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ON THE GENERALIZED CYCLE MAP

PAULO LIMA-FILHO

Abstract

We relate Friedlander-Mazur cycle map [14] for projective varieties with
Almgren's isomorphism [1] for integral currents. As a consequence we
obtain the naturality of the F-M map, extend it to quasiprojective vari-
eties, show its compatibility with localization sequences and pull-backs,
and use it to compute several examples. As a corollary of our main re-
sult, we give a characterization of those varieties for which the cycle map
is an isomorphism, as the ones whose space of /^-dimensional algebraic
cycles is weakly homotopy equivalent to the space of 2/?-dimensional
topological cycles, for all p .

1. Introduction

The aim of this paper is to study and extend, under the light of geometric
measure theory, some properties of the "Lawson homology" of quasipro-
jective varieties.

The Lawson homology LpHn(X) of a closed complex projective variety

X CΨN was first defined by E. Friedlander in [11], who was building on the

fundamental work of H. B. Lawson [20]. The definition was subsequently

extended to include quasiprojective varieties in [24]. For a closed pro-

jective variety X, the Lawson homology group LpHn(X), n > 2p, was

originally defined as the homotopy group πn_2p(^,(^Q+) > where

is the Chow monoid of effective p-cycles supported in X and
p

is a "homotopy group completion" of &p(X). Lawson homology is a co-
variant functor from the category of quasiprojective varieties and proper
morphisms to the category of abelian groups, and a contravaήant functor
from the category of quasiprojective varieties and flat maps to the category
of abelian groups. In this paper we only consider the Lawson homology of
varieties over the complex numbers and its behavior under proper maps.
In particular, when we assert that Lawson homology is functorial, we mean
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that it is a covariant functor from the category of quasiprojective varieties
over C to the category of abelian groups.

It is shown in [23] that one can use the Grothendieck group &p(X)
(naϊve group completion), endowed with the quotient topology from %? (X)
x ^p{X), as a model for the "homotopy group completion". This provides
an equivalent (and more geometric) definition of Lawson homology which,
as shown in [24], allows the theory to be extended for quasiprojective va-
rieties.

In [14] E. Friedlander and B. Mazur used Lawson's main theorem in
[20], together with "ruled join" constructions to obtain, among other beau-
tiful results, a generalized cycle map

where LpHn(X) is Lawson homology of a closed projective variety X and
Hn (X, Z) is singular homology. For n = 2p this maps is the classical cy-
cle map [15] from the Chow group of cycles modulo algebraic equivalence
to homology. Their construction of sy is algebraic, and depends fun-
damentally on the projective embedding of X. They conjecture that the
map itself is independent of the embedding.

In this paper we give a more geometric and natural interpretation of
Friedlander-Mazur's (F-M) map, and we prove this conjecture and show
that the induced map between Lawson homology groups is independent of
the projective embedding of the varieties.

In order to analyze the F-M map, we use two fundamental ingredients.

The first one is the embedding e: &p(X) ^-> 3?lp{X) of the group of alge-
braic ^-cycles into the space of the integral cycles (integral currents with
zero boundary) endowed with the flat norm topology. The second one is
the natural isomorphism [1]

which we shall henceforth refer to as Almgrerΐs isomorphism. Our main
result, found in §4, is the following:

Theorem 4.3. The F-M map coincides with the composition

LpHn(X) d= πn_2p(fp(X)) % πn_2p(2r2p(X)) Z HH(X,Z),

where e^ is the homomorphism induced by the inclusion e, and srf is
Almgren's isomorphism.

The geometric meaning of the above theorem is, essentially, the fol-
lowing. Given a representative / : Sn~2p —> Ψ -* ^p(X) of a class
a e LpHn(X), the cycle map assigns to a the fundamental class in
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Hn(X, Z) of the (n - 2p)-dimensional family of p-cycles parametrized

by / . In other words, sψ is a "cycle map" in a proper sense.
Restricting the homology functors from the category of spaces to the

category of projective varieties and regular maps, one obtains the following
important consequence.

Corollary 4.4 [22]. The cycle map s[^ is a natural transformation of
covariant functors. In particular, it is independent of projective embeddings.

In the same section we extend the main result so as to define the cycle
map for a quasiprojective variety U, taking values in its Borel-Moore ho-
mology HBM(U). We prove that sffi is naturally covariant with respect
to proper morphisms, commutes with vector bundle projections and pre-
serves localization exact sequences. More precisely, we prove the following
corollary and proposition.

Corollary 4.7. Given an algebraic vector bundle E ^ X of rank r over
a projective variety X, the cycle map commutes with pullback under the
bundle projection', i.e., the following diagram commutes:

HN{X) — ^
π

Proposition 4.9. For a pair of quasiprojective varieties (U, V), with V
closed in U, the cycle map gives a morphism of localization long exact
sequences

••• > LnHn(U) yLnHΛU~V) >LH AV) >--
p Aiv ' p nx J p n — \\ '

i 1 1
••• >H-nBU(U) > H*M(U-V) > H*M

χ{V) > •••

The above proposition is the key ingredient in characterizing those va-
rieties for which the spaces of topological and algebraic cycles are weakly
homotopy equivalent.

