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INDEX THEORY FOR CERTAIN
COMPLETE KAHLER MANIFOLDS

MARK STERN

1. Introduction and notation

Let M be a compact Kahler manifold of real dimension n with Kahler
form ω , and let 3f = 3fχ U \J&N c l b e a divisor with simple normal
crossings. The noncompact manifold M = Ή-3ί may be endowed with
a complete finite volume metric h with Poincare growth at the 3ίi (see
for example [2]) determined by the Kahler form

N

(1) ω = Tω - Σddloglog2 | σ / .

Here | | denotes a Hermitian norm on the line bundle [&•], σ is a section

of [&j] defining 2J., and T is a large real constant. We normalize the
Kahler form so that the Kahler form on C corresponding to the usual
metric dx2 Θ dy2 is \dz Ad~z = -idxNdy . Thus the metric determined
by a Kahler form ω is given by (vx ,v2) — iω(vι, Jv2), where / is the
complex structure operator. For a multi-index I, set

The manifold 3[ = 2Jι - U/D/, jφi^j inherits a complete metric hι

determined by ωl^ .

Let E be a unitary flat bundle over M, and F a hermitian holomor-

phic bundle over M. Denote by H'2(M,h,E) the L2 cohomology of

(M, h) with coefficients in E. The cup product pairing defines a quadratic

form Q on H^2(M, h, E). When this group is finite-dimensional, we

call the signature of Q the L2-signature of (Af, Λ, E). We define the L2-

Euler characteristic of (Af, h) to be ^ ( - l f d i m T / ^ M , h, C), when
each of these groups is finite dimensional. Similarly, given a hermitian
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holomorphic vector bundle F over M with finite dimensional d coho-
mology, we call the alternating sum of the dimensions of the <9-cohomology
groups the L2 holomorphic Euler characteristic of (M, h, F), and de-
note it by χ2(M, h, F). In this paper, we will establish index theorems
which will allow us to calculate these L2 characteristic numbers for a
restricted class of bundles.

Given a hermitian vector bundle E, let T(E), e(E), A(E), and L(E)
denote the Todd, Euler, and stable Hirzebruch A and L classes of E
interpreted as polynomials in the curvature form of E determined by the
given metric. Let v. denote the first Chern class of [3fj\, and ch(E) the
Chern character of E. Our main result is the following theorem.

Theorem 1.1. Let E be a unitary flat vector bundle with logarithmic
connection along 3J. Then the l}-signature of (M, h, E) equals

2n/2 f L{TM) + 2n/2 Σ ί L{T9fI) Λ \rE "[[(L^, A,) - l)/i/f,

where L(vi9 At) is an EndE valued class defined in (54), and tτE denotes
the trace over E.

Let F be a holomorphic vector bundle with a good connection in the
sense of (4.2). Then

χ2(M,h,F)= f ch(F)ΛT(TM)
JM

W ch(F)AT(TSfI)
w J9f*

where Fι denotes the restriction of F to 3\. The L2-Euler characteristic
of (M9 h) equals

f
JM

The index of the Dirac operator on M with coefficients in a bundle F with
a Dirac-good connection (see 4.3) is given by
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ch(E)ΛA(TM)

Λ A(T3I) Λ ( d i m i ? Γ 1 ^ \[{L{vi, Λt) - l)/i//β

We remark that Theorem 1.4 of [11] implies that the curvature integrals
arising in the above theorem compute topological invariants of M and the

Let E be a unitary flat vector bundle with logarithmic connection along
3 . Suppose that E is the canonical extension of a unitary local system
'V on M (see [3] and [4]). Let j:M -*Ή denote the inclusion map.
Then we have the following proposition of Timmerscheidt.

Proposition 1.2 [4, D.4].

H2{M ,h,E)*H(M, j&).

Hence for such E, Theorem 1.1 yields a signature theorem for
H\M, j\3^). Similarly, one can obtain Riemann-Roch theorems for
the sheaves Ώη^(E) defined in [4, Appendix D] (but with M denoted
X and E denoted Jϋ). These sheaves arise in the Hodge decompo-
sition of H\Ή9jJ^) obtained in [4, D.2]. When E = C is trivial,
H2(M, h, C) = H'(M, C), and a subset of the above results should also
follow from more elementary arguments involving the study of variation of
Chern-Weil representatives of characteristic classes under certain changes
of metric.

