G7(F0) = Aut(C/(F0), C(F0)).

Since Γ(F0) = GL(w; Z)(fc), it will be enough if we can find a GL(n Z)-
admissible decomposition of C(F0). There are several types of such de-
compositions. We introduce one here, called "central cone decomposi-
tion", for our purpose.

Let V = Ms(n\ R) be the vector space of all n x n symmetric R-
matrices, and C = C(FQ) be the cone in V. We may consider V as the
Lie algebra of U(FQ) and V is isomorphic to U(F0) by the exponential
map. If B( , ) is the killing form on V, then

B(X, Y) = Tr(Xy) ^?f (X, 7 ) .

It induces a quadratic form on U(FQ), and C is a self-dual cone in V
with respect to ( , ) .

Let L = Ms(n Z) be the standard lattice in V, L* be the dual lattice
of L w.r.t. ( , ) then

LR = L(8)R= V,

L* = {Y;2YeMs(n;Z), Y = {yij), yueZ}.
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For X e C and Y e C n V , define

φ(X)= min Tr(^7),
YeenL*

σ(Y) = {XeC; φ(X) = Tr(XY)}.

Theorem 2.1 [ 1 3 ] . Σ c e n t ^ f {σ = σ(Y) YeCnL*} is a GL(n Z ) -
admissible polyhedral decomposition of C with rational structure by L,
and Σ ^ ^ is projective with the polar function φ(X).

σ{Y), which has same dimension as C, is called a central cone, such a
Y is called a central element, and Σ c e n t is called the central decomposition.

Since the rational structure of C induced by L(F0) = kL is equivalent
to one induced by L, Σ c e n t actually also gives us a projective Γ(JF0)-

admissible polyhedral decomposition of C(F0). Σ c e n t is not regular in
general; in fact, it is only regular for n < 3. We may assume a regular
decomposition by refining Σ c e n t in a suitable way.

There is a regular central cone in Σ c e n t f°Γ a ^ n > which is called the
principal cone σ0:

1 1/2 ••• 1/2
1/2 1 ••• 1/2

σo = w h e r e γo =

Ll/2 1/2 1

C n ϋ.

Then

σ o = \ x = {χ..) 9X = ' X,

• Σ

where

l . . . - l . . .

- 1 . . . 1 . . .
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2.2. The boundary divisor of X where X = T{k)\Sn, k > 3. Let
FQ = {/n} be the standard rational boundary component of rank 0. Then
U(F0), C(F0), L(F0), Γ(F0) and T(F0) are groups mentioned in §2.2.
Moreover,

S(F0) = U(F0)c.Sn ~ t/(F 0 ) c + Λ/,(ιi; C) ~

^ T . τ , r>0,

S n -> L ( F Q ) \ S n b y τ = ( τ 1 ? . . , τ ^ ) -> W = ( i ^ , . . . , ^ ) , w ; =
ι(2*/fc)τ;

17(^0) acts on Sn as / τ = τ + / for / e U{F0), τ eSn.
As in §2.2, we view:

V = U(FQ) = RN as a vector space,
C = C(F0) as a cone in V,
( , ) : the bilinear form on V, then C is self-dual,
f(F 0 ) = GL(n;Z)(fr)cAut( K , C ) ,

L = L(F0) = ik Λ/4(« Z) = (fcZ)*, a lattice in V,

L* =dual lattice of L w.r.t. ( , ) = {^(x,7)nxn x y e \Z for / ̂  y,
XU€Z},

T W L(F0)\S(F0) = L\FC = (C*f, a torus.

If we take {eι,e1, ••• , eN} as a basis for L such that, for any a =

k{au) € L, a(j e Z , then a = Σ?=i aiej where

( α , , α 2 , , α ^ ) = ( α n , α 1 2 , • , a i n , a22, • • • ,a2n,- , a n n ) .

(In fact, eι is of form k(bst)nxn where btj = bji = 1 for some pair (i, j),

i < j and all others bsί are 0.) Let {ei, e2, , eN} be the dual basis
for L*. Then, for r = \{rtj) € L* with r.. e Z , r,.,. € \Z for / ^ j ,

r = Σ?=\ riei w h e r e

( r i ' r 2 > " '" ' r N ^ ~ ( r i l ' ^ r i 2 » ' > 2 r l n , r n , 2 r 2 3 , ••• , 2 r 2 n , , r n n ) .

Under these bases, (a,r) = Σ?=ιairi> a n d we can identify L with
Hom(C*, T), denoted as N in §1.1, and L* with Hom(Γ, C*), denoted
as M in §1.1, by the following maps:

fl = ( α , , . . . ,aN)eL^λa:C^T, λa(t) = (Λ , ••• Λ ) ,

r = (r 1, , ^ ) e L * - , ^ : Γ - C * , χΓ((/,, ,tN)) = t['tr*-tr

n".