This paper is organized as follows. In §2 we establish notation, provide
the basic ingredients from geometric measure theory needed throughout
the paper, and review Almgren's and Federer's fundamental results.

We must point out here that Almgren's isomorphism extended classical
results of A. Dold and R. Thorn [8], and served as partial inspiration for
Lawson's work [20]. Lawson's main result in [20] will be referred to as the
"Complex Suspension Theorem":
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Theorem 1.1 (CST) [20]. The complex suspension map

is a homotopy equivalence.
Here the complex suspension %V of an irreducible subvariety F c f

is the ruled join of V to a point p^ e P w + 1 - P " , where Fn is embedded

linearly into P Λ + 1 . One extends the suspension linearly to arbitrary cycles.

In our discussion of quasiprojective varieties in §4 we reinterpret the CST

in terms of pullback of cycles to hyperplane bundles.
In §3 we discuss ruled (complex) joins of algebraic cycles and show that

their definition can be extended to integral currents. We then proceed to
relate joints with Thorn isomorphisms, both via Federer's isomorphism
between the homology of the complex of integral currents and singular
homology, and via Almgren's isomorphism. Identifying the complex sus-
pension %X with the Thorn space of the hyperplane bundle &x(l), one
has the following propositions.

Proposition 3.6. Let X be a projective algebraic variety. Then, the
map induced by the complex suspension in the homology of the integral
currents coincides with the Thorn isomorphism τχ for the hyperplane bun-
dle d?χ(l);

Proposition 3.7. The homomorphism ^ induced on homotopy groups
by $: 3?k(X) —> Zk=1$X) corresponds to the Thorn isomorphism via the
isomorphism s/ . In other words, the following diagram commutes:

Those are key ingredients for our analysis of the cycle map and the main
results of §4.

In the last section we compute several examples which are contained in
a vast class (called class 2C) consisting of those varieties X for which the
cycle map (*) is an isomorphism for all 0 < p < dimX and n > 2p . It
follows from Theorem 4.3 that the varieties in class J? are characterized
by the fact that

their space of algebraic /?-cycles is naturally weakly ho-
motopy equivalent to the space of topological 2/?-cycles
(closed integral currents) for all p > 0.
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Examples of these are varieties admitting "algebraic cellular decomposi-
tions", generalized flag varieties, compact hermitian symmetric spaces and
smooth varieties admitting a suitable reductive group action.

Later developments that unfolded from Lawson's initial work turned
from the differential geometric point of view of [1] and [20] to a promi-
nently algebraic geometric one, as in [11]. Several other works had the
same origin, such as [21], [14], [13] and [6], where geometry and algebraic
topology are beautifully combined. The present work takes up the original
differential geometric approach.

2. Basics

Throughout this work, projective varieties are reduced (not necessary
irreducible) algebraic varieties which admit a closed embedding into some
complex projective space, and quasiprojective varieties are Zariski open
subsets of some projective variety.

Definition 2.1. An algebraic cycle of dimension p in the projective
variety X is a finite formal sum σ = Σλ nλ Vχ, where nλ e Z and Vχ

is a p-dimensional irreducible subvariety of X. A cycle σ is effective if
each nλ is nonnegative. We denote by Cp d(X) the space of all effective
^-cycles in X of a fixed degree d, and by &p(X) the disjoint union

Ud>ocpjx).
It is well known that Cp d(X) has the structure of a projective variety

and that &p(X) is an abelian topological monoid under cycle addition,
which we call the Chow monoid of p-cycles in X. See [20], [26] and [23]
for details.

We devote the rest of this section to describing the basic facts and results
from geometric measure theory which will be needed. We use [1], [10] and
[9] as the main references and recommend [25] as an additional and acces-
sible source of information for this material. Throughout the remainder
of this section, X will always be a compact Lipschitz neighborhood retract
(CLNR) in some Euclidean space, unless otherwise stated.

Let %k(X) be the space of k-currents with compact support contained
in X. Denote by (J^(X), d) the chain complex of integral currents
supported in X. Given a fc-current T e J^(X), the mass and flat
norms of T are denoted M(T) and F(T) , respectively. Define N(T) =
M{T) + M{dT). Let &k{X)d be the subset of &k(X) consisting of those
currents T satisfying N(T) < d, and define Jr

k(X)d similarly. Recall
that Jr

k(X)d is compact in the topology induced by the flat norm; cf.
Theorem 4.2.17(2) of [9] or Theorem 5.5 of [25].
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Definition 2.2. Let {X, X1) be a pair of CLNR's. Define

Zk{X,X') =f Sk{X) n {T: support (dT) c X'}

and

3Sk{X, X') d={T + dS: T e Zk{X') and S e 3?k+ι(X, x')}

cJt(Ij').

When endowed with the flat norm topology, Zk(X, X1) becomes a com-
pactly generated topological group. When X1 is empty, 3?k(X, Xf) is
simply denoted ^(X) and is called the group of integral k-cycles in X.

Remark 2.3. For a protective variety X there is a natural embedding

of the space of algebraic p-cycles into the space of integral 2p-cycles; cf.
[20], [18].