The proof of Theorem 1.1, which occupies the remainder of this paper,
is a variation and improvement of the techniques of [12]. The improve-
ment lies in the fact that the techniques in this paper can be used to
extend the results of [12] to β-reducible spaces. In [14], the boundary
contribution to the iΛsignature of an arithmetic variety is expressed in
terms of curvature integrals and special values of certain Sato-Shintani
zeta functions. Such a result may be viewed as a generalization of results
of Hirzebruch [8], Atiyah, Donnelly, and Singer [1], and Muller [10] re-
lating signature defects of Hubert modular varieties to special values of
Shimizu L-functions. In [8], Hirzeburch initially obtained a formula for
the signature defect of Hubert modular surfaces directly in terms of geo-
metric data associated to the divisor at oo of a smooth compactification.
The main results in this paper are, in a sense, a return to this original
geometric point of view—although for a different collection of spaces. It
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would be interesting to carry out the computations leading to Theorem
1.1 in the locally symmetric case in order to express the special values of
Sato-Shintani zeta functions in terms of geometric data associated to the
divisor at oo of a smooth compactification.

2. Algebraic preliminaries and index formalism

We recall here notation and elementary algebraic results from [14, §1].
Let V be a real oriented 2m-dimensional vector space with inner product
( , •). Let Λ'F* denote the full exterior algebra of F * . Given X eV,
let X* e F* denote the covector dual to X, determined by the inner
product. Let ε(X) denote exterior multiplication by X* on the left and
e*(X) its adjoint. We extend ε to F<g>C by complex linearity and extend
ε* antilinearly. We let

= e{X)-ε*(X)

denote left Clifford multiplication by X. We also define

Given distinct orthonormal vectors Xχ, , Xr e V, we call C(XX)
C(Xr) (respectively C(Xχ) •• C(Xr)) real (respectively imaginary) Clif-
ford multiplication by X* Λ Λ X*. We say that an endomorphism of
this form has real (respectively imaginary) Clifford degree r. An endomor-
phism which is the product of an endomorphism of real Clifford degree rχ

and one of imaginary Clifford degree r2 will be said to have Clifford bide-
gree (r{, r2) and complex degree ^ + r 2 . For an endomorphism which is
not homogeneous with respect to the Clifford grading, we define the real
and complex Clifford degrees to be the maximum of the corresponding
degrees of its graded components.

Suppose now that V has a complex structure. Let FR be a sub-
space of V such that V — VR e jVR, where j denotes the complex
structure operator. Let {Xj}™^ be an orthonormal basis of V, and set

Let {Ti}i=x be any oriented orthonormal basis of V. We define invo-
lutions %y , xv , and xR by

xy =

= ΓmC(Ti)...C(T2m),

•••C(Zm)C(Zι)...C(Zm).
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We will need the following standard trace identities (see, for example, [12,
(4.4.2)]).

Proposition 2.1. Let Yχ be an endomorphism of A'V* of real Clifford
degree rχ, and Y2 an endomorphism of imaginary Clifford degree r2 . Then

trace Y{ = 0 unless r{ = 0,

and

trace Yχ Y2 = 0, unless r{=0 and r2 = 0.

Let X be a smooth complex manifold with hermitian metric. For every
x e X, there exist involutions τv, τv, and τR of (A'K*) <8>C, with
V = TχX. These involutions piece together to give involutions of the L2

sections of the corresponding bundles. We denote these involutions by
τ, τ , and τR, and set τe = ττ. Let Ω ± denote the ± 1 eigenspaces of
τ , and let Ωe and Ω° denote respectively the +1 and - 1 eigenspaces
of τe . Then Ω* and Ω° are the even and odd forms respectively. One
easily checks that the elliptic operator

D = d + d*

anticommutes with τ , and τe , and we denote the restrictions of D to Ω+

and Ωe respectively by D+ and De. When D+ and De are Fredholm,

the index of D + computes the signature of the iΛcohomology of X, and

the index of De computes the Euler characteristic of the L2-cohomology.