Therefore, ^Γ(Aβ(ί)) = ί<α>r> for α e L, r € L*, ί e C*, and

Γ = Spec(CreL.[Xr])
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If σ is a rational regular polyhedral cone of maximal dimension in C,

σ =

with vertices vχ, v2, ,υn such that {vx,v2, -- , Ϊ;^} is an integral

basis for the lattice L, let {r1, , rN} be dual basis of {υ{, , vn)

then rι eL*. Thus

Z σ = Spec(C[<τ Π L*]) = Spec(C[#ri, , χ^]) ~ C^ ,
^ -> ̂ σ b y t = ( t l 9 > - , t N ) ^ > (χrι(t), , ^ ( 0 )

Moreover, u = (w15 ,uN) where w = /r/(/) = t\ --tr

n

N and r1 =

(r{, , r^) will give the complex coordinate system in Xσ .
Proposition 2.1. ΓΛ^ irreducible components of the boundary D = Ύ -

X are in one-one correspondence with the vertices of all maximal dimen-
sional cones in the Y-admissible family.

Proof Let υ be a vertex of a maximal dimensional cone in the Γ-
admissible family. We may assume, without loss of generality, that υ e

Case 1. If υ e C(FQ), i.e., υ lies in the interior of C(F0), it follows
that v must be surrounded by finite number of maximal regular cones
{σ\' " ' ' σm} U P t 0 ΓX-Fo) Let τ = R+υ then τ is a common face of
σi 's, 1 < i < m , and τ Π C(F0) / 0 . This implies

O(τ) C O(F0) - T(F0)\O(F0) = O(FQ).

Since dimτ = 1, the closure O(τ) is a divisor. In fact, if u1 = (u[, , M^)

is the complex coordinates for each Xσ such that Wj is the component

associated to vertex υ , then the divisor Dv associated with O(τ) is cov-

ered by these m coordinate charts, and Dv is defined by {u\ = 0} in

each Xσ .

Case 2. If v e ^(Fo) - C(F0), then there exists a rational boundary

component F of rank n - 1, i.e., F = γFn_χ0, such that C(F) = R+t>.

For any rational boundary component Ff such that F1 < F, we will have

the following:

U(F')DU(F), C(F')DC(F),
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Thus, the closure of (Γ(F)/L(F))\O(F) = Ό(F) in X produces an irre-
ducible divisor Dυ on the boundary.

The divisors from Cases 1 and 2 represent the different components by
Remark 5 at the end of §1.2. On the other hand, from the same remark,
the whole boundary D is obtained as the union of all Ό(F) where F
runs through all proper rational boundary components of Sn . Therefore,
each irreducible component of D is obtained from a vertex of either Case
1 or Case 2 above for some rational boundary component Fo' of rank 0.

Hence the proposition is proved, q.e.d.
Now, we assume that X is the compactification of X = Γ(k)\Sn , k >

3, from a Γ(A:)-admissible family given by Σ c e n t or a refinement of Σ c e n t

if necessary, and D = Ύ - X. When n < 4, we have the following.
Theorem 2.2. Let D = Σ™=1 Dt be the irreducible decomposition of D

then the following hold:

(I) Each Dt is algebraically isomorphic to Γ/\(Sn_ι x C " " 1 ) where Γ7 =

S p ( f l - 1 ; Z)(A:)x s e m i p r o d u c t (A:Z) 2 ( / ί " 1 ) with group structure such that Γ7 acts

on Sn_χ x C"" 1 by

-> {(AZι + B)(CZ{ + D)~l, (aZx +Z2 + b)(CBχ + D)'X)

if[Λ

c

B

D]e Sp(« - 1 Z)(Jfc), (a,b) e (kZ)2{n~ι) as two row-vectors, and

/I_1 x C " " 1 ) is the compactification of T*\(Sn_χχCn~ι) induced from
same Γ(k)-admissible family.

(2) All Z>. intersect along the boundary

Proof It is known that, for n < 3, Σ c e n t is regular and all vertices of
maximal dimensional cones in Σ c e n t

 a r e o n the boundary of cone C(F0)
(see [7]). In his thesis [11], McConnell showed that there exists a reg-
ular refinement of Σ c e n t for n = 4 such that all vertices of maximal
dimensional cones are also on the boundary of cone C(FQ). Therefore,
all irreducible boundary components here are obtained in the manner of
Case 2 in Proposition 2.1. Since the vertex in Case 2 of Proposition 2.1
corresponds to a rational boundary component F of rank n - 1 and all
boundary components of same rank are equivalent under the action of
Sp(π Z), we have that all Z>. are isomorphic with each other.

Without loss of generality, we only need to consider the component of
D which is produced from the vertex υ where
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v=
0 eC(F0).

Lo ... o I J

Note that v is a vertex of principal cone σ0.

