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MORSE INEQUALITIES FOR
PSEUDOGROUPS OF LOCAL ISOMETRIES

JESUS A. ALVAREZ LOPEZ

Abstract

For complete pseudogroups of local isometries with compact space of
orbits, the method of Witten is used to prove Morse inequalities for the
invariant cohomology. An inequality is also proved for the cohomology
of the space of orbit closures. These results are applied to the basic
cohomology of Riemannian foliations, relating the tautness character to
basic functions with no degenerate critical leaf closures.

Introduction

Let ^ be a complete pseudogroup of local isometries of a Riemannian
manifold M such that the space of ^-orbits, Mj%f, is compact. In this
paper we prove Morse inequalities for the invariant cohomology H(M)^
(the cohomology of the complex (A(M)^, d) of invariant differential
forms).

Definition. An ^-orbit closure F is called a critical orbit closure
of a function / e C°°(M)%, if F contains critical points of / . F is
called a nondegenerate critical orbit closure if F is the disjoint union of
nondegenerate critical submanifolds. In this case, the index of F is well
defined as the index of any of its connected components, and denoted by
mF^f) (OΓ siπφly m?) - The function / is called a nondegenerate %?-
Morse function if all of its critical orbit closures are nondegenerate. For
such a function, let Cήt^(f) be the set of its critical orbit closures.

(See e.g. [4] or [6] for the degenerate Morse theory that will be used in
this paper.)

If / is a nondegenerate ^-Morse function, then Crit^ (/) is a discrete
subset of the space of ^-orbit closures, M/J?. Thus Cr i t χ (/) is finite
because Mj%f is compact. The existence of nondegenerate ^-Morse
functions follows easily from the case solved by A. G. Wasserman [24],
where %? is generated by an action of a compact Lie group.

Received November 29, 1990 and, in revised form, April 20, 1992.
Key words and phrases. Pseudogroup of local isometries, Morse function, invariant coho-

mology, Riemannian foliation, tautness.



604 JESUS A. ALVAREZ LOPEZ

If F is a nondegenerate critical orbit closure of a function / e
C°°(M)^9 then the quadratic form HFf, defined by the Hessian of /
on the normal bundle NF = (TM\F)/TF, is nondegenerate. So HFf
yields a decomposition of NF as direct sum of the subbundles, NF +

and NF _ , where HFf is respectively positive and negative definite. The
index mF is thus the fiber dimension of NF _ . The ^-line bundle over
F of orientations of 7VF _ will be denoted by ffF . (See §2 for the defi-
nition of ^-vector bundle.)

The indices of the critical orbit closures of a nondegenerate J^-Morse
function / give some information about H{M)^. But clearly / cannot
give any information about the cohomological contribution from each orbit
closure. We prove the following result that establishes Morse inequalities
relating the dimensions of the spaces HJ(M)^ to some numbers whose
definition combines the invariant cohomology of the critical orbit closures
and the corresponding indices. If the orbits are dense, these Morse in-
equalities are trivial equalities.

Theorem A. Let ^ be a complete pseudogroup of local isometries of
an n-dimensional Rίemannian manifold M with Mj%f compact. Let f
be a nondegenerate %?-Morse function on M, βj{βf) {or simply /?.) =

dimH^M)^, and

, f)(or simply p.) = £ dimHj-m'(F,

Then we have the inequalities

etc., and the equality

7=0 7=0

The proof of Theorem A is an adaptation of the method of Witten [25],
especially as it is shown in [21, Chapter 12]. The general arguments of dif-
ferential operators used in [21] can be easily adapted. Indeed, by results
of A. El Kacimi Alaoui [10], the general study of ^-invariant transversely
elliptic operators on invariant sections can be reduced to the study of in-
variant transversely elliptic operators on <9(«)-manifolds. Then, as in the
proof of Witten, the nondegenerate ^-Morse function is used to mod-
ify the Laplacian on invariant forms so that its "^-smoothing kernel"
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concentrates around the critical orbit closures, whose cohomological con-
tribution is thus obtained by a local study. The most special part of the
proof is made in this local analysis, where the Haefliger description of a
neighborhood of each orbit closure is strongly used [13] (see also [19]).

This idea of Witten is also used in [5] to prove the degenerate Morse
inequalities of Bott [6]. But the local analysis of [5] around the non-
degenerate critical submanifolds is more complicated. Indeed, another
modification of the de Rham complex has to be used so that the Betti
numbers of the manifold can be compared to the Betti numbers of the
iΛcohomology of the Witten complex around each critical submanifold.
In our case, since the invariant de Rham complex of each critical orbit
closure is of finite dimension, we can find a large enough dilation of the
metric in the transverse direction so that the error terms in the tangential
direction are small. We thus get the Morse inequalities by approximation.

Similar tools will be used to prove the following estimation of the di-
mension of Hι (M/J?).

Theorem B. Let %? be a complete pseudogroup of local isometries of a
Riemannian manifold M with Mj%f compact. Let f be a nondegenerate
βf-Morse function on M. Then dim Hx{Mj%?) is less than or equal to
than the number of critical orbit closures F of f with mF(f) = 1 and
NFi_ βf-trivial.

(See §2 for the definition of ^-triviality.)
These theorems can be applied to the cases of isometric Lie group ac-

tions, and holonomy pseudogroups of Riemannian foliations. For isomet-
ric Lie group actions on compact manifolds, Theorem A is a special case of
the degenerate Morse inequalities, and Theorem B gives an inequality for
the cohomology of orbit spaces. For Riemannian foliations on compact
manifolds, Theorem A gives Morse inequalities for the basic cohomology,
and Theorem B gives an inequality for the cohomology of the space of leaf
closures. Moreover, since the tautness character of the foliation depends
on its basic cohomology ([17], [1] and [2]), Theorems A and B have some
consequences relating this property to basic functions with no degenerate
critical leaf closures.

By the reduction of transversely elliptic operators on (M, %?) to trans-
versely elliptic ones on some compact <9(/t)-manifold W, these Morse
inequalities can be considered as Morse inequalities on W. Nevertheless,
the de Rham complex of W does not correspond to the de Rham complex
of M. If G is a compact Lie group, the same method can be used to prove
Morse inequalities for the invariant cohomology of differential complexes
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on compact (/-manifolds, assuming these complexes have a nice behavior
with respect to the Koszul Slice Theorem. But in this paper we are only
interested on the invariant de Rham complex.

Another possible way of studying the Morse theory for a pseudogroup
%? of local isometries is the following. By using a nondegenerate ,^-Morse
function and the Haefliger description of a neighborhood of each orbit
closure, it could be possible to obtain a description of the pseudogroup up
to "equivariant homotopy equivalence". Theorems A and B should follow
from this description. Moreover this method could be used to answer the
following question: When is it possible to find a Riemannian foliation
whose holonomy pseudogroup is the given %? ? A. Haefliger has solved
this problem in a neighborhood of each orbit closure [13], so hopefully a
nondegenerate ^-Morse function could be used to build up a foliation
with the Haefliger local models around the critical orbit closures.

For a Lie group G, the equivariant Morse theory of a (/-manifold
M is studied in [4] (see also [16] for more applications). It is a Morse
theory for the equivariant cohomology HG(M), which is defined as the
cohomology of ExGM, where E is the universal G-bundle. At least when
G acts freely on M, we have HG{M) = H(M/G). These inequalities also
follow from Theorem A when the action is free. An interesting problem
is to adapt our method to obtain some type of Morse inequalities for the
cohomology of more general orbit spaces.

The paper has the following distribution. In § 1 we describe some facts
about modified Laplacians. §2 contains the analysis of invariant differen-
tial operators on invariant sections. In §3 we describe the invariant forms
on a neighborhood of each orbit closure. A proof of the existence of non-
degenerate ^-Morse functions is given in §4. Theorems A and B are
respectively proved in §§5 and 6. Some consequences of these theorems
are shown in §7. The above results are applied to Riemannian foliations
in §8, and finally, some examples are studied in §9.

1. Modified Laplacians

Let (M, g) be a Riemannian manifold, and (A(M), d) its de Rham
graded differential algebra. Let £$ c A(M) be a C°°-closed graded dif-
ferential subalgebra containing the constant functions such that

(1.1)

(1.2)

where a->β — -ιχβ for a, β e A(M), X being a smooth section of
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Λ TM that is g-dual of a, i.e., a = g(X, •). From (1.1) we also have
g{β, 3B) c 38^, where # also denotes the induced metric on the fibers
of Λ TM*.