The spaces of interest to use are the projective algebraic varieties, which
are always triangulable spaces when endowed with the analytic topology
(cf. [17]) and hence are immediately seen to be CLNR's. It is worth
mentioning that if (X, X') is a pair of algebraic varieties, i.e., X1 c
X, then %l(Xf) is a closed subgroup of ^(X), and ZJ^X') is a closed
subgroup of ZJtf).

Denote the singular homology groups by Hk(X, X1 \ Z). Recall the
following two important results which are crucial to our work. The first
one is due to H. Federer and W. Fleming:

Theorem 2.4 [10]. The group 2Tk(X, X')/<^k(X, Xf) is naturally iso-
morphic to Hk(X, X1 \ Z). In particular, the homology of the complex
<y+(X) is naturally isomorphic to the singular homology of X.

The second result is concerned with the topological groups 2^ (X) and is
due to F. Almgren. It turns out to be a generalization of the classical Dold-
Thom theorem [8] for the abelian group ΛG(X) on X. Here, AG(X) is
the free abelian group generated by X and suitably topologized so as to
coincide with the group of integral 0-currents. See [23] for further details.

Theorem 2.5 [1]. There is a natural isomorphism (in the locally Lips-
chitz category)

stf: π^iX, x')/jrk{X')) - Hi+k(X, x'-9Z),

where 3Γk(X, X')l*fk{X') has the quotient group topology.
For the sake of completeness we state here the basic technical results

which we need throughout the paper.
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1. Isoperimetric choices [1], [9]. Given a compact Lipschitz neighbor-
hood retract (CLNR) ^ c l n , a n integral cycle T e 3Γk(A) with small
mass possesses a fundamental property which, roughly speaking, asserts
that T bounds an integral current satisfying an isoperimetric inequality.
More precisely, one has

Fact 2.6. For a CLNR A c Rn there are constants vA > 0, λA <
oo, depending on A, such that for every T e 2^k(A), k > 0, satisfying
M(T) < vA , there exists S G J^+ 1(Λ) with the following properties:

dS=T and M(S) < XAM{T)M'k .

A proof of this fact is found in [10, Remark 6.2], and a more general
result is proved in [9, 4.4.2(1)]. If T and S are as above, then S is called
an M-isoperimetric choice for T.

It follows from the compactness properties of integral currents and
lower semicontinuity of the mass norm ([9, Theorem 4.2.17(2)], see sec-
ond paragraph of the present section) that one can make an isoperimetric
choice S, for T as above, with the following additional property:

(2.6.1) M(S) = inf{M(β): Q e ^k+x{A) a n d 9Q=T}.

Such an isoperimetric choice is called a mass minimizing choice.
We also need the following corollary of Fact 2.6:
Fact 2.7. For each positive integer I there exists a constant vA(l) de-

pending on A and I, which satisfies the following: Given T{ e ^k(A),
k > 0 and i = 1, , / such that

i

Σ d T i = °> s u p { M ( Γ z ) : / = l , 2 , . ,l}<vA{l),

there is S eJr

k+ι(A) which is an M-isoperimetric choice for J^2i=0Ti (there
is even a mass minimizing isoperimetric choice) with

M ( S ) < s u p { m ( 7 ; . ) : / = l , 2 , . . . ,/}.

Recall that the flat norm FA(T) of an integral current T e*fk(A), for
a CLNR A , is defined as

(2.7.1) FA(T) = inf{M(Γ + dS) + M(S): S e ^k+ι{A)} .

The last basic result we need is a straightforward consequence of the
definition of FA and the above facts:

Fact 2.8. Given a CLNR A there exists a constant μA , depending on
A, such that if T e 2Tk(A) satisfies FA(T) < μA , then

(2.8.1) FA(T) = inf{M(Q):QOeIk+ι(A),
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Furthermore, there is some S e fk+ι(A) such that dS = T and
M(S) = FA(T), in which case S is called a FA-isoperimetric choice for
Γ.

2. Notation (from [1]). For each n = 0, 1, 2, •• , let 1(1, ri) be
the cell decomposition of the interval I = [0, 1] whose 1-cells are the
subintervals

[ 0 , l.2-n]9[l'2-n,2.2-"],... ,[(2n-l)Ί~\ 1 ] ,

and whose 0-cells are the endpoints [0], [1 2~n], [2 2~n], , [1]. One
has the usual boundary homorphism

d: I ( 1 , Λ ) - > I ( 1 , / I ) ,

[a, b]y-+ [b] - [a] for each 1 -cell [a, &],

[α] ι-> 0 for each 0-cell [α].

For each m = 1, 2, 3, and each n = 0, 1, 2,

I(m, Λ) = I( 1, ri) 0 0 I( 1, ή) (m times)

is a cell complex on I m , where α = aχ α m € I(m, ri) is a /?-cell and
dim(a) = p if and only if for each / = 1, , m , α/ is a cell in I( 1, ri)
and 2 ^ j dim(αz.) = p . We denote by I(ra, AZ)̂  the direct summand of
\(m, «) generated by cells of dimension p. The boundary homomor-
phism d is given on each cell by

m

d{a) = d(a{ 0 0 α / . 0 0 α m ) = ^ ( - l ) σ o j 0 <8> da( 0 0 α w ,

A cell β is a face of a cell a if and only if for each i: = 1, , m , either
β{ = αz or βt is an endpoint of α z . The vertex set of a consists of all
O-dimensional faces of a .