Let F = Fn_ι={[z

0°ι];Z€Sn_ι}; then

Oη

0
0

C(F) = R+υ c C

LO ... 0 ,

a 1-dimensional cone,

= Γ(k) n u(F).

As described in §1.2, the following hold:

Sn is embedded in S(F) ~ S π . , x V(F) x U(F)C = Sn_t x C""1 x C
as a Siegel domain of the third kind,

(L(F)\SH)Σ is embedded in (L{F)\S(F))Σ ~ S π _ , x C""1 x C*, and

Since Γ(F)/L(F) ~ Γ7 and Γ(F)/L(F) acts properly discontinuously
on 0(JF) as defined in the theorem, we have

(Γ(F)/L(F))\O(F) ̂ x C*"1).

" ι)Π^1 x C" ι) has a fiber structure over Γn_1(A:)\5π_1 where
Γ π l (fc) = Sp(n - 1 Z)(k). As shown in Proposition 2.1, the irreducible
component Dv of Z> produced from the vertex υ is the closure of
(Γ(F)/L(F))\O(F) in X. Notice that Λ ί ^ . ^ C 1 " 1 ) is itself a locally
symmetric space, and a Γ(fc)-admissible family induces a Γ/-admissible
family. Due to the structure of the orbit decomposition in the compacti-
fication as stated in Remark 5 of §1.2, the closure of (Γ(F)/L(F))\O(F)
in the compactification X of the whole space X is the same as the in-
duced compactification of Γ/\(5r

π_1 x C""1). This proves part (1) of the
theorem.

Let Dv and Dυ be two components of D corresponding to two ver-
tices υ{ and v2 respectively. Then, by considering the orbit decomposi-
tion, Dυ intersects Dv if and only if v{ and v2 span a 2-dimensional
face σ of some maximal cone in the Γ(A:)-admissible family. The
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2-dimensional face σ defines a subvariety V of codimension 2 of X

in Dυ and Dv respectively. On the other hand, since ίij i s a vertex

of σ, this subvariety V is contained in the boundary of Dv if Dv is

regarded as a compactified space. Similarly, V is also contained in the

boundary of Dυ . This completes the proof of Theorem 2.2.

We will discuss this theorem in more detail for n = 2 next.
2.3. The structure of divisor for n = 2. Let ~X be the toroidal com-

pactification of X = Γ(k)\S2 , k > 3, by Σ c e n t We are going to discuss
the boundary divisor of Ύ in detail. We will carry out here for k = 3,
for simplicity of notation. It can be generalized to T(k) for any k > 3
without any difficulty.

In the case of n = 2, the principal cone σ0 is the only maximal cone

of C(F0) up to GL(2; Z) in £ c e i lt> and

It can be checked that there are four independent maximal cones up to
GL(2; Z)(3) = Γ(FQ). By choosing suitable representatives, they can be
pictured as shown in Figure 1.

Then, in the orbits decomposition,
3

(Γ(F0)/L(FQ))\(L(F0)\S2)Σ ^\JXσ-
F° i=o '

VΛ =

Lo l j

FIGURE 1. VERTICES V'4 AND V^ ARE EQUIVALENT TO

V4 UNDER Γ(FQ) , AND THE CONES A = σQ , B = σ{ ,

C = σ2 AND D = σ 3 .
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Γ(F0)\XΣ

FIGURE 2

(as shown in Figure 2), each face of the tetrahedrons corresponds to a

OF (υ.) for 1 < i < 4 and each vertex of the tetrahedrons corresponds to

a OF (σ.) for 0 < i < 3.

First, we have the following.
Theorem 2.3. X is the minimal smooth toroidal compactification of

X, namely, if X is another smooth toroidal compactification of X, then
X is a blowing-up of X.

Proof By assuming that X is a smooth toroidal compactification of
X from a Γ-admissible family Σ, Σ must be regular (see [13]). If σ is
a maximal cone of C(F0) in ΣF (such σ exists for any Σ), σ is regular
and σ Π Int σ0 Φ 0 , it can be verified that σ c σ0 because of the position
of σ0 and the regularity of σ0 and σ. Thus

σn = union of some a in ΣF

=> Σ is a refinement of Σ c e n t

=> X is a blowing-up of X .
Hence the theorem is proved, q.e.d.
If F{ = {[Q*?] Z e C, Z Z < 1} is the rational boundary component

of rank 1, then FQ < F{ and

S(F{) = U(Fι)c.S2~Fι xVχx U{Fι)c = HxCxC,

where H is the upper half-plane, V{ ^ C, t/ ΐ i^c ^ C. From the struc-
tures used in the proof of previous theorem, it follows that

Γι/Lι = 5X(2; Z)(3) x (3Z) = Γ'j with induced group structure from
Γj, so that

τ =

Since Cχ is a 1-dimensional cone and Γ = Γ(F{) = {1}, ΣF = { σ }
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c 2 = - l c 3 = 0 c 4 = 1