Let L%'*(X,F) denote the L2 forms of type (0,*) with coefficients

in a holomorphic vector bundle F , and consider the associated Dolbeault

complex. Let 9* denote the formal adjoint of 9 . The elliptic opera-

tor DCF = 2χl2(β +Ί)*) anticommutes with τR. Let De

CF denote the

restriction of DCF to the +1 eigenspaceof τR. When De

CF is Fredholm,

its index equals J2(-lYdimH%9i(X, F), where H%'*(X, F) denotes the

L2 - ^-cohomology of X with coefficients in F .
For simplicity of notation, we primarily restrict our attention to the

index of D+ in this paper and merely indicate where modifications are
required for computing the index of other interesting operators.

For combinatorial reasons, we will depart from the modified heat equa-
tion techniques of [12], [13], and [14] for computing iΛindices, and re-
turn to an earlier well-known formalism. Let Q be a bounded operator
satisfying

(3) D+Q = I-Sl9
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with So and Sχ trace class. Then

(4) Index D = Tr So - Tr Sx,

where we use Tr to denote the trace over spaces of L2 sections, and will
use tr to denote the pointwise trace. Such a Q exists if and only if D+ is
Fredholm. Unlike the heat equation approach, this method of computing
the index applies equally to compact and noncompact manifolds. We
observe that on a compact manifold, the heat equation approach may be
embedded into the parametrix method. To see this, we observe that one
candidate for Q is given by

(5) Qt= f\De"\\-τ)ds.
Jo

Then

ΎrS0-ΎτSι = Ύrτe~ίA.

This returns us to the heat equation formalism when Qt is bounded and
the two heat operators are trace class. The complete manifold (M, h)
introduced in the introduction is noncompact, and it is easy to check that
the heat operators are not trace class. In order to take advantage of the
well-known heat equation asymptotics, we would like to incorporate Qt

into the construction of a parametrix with appropriate modifications to
deal with the problems associated to the noncompactness of M. Such a
parametrix construction is carried out in §6.

3. Preliminary computations in the Poincare punctured disk

Let E be a unitary flat vector bundle on the Poncare punctured disk. In

this section we compute the Laplace operator Ap E acting on ^-valued

forms in a suitable frame. We parametrize the punctured disk Δ* as

[0, oo) x Sι with coordinates r and θ. The Poincare metric is dr2 +

e~2rdθ2. Let w = e'd/dθ and w* = e~r dθ. Observe that dw* =

-dr Λ w*. The vectors d/dr, w generate orthonormal frames for the

Riemannian bundles associated to the tangent bundle of Δ*. Choose a

unitary frame for E which is covariant constant in the r direction. In

these frames, the exterior derivative d has the form

(6) d = ε(d/dr)(d/dr - e(w)e*(w)) + ε(w)(w + yE{w)),
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where γE is an End(E) valued 1-form which is skew with respect to the
flat hermitian metric on E . We assume that

where γ0 is a constant matrix in the given frame, and the O(e~2r) term is
a matrix whose coefficients have the desired decrease. It is easy to see that
we can choose a frame such that (7) is satisfied (with room to spare) if the
connection on E extends to a connection with logarithmic singularities
on the disk. It is this special case which motivates this assumption.

Given a form / , let / = e~rf2f. We metrize the image of ~ by

making it an isometry. Define d := e~r^2de^2. Then

(8) d = ε{d/dr){d/dr + 1/2 - e(w)e*{w)) + ε(w)(w + γE{w)).

The transformation / -> / is useful because it makes d/dr skew (when
acting on compactly supported forms). In particular, we have

d* = ε*(d/dr)(-d/dr + 1/2 - e(w)e*(w)) - ε*(w)((w + yE(w)),

and

(9)

Dp := d + d* = C{d/dr)d/dr + C(d/dr)C(w)C(w)/2 + C(w)(w + γE(w)).

Henceforth when working with the punctured Poincare disk, we will
always use this frame unless otherwise stated and will omit the ~ from
our notation.

We may decompose dr into its (1, 0) and (0,1) components dr =
dr + dr, where

dr=\{dr+iw*) and ~dr = \{dr - iw*).

Let Z and Z be the vectors dual to 2ι/2dr and 2ι/2~dr. Then acting on
(0, *) forms,

2l/2d - ε(Z)(d/dr + i(w + γE(w)) + 1/2),

(10) 2xj2T = β*(Z)(-a/βr + i(w + γE(w)) + 1/2),

Dc := 21/2(d + ΊΓ) = C(Z)d/dr + iC(Z)(-i/2 + w + γE(w)).
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The Laplacian takes the form

Δ, = - dZ/dr2 + 1/4 - (w + γE(w)f

+ 2(ε*(w)ε(d/dr) + ε(w)ε*(d/dr))(w + γE(w))

= - d2/dr2 + 1/4 - (w + γE(w))2

+ (C(d/dr)C(w) - C(d/dr)C(w))(w + γE(w)).