3. Joins of currents and Thorn isomorphisms

3.1. Joins. Let Fn and P m be complex projective spaces embedded as
disjoint linear subspaces of ψn+m+ι . The complex linear join, or simply the
join, of two algebraic subvarieties I C P " and Y c Ψm , is the subvariety
Xjy C p Λ + m + 1 obtained as the union of all projective lines joining points
of X to points of X to points of Y. In the case m = 0, the join
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of X to a point P° € (Fn+ι - Fn) is denoted by %X and is called the
complex suspension of X.

In what follows we show how to extend the joins of subvarieties to
suitable "joins" of currents in projective spaces.

Let πn i — 1, 2, be the projections onto the first and second factors of
P " x P m , respectively and let Hχ 0 H2 be the Whitney sum of the bundles
Hλ = π !^ p «(- l ) and HΊ = L A « ( - 1 ) , where ^ ( - 1 ) and Λ « ( - l )
are the tautological bundles over Fn and Fm , respectively.

Proposition 3.1. The total space of the smooth P1-bundle F(H{ Θi/2) ^
Fn x Fm is the blow-up of Pn |jPm along Fn and Fm .

We refer the reader to [19, §2], for a proof of the above proposition
and for further details on the geometry of this construction. Let b:
F(Hχ Θ H2) -• P"jPm denote the blow-up map.

It is shown in [7] that for any smooth bundle F -> E —• B with com-

pact, ^-dimensional fiber F, there is a unique linear map

π: &^{B) Π {T: M(T) < ooj —• e^+n{E)

which is characterized by
PI. It is natural with respect to bundle maps;
P2. If E = B x F is a product bundle, then

Lπ(T) = TxF.

This map has the following additional properties:
P3. Lπ is continuous (in the weak topology) on &k(B)n{T: M(T) < r],
for all r e l ;
P4. There are constants c 0 , cχ such that

c0M(T)<M(Lπ(T))<cχM(T)9

whenever M(T) < oo
P5. Lπ takes integral currents into integral currents;
P6. Lπ commutes with the boundary operator d .

Suppose that {Uλ}λeA is an open cover of B, and that for each λ e A,

φλ: Uλx F -> π~ι(Uλ) is a trivialization of E over Uλ. If {Uλ, fλ}λeA

is a partition of unity subordinate to the cover {Uλ}λeA , then

Remark 3.2. In our particular case Hχ e H2 Λ Fn x P m , properties
P4 and P6 imply that Lπ takes J^(P Λ x Fm)d into J£+ 2((P(J/j θ H2))D ,
for some D and P3 implies that Lπ is continuous on J^(P" x Fm)d for
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all d, since the flat and weak topologies agree in those spaces (cf. [10,
Corollary 7.3]). Furthermore, P6 implies that Lπ is a chain map when
restricted to the complex of integral currents.

Definition 3.3. The (complex) join ΓjjS of the integral currents T e
and S e ^{Ψ171) is the current

where x denotes the Cartesian product of currents, and b^ is the push-
forward under the blow-up map described above.

The following properties hold for the complex join of currents:
Proposition 3.4. Let I C P " and Y c P m be algebraic varieties.
(a) The complex join map ty induces a continuous homomorphism

defined for all r,s>0, and satisfying

When the currents T and S are algebraic cycles, then T$S coincides with
the algebraic linear join of cycles.

(b) In particular the complex suspension ^ provides a continuous homo-
morphism

which is also a chain map of degree two for the complex of integral currents.
Proof (a) Observe that whenever T or S is the zero current, then

S x T = 0, and hence J = 6 o /Λ o x descends to the smash product
Sk{X) Λ J ^ ( η . The continuity of J for the case X = Pn and Y =
P m follows from the fact that J^(P") and /+(PW) are topologized as the
inductive limit of their subsets of bounded mass and from Remark 3.2.
The general case follows by restriction of domains.

The boundary formula is obtained by using the fact that both Lπ and
b. commute with d and by the corresponding formula for the product of
currents [9].

Since π: Ψ(H] <g> H2) -> Ψn x P m is a flat map in the sense of algebraic
geometry, it induces an "algebraic" pullback map

between the corresponding spaces of algebraic cycles; cf. [15] and [11].

The restriction of L to algebraic cycles is easily seen to coincide with π β ,
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and hence the join of currents restricts to the ruled join, since J = b^ o π^ o x
on algebraic cycles. For details on this geometric setting see [19], for
example.

(b) Follows from (a) when Y is taken to be a point.
Remark 3.5. Since the Lipschitz constant Lip(Z?) of b equals 1, Prop-

erty P4 implies that for every k there is a constant γk such that whenever
M{T) < oo one has

M$T) = M(b% o Lπ(T)) < ckM(Lπ(T)) < γkM(T).

3.2. Thom isomorphisms. Consider the hyperplane bundle H = @{\)

-* Fn , and let the projective closure of H be the P1 -bundle V(H Θ l p »),
where l p Λ denotes the trivial line bundle over Ψn . Since Hφl?n carries
two canonical subbundles O θ l p « and H θ 0, we have a zero section

Ψn = Ψ(Hθθ)i Ψ(Hθ lp») and a section at infinity P" = P(00 lp«) ^
r(H®lψΛ). Furthermore, Ψ{Hθlrn)-s0{Fn) and F(HΘlrn)-soo{Ψn),
are, respectively, the total spaces of the bundles H* -> Pn and H —• P" ,
where H* = ^ ( - 1 ) is the dual of H. See last paragraph of §2 in [19] for
details.