FIGURE 3

where σ = C.. Thus

( 5 2 / L , ) Σ f i = ( 5 2 / L , ) U / ί x C x { 0 }

OF(σ) = H x C x {0},

and

^ ^σ) * ft\(H x C),

where Γ7, acts on H x C as denned in Theorem 2.2. Since σ - R+υ2 c
C(F0),

OF(σ)^O (v2)cΓ(F0)\X
1 0 FQ

Let JTj = ΓjXίfl' x C), X2 = SL{2;Z)(3)\H; then Λ\ -> X2 is a
fiber space with elliptic fibers. To get the closure of (Γι/Lι)\OF(σ) in

Γ(FQ)\XΣ , we need to understand the compactification of the fiber space

x^x2.
First, actually, X2 is nothing but Γ(3)\51. The fundamental domain

of H with respect to 5X(2; Z)(3) is shown in Figure 3. Therefore, the
compactification of X2 is obtained by adding four cusps, i.e.,

T2 = U , c2
, c 4 } .

There is a natural compactification of Xι of Xj, such that X{ is an
elliptic surface over X2 with singular fiber over each cusp; each singular
fiber is a rational 3-gons (see [1]). On the other hand, each cusp of X2

corresponds to a rational boundary component of S2 of rank 0, and
they are all Γ(3)-independent. For example, cusp cx = oo represents the
boundary component FQ (in fact, ~X~2 is a part of the Baily-Borel boundary
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• c
f-\ g

o i

D 1

^ c

i c

1 O

)
FIGURE 4

of Γ(3)\5'2). The rational 3-gon over cχ is nothing but just the boundary

of OFlv2) in T(F0)\XΣ .
0 FQ

Moreover, if FQ , FQ and F* are the other three boundary components
of rank 0 which correspond to c2, c3 and c4 respectively, then Fχ >
FQ , / = 2 , 3 , 4 . The cone C(Fχ) must be a 1-dimensional member in
each ΣFi. As in the case of Fo, each rational 3-gon over ci for / =

2 , 3 , 4 comes from OFi(C(Fχ)). It is clear that {FQ, FQ , F o

3 , FQ} are
only boundary components of rank 0 which are less than Fχ. Therefore,
the elliptic surface X{ is a component of boundary (Γ(3)\5t

2) — Γ(3)\5t

2 .
Since all boundary components of rank 0 are equivalent under Sp(2 Z),
and the same is true for those of rank 1, all components of (Γ(3)\S2) -
Γ(3)\5'2 are the same elliptic surface Xχ.

Furthermore, if we set the following notation:
" " <-• representing rational boundary component of rank 1,
u o " <-> representing rational boundary component of rank 0,
" # _ o " +-> if " •" > " o " 5 then under Γ(3), the graph of rational bound-

ary components will be as shown in Figure 4.

The certain part of boundary D arising from each of these rational
components if illustrated by Figure 5 (next page).

All possible surfaces from Figure 5a gluing together by tetrahedrons
from Figure 5b according to the relation in the graph form the boundary
D. For example, if two surfaces Mχ and M2 associated with two " ",
say dχ, d2, and dχ, d2 , are connected by a "o " e

o

e

then Mχ and M2 are glued at one end by the tetrahedron associated to e
(see Figure 6).
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Γ\\(HxC)

FIGURE 5a

o "

FIGURE 5b

M

FIGURE 6

On the other hand, if (Γ(3)\52)* is the Baily-Borel compactification,

then (Γ(3)\52) is the blowing-up of ((Γ(3)\S2)* - Γ(3)\52) = Σ?=ι Cf

where each Ci is a curve isomoφhic to X2. If a: (Γ(3)\52) -> (Γ(3)\S2)*

is the blowing-up map, then a: D = Σ'ϊL\ ̂ , ~^ Σ™=\ ^i a n ( * a'^i~^ ^/

are given by the fiber map from Xχ to X2 .
We summarize the discussion above in the following theorem.
Theorem 2.4. Let X = Γ(fc)\52 be the complex quotient manifold of

dimension 3, and let X be the minimal smooth projective toroidal com-
pactification of X, and D = X - X then the following hold'.

(1) D = ΣT=ι^i / 5 a divisor with normal crossings only, each Dt is
a elliptic surface S with some singular fibers of type χIb {see [10] for the
notation), and {D.}^ intersect along the singular fibers.

(2) D = Σ'iLi &i c a n be blowing-down to a singular curve C = Σ™=\ C,-
where each C. is a smooth curver, and the contraction of D into C is
given by the fiber map of S.
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Remarks. 1. The number m is computable by the formula from num-
ber theory.