The d -Laplacian may be written

2Ώp = -f^ + i - (w + γE(w)f + i(C(Z)C(Z) + l)(tι; + γE(w)).
or ^

It is also useful to consider Dirac operators on Δ*. Let S be the bundle

of spinors over Δ* with its canonical Riemannian connection V s . In the

frame for S ® E determined by {d/dr,w} and the given frame on E,

VS

W®E = w + ±C(w)C(d/dr) + γE(w), and vJ®J = d/dr. (We are not yet

using the map / - • / . ) The corresponding Dirac operator DE is given by

DE = C(d/dr){d/dr - 1/2) + C(w)(w + γE(w)).

The spinor Laplacian D2

E is given by

Z)2 = _ { d / d r _ 1 / 2 ) 2 _ { w + y ^ ( t | ; ) ) 2 _ ( t | ; + ^(u ;))C(tι;)C(β/βr).

Now replacing / by / , this becomes

(11) - a 2 / ^ ^ 2 - (w + 7 £ (^)) 2 - (ti; + γE(w))C(w)C(d/dr).

Assume now that the eigenvalues of iγE are not integers. Then the
restriction of D2

E to forms supported in a region with r sufficiently large
is strictly positive; hence, DE (with appropriate boundary values) is Fred-
holm.

4. Frames and connections

As in the first section, let 3fχ, , 2N be the components of the divisor
2J, and let α. be a defining section of the line bundle [3fj]. For / =
{/j, , ik) , let 2}j = 2Jι, Γ\ Π 3f. . We consider only those / for
which this intersection is nonempty. A neighborhood of 2ι is covered by
sets of the form

(12) Vα = (A*)kxUα,

with {f/J a finite open cover of 3r

7. Let z = (zχ, , zk) denote the

coordinate functions for (A*)k . Then there exist smooth functions u. on
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Va so that \σi\
2 = eu>'\zj\2 . Relabel the divisors so that / = {1, , k] .

Recall that the metric on M is determined by the Kahler form

N

ω = Tω - Σddloglog2 |σ/.
7=1

Set ω 7 τ = Tω - Σ"=k+ι 98 loglog2 | ( j ; |
2 . Then

k

ω = ω 7 j - ^ < 9 [ έ Π o g 2 | σ | 2 ] / l o g 2 | σ | 2

7=1

2 ) 2
Uj Λ dUj + - ^ Λ dUj + 9i/;. Λ -J^-/(Uj + log |z ;. |

2)2 i .

iθ
Let z. = p e j, with p. = | z . | . Set r. = log|log/?71. Observe that i

these coordinates / dr. = e~Γj dθ.. Hence we may write ω as

in

_ 2 r - -rj d u . Λ d u . - i d r . Λ e j d u .
J J J c J 2(l+e-rJUj/2)2

where we recall that dc = i(d - d). Thus

ω - (ύj τ = ~Y^i dr. A e~Γj dθj + O(e~r),

where O(e~r) denotes the terms which for some j are O(e~Γj) (with
respect to an h orthonormal basis). Restated in metric terms we see that
the difference between the metrics corresponding to ω and ω 7 τ is

Surprisingly, the terms of order e Γj cannot be neglected, and the above
approximation is too crude for our purposes. We will find, however, that
we may neglect terms of order e~2Γj. Let ωα(z) denote the restriction of

ω 7 j to the tangent space of z x Uα then ω 7 τ - ωα(z) = O(ere~e ), and
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with respect to some trivialization, ω'a(z) - coa{0) = 0{ere e ) . (Observe

that \z.\ I logdzfildu./dzj is O(\z.\ | log(|z.|2)|). Hence we record here

for later use:

ω = ωa(z) + e r>ddu.j2

{-idr. Λ e~rJ d

- \e Γj[dr. Λ idcUj - ie Γj dθj Λ dUj]} -h O(e r).

Moreover the order of growth of the error is clearly preserved by all deriva-
tives by smooth unit vector fields.