Any strictly positive linear functional /: 38^ -> R (for / > 0 we have
/ Φ 0 iff /[/] > 0) defines an inner product ( , )7 on 38 in a standard
way, (a, β)r = I[g(a, β)]. The Hubert space completion of {β, ( , )7)
will be denoted by L)(&) . Analogously we define L\{β) (1 < p < oo)
generalizing the usual definitions of //-spaces. It is proved in [2] that
δ: 38 -> ̂  has a ( , )7-adjoint operator dj\3S ^33 iff

(1.3) 3y7 € ^ * such that (y7 , α>7 = -7[ί(α)] Vα G ^ 1 .

Moreover, if (1.3) holds, then dj = d-y7Λ , and the operator δj = δ-77-»
is ( , )7-adjoint of d on 38 .

In this paper we need a more general situation. Let E be a flat Rie-
mannian vector bundle over M, and (Λ(Af, i?), rf) the graded differen-
tial space of i?-valued forms on M (see e.g. [7]). Now we consider a
C°°-closed graded differential subspace if c A(M, E) such that

(1.4)

Here g also denotes the induced metric on the fibers of /\ Γ ¥ * ® £ . We
thus have an inner product (-, )7 on W defined as above, yielding the
spaces LPj(W). Suppose that the exterior derivative has a ( , )7-adjoint
operator δj on W . We will use the notation D7 = d + δj and Δ7 = D] .

These definitions have a natural behavior with respect to products. For
/ = 1, 2, let (M., g.) be a Riemannian manifold, 3S. c >4(Af.) a C°°-
closed graded differential subalgebra that contains the constant functions
and satisfies (1.1) and (1.2), / a strictly positive continuous linear func-
tional on 3Sf satisfying (1.3), Ei a flat Riemannian vector bundle on M z ,
and ^ C A(Mi, Eέ) a C°°-closed graded differential subspace satisfying
(1.4). We have the flat Riemannian vector bundle E = pτ\Eι <g> p r ^ ^
on M = M{ x M 2 , where pτ{ and pr2 are the canonical projections of
M onto each factor. There is a canonical injection of graded differential
spaces

{ ® 2

(a{ ®s{)®(a2<g> s2) *-+ (pr*αj Λ pr*α 2 )

The C°°-closure & of its image satisfies (1.4) with respect to the product
metric g = gχ x g2 .

In particular we have a canonical injection of 3Sγ 0 ^ 2 into y4(M),
whose C°°-closure, 38, is a graded differential subalgebra that contains
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the constant functions and satisfies (1.1) and (1.2). Moreover I{ <g>/2: &®<g)

&2 —• R <8> R Ξ R has a strictly positive continuous linear extension

1\SB* ->R such that

nn = iι[χ~ i2if(χ, on = h\y ->7i[/( > y)W
Proposition 1.1. In the above situation, there exists δj on %, and Z>7

is the continuous extension to & of Dτ <g> id + w ® ZX 6y ίAe injection

(1.5), where w denotes the degree involution.
The proof of this result is a standard computation.

2. Analysis of invariant differential operators
on invariant sections

Let %? be a complete pseudogroup of local isometries of an «-dimen-
sional Riemannian manifold (M, g), M/β? the space of ^-orbits, and
Ml%? the space of ^-orbit closures. For any subspace S of differential
forms on M, S%, will denote the space of ^-invariant differential forms
in S, and 5 ί = 0 the space of forms a e S such that ιχa = 0 for any
vector field X that is tangent to the ^-orbit closures. If βf is generated
by the action of a Lie group H, then SH will be used instead of S#.
Λcp(M) will denote the space of differential forms a on M such that
the projection of supp(α) to Mj^ίf is compact. Finally, as usual, AC(M)
will be the space of differential forms on M with compact support.

A vector bundle π: E —• M will be called an ^-vector bundle when
each A E ^ can be lifted to an isomorphism of vector bundles

A: jΓ^DimίΛ)) -+ π ' ^ I m ^ ) )

such that

(i) (hιh2Γ = hιh2,

(ii) (idM)~ = idE,

(iii) {h\v)~ = h\π-\,u) for any open subset U c Dom(Λ).

Clearly the direct sum and tensor product of ^-vector bundles are %?-

vector bundles in a canonical way. Let %? be the pseudogroup on E gener-

ated by the diffeomorphisms h (h e %f). If E has an ^-invariant struc-

ture, then it will be called an ^-structure on E. For instance we have the

definition of ^-triviality, ^-orientability, ^-flatness, ^-connection,

^-Riemannian structure, and ^-Hermitian structure.
We will use the following notation. C°°(E) and C™{E) will be the

spaces of smooth sections of E, and smooth sections with compact sup-
port, respectively. C°°(E)^ will be the space of ^-invariant sections
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of E, i.e., the sections s € C°°(E) satisfying sh = hs for all h e
%f. Diffr(£') will be the space of ^-invariant differential operators
on C°°(E), and Diff^CE) the space of their restrictions to C°°(E)^.
We will say that any R e Όifί^(E) is transversely elliptic when its leading
symbol is an isomorphism at each ξ e TM* which vanishes on vectors
that are tangent to the orbit closures. (This is a generalization of the def-
inition given in [3].) Moreover, if (R, E) is a differential complex [11,
§1.5], we will say that it is a transversely elliptic complex when its leading
symbol is exact at each ξ as above.

If N c M is an ^-invariant submanifold, we define an ^-vector
bundle E over N as an ^-vector bundle, where β?N is the restriction
of %* to N. We also define ^-structures over E as ^-structures, and
C°°(E)^ will be used instead of C°°(E)^ .

Assume that %? is complete [13]. Then we have the following descrip-
tion of its structure, which is due to E. Salem [22]. (It is an adaptation
of the description of Riemannian foliations due to P. Molino [18].) Let
π: M —• M be the O(/7)-principal bundle of orthonormal frames of M
with the Levi-Civita connection. Then %f canonically defines a complete
pseudogroup / o n M , that preserves the canonical parallelisms of M,
and whose orbit closures are the fibers of an equivariant surjective submer-
sion πb: M —> W, where W is an O(n)-manifold. Moreover, for each
point x e W there is a Lie group G, a dense subgroup Γ c G , and an
open neighborhood U of x such that the restriction of 3Γ to n^ι(U) is
equivalent to the pseudogroup generated by the Γ-action on GxU, acting
by left translations on G and trivially on U . So πb corresponds to pr2

by this equivalence. The Lie algebra of this Lie group does not depend on
the chosen point if M/<%* is connected, and is called the structural Lie
algebra of %?.

The C°°-closed graded differential M-subalgebra A(M)^ C A(M) con-
tains the constant functions, and satisfies (1.1) and (1.2). The canonical
injections

define an isomorphism of graded differential spaces

(2.1)

In particular

(2.2)
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Moreover π and πb define an identity

(2.3) M[W = W/O(n).

Hence M/<%* is compact iff so is W. In this case we can define a strictly
positive continuous linear functional /: C°°(M)%, -• R by integrating on
W with respect to any O(«)-invariant volume element. By integrating
on W with respect to this volume element, we also have the usual inner
product ( , -)w on the space of sections of any Hermitian vector bundle
over W. In this case, iP^E)^ will be used instead of L^(C°°(E)^).

By the Salem description of %?, the study of transversely elliptic op-
erators on invariant sections can be reduced to the case of compact Lie
group actions. Namely, we have the following.

Theorem 2.1. In the above situation, for each β?-Hermitian vector bun-
dle π: E —• M, there is a canonically associated O(n)-Hermitian vector
bundle π': E1 —• W, and a canonical isomorphism of algebras

This isomorphism preserves transverse ellipticity, and adjointness with re-

spect to ( , ) 7 and ( , -)w if MjSff is compact.

The proof of this theorem will be a consequence of Proposition 2.2,
where we consider a slightly more general setting. A description of E'
and the stated isomorphism will be given.

Suppose that there exists a surjective Riemannian submersion p: M —>
N whose fibers are equal to the ^-orbit closures. Moreover suppose that
for each point x e N there is a Lie group H, a dense subgroup A c / / ,
and an open neighborhood V of x such that the restriction of %? to
p~ι{V) is equivalent to the pseudogroup generated by the Λ-action on
H x V, acting by left translations on H and trivially on V. We have this
situation for <%" as we saw, and also for pseudogroups generated by free
actions. Let

pE = {se C°°(E\p-l{y))^ such that y e N}.

As in [10, Proposition 2.7.2], it can be proved that pE is a Hermitian
vector bundle over N in a canonical way. Let 9 be another complete
pseudogroup of local isometries of M commuting with the elements of
%?, and let 3?χ be the pseudogroup generated by 9 and %?. The ele-
ments of ^ can be projected by p, defining a pseudogroup p& of local
diffeomorphisms of N . Assume that E is also a ^-Hermitian vector bun-
dle such that the elements of 9 commute with the elements of %f, and
let F be a p^-Hermitian vector bundle over N. Then, canonically, p*F
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and pE are ^-and ^^-Hermitian vector bundles respectively. Moreover
there are canonical isomorphisms

p*pE^E,
(2 4)

(x,s)» s(x) if (x,s)e p*pE, i.e. s e C°°(E\p-lp{χ))^,

(2.5)
PP*F*F,

s^fifse C°°(p*F\p-i{y))^ ands(x) = (x,f)

for any x ep~\y),

of Ŝ - and /^-Hermitian vector bundles respectively.