2. The similar structures can be stated for T(k), k > 3, if we replace
rational 3-gons by rational /c-gons in general.

3. The structures described in Theorem 2.4 were obtained by Igusa in
[7] by studying the desingularization of the Siegel modular forms of genus
2.

3. The canonical line bundle of the compactified space for n = 2

Let X = T{k)\S2 , k > 3, X* be the Satake-Baily-Borel compactifica-
tion of X, and let X be the minimal smooth toroidal compactification of
X. As we have shown in the previous section, X is, in fact, the toroidal
compactification of X from the central cone decomposition, and X is
projective. We are going to discuss the canonical line bundle of X in this
section.

First, we shall recall how X* can be constructed. Let A(Γ)ι be the
vector space of all Siegel modular forms of weight / with respect to Γ
where Γ = Γ(k) for some k > 3, i.e.,

A(Γ)ι = I f: holomorphic function on S2,

f(M τ) = det(Cτ + D)ιf(τ), Vτ e S2, M = [ £ * ] e Γj .

Let A(Γ) = φ / > 0 A(Γ)ι. Then ^4(Γ) is a positively graded ring and finitely
generated over ^4(Γ)o = C, and the projective variety associated with A(T)
is the Satake-Baily-Borel compactification of X. It has been proved by
Igusa in [7] that the minimal toroidal compactification X is nothing but
the normalization of the blowing-up of X* with respect to the sheaf of
ideals J defined by all cusp forms in A(Γ).

The line bundle L = <f{\) on X* which corresponds to modular forms
of weight one is ample, and

Letα: Ύ -> X* be the blowing-up with respect to J?, and L = a*(L).
Then

Γ(X9S(ίL))~Γ(X\<r(lL))9

since X* is normal.
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On the other hand, Igusa constructed in [6] a cusp form φ = θ2 of
weight ten with respect to Sp(2 Z) where θ is a function formed by the
theta-constants. Therefore

φ e Γ(X*, 0(\OL)) = Γ(X,

If we let Δ = the diagonal set of S2 , i.e., if

=H
Hammond found that the zero set of θ is the set of Sp(2 Z) Δ (see [5]).
Let Δ' = Γ\(Sp(2; Z) Δ), and let Df be the induced compactification
of Δ' in X, and D' = J2 D\ be the decomposition of irreducible compo-
nents. By the similar discussion in §2.4, it can be verified that each D' is
isomorphic to Wχ x W2 where W{ = (SX(2; Z)(k)\H) U {some cusps} is
the standard compactification of SL(2\ Z)(k)\H. Note that Wi is non-
singular. If D = X - X = X] D. as in the previous section, then the zero

divisor defined by φ = θ2 in Ύ is kD + 2Df for Γ = Γ(fc), which implies
that

Let Kj be the canonical line bundle of X. For

τeS2,
 M=\c

it can be derived by direct calculations that

where dV,, is the standard volume element in the coordinate system (*).

(Actually, as we will point out in the next section, the bi-invariant volume

form Φ on S2 is given by cdVJ(detY)3 if τ = X+iY e S2.) Therefore,

φ3(τ)(dVτ)
1 produces a Γ-invariant /-pie 3-form on S2 for a φ(τ) e

A(Γ)ι. If we start with a cusp form φ, then φ3(τ)(dVτ)ι defines a /-pie

3-form on X.

On the other hand, if τ = [\l\2]eS2 and we let

then, as we have demonstrated in §2.4, the boundary component of X
arises as w3 —• 0 in the coordinate system (wl9w2,w3), and the whole
boundary D of Ύ is produced from this manner. Thus

dVτ = dτx Λ dτ2 Λ dτ3,

k -i
dVn = -7^-w, dwλ Λ dw1 A dw,,w ι2π 3 i 2 J
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and therefore
1 0 % = 30Γ - IO[D]

by using φ e ^4(Γ)10 from above, and hence

1 0 % = 30Γ - IO[D] = (3k - IO)[D] + 6[Df].

The complete understanding of Df and its intersections with D can be
achieved by similar discussions as in the previous section.

Therefore, we have proved the following theorem.
Theorem 3.1. Let X, X and D be the same as in Theorem 2.4, %

be the canonical line bundle of Ύ, and Df be the closure of the diagonal
set of S2 in X. Then D' is a divisor in X and

1 0 % = (3k - IO)[D] + 6[Df].