Remark 4.1. It is important to note that in the error term O(e~2r)

every term involving a dr or e~Tidθi is in fact O{e~2Γi) and not merely

O(e~2Γj) for some j . This follows from elementary computations.
We next construct a frame which allows us to treat the Laplacian cor-

responding to the above metric as a perturbation of an operator with
which we can compute. Fix a base point (x, r, θ) e Ua x R+ x (Sι)k.
Let {Y.} be an orthonormal moving frame defined in a neighborhood of

(x, r) x (Sι)k c Va of the form {Xj}f=~2k U {Rj9 Wj}k

j=ι obtained in

the following manner. Let Xχ, , X2n-k ^ e a ge°desic normal frame at

(x, r) x {θ} c Ua x R^ x {θ} endowed with the metric obtained by restric-

tion. Assume moreover that at (x, r) x {0}, {̂ 2/z-2A:+/}/=i *S obtained

from {d/dr.} by applying Gram-Schmidt. Near (JC, r) x (51) , use the

product structure to extend this frame to a frame {Yj}2^k for the image

of the tangent space of Ua x R^ . We may use the Gram-Schmidt pro-

cess to make this an orthonormal frame { ? J ^ = {XaΫaJ^k u { ^ j L i

We modify the R. so that [Xa, modified Rt].= O{\x\e~r). Applying

the Gram-Schmidt process to {XaΫaJ\2kU the modification of {Λjf=1

yields {yj^Γ* = TOΪΓ^U W t i (Because duj/dθa = O{eW)
these applications of the Gram-Schmidt process will only modify vectors
and their covariant derivatives by O(e~e ) in the erjd/dθ — j directions.)
Extend this frame to the complete tangent space by applying the Gram-
Schmidt process to the frame {Yχ, , Y2n_k, d/dθ{, , d/dθk} to

obtain {Y.}^x = {Yl9 ••• , Y2nb-==k, Wχy ... , Wk}. In particular, we
have
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(13) Wj = ( l - \e~τ'u^ e r ^ + £ ^du^JX^X, + O(e~2r).

We record the following commutation relations:

(14) [R., Wj] = 6ijWi + Σ 0{β~r>)Xa + SyOie-'W,-

(15) [Xt, Xβ = O{\x\ + \r- r(0)\e~r + e~2r).

2n-2k

Σ
2r).

We rewrite this as

= \e-τ'deduμit Xa)\TUa + O((\x\ + \r- r(0)\)e~r + e~2r).

We now recall the formula for the Levi-Civita connection. Let {ZJ be
orthonormal vector fields. Then

2(V,Z2, Z3) = <[Z,, Z2],Z3) + ([Z^ZJ, Z2) - ([Z2, Z 3 ] , Z,).

Thus we see that

( V r Y j , Yk) = O(\x\ + \ r - r ( 0 ) | + e ~ 2 r ) , f o r /, j , k < 2 n - k .

(18) (VwWj,Rj) = l + O(e-2r).

Φx, Wj' Xk> - (ίχi WJ\ ' Xk)l2 + dxk' Wj], X,)/2

+ O(\x\e~r + \r- r(0)\e~r + e~2r) = O(e~'J).

{VwXi ,Xk)=- {{Xt, Wj\, Xk)/2 + {[Xk, Wj], X.)/2

(20) +O((\x\ + \r-r(0)\)e-r + e-r)

= e-
r>dedUj(Xk, ΛΓ,.)/4 + 0( |x | + \r- r(0)\e~r + e~2r).~r + e~2r)
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Hence,

= ClifFord multiplication by - e ΓidcdUj/4\τu

O((\x\ + \r-r(0)\)e-r + e 2r)

in an obvious notation for Clifford multiplication which we now adopt
(and extend to C also). For j Φ k,

(22) 2(VXi Wj, Wk or Rk) = 0{(\x\ + \r - r(0)|)β" r + e~2r).

Suppose now that E is a flat unitary bundle over M which is the

restriction to M of a bundle on Λf with logarithmic connection along

3 . (See [4] and [3] for a discussion of logarithmic connections.) Then in

every neighborhood (Δ*)* x Ua , we may choose a unitary d/dr invariant

frame for E such that writing VE in this frame as VE = rf + Γ^, we

have

(23) ΓE-W*ΛerΆJ = ea,

where ea is a smooth differential form on M, and with respect to the
given frame,

Λ = AAE) is a matrix which is constant
(24) J J

in the r. and θ. directions,

and

(25) μ.,^] = 0.