The Thom space for H -> Pπ is the quotient DH/SH, where /)// and
SH are the disc and sphere bundle for a metric on H, respectively. It can
be seen easily that DH/SH ^ P(i/el p »)/P n £ ^P 7 2 , where P" is identified
here to ^ ( P " ) C Ψ(H e l p Λ ) . In this setting the "Thom isomorphism" is
defined as

5 Φ p n : Hr(F(HΘ V ) , P" Z) - tfΓ_2(P" Z),

where C/ € H2(Ψ(H θ l p Λ ) , PΛ Z) is an orientation class for the fiber-
bundle pair (Ψ(H θ l p Λ ) , which can be given by the first Chern class of
the "hyperplane" bundle ξH -+ Ψ(H e l p Λ ) .

More generally, let i c p " be any projective algebraic variety, and de-
note also by H the restriction <9χ{\) of ^ p»(l) to X. The projectiviza-
tion Ψ(H Θ lχ) of H is again a P1-bundle over X with two canonical
sections as above. The restriction of U to Ψ(H(&1X) gives an orientation
class for the fiber bundle pair (P(//θ 1^), X) where S is identified with
the section at infinity. Once again, one has a Thom isomorphism

Φχ: Hr(F(H φlχ),X;Z)^ Hr_2(X Z ) ,

( 3 5 2 ) z - > * , ( * - t f ) ;
cf. [27, Theorem 7.10].

Observe that the blow-down map
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induces an isomorphism

, m x m x ^ Z) a /

and we also call "Thorn isomorphisms", by abuse of language, both

(3.5.3) Ψχ = Φχo b;l:Hr+2($X', Z) -> # , ( * ; Z),

and its inverse

(3.5.4) τ^ = ̂  o φ ; 1 : Hr(X Z) - Hr_2$X Z).

Proposition 3.6. Let X be a projective algebraic variety. Then the map
induced by the complex suspension in the homology of the integral currents,

coincides with the Thorn isomorphism τχy i.e.,

Proof. The isomorphism established in [10] between the homology of
the complex of integral currents and singular homology is obtained in the
chain level by considering Lipschitz singular chains

as currents. We can go further and consider only singular chains which
are subordinate to a coordinate chart {Uλ, φλ} for the bundle Ψ(Hθ lχ)
over X.

Now choose a representative σ for a class in Hk(X\ Z), and let π:

P ( H ® l χ ) - + X b e t h e b u n d l e p r o j e c t i o n a n d Φχ: H k ( ¥ ( H φ l x ) , X \ Ί ) ^
Hk(X; Z) be the isomorphism (3.5.2).

In the level of chains

Φx(Lπ(σ))=pt(U~Lx(σ))

where ^(Δ^) c Uλ . Therefore [Lπ(σ)] = Φ " " 1 ^ ] ) , where brackets mean

homology classes. Now, for the blow-up map b: Ψ{H θ 1 )̂ -+ %X we
have
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and hence, ^ = b^ o Φ~ι ά~ τχ . q.e.d.
Having identified the effect of the complex suspension on the homology

of the complex of integral currents, we proceed to identify its effect on the
homotopy of the integral cycle groups 3£k(X), under the light of Almgren's
isomorphism.

Proposition 3.7. The homomorphism $ induced on homotopy groups
by

corresponds to the Thorn isomorphism via the isomorphism srf . In other
words, the following diagram commutes:

Proof. Let / : ( I m , d lm) ->. (&k(X), o) be a representative for a class
[/] e πm(Zk(X)), and let %f be the corresponding representative for
%Jif\ in π m ( « ^ + 2 $ X ) ) . For any constant λ > 0, let Nf(λ) > 0
be such that

Fχ(a - β) < λ whenever dist(α, β) < 2~Nf{λ).

By definition, for any positive integer n sufficiently large (for exam-
ple n > max{NJιsχ(2m)), N^Λv^χ{2m))}), Almgren's construction gives
chain maps

f

and

4g:I(m,n)-*
of degrees k and k + 2, respectively, unique up to homotopy, character-
ized by the following

(a) φ{ = f and $f = %f. Here / and %f are extended
"I(m,/i)0 h(m,n)0

linearly to I(m, n)Q.

(b) For each 1 -cell a e l(m,n){, φx(a) and <^x{o) are Fχ and

i^-isoperimetric choices for φx{da) and φfa(da), respectively.