Now we are going to consider an application to the Kodaira dimension
of space X. We recall that a smooth compact variety V of dimension n
is of general type if the transcendence degree of the ring

m=0

is n + 1 (i.e., the Kodaira dimension of V is n), where Γ(V, mKv)
denotes the space of holomorphic sections of mKv over V. A variety Y
is said to be of general type if the smooth compact variety Y birational to
Y is of general type. Y is said to be of logarithmic general type if there
is a smooth compactification Y of Y such that D = Y - Y is a divisor
with normal crossings and the transcendence degree of the ring

m=0

is n + 1 (i.e., the logarithmic Kodaira dimension of Y is ή). Note that
saying Y is of logarithmic general type is weaker than saying Y is of
general type. By his generalized Hirzebruch's proportionality principle,
Mumford proved that a locally symmetric Hermitian variety Γ\Ω with
neat arithmetic group Γ acting on bounded symmetric domain Ω is al-
ways of logarithmic general type; see [12]. Furthermore, a theorem of Tai
in [1] implies that Γ\Ω is of general type if Γ is sufficiently small. We
prove the following.

T h e o r e m 3 . 2 . X = Γ ( f c ) \ 5 2 is of general type for k>4.
Proof We are going to show that the minimal smooth toroidal com-

pactification I of I is of general type for k > 4. It is enough to prove
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that (see [8]),

cm < dim Γ(X, mmQKj)

for some positive constant c, moeZ+ and m > 0.

Let φ = θ2 be the cusp form of weight ten constructed by Igusa. Then,
as we have seen in the proof of Theorem 3.1, s0 = φ3(τ)(dVτ)

10 is a section
of iOK-χ and the divisor defined by s0 is given by

d r φ 0 ) = (3k - 10)2) + 6Df,

where D and Df are divisors of X in Theorem 3.1. Therefore, s0 e

Γ(Z, 10%) if A: > 4.

Furthermore, if / is a cusp form of weight m with respect to Γ =

Γ(k), then s™f3(τ)(dVτ)
m is a section of llmKj and is holomorphic

when A: > 4, i.e.,

Let dm = dim{ cusp forms of weight m with respect to Γ} . A theorem
of Mumford in [12] implies that

dm~ m for m > 0.

Hence,we conclude that

cm < dim Γ(X, 11 mK.γj

for some positive constant c and m > 0.

This proves the theorem.
Remark. Theorem 3.2 is sharp since G. van der Geer has shown in [4]

that Γ(3)\52 is rational.

4. The canonical volume form on X

In this section, we discuss the canonical volume form of X as a singular
volume form on X after compactification. In the case of rank 1, it
just appears as the Poincare metric on punctured disc near each cusp.
Since the coordinate systems induced from torus embeddings with respect
to maximal cones are always related by Sp(n Z) (in fact, every Γ(/c)-
admissible family is induced from a Sp(« Z)-admissible family), we can
restrict ourself only on Γ(3) for the analysis of canonical volume form
over those coordinates. Thus

γ; τ=τ, Y>0}cM{n;C),

n(n+l)
= dimcSn=
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The canonical metric (or Bergman metric) on Sn is given by (see [14])

and induces a metric on Γ(3)\Sn which is a complete Kahler-Einstein
metric with negative Ricci curvature.

Let Φ = {dS2

τ)
N = (Ίr{γ-ιdτY~ιdτ))N be the volume form from

dS* then a direct calculation shows that

φ =

( d e t r ) n + 1 '

where c is a positive constant, and dVχ is the standard volume form in
term of coordinate system τ .

After compactification, Φ will be a singular form on (Γ(3)\5Λ with sin-
gularity over the boundary D of the compactification. We are interested
in the singular behavior of it. By the observations about divisor in earlier
sections, we only need to deal with (Γ(F0)/L(F0))\(L(F0)\Sn)Σ , and to

Fo

understand the singular behavior of Φ at a point which is the intersection
of N components of D. In other words, it is enough to see the behavior
of Φ at 0 in Xσ for each maximal member of ΣF up to T(F0).

As we have seen in previous sections, we first take a projection from

by Wj = ell7tTj/3, where τ = (τ{, τ 2 , , τ^) and w = (w{, w2, ,
wN) are coordinate systems in Sn and T respectively. If we order τ by

τ = ( τ n ' τ i 2 ' " ' ' X\n ' τ22 ' " ' ' X2n ' ' " ' Xnn)

for the symmetric matrix

Then, in terms of w ,

cχdwχ Λ AdwN AdW{ Λ AdΊΠN

W= ΠjLjw/ίdrtloglti i r 1 '

where cx is a positive constant, and

"loglwj Iog|w2 | . . . log \wn\

log\w\= l θ & ^ l o g K + i l •••

_log\wn\ Iog\w2n_{\ . . .

which is symmetric.
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Theorem 4.1. Let σ = {Σ?=\ R+Λ/} be a regular cone in C(F0) with
vertices {a{, a2, , aN} and

where each at is symmetric, and {C[, , Cι

n} are column vectors of at.
Let s — (s{, , sN) be the coordinate system in Xσ such that {st = 0}
is the divisor corresponding to vertex <z.. Then, in terms of s system,

c dsχ Λ Λ dsn ΛrfίjΛ Λ dJN

z = l P / l 1 2 ^ ( i , , i 2 , — , ' „ ) c / 1 . . ./ w

 1 O & P / j I 1 O & P / .

Λ+l

.logKJ

where constant c> 0 and ct.... = detfCj1, Cι

2

2, , C^n].