Definition 4.2. Let F be a hermitian vector bundle. We say that F
has good connection if, in a neighborhood of each component of 3f, the
metric and connection on F are induced by a holomorphic decomposition

where each Ft is a unitary flat bundle with logarithmic connection along

3 , and each Fι is the restriction to M of a hermitian bundle on M

with smooth hermitian connection.
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In particular, unitary flat bundles with logarithmic connections along
3 and restrictions of smooth bundles on M have good connections.

Definition 4.3. We say that (F, h) has a Dirac-good connection if it
has a good connection, and the endomorphisms iA.(F.) have no integral
eigenvalues.

In the following sections, we will study generalized Dirac operators cou-
pled to bundles with good connections.

5. Mass

We must modify to fit our present context the notion of mass introduced
in [12] and [14]. Fix a coordinate system on Ua. Let Y(x, r, θ) be a

partial differential endomorphism defined on Ua xR^ x (Sι)k with a finite
expansion of the form

Y(x9r,θ) = ̂ x V - g V L 7 y / ; L ( r , x , 0),

where YIJL is bounded, has real (respectively complex) Clifford degree
d(I, J, L), and degree p(I, / , L) as a partial differential operator. We
define the provisional real (respectively complex) mass of Y at (0, rQ, θ)
to be

provisional real (respectively complex) mass(Γ)

= max{</(/, J,L)+p{I, J, L)-\I\-\J\-\L\}.
I ,J ,L

We use the multi-index notation \L\ = lχ -\ h lk , for L = {lχ, , lk) .
The provisional mass depends on the choice of expansion. Hence we give
our final definition of mass by setting

real mass(F) = inf provisional real mass(F),

complex mass(Γ) = inf provisional complex mass(F).

Here the inf is taken over all possible expansions satisfying the stated con-
ditions. This definition of mass places e~r* on the same footing as x.
From Proposition 2.1 we may immediately deduce the following proposi-
tion.

Proposition 5.1. (i) If real mass Y(x) < 2m, then

roo

lim / trτ κ 7(0, s,
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(ii) If complex mass Y(x) < Am, then
poo

l im/ trτvτvY{0,s,θ)ds = 0.

(iii) If complex mass Y(x) < 2m, then

lim / tττR;Y(0,s,θ)ds = 0.
'->«> Jr

Suppose now that D is a signature operator with coefficients in a uni-
tary flat vector bundle with logarithmic connection. Let D+ denote the
restriction of D to the +1 eigenspace of τ . In order to study the mass
of the parametrix for D+ to be constructed below, we must understand
the mass of Δ = D2 in the given frame. Recall the expression for Δ in
an orthonormal basis {Zi}i,

(26) Δ = -ViV |. + V V Λ + Λ ,

where R is the curvature operator (see [7, p. 111]). We first consider R.
R has real Clifford degree 2, complex Clifford degree 2 for the Riemann-
Roch complex, and 4 for the Gauss-Bonnet complex. See [9, p. 7], for the
Riemann-Roch result. As the curvature is bounded (see [2]) mass(/£) <
degree(jR). Next we consider V,. In the given frame we may write

V< = Zi + \ Σ < V A ' Zβ)(C(Za)C(Zβ) - C(Za)C(Zβ)) + i f

Z z and Γf have mass one. Γ? has Clifford degree < 2, but has mass > 1
only for those terms involving only Rj 's and W. 's. In particular we
record:

Γj, = \(C(WJ)C(RJ) - C{WJ)C{RJ))

(28) -e-r'C(πvJ/2\T0) + e-r'C(πvj/2\T0)

where v. is a representative of the first Chern class of \3f\ (see [6, pp.
141-142]) given by

J 2π

We remark that one may also obtain the expression for the covariant
derivative in terms of the first Chern class of the normal bundle using
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directly the relation between the Euler class of a circle bundle and the
global angular form. Write

(29) Δ = Δ2 - Σ{W. + AjHdWJCiRj) - C(^.)C(tf,.)) = Δ2 + Δ3.

Then Δ2 has mass < 2, and Δ3 has mass 3.
Remark 5.2. It is important for our later computations to note that

C(W.) and C{Rj) only occur in Δ2 in terms that are O(e~rJ). This
follows from (3.9b) and the analogous formula for R .