Any R e Diff̂  (E) canonically defines a differential operator pR e
Όifΐpg(pE) as in [10, Proposition 2.7.7], whose order is less than or equal
to the order of R. On the other hand, for any S e Όifίp^(F) there
is an operator p*S e Diff̂ , (p*F) of the same order, defined as in [10,
2.8], such that pp*S corresponds to S by the canonical isomorphism
C°°(F) £ C°°{pp*F) defined by (2.5), and whose leading symbol satisfies

σL(p*S)(x, p*ξ)(x, η) = (x, σL(S)(p(x), ζ)(η)),

σL(p*S)(x,ζ)(x,η) = 09

for x e M, { e τ

P(x)N* > £ e TxM* vanishing on k e r ^ J " 1 , and
^ € -P̂ jri Thus p*S depends on the chosen ^-invariant metric on
M. It is easy to check that ^|c~(jE:) corresponds to P*pR\c

oo(p*PE)
by the isomorphism C°°{p*p{E))^ ^C°°(E)^ defined by (2.4). Hence
the following result follows.

Proposition 2.2. The maps R •-• pR and S *-> p*S induce isomor-
phisms

t f and

isomorphisms, restrictions of p&-transversely elliptic complexes
correspond to restrictions of ̂ -transversely elliptic ones.

Theorem 2.1 follows by taking E1 = πbπ*E, and the isomorphism
Diff^(E) s Difl£(/I)(£') is induced by the map R ι-> π^π*i? of Diff^ί^)
to Dif f^ l? ' ) .

Theorem 2.1 has the following consequence.
Corollary 2.3. // M/Jf is compact, for each R e Όifί^(E) there exists

some R*1 e Όifί^(E) which is ( , )radjoint of R on C°°(E)^. More-
over, if (R, E) is a differential complex of order r, then it is a transversely
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elliptic complex iff RjfRj + Rj_ιR*I_ι is a transversely elliptic operator of
order 2r for all j .

Proof The existence of R*1 follows from Theorem 2.1 by taking for-
mal adjoints on W. The remainder of the corollary can be obtained by
similar arguments to those in [11, Lemma 1.5.1].

Example 2.4. If E is a flat ^-vector bundle over M, then we also
have the graded differential space of invariant is-valued forms
(A(M, E)^, d) on M, and its cohomology H(M, E)%,. By Corol-
lary 2.3 there exists dι,δ1 e Όϊf[^(/\TM* ® E) whose restriction to
A(M, E)^ are ( , )7-adjoint of δ and d respectively. Moreover Dι =
dj + δj , and Δ7 = Z>7 are transversely elliptic since (d, /\ TM* <g> E) is
an elliptic complex. So (M, g, A(M)jr, /) satisfies (1.3), and the opera-
tors dj and δj are modifications of d and δ as we saw in § 1. The class
defined by y7 in Hι(M)^ depends only on %f [2], and will be denoted
by ξ(jr). From [2] it follows that if (M, g,A(M)^,ΐ) satisfies (1.3)
for some strictly positive linear functional /' on C°°(M)^, then /' is
defined by integrating on W with respect to some O(«)-invariant vol-
ume element in the same way as / was defined. Thus /' is continuous.
Moreover all such functionals /' define the same class ζ(βf).

By using Theorem 2.1 and some of the tools of its proof, we get the
following.

Proposition 2.5. Any Q e Όiff^(E) is C°°(M)^-linear iff it is the
restriction of some zero order operator of Όifΐ^(E).

Proof Clearly, Q is C°°(M)^-linear if it is the restriction of some
zero order operator of Όiff^(E).

To prove the reciprocal statement, by Theorem 2.1 and Example 2.4
we can assume that M is compact and β? generated by the action of
a compact Lie group G. Take any R e DiffG(E) whose restriction to
C°°(E)G is Q. Let F C M b e the open subset of regular (7-orbits, and
p: V -> G\V the orbit space projection, which is a principal bundle. Since
Q is C°°(F)G-linearon C°°(E\V)G, pR is C°°(G\F)-linear, and thus of
order zero.

Let V be the covariant derivative of any connection on E. (V may not
be (/-invariant. Indeed there may not be any G-connection on E.) Then
R can be given as a sum of compositions of smooth sections of E n d ^ ) ,
and covariant derivatives with respect to vector fields on M which are
tangent to the G-orbits on V otherwise pR would not be of order zero.
But since V is dense on M, these vector fields are tangent to the G-
orbits on M. The space of such vector fields are C°°(Λf)-generated by the
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fundamental vector fields of the G-action, as can be easily checked. Hence
R can be given as follows. Let g~ be the Lie algebra of right invariant
vector fields on G, and Xχ, , X linearly independent elements of
g~~ that generate a complement of the kernel of the induced infinitesimal
action Q~ -> C°°(TM), X H+ X*. For multi-indices / = (jχ, , j ^ ) ,

let V7 = v{1 Vj

p

p, where V = Vχ* . Then there are sections fs e

C°°(End(£)), fj = 0 for almost all j \ such that

By using a G-invariant partition of unity argument, the result follows
if, for each x e M, Q is the restriction of some (/-invariant zero order
operator on some (7-invariant neighborhood Uχ of x. By Koszul Slice
Theorem, there is a representation of the isotropy group Gχ on Rm (m =
codimGx) such that Uχ can be chosen equivariantly diffeomorphic to
G xG Rm (the quotient space of the "diagonal" Gχ-action on G x f

given by b(a, v) = (ab~ι, bv)). The (7-action on G xG Rm is induced

by the G-action on G x Rm , acting by left translations on G and trivially
on Rm . We will identify Ux to GxG Rm . Let p:GxRm -+UX be the

quotient space projection, and V the pullback of V to p*(E\v ) . For

each multi-index / as above, let Vj = v{1 ••• V^ , where V = V(^ 0 ) ,

and

Since X*, - - , X* are linearly independent at each point in V, and

p^(X., 0) = X*, there are G-invariant metrics on p~ι(UχΠ V) such that

each (X., 0) is orthogonal to the fibers of p. It is easy to check that

R = p*R on p~ι(UχΠV) for any of such metrics. Since p~ι(UχΠV) is

dense on G x Mm , we get that R is G-invariant on M, and canonically

associated to R. Moreover, since the vector fields (X., 0) are tangent to

the G-orbits in GxRm , pτ2R is C°°(Rm)-linear, and thus of order zero.

So, over Ux , Q corresponds to the restriction of the zero order operator

p(pr*2pτ2K) ^ Λe isomoφhism defined by (2.4) and (2.5).

Remark. The proof does not follow easily from the identity R j=

ππ*bπbπ*R on invariant sections, for it seems to be difficult to find an J^-

invariant metric on M so that π*R is C°°(M)^-linear, and thus πbπ*R

of order zero.
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The object of the remainder of this section is to canonically associate
an elliptic operator to an invariant transversely elliptic one on invariant
sections. So the study of these operators can be reduced to the study of
elliptic ones. We shall prove the following.

Theorem 2.6. Let %? be a complete pseudogroup of local isometries of a
Riemannian manifold M such that M/β? is compact. Let I be a strictly
positive linear functional on C°°{M)^ such that (1.3) is satisfied. Let E
be an ^Ήermitian vector bundle, and R an ^-invariant transversely
elliptic differential operator on C°°(E). Then we have the orthogonal de-
composition [10]

If R = JR*7 , then R defines a selfadjoint operator in L){C°°{E)^) with
discrete spectrum. For any Schwartz function φ on R there is some k e
C°°(E <8> E*)jrx#,, that will be called the βf-smoothing kernel of φ(R),
such that

(φ(R)(s))(x) = (/ ® id)[y -> k(x, y)s(y)]

for any s e C°°{E)^ and any x e M, where I Θ id: C°°(M)^ <%> Eχ =
C°°(M, Eχ)^ -> R <g> Eχ = Ex . φ(R) is a trace class operator, and

Ύr{φ(R)) = I[x >-> Tτk(x, x)].