Before proving the theorem, we first would like to consider two appli-
cations of the theorem.

Corollary 1. If all vertices at are in 'C(F0) - C(F0), and α. = A/A.
for an integral vector A{ in Rn for each i. Then

φ =
c ds{ Λ Λ dsN Λ ds{ Λ Λ dsN

i mΣ^ <ί <...</ <^^ ..,• log 1̂  r log to r iogto ι̂ Λ

— 1 2 n — I n 1 2 n

constant c> 0 am/ c .... = (det[^ , At , , ̂ 4. ] ) 2 .

Proof Assuming
1 _

we have α, = [α,1^,,

det[C; , C*,

, a"Aέ] and Cj = a\Ai, so

= βj

Applying these identities to the formula in the theorem gives the corollary
directly.

Remark. From the reduction theory, there is an admissible family for
n < 4 such that all cones in the family have the form in Corollary 1 (see
the proof of Theorem 2.2).

The geometric interpretations of Corollary 1 can be seen by the next
proposition. First, from the discussion about the structures of divisor, we
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know that if Dχ is a component of D, which is associated to a vertex υ

on the boundary of cone, then Dχ ~ {T/\Sn_χ x C " " 1 ) . Moreover, Dχ is

a fiber space over {Tn_χ(k)\Sn_χ) which is the induced compactification

of ^n_χ(k)\Sn_χ. On the other hand, as we have pointed out earlier, X

is a blowing-up of Satake-Baily-Borel compactification X* = X \J"~Q Xt

of X along Û To* X. where each X. is the quotient of Γ(fc)-inequivalent

classes of 5Z of rank i. Let a:Ύ -> X* be the blowing-up. Then we

have

Proposition 4.1. Let {aχ, a2, , an} be the set of vertices from the

corollary, and {Da , Da , , Da } be the components of D associated to

{a{,a2,'" , an} respectively. Then, det[A{ 9A29>- , AJ φ 0 ^ D^ n

Z). Π Πβ^ w i/i ίA^ inverse image of a over a copy of *Sn only.

Proof Let F ^ j be the rational boundary component of rank n - 1,

such that C(Fι

n_χ) = R+α7- c ~C(F0) (remembering that Fι

n_χ = Sn_χ).
From the construction of compactifications, we may claim that if there
exists a rational boundary component Fn, of rank n for some 0 < n <

n-2, such that F , c ~Fl

n_x Vi, then Dβ ΠDfl Π ΠDfl corresponds to the
1 2 n

fibers over the quotient of some Sn>, and vice versa. Therefore, proving
the proposition is equivalent to proving that det[^ t , A2, , An] = 0<^
3F, with 0 <ri <n- 2 such that F, cΨ\ λ for 1 < i < n .

First, let

Λt = ez"

then there exists a B e GL(n Z) such that

B -[A{, A2, ••• , An] = upper triangular.

Let B [Aχ,A2,- ,An] = [A\,A'2,-- ,A'n], i.e., BAf = A \ . T h e n

BAj'iBAj) = 5 α / 5 = ^ - ' ^ , and B acts on α(.'s just exactly as the

action of GL(n Z) on the cone ~C(F0).

If det^-ί,, A2, ••• , ΛJ = 0, we can assume that A'n =

LoJ

. Since σ
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is chosen up to GL(w Z), we may assume that

, A2, • • , An] —

Let

(upper triangular)

nC(F0).

be the rational boundary component of rank 1. Then

C(Fι) = b :
L0 ... 0J

•beMs(n-l;R),b>0\cC(F0).

Conversely, if there exists a Fn< such that Fn< c Fι

nl for some 0 < n <
n — 2 and any /, then we may assume

1

0

*
LOJ

Vϊ.

Thus det[^j, , An] = 0, and the proof of Proposition 4.1 is com-
plete.

Corollary 2. Let Ύ be the minimal smooth projective compactification
ofX = Γ(k)\S2 from toroidal embeddings, and D = Ύ-X = Σ?=i Di b e
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a divisor with normal crossings only. Then the canonical volume form Φ
of X can be represented by

dV

π m \s i
1 1 / = 1 l Λ i l

logls/logl^l

for some Hermitian metric on each [D ], where dV is a volume form on
Ύ, and s( e Γ(X, [D.]) is a section which defines D..

Proof By the reduction theory, the principle cone σ0 is the only max-
imal cone in the case of rank 2, and it can be checked that all c . = 1

l\'"ln

in Corollary 1 for all possible index (iχ, , in). Thus Corollary 2 is
proved by considering the singularity of the canonical volume form Φ of
X over Ύ which is described in Corollary 1.