6. Parametrix
Recall that away from 2Jj n 3j, J D I, each ^ 7 is covered by sets

quasi-isometric to (Δ*)'7' x Ua with Ua a finite open cover of Z>7 and
Δ* given the Poincare punctured disk metric. Moreover, we have shown
that this identification is even asymptotically an isometry for an appro-
priate choice of identification. Fix such a system of identifications with
Ua coordinate neighborhoods, and let Δ^ denote [R, oo) x Sι c Δ* with
coordinates as in §3. Let \Vι a{R)}j α be an open cover of 3f, with

Vj a(R) = (Δ^) | 7 |xt/7 a(R) and with {Uj a(R)}au3fjn{[jjDI\Jβ VJβ{R)}
an open cover of 3!ι. Complete this to a cover of M with some V0(R)
chosen so that its injectivity radius is greater than Ce~R for some C >
0 independent of R. The existence of V0(R) satisfying the desired
lower bound on its injectivity radius follows from the corresponding state-
ment for the Poincare punctured disk. Let {pj a R}j a be a partition
of unity adapted to this cover in the following way. For each / , let

{/ ? / ,α, Λ }α,^ u U / D / {^ , α ,A^ restricted to UQ ^ / f β W u U / D / U , ^j,β,R

be a partition of unity, and suppose that support Pj a R c Vj a(R - 2).

Given a parameter R and a constant a with 0 < a < 1 to be deter-
mined in §7, we set t = e~2R/^~a) and fix a parametrix Q of the following
form:

pi 1 /*oo i

(30) Q(x,y) = / ~De~sA{l -τ)ds + p2R{x) / =De~s (1 - τ)ds.
Jo ι it L

Then

ds

• _ τ

D+Q = {(1 - p2R) ΪAe-^ds + p2R Γ
I Jo Jo
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= {(l-p2R)(I-e-tA)+p2R(I-Π) + [D, p2R]f~' De'sA ds} i-=^

I-p2Rn-(l-p2R)e-tA + [D,p2R]Jt De~s < f r j — ,

where Π denotes the projection onto the kernel of Δ. Similarly,

QD+ = {I - p2RΠ - (1 - p2R)e~tA}(l + τ)/2.

Thus if £>+ is Fredholm, then

index(Z>+)

= Tr(p2Rn + (1 - />2*y~'Δ)(l + τ)/2
1 —

(31) -Ίr[p2RU + {\-p2R)e-tA-[D,p2R}j De^ds) —

~ s A ^ rf5= Tr τ(p2RΠ + (1 - p2R)e ) - Xr[D, p2R] / De

where we recall that we use Tr to denote the global trace, and tr to denote
the local pointwise trace.

Lemma 6.1.

-Ύr[D, p2R] Γ°De~ s A (l - τ)/2ds = Tr[D, p2R] ί°° De~sAds τ/2.
Λ Jt

Proof. We want to show that

/

oo

Zλ? ί/s/2 = 0.

This follows from a strictly formal argument. If D were a bounded oper-
ator we could write

TτDp2R ( De~sAds - Tτp2RD I De~sA ds

/

OO Z OO

De~sAds - Tr p2R / D^~ ί Δ rfj = 0,
using the cyclic nature of the trace and the relation [D, e~sA] = 0. In
order to obtain the desired conclusion from this argument, we replace D
by De~xA, x > 0, and take the limit as x tends to zero, q.e.d.

We may now rewrite our expression for the index as

index(Z)+) = T r τ ( ^ Π + (1 - p2R)e~tA)
(32) roo

* — - - - / ^ -sA j

τDe as τ.
.ft ljf
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It will follow from Lemma 6.4 that D+ is Fredholm. Hence it is clear
that

lim τττ(p2RΠ) = 0.
R—•oo

In Proposition 8.1 we will prove that, for the signature complex,

/

oo

De ds τ/2 = 0.