Finally, the pointwise norm \k(x,y)\ (x,y e M) is estimated by the

operator norm of φ(R): L\{C°°{E)^) -> Lf{C°°{E)^).
By Theorem 2.1 and Example 2.4, we can consider the case where βf

is generated by a left isometric action of a compact Lie group G on M
to prove Theorem 2.6. Let E be a G-Hermitian vector bundle over M,
R a transversely elliptic operator of ΌifίG{E), and Q the Lie algebra of
G with the corresponding metric. We have the representation of g on
C°°(E) given by

t—^0

for X € 9, s € C°°(E), and x € M , where #, = exp(tX). Let
Λfj, , X be an orthonormal frame of g, and ω j , , ωq the dual
coframe. Let dE and 5^ be the first order differential operators on

~ * ° ° * defined by

^ ) Θ ( ω i Λ

ι=l

ι=l
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for s e C°°(E) and a e Λg*. Clearly dE g and δE Q do not depend on
the chosen orthonormal frame of g. Let also DE = dE +δE .

For any s e C°°(E), any a € /\g*, and any x £ M, we clearly have
that (DE Q(s <g> α))|GΛ. depends only on (s ® α ) | G j c . So DE defines an
operator DE Q χ on C°°(E\Gχ ® Λβ*) Let τ: G -• Gx be defined by
τ(α) = αx. We also have the canonical isomorphism

(2.6) E\Gχ®/\g**τ(τ*(E\Gχ)®/\TG*).

But since τ*(E\Gχ) has a global (/-invariant frame,

(2.7) C°°(τ*(E\Gχ) 0 /\ ΓG*) - C°°(τ*(E\Gχ))G 0 ̂ (G) .

Then the following result follows easily.
Lemma 2.7. DE χ corresponds to τ(id Θ I>G) by (2.6) am/ (2.7),

where DG = dG + δG\ '

The operators !?<8>id and i?*0id are well defined on C°°(E®/\Q*) =
C°°(E) O Λ0* 5 a n ( i both of them commute with D^ g since R and i?*
are (/-invariant. Then, on the space

we have the operator

RG =

where r is the order of R.
Lemma 2.8. RG is an elliptic operator that preserves the subspace

C°°(E)G θ C°°(E)G, and such that

R 0
0 -J•c

Moreover, if R is formally selfadjoint, then so is RG.

Proof Since R 0 id and R* <S> id commute with DE g , the leading

symbol of RGR*G is

A similar expression also holds for σL(R*GRG). Therefore, the transverse
ellipticity of R and Lemma 2.7 imply the ellipticity of RGR*G and R*GRG

with standard arguments. Thus RG is elliptic.
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The remainder of the proposition is obvious because DE Q(C°°(E)G) =
0 and DE is formally selfadjoint. q.e.d.

By averaging the G-action we get a retraction η0: C°°(E) —> C°°(E)G

with commutes with R and R*. Then we can define a retraction η of
C^iE^^g^θC^iE^Ag*) onto C°°(E)GΘθ = C°°(E)G as the com-
position

C°°(E ® /\ fl*) Θ C°°(£ ® /\ 0*) -> C°°(£) Θ C

where the first map is the direct sum of the canonical projections, the
second one is η0 θ η0, and the last one is the first canonical projection.
Clearly η is an orthogonal projection, and Lemma 2.7 yields ηRG = Rη
and ηR*G = R*η .

Since RG is elliptic, we have the orthogonal decomposition

C°°(E ® /\β*) θ C°°(^ 0 /\g*) = Ker(7?G) θ

By applying */ to both sides of this equality we get [10]

C°°(E)G = *

Suppose thati? is also formally selfadjoint. Then so is RG and the
operator exp(itRG) preserves C°°(E)G. Thus R is essentially selfadjoint
in L2(E)G by [9, Lemma 2.1]. Moreover its spectrum is given by the
eigenvalues of RG whose corresponding eigensections are ^-invariant.

For any Schwartz function ^ on I , let k be the smoothing kernel of
φ(RG). Define kG eC°°(E®E*) by

It is easy to check that kG is invariant by the induced actions of G x G
on M x M and E x E. Moreover

(φ(R)(s))(x)= ί kG(x,y)s(y)vol(y)
JM

for seC°°(E)G and xeM.
The stated formula for the trace of φ{R) follows arguing as in the

proof of the formula for the trace of a smoothing operator in terms of its
smoothing kernel (see e.g. [21, (6.9) and (6.10)]).

It is easy to check that L\C°°{E)GY = L 0 0 ^ 0 0 ^ ) ^ ) , yielding that
the pointwise norm \kG{x, y)\ (x, y e M) is estimated by the operator
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norm of φ(R): Lι(C°°(E)G) -> L 0 0 ^ 0 0 ^ ) . So the proof of Theorem
2.6 is completed.

3. Differential forms on a neighborhood of an orbit closure

Let %* and (M, g) be as in the above section. First, we shall recall the
way of obtaining the Haefliger description of a neighborhood of an orbit
closure by using Salem description of <%* [13], [19]. Second, we shall use
this result to obtain a description of the space ^-invariant differential
forms on this neighborhood.

Take some x e M and some z e M such that π(z) = x. Suppose
that z is adapted to the orbit closure F = %?x at x, i.e., the first r

vectors of z generate TχF (r = dimF). The orbit closure E = %fz is

a principal bundle over F with structural Lie group H c O(n). All the

points of E are orthonormal frames adapted to F, so He. O(r) x O(n'),

where n= n-r. Let πQ: Q -> F be the 0(fl')-principal bundle of or-

thonormal frames of TFL , and P the canonical projection of E to β .

Then πp = π Q | p is an //'-principal bundle over F, where //' is the pro-

jection of H to O(n). Moreover ^ canonically defines a pseudogroup

^ of local diffeomorphisms of P. The Levi-Civita connection on M

restricts to a connection on E, which projects to a connection on P. The

corresponding algebraic connection will be denoted by ω: ft* —> Aι(P).

Let ^ x id be the pseudogroup of local diffeomorphisms of P x Rn

generated by products of local diffeomorphisms in β?p and restrictions

of the identity map of Rn . ^ x id canonically defines a pseudogroup

<%*p xH, id of local diffeomorphisms of P xH>Rn .

Theorem 3.1 [13], [19]. In the above situation, there exists an %f-

invariant open neighborhood U of F such that the restriction of ^ to

U is equivalent to the pseudogroup ^p xH> id on P χH> Rn , which in

turn is equivalent to its restriction to P xH> B for any open ball B c Rn

centered at the origin.
To describe the equivalence of Theorem 3.1, we shall use the following

lemma whose proof is an easy exercise.
Lemma 3.2. Let & be a pseudogroup of local homeomorphisms of a

locally compact topological space X. If Xj^ is compact, then there is a
relatively compact open subset Xo c X intersecting all the orbits of &.

Let MQ c M be the open subset given by the above result, and ^
the restriction of <%* to Mo. Since Mo intersects all the ^-orbits, the
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inclusion MQC M generates an equivalence between ^ and %?.
Let Fo = FΠMO , and Po = P\F . Also let V be a tubular neighborhood

of radius λ of the zero section in (TF^ , and B the ball in Rn of radius
λ centered at the origin. Since MQ is relatively compact, we can take λ
small enough so that the exponential map of M is a diffeomorphism of V
onto some open subset Uo C M. Then the composition of the canonical
identity PQxH*B = V with the exponential map defines a diffeomorphism
Φ of PQXHIB onto Uo. Moreover the restriction of <%*pxH>id to PQxH>B
corresponds by Φ to the restriction of ^ to Uo. Then, since PoxH> B
and Uo respectively intersect all the orbits in P xH, B and U = &{U0),
Φ generates an equivalence between %?p xH> id and the restriction of β?
to U.

Since Φ generates an equivalence of pseudogroups, Φ* defines an iso-
morphism of graded differential algebras

(3.1) A{U), a A(P xH> B)^XHiia C A(P *„, M"')^X / /, i d

/
Now A(P xHι Rn ) j r x ι i d can be described as follows.

P H

Proposition 3.3. Let ^f be an H'-normed vector space of dimension
one. Then there are isomorphisms of graded algebras

(3.2) *W ***')*,**.*.S*

(3.3) n'

(3.4)

(3.5)

(3.6) ^ > | 0 V

Here we consider the Hf-invariance and interior products i defined by the

H1-actions on PxHf x l " <z«rf PxR" respectively given by a(z, b, v) =
(za~ι, ba~ι, flv) and a(z, υ) = (za~ι, αv) ybr a, b e Hf, z e P, and
υ eB.

Proof If p: P x B —> P xH, B denotes the quotient space projection,
p* clearly defines (3.2).

The canonical injection of Λ(P) <g> A(Rn ) into A(P x Rn ) defines an

isomorphism of A(P)^ (8) A(Rn ) onto A(P x Rn ) ^ x i d since ^? has

dense orbits, and thus also defines (3.3).
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(3.4) is induced by the isomorphism [12, §8.4, Theorem I]

(3.7) A(P)ιl=0^f\^^A(P), α®7~αΛωΛy,

where ω Λ : /\Sy* —> A(P) is the canonical extension of the algebraic con-

nection ω: S)* —• Aι(P).