(c) For each p-cell a e I(ra, ή)p with p > 1, φχ and φfy^ are M-

isoperimetric choices for φχ(da) and <j^χ(da), respectively, as in (2.7)

(with / > 2 m ) .
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(d) If θχ = max{FA(f(a),f(β)): a and β are 0-cells lying in the
vertex set of same ra-cell in l(m, n)} (similarly, θ^x), then for each
p-cell a e l(m, ή) and p > 1, there is a constant 1 < px < oo (respect.
Pyx) such that

M(φf

χ(a)) < pχθχ (respect. M((ξf

χ(a)) < p

Almgren's map is then given by

(similarly for ^£χ), where the σz'sarethe m-cells of the complex I(m, n).
Now choose δ > 0 satisfying

p = 0, , m,

and fix « > max{iVy.(<y), Λ^y(ί)} large enough to define Almgren's maps

φx and φjμ. Here the v 's and // 's were defined in the isoperimetric
choices of §2, and the γ 's in Remark 3.5. Define a new chain map

Ψ: I(m,n)^J:+k+2$X)

of degree k + 2, as the composition $ o <//. This map has the following
properties:

(a) If a is a 0-cell in c (m, n), then

Ψ(α) =^(/(α)) =#/(α)) = (^/)(α) = Λ ) ,

since φ, = / by definition.
II(m,π)

(b) If α is a 1-cell in I(w, n), then

^ / ( α ) = ̂  o φf(da)

= dφ%f{a),

where we write da = aι - a0 with αij and a0 are 0-cells in l(m, n),
and

M(Ψ(a)) = Mψ/{ά)) < γk+ιM(φf(a))
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where the second equality comes from the Fχ -minimizing choice for φf

when restricted to the 1-cells of I(ra, n), and the last inequality comes
from the choice of n > N^(δ).

(c) Let a now be a p-cell in I(ra, n) with p > 1, and recall that φf{a)
was chosen so as to satisfy the conditions of isoperimetric choices, in §2.

In particular, we have the inequality M(φf(a)) < pχθχ , and hence

M(Ψ(a)) = M$φf(a))
fa)) < yp+kPχex

Define, inductively, homomorphisms K(: I(ra, ή)i —• J^+A:+3(^X) as
follows:

For / = 0 let Ko be the zero homomorphism. Let a be a 1 -cell in

\{m, n)χ. From item (b) above, we have that dΨ(a) = d(jff. Also

*f(a) - ψ(α)) < M(φ*f(a)) + M{Ψ(a))

- aQ)

Our hypothesis on δ assures the existence of an M-minimizing isoperi-
metric choice S € Ik+4$X) for $F\a) - Ψ{a) satisfying the conditions
of (2.7). Define Kχ(a) = S and notice that

$f - ψ = d o K{ + kQ o d

and
M(Kχ{a)) < max{M(φ*f(a)),M?¥(a))}9

the latter inequality coming from (2.7).
Suppose that we have defined homomorphisms Kp for p < p0, satis-

fying

and
M(Kp(a)) <

% f
on p-cells. Let α b e a (po+l)-cellin I(m, n) and set T = φ ( α ) - Ψ ( α ) -
K (da). Now, observe that da = £V α z , where the α/ 's are /?0-cells not
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exceeding 2m in number. Hence we have

M(Kpo(da)) <

It is immediate from its construction that d T — 0, and,

M(T) < M(<j?f{a)) + Λ/(Ψ(α)) + M{Kp({dά))

Our choice of ^ again implies that we can make an isoperimetric choice
S € J^+ P o + 4#X) for T, as in (2.7), and define KPo+ι{a) = S. We now

S f

see that the maps K^ provide a chain homotopy between φJ and Ψ .
Finally, let {α j be the m-cells of I(m, «). Since </> and Ψ are chain
homotopic, we have equality of homology classes:

However, by definition, the first class is

while the second one is [0 Q^-α,-)] =
proof of the proposition.

This concludes the

4. The cycle map

Let X c.ψn be a projective variety and consider the complex join

where P1 and PΛ are embedded in P Λ + 2 as disjoint linear subspaces.
Using the canonical identification (S2, eQ) = (P 1 ,

with the inclusion P1

map S2 Λ

sending p e P1 to p -

and composing

, one obtains a

X). Applying the homotopy group functor π^

naturally yields a pairing π/S 2 )
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Now, let 1 be the generator of π2(S2) (or better π^P 1)) which corre-
sponds to its canonical orientation. Define the homomorphism

(4.0.1) ».: πk{%{X)) - πk+2(?r+ι<#X))

as the composite of the above pairing with the map a \-> 1 ® a from

to πj(S2)®πk(§>
j

A further composition with the homotopy inverse of the complex sus-
pension isomorphism (CST) % : Wr_{(X) ^ %?r+ι(X) allows the following
definition:

Definition 4.1 (Friedlander-Mazur). Denote the composition $ ) — 1 O}Ĵ
by s: LpHn{X) -> Lp_χHn(X) . We call the iteration

s{p) = £^os,: LpHn(X) - Lp//0W s Hn{X, Z)

p-times

the F-M (Friedlander-Mazur) generalized cycle map.
This map has several interesting properties. For example, it is shown

[14] that s{p): LpH2p(X) -> Hn(X, Z) coincides with the classical cycle
map from the Chow group of cycles modulo algebraic equivalence to the
singular homology of X. See [15, Chapter 19]. Those maps are used
in [14] to construct an interesting filtration in the ordinary homology of
X which relates to Grothendieck's arithmetic filtration and the Hodge
filtration.

Our purpose in this section is to associate the F-M cycle map in a natural
way with Almgren's map, obtaining, as a consequence, the functoriality of
the F-M map. This fact was conjectured in earlier versions of [14] and
first proven in [22].