To prove Theorem 4.1, we need two lemmas.
Lemma 1. If aχ and σ2 are two regular cones with vertices {et }ι<i<N

and {ef}^^ respectively, and {e\9- 9e
2

N) = (e\9 ••, ̂ ) ( α l 7 ) where

(α. ) is a Z-matrix with det(α. ) = ± 1 , and {u\, , uι

N} is the complex

coordinate system in Xσ , i = 1, 2, such that uι. is corresponding to vertex
elj. Then

N

in particular,

Γ i o g | « ! l Γlog|«ί.21 Ί

Proof. L e t σχ = {Σ?=ι R + ^ } » <*2 = { Σ / I i R + ^ 2 } > a n d l e t {r[, ,r\
be the dual basis of {e\, , e'N}, i = 1, 2 , i.e., let

1 1 2 2
r.fβi) = δ i , Γ f^,) = δ , .

j\ k' jk ' Jκ k' jk

Since {e j , , e^} and {ef, , e2

N) are two integral bases, we have
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'N *

r2r
2

By the construction of Xσ ,

7=1

Lemma 2. Let σQ be the principle cone defined in §2.1, i.e.,

( N Λ

u = (uχ, u2, , uN) be the coordinate system on Xσ with the in-

duced order from υt 's. Then, in terms of u system on Xσ ,

c duχ Λ Λ duN A dΰχ A - Λ dΰN

llj=l \uj\ Ju

where c > 0 constant and fu = det^#, Jf denoting the matrix

' l o g | ι / j •••«„! - l o g | i / 2 | — l o g | w 3 | . . . - l o g | w Λ

n+lUn+2 - l θ g | W Λ + 2 |- log |w 2

-Iog |w 3 | - l o g | « r t + 2 |

- log |w π

U2n-l\

. . . -log|M2 n_1 |

. . . - log |3/ i-3 |

-log|t/3/2_3 |

/ Let σ0 = {^^j R+v.} . If {̂  , r2, , rN} is the dual set of
{^ , ϋ 2 , , %} , i.e., if r^Vi) = δu , then

( N Λ

σo =
. 1=1

With respect to the inner product defined by the trace formula, {r.} can
be represented by matrices in the following way

ir\ 9 r2 9 " ' 9 rΛτ) = ί r i l ' r i2 ' " ' ' Γ1Λ ' r22 ' Γ23 ' " ' ' V2n ' " ' ' rnni '
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where

Γ. . =

1/2

1/2
1/2 ... 1/2 1 1/2 ... 1/2

0

1/2

:
1/2

... 0 ... -1/2 ...

... - 1 / 2 ... 0 ...

Then, as we discussed in §2.2,

ιΛΓ

1 < i < n,

Xσ<> = Spec(C[χ r i / 3, , * V 3 ] ) * C" = {(«,, , uN)}, M. =

Let w = (w,, , wN) be the coordinate system on L(FQ)\Sn as
before such that w = (wι, • • • , wN) = (wn ,w{, ,win,w22, w23,
••• ,tυm) where

i(2π/3)τ.,.

If we set
then

, Ujf) to be ( « „ , un, , uln, M 2 2 , u2n, • • • , u n n ) ,

Uii = Xruβ(WU • • • Wnn) = WUW2i ' ' " WiiWii+l < » <

- 1
=» ιυj;. = MI7 for 1 < / < j < n,

r 1 < ί < « .

duι Λ Λ ί/w^ Λ ύfΰ, Λ Λ dΰ

W i i = UUU2i • • • «H«H+1 Uin

dwχ Λ Λ ί/tϋn Λ dwι Λ

nf=1 N , I2
_ duι

nil, κ-1
N
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log|tt;2 ... log 1^1
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and

det

Όn\ Xθ%\W2n-\\ ••• XO%\WN\

This proves the lemma by the expression of Φ^ .
Now we are going to prove Theorem 4.1.

Proof of Theorem 4.1. Let σ = {Σ?=\ R + α J be a regular cone. Then

a. = [djiXj fc==1 = [C[C2 - - - Cι

n], n x n symmetr ic Z - m a t r i x .

If {Vy-" , υN} = {en , e l 2 , > ,eln,e22,' - , enn} is an integral basis

used in Lemma 2, then

where

Let

a
n

-a 12

-a In

-a 23

-a In

Mn

An

Then (fl pfl 2, , % ) = {vx, v2, , v^) B.
If {Wj, , uN} and { t̂, sN} are the coordinate systems associated

with {υv , v^} and {ΛJ , , α^} respectively, then by Lemma 1 we
obtain

N h

It can be checked directly that

duχ Λ Λ rfw^ Λ rfΰj Λ Λ ds1 A--- A dsN Λ ί/ϊj Λ Λ

and
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log|w2

= B

log \sx I"
log \s2

Thus

Hence the theorem is proved by using Lemma 2.
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