Let η: P x H' x Rn> -+ P x Hf x Rn' be the diffeomorphism defined

by η(zΛa9υ) = (za~ι, a, av). Let Γ and Γ ; be the //'-actions on

PxH' x Rn> defined by

Tb(z, a, v) = (zb~ , ab~ ,bυ)9 Tb(z, α, ϋ) = ( z , ba,v).

We have

ηTbη~\z,a,v) = (z,ab~l ,υ),

ηTbη~ (z, a,v) = (zb~ , &α, M;).

Therefore we get a commutative diagram

A(P x H' x Rn>) —£-+ A(P xHf x Rn')

V ) V , , ,o — ^
where the vertical arrows denote the canonical injections, and the lower
horizontal arrow is an isomorphism. Hence (3.5) follows.

Since the induced Hf -action on Sf <g> 3* is trivial, the canonical iso-
morphism

A(P,5?)^ y=0 0 A(Rn>, &) S A(P)^^0 β^(RΛ')

preserves //'-invariant elements, and thus defines (3.6). q.e.d.
(3.1)—(3.6) define isomorphisms

( 3 * 8 ) Acp(U) s

In particular

(3.9) C°°(C/)^ a C°°{B)H,,

Now we will prove that there are special choices of metrics and strictly
positive functionals that behave nicely with respect to (3.8) and (3.9).
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Proposition 3.4. Let g denote both any H1 -invariant positive definite
inner product on Rn , and the induced Riemannian metric on Rn . Let gp

be any ^-invariant metric on P. Then there is an %?-invariant metric on
U that, on differential forms, corresponds to gp x g Z?y (3.8). Moreover
there is an O{n)-invariant volume element on W such that I on C^(U)^
corresponds to /' on CC(B)H, by (3.9), where /' is the integration func-
tional with respect to the g-volume element.

Proof Let gH, be any bi-invariant metric on //'. Consider the metric
g\ = yfigp x SH' X S) on P x H1 x B, where η is the diffeomorphism
defined in the proof of Proposition 3.3. Let g2 be the Riemannian metric
on P x B defined in the following way. For (z, υ) e P x B, we have
T{zv)(PxB) = TzP®TυB, and T{zev)(PxHfxB) = TzPφTeH

fφTvB,
where e denotes the identity element of Hf. Let X, X' be horizontal
vectors in TzP, Y, Yf e j j ; , Y*, 77* the corresponding fundamental
vector fields on P, and Z , Z ' eTυB. Define

g2 is ^ x id- and //'-invariant (with respect to the diagonal //'-action).
So g2 defines an / x ^ id-invariant metric on P xH* B. It is easy to
check that, on differential forms, the corresponding ^-invariant metric
g on U corresponds to gp x g1 by (3.8).

For x e F, take any z e π~ι(x) and let /s =.β?z as before. Also let
x' = πb(z) and Z7' = O{n)x . The maps

are clearly isomoφhisms. So O{n)χι acts isometrically on (Rn ,^ ' )

by Koszul Slice Theorem, πbπ~ι(U) is equivariantly diffeomorphic to

O(n) x O ( π ) ; B . It is easy to check that //' is the image of the homomor-

phism O{n)χ, —• O(n') given by the above action. So we get an isomor-
phism

(3.10) ^ ( ^ - ^ I / ^ S C 0 0 ^ , /->/,

defined by /?*/ = p r ^ / 7 ) , where /?: O(n) x ΰ - > πbπ~ι(U) is the induced
projection. Furthermore the above equivariant diffeomorphism can be



MORSE INEQUALITIES FOR PSEUDOGROUPS 621

chosen so that (2.2), (3.9), and (3.10) define a commutative diagram

Therefore the last statement of the proposition follows directly from the
following lemma.

Lemma 3.5. Let g be any positive definite inner product on Rm, and
G a compact Lie group, and suppose that there is an isometric action of
a closed subgroup H c G on (R w , g). Let U = G χH Rm with the
canonical left action of.-G, and p: G x Rm —> U the canonical projection.
Consider the isomorphism C™(U)G s C™(Rm)H> / ^ / , defined by
p*f = p r ^ / ) . Then there is a G-invariant metric g on U such that

//vol= / /vol'

for all f e C™(U)G, where vol and vol' respectively denote the g- and
g -volume elements.

Proof. Consider a bi-invariant metric on O(m) such that the canonical
map O(m) —• O(m)/O(m - 1) = S'""1 is a Riemannian submersion onto
the unit sphere with the restriction of the Riemannian metric defined by g
on Rm , which will be also denoted by g . Choose a bi-invariant metric gG

on G so that the homomorphism H —> O(m), given by the //-action on
Rm , is a Riemannian submersion onto its image. Then, for any v e Sm~ ,
the map H —> Sm~ , ft »-• fe^;, is a Riemannian submersion onto its image.
Consider the diίfeomorphism η: H x Rm —>• // x Rw given by η(b, υ) =
(b, bυ), and let gj = η*{gH x ^ ' ) , where g^ is the restriction of gG to
//. Define a metric g2 on G x Rm in the following way. For (a, v) €
G x Rm , we have the canonical identity T{aυ)(G xRm) = TaG Θ TyR

m .

Let * , * ' € Ta{aH)L , 7 , r ' € Ta{aH), and Z, Zf £ TyR
m. Then

( L ^ y , Z ) , ( L ; . 1 ^ , Z') €• TeHΘTvR
m = T{e^υ){H x R w ) , where ^ is

the identity element of G. Define

It is easy to check that g2 is invariant by the diagonal action of //,
and defines a G-invariant metric g on U so that /? is a Riemannian
submersion.

Fix any υ e Rm , and let x = p(e9υ). The formula

(3.11) Vol(G c) = Vol(//u)Vol(G)/Vol(//)
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is a direct consequence of the following ones:

(3.12) Yol(Hv) = \\v\\'dYol(H)/Yol(Hv),

(3.13) Vol(G c) = \\v\\'dYol(G)/Yo\(Gχ) = \\v\\/dYol(G)/Yol(Hv),

where d = άim(Hv), and || ||; is the /-norm. (3.12) and (3.13) can be
proved as follows.

Let g~ , #~ , and f)~ be the Lie algebras of right invariant vector fields

on 6 , H, and //υ respectively. There are canonical inclusions fi~ c

To compute Yol(Hv), consider the fiber bundle τ: H —> /fι> defined

by τ(6) = Zw . For any w = bv e Hv , we have τ " 1 ^ ) = Hw = bHvb~ι,

which has the same volume as Hv = τ~ι(v). We get

Ker(τ^) = {Xb\X e A d ^ ) } ,

Moreover it is easy to check that

\\τb(Xb)\\ = \\v\\'\\Xb\\

for any X e Ad^Si'^ , yielding (3.12).
To compute Vol(G c), consider the fiber bundle σ: G -» Gx given

by σ(α) = αx. Then σ = pσ, where σ: (J —• G x Rm is given by
σ(α) = (α, υ). For any y = αx e Gx, we have cr"1^) = (? = αGγα~ι,

which has the same volume as Gχ = α~!(jc). Since Gχ = Hυ , as can be
easily checked, we get

Ker(σJ = {XJX € A d ^ ) } , K e r ( ^ ) x = {XJX e Ad f l (^) X } .

Moreover,

where ^: G -»• G is the inversoin map, and, for Y e Sj~, Y* is the
corresponding fundamental vector field defined by the //-action on Rm .

Take any X € Adα(ij'")-L , and any X' € Ada(fΓ n f£). Then

So *,(ΛΓβ) = (ΛΓβ, Ov) is g2-orthogonal to Ker(/)%(a υ ) ) , yielding

K W I I = ||*φ(ΛΓβ)|| = HΛΓβ||.

On the other hand,

X'α e Tα{αH) n Tα(αHvf = {ψ.(Y)α\Y e 15" nu"" 1}.
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Thus X'a = Ψ*(Y)a for some Y e fi~ n ή " 1 " , and therefore

with (ψ+(Y)a ,Y*)e Keτ(p^av)). Moreover it can be easily checked that

η.(ψ.(Z)a, Z;) = (ψm(Z)ά , OJ for all Z e *f

Thus (0^,-1^*) is £2-orthogonal to Ker(^ ( f l v ) ) , yielding

Furthermore, &+(Xa) is g2-orthogonal to σ^{X'a). So (3.13) follows.
Now let πx: U -> G\C/ and π 2 : E m -> i/\Rm be the canonical projec-

tions onto the orbit spaces of the above actions. Let VχC.U and V2 c Rm

be the open subsets of regular H- and G-orbits respectively. There is a
canonical identity G\U = H\Rm so that π{(V{) = π2(V2) (= W), which
is a manifold. Let gw be the unique Riemannian metric on W so that
πχ\v and π 2 | F are Riemannian submersions. Let μ be the measure on
G\U that is concentrated on W, where it is given by the g^-volume el-
ement. For / E C^°(U)G, let / be the unique continuous function on
G\U such that π[(f) = / . Then π*2(f) = / , and therefore

JGG\U

Vol(G)
/ Vol(π2

l(θ))f(θ)dμ(θ) (by (3.11))

V θ 1 ^ ^/vol'.