In a similar fashion to Proposition 3.7 we prove:
Lemma 4.2. The following diagram commutes:

i

4

for all m and k.

Proof. After choosing a representative / : (Im , dlm) —» (3"k(X), o)

for a class a e πJ3Tk(X)), define «/: (Γ+2, dΓ+1) - (JT f c + 2(P'| |*), o)

by tf(x) = Fιtf(x).
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For n > max{Nf(δ)9 KJδ)}, and δ suitably chosen, one can define
the chain maps:

/ :

and
φ l f :

Define another chain map

Ψ : l(m + 2,n)->

by sending a /?-cell α = α 1 ® 0 α

m+\ ® α

m+2 t o

where α = α{ <8> αm , α" = α m = 1 , and we are identifying α m + 1 <g> α m + 2

with an integral cycle of dimension d, supported in P = I jdl .

Observing that Ψ(α) = φU for 0-cells and also <9Ψ(α) = φu(α) for
1-chains, one can construct, just as in Proposition 3.7, a chain homotopy
between φ^ and Ψ after a suitable choice of δ .

Therefore, if α . = α{ ® αj are the m-cells of I(w + 2, n), then, by
definition,

and this concludes the proof.
4.1. Projective case. Let X be a projective variety and let e: &Λ

•^ (̂A") be the natural embedding, cf. Remark 2.3. Our main result is the
following

Theorem 4.3. The composition j / o e t coincides with the F-M cycle
map. In other words,

Proof. We use induction on the dimension of the cycles. For cycles of

dimension zero, &0{Y) = &0{Y) for any algebraic set Y. Furthermore,

the cycle map from π.(§*(y)) = π^Z^Y)) into H^Y Z) is actually the

Dold-Thom isomoφhism [8], as pointed out in [1], and of which Almgren's

isomoφhism is an extension.
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Assume that for any algebraic variety Y the cycle map

s{r): LMm^HiiYiZ)

equals the composition si o e^, for all r < r0 and any i >2r. Recall that
the map

ί : * , - 2 , β - 2 ( 3 o A
is the composition of

defined in 4.0.1, with the inverses of the (complex suspension) isomor-
phisms

and

Gathering the diagrams in Proposition 3.7 and Lemma 4.2 together one
obtains the following commutative diagram:

Γ π , _ 2 r o _ 2 ( ^ + 1 W ) ^ i - ^

By induction, the composition J/J o eχ (in the bottom line of the di-

agram) is the cycle map s(χo): Lr Hi+2(X) -+ Hi+2+2r (X\Ί). A simple

diagram chase gives

- 1 - 1

as desired, q.e.d.
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The following corollary follows from the naturality of Almgren's map
in the Lipschitz continuous category and the theorem above.

Corollary 4.4. The F-M cycle map is a natural transformation ofcovari-
ant functors. In particular, it is independent of projective embeddings.

Corollary 4.5. Given a projective variety X ^ Fn the following diagram
commutes:

S(P)

LpHn(X) - £ - Hn(X;Z)

4 1*
-

V

where τ is the Thorn isomorphism for the hyperplane bundle over X.
Proof It follows at once from the Theorem and Proposition 3.7.
4.2. Quasiprojective case. Given a pair (X, X1) of projective varieties

one can use the natural morphism

% % Zlp{X, 1V

see Definition 2.2, together with the "relative" Almgren's isomorphism

* : πn-2P&2P(
x > * ' ) P y * ' ) ) ^ Hn(X, X' Z),

to obtain a natural transformation of functors in the category of pairs of
projective varieties, which we still denote

sf: LpHn(X, X1) - Hn(X, X' Z),

where LpHH(X, X') d^{ πn_2p(&p(X)/&p(X')) (see [24]).
It is shown in [24, Theorem 4.3] that the isomorphism type of the topo-

logical group ^p{X)/Φp(X') depends only on the isomorphism type of the

quasiprojective variety X — X1.

Now, if one denotes by H*U(U) the Borel-Moore homology ([5], [16])

of a quasiprojective variety U, one sees that HfM(U) is naturally isomor-

phic to the relative singular homology H^ (U, V- U Z), for any projective

compactification V of U. This fact, together with the naturality of s^

for pairs, makes the following definition independent of choices:
Definition 4.6. Given a quasiprojective variety U, define the cycle

map

(4.6.1) s ^ : L ^ M
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as J / o e^, where the Lawson homology of U is defined as

LpHn(U) d±{ πn_2p{%{V)l%{U - U)),

for a projective compactification Z7 of U.
Corollary 4.7. (?/ve« <z/? algebraic vector bundle E ^ X of rank r over

a projective variety X, the cycle map commutes with pullback under the
bundle projection', i.e., the following diagram commutes:

LpHn(X) ^ ^ Lp+rHn+2r(E)

Proo/ It follows at once from the commutative diagram:

Ψp{X) -lL ξ + r ( P ( £ φ l ) ) -ϋU Wp+r(Ψ(Eφl))/Wp+r(ScoX)

1

where the p 's are pullbacks of currents and cycles and the p, 's are quo-
tient maps.

Remark 4.8. As it is natural to expect (see [24, Remark 4.9]), the pull-
back of cycles under algebraic vector bundle projections induces an iso-
morphism in Lawson homology. A proof of this fact has been recently
given in [12]. It follows that both horizontal arrows in the corollary's
diagram are isomorphisms.

Proposition 4.9. For a pair of quasiprojective varieties ([/, V), with V
closed in U, the cycle map gives a morphism of localization long exact
sequences

LMU-V) >LH_

••• > H*M(U) > H™(U-V) > H™(V) > •••

The localization exact sequence for Lawson homology was obtained in
[24] as a consequence of the results in [23] which show, in particular, that
the exact sequence

-V-(U-V))
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is a principal fibration. The proof of the proposition follows from defini-
tions and homotopy exact sequences for fibrations.

5. The class &

Using the results obtained so far, together with Lawson's complex sus-

pension theorem it can be easily seen that the cycle maps sff turn out

to be isomorphisms for certain varieties, such as products of projective

spaces Ϋn x P m , affine spaces A" and hyperquadrics $* of arbitrary rank

k in P " + 1 . See [24] for computations of those specific examples.
In order to simplify some statements, we introduce the following defi-

nition.
Definition 5.1. An algebraic variety U lies in the class 3* if the cycle

maps

sf:LpHn{U)-+HH{U)

are isomorphisms, for all p and n > 2p .
Remark 5.2. An interesting and important characterization of this class

is the following fact:

A variety U is in class S? if and only if the inclusion

e: &p(U) «-> 3ϊ2p{U) of the space of the algebraic p-cycles

&p(U) into the space of topological 2/?-cycles 3?2p{U)

(= 2?2p{U)I!^2pW - U)) is a weak homotopy equivalence.

This assertion follows from the definition of sfy as the composition

and the fact that the last map is an isomorphism.
It is immediate from its definition that the varieties lying in class 3 are

very special in nature. If X e 3 is smooth and projective (resp. quasipro-
jective) for example, its 2/?th singular homology H2 (X Z) (resp. Borel-
Moore homology) is isomorphic via the cycle map to LpH2p(X) (resp.
LpHn(U)), which in turn is the Chow group of algebraic cycles modulo al-
gebraic equivalence. In particular, the 2plh cohomology is of type (p, p)
in the Hodge decomposition.

The following definition was essentially taken from [15, Example 1.9.1]:
Definition 5.3. Let (X, Y) be a pair of projective varieties. We say

that X is an algebraic cellular extension of Y if X has a filtration X =
Xn D Xn_x D D Xo D X_λ = Y by projective subvarieties, with each
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Xt — Xf_γ a disjoint union of quasiprojective t/ . isomorphic to affine
spaces C"IJ', for i > 0. In case Y = 0 , we recover Fulton's definition of
a projective variety with a cellular decomposition.

Theorem 5.4. If X is an algebraic cellular extension of Y, then X lies
in the class 3 if and only if Y does. In particular, one sees that 3 is
closed under algebraic cellular extensions.

Proof One argues using induction on the height of the filtration, and
the result follows from a simple combination of the localization sequence
of Proposition 4.9 with the fact that affine spaces are in 3 and that

p p f

Corollary 5.5. If X is a projective variety with a cellular decomposition
in the sense of Fultony (i.e., X is an algebraic cellular extension of 0 ) ,
then it lies in the class 3 .

Remark 5.6. Let X and X' both have cellular decompositions X =

X D Xn_x D ••• D Xo D X_λ = 0 a n d X' = X'm D X'm_χ D ••• D X'o D

X'_χ — 0 . It is easy to see that
(X x Y)n ^ U X( x Y.

provides a cellular decomposition for XxY, and hence the product X x Y
also lies in the class J ? .

Therefore one sees that the following examples, as well as affine and
projective algebraic bundles over them, lie in the class 3*:

Example 5.7 (Generalized Flag Varieties G/P). Here G is a semisim-
ple linear algebraic group (defined over C), and P c G is a parabolic
subgroup; i.e., it contains a Borel subgroup B of G.

It is a well-known fact that G/P possesses an algebraic cellular decom-
position; see [4] and [2] for details. Consequently all G/P's lie in class
3 .

This family of examples contains such spaces as the Grassmannians
G(n, k) of /c-dimensional linear subspaces of C"+ and the classical flag
varieties.

Example 5.8 (Compact hermitian symmetric spaces). These spaces are
products of generalized flag varieties, and hence lie in class 3*, according
to Remark 5.6.

Example 5.9 (Varieties with reductive group actions). A smooth pro-
jective variety which admits an action by a reductive group G with isolated
fixed points possesses an algebraic cellular decomposition in virtue of the
Bialyniki-Birula decomposition [3]. More generally, a smooth projective
variety having a reductive group action all of whose fixed components lie
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in class 3* must also be in class J ? . The argument again follows using
induction on the Bialyniki-birula stratification together with Corollary 4.7
and Remark 4.8.

We end this paper with some general questions and comments which
we hope to address in future work:

(1) Which other characterizations have those varieties in class £f ? Or,
more generally, those for which the cycle map is an isomorphism through
a certain range?

(2) What information about Hodge structures and filtrations on the ho-
mology (under the image of the cycle map) of a smooth variety can one
retrieve, in the spirit of [14], using the current theoretic approach?
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