Hence the result follows by multiplying this g by a positive constant.

4. Existence of nondegenerate J^-Morse functions

For any ^-orbit closure F , any x e F, and any transversal Σ of F
at x , it is easy to check that F is a nondegenerate critical orbit closure
of some / G C°°(M)^ iff JC is a nondegenerate critical point of f\Σ .

The following result assures the existence of nondegenerate ^-Morse
functions.

Theorem 4.1. Let k be a nonnegative integer. Then in the above situ-

ation, any function in C°°(M)^ can be uniformly C -approximated by a

nondegenerate %*'-Morse function.
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Here "uniform Cfc-approximation" means uniform approximation of
all the /th derivatives for i < k.

Proof. Take any function / e C°°{M)^ . Using the Salem description
of %? (§2), the proof of this theorem can be reduced as follows. If s is a
local section of M defined around some point x e M, and Σ C Dom(s) is
a transversal to %?x at x, then it is easy to see that Σw = πbs(Σ) C W is a
transversal to the 0(«)-orbit of πb(s(x)). Moreover (πbs)*\f\Σ) = fw\Σ ,
where fw corresponds to / by (2.2). Therefore the proof follows directly
from the case solved in [24], where %* is generated by a compact Lie group
action on a compact manifold.

5. Proof of Theorem A

Suppose that φ is a positive even Schwartz function on R with φ(0) =
1. Then φ(Dj) is of trace class, and let

The following proposition follows with the same arguments as in [19,
(12.3)] by using Theorem 2.6, especially its Hodge type decomposition.

Proposition 5.1. We have the inequalities

β2-βι+βo<μ2-μι+μo,

etc., and the equality

7=1 7=1

For any nondegenerate <^-Morse function / on M, and any real num-
ber s, let

ds = e~sfdesf = d-sdfA,

δj s = esfδje'sf = δI-sdf-, = δ- (y7 + sdfh

Let Dτ =</+<$. c = Df + sH, where H = dfΛ - df--, and let Δ7 =

D] s . With the same arguments as in [21, (12.8)], we get the following.

Lemma 5.2. (i) H2 is the endomorphism given by multiplication by

t
(ii) HDj s + Dj sH is an endomorphism of order zero.
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For any fixed ε > 0 we have the following.
Lemma 5.3. There is a positive even Schwartz function φ on R such

that 0(0) — \, the Fourier transform φ has compact support, and

for all F e Cήt^(f) and all j , where IF is the identity map on C
= R.

Proof Clearly we always have

<BmHJ{F, &F)^ < TV(Φ(DIF)\AJ(F^)

for any positive even Schwartz function φ with 0(0) = 1.
Choose a positive even Schwartz function ψ such that ^(0) = 1 and

ψ has compact support. For each u e R, let ψu be the Schwartz function
defined by ψu{x) = ψ(ux). Then we have

Since each Aj(F ,<PF)#> is of finite dimension, and F is an
closure, the result follows by taking Φ = Ψu for u large enough, q.e.d.

Since the support of φ is compact, it is contained in some interval
[-p, p] for some large enough p > 0. The following lemma can be
proved with the same arguments as in [21, (12.10)], by using Theorem 2.6
and Lemma 5.2.

Lemma 5.4. On the product of M and the complement of a 2p-neigh-
borhood of the union of the critical orbit closures of f, the smoothing %f-
kernel of φ(Dj s) tends uniformly to zero as s —• oo.

Even though p is fixed, by dilating the metric transversely to the critical
orbit closures, the 2/?-neighborhood of the critical orbit closures will be
made small. So, as in [21, Chapter 12], the above result will be used
to obtain the trace of φ(Dj s) as the sum of the contributions from the
critical orbit closures.

For any fixed F e Cήt^(f), we will use the notation of §3. Let f e
C°°(B) be the function that corresponds to f\v by (3.7). The origin 0 is
a nondegenerate critical point of f . Taking Morse coordinates (xJ) on
some H'-invariant open neighborhood Bf of 0 in B, we have

We can assume Bf = B . The number of negative λ .'s is equal to the index

of f at 0, which will be denoted simply by m .
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Consider on B the flat Euclidean metric g1 with respect to the Morse

coordinates (x 7 ) . For each r > 0 small enough, let Br be the g'-ball of

radius r in B centered at 0, and Ur = Φ(P xH> Br). Since / ' is H'-

invariant, clearly g is also //'-invariant. Moreover g is the restriction

of a flat Euclidean metric on Rn , which will be also denoted by g .

For each real number u > 0, we can also take the coordinates yj = uxj

on B, for which
. _ l λj j 2

j U

Therefore we can choose the Morse coordinates (xj) so that the closure of

B5p in Rn is contained in B . We can suppose that the Morse coordinates

on B are the restriction of the standard coordinates (xJ) on Rn . Then
f is the restriction to B of the //' -invariant function

2
j

on R" , which will be also denoted by f. Since / ' is //'-invariant,

we have //' C O{m) x O(ri - m). Let Hf_ be the projection of //' to

O(m). The projection //' —• H'_ defines an isometric action of //' on

£? = f\mRm . We thus have the isomorphisms (3.6) and (3.8) for this

particular choice of 3?.

Let gp be any //'- and ^-invariant metric on P, and gF the ??-

invariant metric defined by gp on F. Let g be the ^-invariant metric

on [/ given by Proposition 3.4 for these choices of g and gp. Let d'

and 5' respectively denote the differential and g'-codifferential operators

defined on both A(Rn') and Λ(R" , ^ ) . For 5 > 0, let also d's = d' -

sdfN, δ's = ί' - jrf/-., D's = d's + δ's, and Δ̂  = D* defined on both

and A(Rn>, ^ ) . Then we have [21, (12.13)]

, dxJΛ]) .

is an essentially selfadjoint operator with discrete spectrum [21,

^ s, e\ s
(12.14)]. For any integer k > 0, let e^ s, e\ s, be an orthonormal

frame of L2(Ak

c(Rn')) given by eigenforms of Δ^, and μ^s < μ\ s <
the corresponding eigenvalues. By [21, (12.14) and (12.15)] we have
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= 0, and can take

= U'/2π-n'/4 l[λ1/2 j exp ( - s^λ tffβ) dxl= U π-n'/4 l[λ1/2 j exp ( - s^λ jtffβ) dxlΛ---Λdxm

\where we assume that the first m of the λ.'s are negative. Moreover μ\ s

is of order s for (k, i) Φ (m, 0). If / is a normalized generator of

£• 5 = e[ s
then £• 5 = e[ s <8> I (i = 0, 1, 2, ) is an orthonormal frame of

L2(Ac(Rn , J?)) given by eigenforms of Δ^, whose corresponding eigen-

values are also the numbers *
s

Let

A = (A(P, ̂ f ^ c V

^ = A(P, S?)^p H,y=0 ®Ac(Rn>, S?)H, CA,

and let Ip be the identity map on C°°{P)^ = R. (A(P, -S^)^ z ' = 0 ,

( , ) 7 ) is an i/'-Riemannian vector space of finite dimension (since β?p

has dense orbits). Then

and

are finite rank ίί'-Riemannian graded vector bundles over Rn , and there
are canonical identities

Let f) and 5) be the Hubert spaces of Hf-invariant L2-bounded sections
of *V and "V1 respectively, with the inner product defined by g .

Let V: A(P)jp, —> A(P)^ ι>=0 and χ: f)* -> ̂ ( P J ^ - ^ Q respectively
denote the covariant derivative and the curvature of the algebraic connec-
tion ω [12, Chapter VIII, §§8.5 and 8.6]. For a pair of dual bases ev , e*
of # ' and S)*, consider the operators

on A{P)%, ιl=z0 ^ / \ ή ' * , where w denotes the degree involution, and θe

the Lie derivative with respect to the fundamental vector field associated

to e,,. Then
V

w ® dfit + dβ -\- h -\- Vj'-o ^ id
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corresponds by (3.7) to the de Rham derivative on A(P)^ [12, Chapter

VIII, §8.7, Theorem II]. Let

R = dθ + hχ + Vz/= 0Θid,

and let S be the operator on A that corresponds to R <8> id by (3.4)-
(3.6). Clearly the operator w <8>d' + S on A corresponds to the de Rham

derivative on A(P x Rn )#xiάtH'J^Q by (3.2)-(3.6).

Lemma 5.5. For any ψ e Coo(M/ί ), we have

(w <8> d'ψ^){S + SΓ) + (S + S*)(w ® d'ψ-τ) = 0.

Proof. Since (d'ψ A)* = d'ψ->, it is enough to prove only the first

equality. Clearly //* is the identity on l®l<g),4(R" ) H , t,=0 = A(Rn ) H , z/=0 ,

and thus gχ = gp x gff, x g = g' on this subspace of A(P x Hf x Rn ) .

Since d'ψ e A(Rn ) H , t,=0 , the first equality is equivalent to

(5.1) (w(S>w(S>dfψA){(R + R*)md) + ((R + R*)Θid)(w<S)W(S)dfψA) = 0

on

>

where R* denotes the adjoint of R on the finite dimensional Riemannian
vector space

Hence (5.1) follows from the fact R is homogeneous of degree one.
Lemma 5.6. {W®D'){S+S*) + {S+S*)(W®D') on A is the restriction

of a zero order operator of Diff̂ / (3^).

Proof By Proposition 2.5, it is enough to prove that (w <g> D1)

(S+S*) + (S+S*)(w®D') is C ^ R ^ - l i n e a r . Take any ψ e C°°(Rnt)H,,

and let Ψ be the operator of multiplication by ψ on A(Rn , Sf). Then

d'ψ = d'ψ A +Ψd', δ'ψ = d'ψ-> + Ψδ'.

Since S + S* is C°°(R" ^/-linear, we get

((tt; Θ D')(S + 5*) + (S + S*)(tι; ® Z>'))(id ® Ψ)

= (id (8) Ψ)((w 0 Z ) ' ) ^ + 5*) + (S + 5*)(tι; Θ £>'))

+ (ti; ® (rfV Λ H-rfV"1))^ + S*) + (S + S*)(w o (d'ψ A +d'ψ^))

= (id O Ψ)((ty (8) ZJ'jίί + 5*) + (S + S*)(tt; <8> Z)7))

by Lemma 5.5. q.e.d.
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Consider the positive symmetric operator Ts = (w <g> D's + S + S*)2

on A. By using the main result of [9] and averaging the if'-action on
C?°(^), we see that Ts is an essentially selfadjoint operator on £j, so
Ts = id®A's + S, where

S = (w ® Z/)(S + 5*) + (5 + 5*)(tϋ ® ^ ) + (S + 5*)2

is the restriction of a zero order operator which does not depend on s (by
Lemmas 5.5 and 5.6), and thus defines a continuous operator on £j. From
[15, Theorem 3.4] (see also [14]), and Lemma 5.2, it also follows that,
for s large enough, Ts has a discrete spectrum, and the corresponding
eigenspaces in # are of finite dimension. So φ{yJYs) is a trace class
operator on S).

Let Ψ be the operator of multiplication on 9) by some //'-invariant
nonnegative smooth function ψ on Rn with compact support and ψ(0) =
1. Clearly Ψφ(^/Ts) preserves #' and S)f± .

Lemma 5.7. l im^Tr(Ψ0( λ /7; ) | i ^) = 0.
Proof. Let

i, (1 = 0 , 1 , 2 , . - )

be an orthonormal frame of S)'± given by the eigenforms of Ts. For each
i and each s, αJ. .: k s Φ 0 for some (j , fc) Φ (0, m) since 1 ® έ ^ G y4;.
Thus we have

which is of order s. So

o

which converges to zero as s —> oo . q.e.d.
Lemma5.8. l i m ^ ^ T ^ ^ y T ; ) ! ^ )

Proo/ Since π ^ F can be canonically identified with the trivial line
bundle P x Sf, π*p defines a canonical isomorphism of graded differential
spaces

(5.2)
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Moreover ( , ) 7 corresponds to the restriction of ( , )7 by (5.2), and

thus Dτ corresponds to the restriction of Dr .

Because F is an ^-orbit, for any integer p , AP(F, @F)%> is of finite

dimension, say equal to d. Let fχ, , fd be an orthonormal frame of

AP(F, <9F)χ given by the eigenforms of Z>7 , and let θχ, , θd be the

corresponding eigenvalues. Since S\A> = d <g> id, we get

Ts\A, = Δ^ ^

by Lemma 1.1. So

which yields

(5.3) TrίΨrt^l^O-έΣ^^
ι = l 7=1

where i3/ p' ̂  is the closure in fy of

If ^ = m, (5.3) converges to

as 5 —> oo . If q Φ m , (5.3) converges to zero as s —> oo . Thus the result
follows, q.e.d.

For r > 0, let

Ar = (A(P,J7)^ιt__o®Ac(Br,J?))H,,

and let S)r be the closure of Ar in # . If we take supp(ί^) c l? r, then

Ψ ^ ( Λ / ^ ) ( Λ ) C Λ r, and thus

Lemma 5.9. We have

φ(Ts)(A3p) c ^ 4 p ,

Moreover φ(DE 5 ) : A{Vlp)^ -> i4(t/4/,)^ corresponds to φ(Ts): A3p -+ A4p

by (3.S).
Proof. Since φ is even and supported in [—p, /?], the result follows

from Proposition 3.6 with a finite propagation speed argument similar to
that given in [21, (12.10)].

End of the proof of Theorem A. For the fixed ε > 0, choose φ, and
p as above. Choose also an ^-invariant metric g on M such that each
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critical orb.it closure F has a 4/?-neighborhood UF 4 of the type given

by Theorem 3.1, so that the neighborhoods UF 4 are disjoint to each

other, and the restriction of g to each UF 4 is as before.

Since β. = dimH(A(M), ds) for all s, the /?7's satisfy the inequalities

of Proposition 5.1 with respect to the numbers μ* given as the traces of

the operators

( 5 4 ) Φ(Di,s)\L^(M)jr)

By Theorem 3.6, each μ* is the image by / of the trace of the smoothing
^-kernel of the operator (5.4) over the diagonal. So, using Lemma 5.4
we obtain

= Σ
where Ψ F is the operator of multiplication by a nonnegative smooth %?-
invariant function on M that is equal to 1 on UF 2p and supported in
UF 3 . Hence, by Lemmas 5.7, 5.8, and 5.9, the trace of xVFφ(DI s) on

L2j(Aj(M)^) converges to the sum of the traces of the operators

from which the result follows by Lemma 5.3 since ε > 0 is arbitrary.

6. Proof of Theorem B

We will use the same notation as in the above section.
There is a filtration of A(M)# by differential ideals

FkA(M)χ, = 0 { α e Ar(M)^\ιχa = 0 for X = Xχ A Λ Xr_k+ι, if the
r

vector fields X{ are tangent to the ^-orbit closures} .

The associated spectral sequence (Et, dέ) converges to H(M)jr . From
(2.1) we have

So

(6.1) E'2'° t

by (2.3) and the result of [23], yielding a canonical injection of Hι (M/β?)

into Hι(M)*
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By the Hodge type decomposition of Theorem 2.6 applied to Όι s, and

using ds(C°°(M)χ) c AX(M)# I==o, we obtain
(6.2)

Hence, in consequence of (6.1) we get

(6.3) Ker(Z)/5) n \

Let F € Cr i t^ ( / ) . From (3.8) for 2? = R with the trivial //'-action
it follows that

so that Ψe™s e Aι

c{B)H, y = 0 iff both m = 1 and H'_ = {id} . Otherwise,

ΨeJ2^ -L Ac(B)H> tι=Q . Thus, with similar arguments to those in the proof
of Lemma 5.8, and using Lemma 5.9, we get

, if m = 1 and H'_ = {id},

s— 0 0 ' Λcp\u3P)jr- { o , otherwise.

When m = 1, clearly //^ = {id} iff 7VF _ is X-trivial.
For each Z7 G Cri t^(/) , take an operator of multiplication ΨF as at

the end of the proof of Theorem A. Then

dimHl(M/^) < hmΊτ(φ(DItS)\AιlM)^J (by (6.3))

Σ Tr(ΨF0(/)7 s)\A\,M) . ) (by Lemma 5.4).

Hence Theorem B follows from (6.5).

7. Some consequences of Theorems A and B

Suppose Ml%? is connected in this section. From [2] we have that
= 0 iff both the structural Lie algebra g of βf is unimodular, and

the ^-orbit closures are minimal submanifolds for some ^-invariant
metric on M. The following corollaries of Theorems A and B give con-
ditions for having these properties.

Corollary 7.1. If there is a nondegenerate ^'-Morse function f such
that vχ(%?, f) < i/ 0(^\ / ) , then ξ(β?) = 0. In particular, this is true if

Proof From Theorem A it follows that βx{^) < βo{^) = 1, so that
= 0, yielding ξ(JT) = 0.
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Corollary 7.2. Suppose that there is a nondegenerate J%* -Morse function
on M such that NF _ is βf-trivial for any critical orbit closure F of index

one. Then the ^-orbit closures are minimal submanifolds for some %?-
invariant metric on M.

Proof If Q is not unimodular, then the statement is true without as-
suming any other hypothesis [2].

On the other hand, if g is unimodular, ξ(βf) can be considered as

an element of Ή\M[W) [2]. But Hι(M/ΊP) = 0 by Theorem B. So

= 0, and %? thus satisfies the stated property.
Example 7.3. Consider the O(«)-action on Sn defined by the restric-

tion of the O(«)-action on Rn + 1 = R" x R, acting canonically on R" and
trivially on R. Let %? be a complete pseudogroup of local isometries of
a Riemannian manifold M. If Mj%? is homeomorphic to G\Sn with
n > 2, where G is any closed subgroup of O(n), then the ^-orbit clo-
sures are minimal submanifolds for some ^-invariant metric on M (by
Corollary 7.2). This is not true for n = 1 (see Example 9.1).

Proposition 7.4. Suppose that M is %f -orientable. Let f be any non-
degenerate %?-Morse function on M. Then vn(J%f', /) > 0 iff g is uni-
modular.

Proof If Q is unimodular, the Hn(M)^ φ 0 [2]. So vn > 0 by
Theorem A.

Reciprocally, assume vn > 0. For any F e Cήt^(f), we have mF <
codim F , so n — mF > dim F . Moreover the equalities hold iff / reaches
a local maximum at the points of F. So, since υn > 0, there exists an
F e Cήt^(f) such that mF = codim F , and

(7.1)

For such an F , @F is isomorphic to the ^-line bundle of orientations of
F, because M is ^-orientable. Hence (7.1) implies the unimodularity
of g [2]. q.e.d.

A nondegenerate ^-Morse function will be said to be perfect if βj(3?)

= vj(*9f) for a l l ; .
Corollary 7.5. If M is βf-orientable, ζ{M) φ 0, and g is unimodular,

then there is no perfect nondegenerate 2?7-Morse function on M.
Proof We have βn = 0 since M is ^F-orientable and ξ(^) φ 0 [2].

On the other hand, Proposition 7.4 yields vn > 0 for any nondegenerate
^-Morse function.
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8. Application to Riemannian foliations

Let & be a Riemannian foliation of codimension q on a compact
connected manifold M, and (Ab(^), db) its basic complex [20]. Then
the holonomy pseudogroup <%* of 9" is a complete pseudogroup of local
isometries of some manifold T with Γ / ^ compact and connected, and
there is a canonical identity (A(T)^, έ/Γ) = (Ab(^), db). So H{T)^ is
isomorphic to the basic cohomology Hb(9') of ^ . Moreover there is a
natural homeomorphism of Mj%? onto the space of leaf closures Mj^.
In this case ξ(9') will be used instead of ξ{βf), and the structural Lie
algebra g of & is called the structural Lie algebra of &.

As in the introduction, for a basic function we can define critical leaf

closures, nondegenerate critical leaf closures, and the corresponding in-

dexes. We also have the obvious definition of a nondegenerate J^-Morse

function / , for which we have Cήt^-(f), Vj(9~, / ) , and NF _ for any

F e Cήtp(f). Then Theorem A yields a relation between the basic Betti

numbers of 9' 9 βb .{9') (or simply βb j) = dimAΓ^(^), and the num-

bers i/j{y 9 f) for a nondegenerate J^-Morse function / on M. Theo-

rem B also gives an estimation of dim Hx (M/^).
The above relations have some consequences about tautness. A folia-

tion & on some manifold M is said to be taut when there exists some
Riemannian metric on M for which the leaves are minimal submanifolds.
When & is Riemannian and M compact, this property has the following
cohomological characterizations. First, X. Masa [17] has proved that 9"
is taut iff Hb(&') Φ 0 when SF is transversally oriented. We also have
that 9" is taut iff ξ(9') = 0 [1]. Moreover g is unimodular iff the re-
striction of 9" to some leaf closure is taut, and in this case the restriction
of 9r to any leaf closure is also taut [2]. Corollaries 7.1 and 7.2 have the
following consequences about tautness.

Corollary 8.1. If there exists a nondegenerate 9 -Morse function f
such that uι(9'9 f) < i/0(«^\ / ) , then 9' is taut. In particular 9' is

Corollary 8.2. Suppose that there is some nondegenerate 9 -Morse func-
tion such that NF _ is 2?'-trivial for any critical leaf closure F of index
one. Then the following properties are equivalent

(i) 9 is taut.
(ii) g is unimodular.

(iii) The restriction of 9 to some leaf closure is taut.
(iv) The restriction of 9" to any leaf closure is taut.
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The hypotheses of Corollary 8.2 are satisfied when MfΨ is homeo-
morphic to the orbit space G\Sn(n > 2) of Example 7.3.

A nondegenerate ^-Morse function / will be said to be perfect when
βbj{^) = vj(^ > f) f°Γ aU J - Corollary 7.5 has the following conse-
quence.

Corollary 8.3. If ^ is transversally orientable, not taut, and its re-
striction to some leaf closure is taut, then there is no perfect nondegenerate
&~-Morse function on M.

9. Examples

Example 9.1. This example of foliation is due to Y. Carriere [8]. Let
A be a matrix in SL(2, Z) of trace greater than 2. Then A has two real
irrational eigenvalues, λ and l/λ. The translates of the eigenspace of λ
define a flow ^ on T2 = R2/Z2 . The induced flow in T2 x R is invariant
by the transformation

hA: ((x, y) + Z2, t) ~ (A(x, y) + z\ t + 1),

so it defines a flow & on the hyperbolic torus T* = (T2 x ΈL)/hA. &

is a Lie g-folation, where 9 is the Lie algebra of the affine group [8].

Its basic fibering is the fibration πb: Ί3

A -> S1 defined by the canonical

projection of T2 x R onto R. So π*h is an isomorphism of C 0 0 ^ 1 ) onto

such that nondegenerate ^-Morse functions on T^ correspond
b

to nondegenerate Morse functions on S 1 . Indeed, if θ is a nondegenerate

critical point of any / e CO O(S1), then F = nb\θ) is a nondegenerate leaf

closure of π*bf and mF{τCbf) is equal to the index of / at θ . Moreover

each fiber with the restriction of & is a copy of (T 2, 3^), whose basic

cohomology is flj(^) = flj(^) = R and HJ

b(^) = 0 for j φ 0, 1.
Take for instance any nondegenerate Morse function / on S1 with two

critical poins, θ0 and θχ, whose indexes are 0 and 1 respectively. Then
clearly we have i/0(«^\ π*bf) = i/2(«^\ π*bf) = 1, and vχ{^, π*bf) = 2.
So the first and third transverse Morse inequalities are equalities in this
case, but the second one is the strict inequality

Indeed, since & is not taut (because Hb(^) = 0), and its restriction to
any leaf closure is taut, by Corollary 8.3 there is no perfect nondegenerate
^-Morse function.
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Example 9.2. Let θχ, , θn+ι be positive real numbers. Consider

the flow on Cn+ι - {0} given by the uniparametric group of transforma-

tions

These transformations preserve the unit sphere

J

yielding a Riemannian flow & on S2"+ 1 [10]. The basic cohomology
of & is computed in [10] by means of a long exact sequence involving

and H(S2n+ι), obtaining

R, if 7 is even and 0 < j < 2n,

0, otherwise.

Let B2n C Cn be the open unit ball centered at the origin 0. Then, for
1 < k < n + 1, 3F has the transversal j k : B2n -• S2"+1 defined by

for z = (zj, , zn). The jk"s define a complete transversal of & on

the disjoint union of n + 1 copies of B2n .

Let / : S2"+ 1 ^ R be defined by

It is easy to check that

= k-{k-\)\zλ\
2-{k-2)\z2\

2

So each jkf is a nondegenerate Morse function having 0 as the unique
critical point, which has index 2(k - 1).

The leaf closure of & containing {zχ, , zn+ι) is a torus of dimen-
sion equal to the number of Q-independent 0fc's corresponding to nonzero
zk

9s. Hence, for any choice of the θk's, the leaf Lk of & containing jk(0)
is closed and diffeomorphic to S1 . Therefore / is a nondegenerate Sr-
Morse function with Crit^(/) = {Lχ9>- , Ln+{} and mL (h) = 2(k-l).
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Moreover the basic cohomology of each SF\L is isomorphic to the coho-

mology of a point. Thus 1/ . ( ^ , /) = βhJ(9' ,* /) for all j i.e., the Morse

inequalities are equalities in this case.
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