Hence for the signature operator (and similarly for the Dirac complex with
coefficients in a bundle with Dirac-good connection) we may conclude that

(33) Index(Z),) = lim Trτ(l - P2R)e~tA.
R—» o o

For the Gauss-Bonnet and Riemann-Roch complexes

lim Ύτ[D, p2R] Γ De-^dsτ/2 φ 0,
R-^oo Jt

and this term contributes to the index.
In order to prove that D+ is Fredholm and to compute

ΛOO

j im Tr τ( 1 - p2R)e~tA and j im Ύr[D, p2R] / De~sA ds τ/2,

we next construct good approximations to (Δ - λ)~ι and e~tA. The as-

sumption that t — e~2R^ι~a>} implies that on the support of (1 - pR),

ί/(injective radius)2 < Ce~2R/{ι~a)e2R = Ce~2aR/{ι-a). This inequality

easily implies that for any N > 0, the standard local approximation of

the restriction of e~tA to this set can be constructed with error O(tN).

We use such local approximations on this set, and obtain

(34) lim Tr(l - ^ ) ( 1 - P2R)Te~tA = 2n/2 f L(TM)
R—+00 J

for the signature complex and analogous local expressions for other com-

plexes. We are thus left to compute limΛ_^ooTr/?Λ(l - p1R)τe~iA and

I l i m ^ Ίv[D, p2R] J ~ De~sA dsτ.

We now construct an approximation ///α(Λ) to (Δ - λ) ι in a neigh-

borhood of each open set VIa = VIa(R) of the open cover of 2} . Fix

Vj a. Given the frame fixed in §4, we may treat forms supported on a

neighborhood of F7 α as vector-valued functions. Hence we may write a

form / as / = Σ m / m ( * > r)eim'\ θe[0,2π]. Let Tm denote projec-

tion onto the span of eιm'θ .

Definition 6.2. We call m singular if im- + Aj is not invertible for

some j otherwise m is nonsingular.
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• —ΐifl'θ rjr ϊftί'θLet μj = -ie W.e - iAj . When adding a constant and a matrix,
we mean the sum of the constant multiple of the identity and the matrix.
We treat μ and A. as the components of matrix-valued vector μ and
A and use such vector notation as

Let η. be the O(e Tj) vector field corresponding to W. minus the pro-
jection of Wj onto the span of the d/dθa , where the projection is taken
relative to the fixed product structure (and not the metric). In this frame
and with these notation we may write Δ as

(-V,.V,.+VVΛ) J > , t. K.
m y i<n-k j

—im θ— im θ
VVwWs

e

We construct the approximation to (Δ — λ)~ inductively. Set

ho(x, x , λ, v , μ) = Identity.

Write

im {u-u) i2π(x-x') υ I n^X , X , λ , V , μ)
6 e I (2π)k(\\2πv + u\\2 - λ)M

im (u-u) i2π(x-x')'v I h{{x , X , λ , V , μ) 1

(\\2πv+μ\\2-

(im (u-u)ei2π(x-x'yυ Λ
+ < r >Δ{ h^x,x , λ, υ,μ

(\\2πv + μ\\2 - λ)M

Set

i /T T \r im*(u—u) ilπix—xΎv,,,* ,,2 n x /+l Π
hl+ι = -( /2,/ + / 3,/)^ e (l|2πw + |ί| | -A) ].
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Then

-x'yυ f h,(x,x',λυ,μ) 1

\ ( | | 2 Λ ) / + 1 J 2

for any cutoff functions Nj and N2 with support in a neighborhood of
F, α . Clearly, for N sufficiently large, the error term

and its derivatives are O(e~Nr/2), when m is nonsingular. For such esti-
mates, it is useful to recall that

2||2πv + μf > \2πυ\2 + J V ^ ™ ; " ^y)2-

Similarly, error terms (and their derivatives) associated with derivatives
of cutoffs will be exponentially decreasing in r when m is nonsingular.
Set

(36)

x {\\2πv + μf - A ) " 7 " 1
 A 7 ( J C 9 x , λ 9 υ , μ ) d v .

Let ί? be a cutoff function with support in Vι a and ψ be a cutoff

supportφ ^

mφ fo

function with ψ\supportφ = 1 Then ψH^aφ is a good approximation to

(Δ - λ)~xTmφ for m nonsingular; i.e., the error terms (and their deriva-

tives) are exponentially decreasing; hence they must have O(e~R) trace
norm.

Now consider m singular. We use an iterative construction of an ap-
proximation //^'α to (Δ - λ)~~ιTm following the same recipe as for m

nonsingular, except that in the case μ = 0, we construct (Δ - λ)~ι as

a perturbation of (Δ7 + Σ, (-^ 2 / a r ? + ι/4) ~ λ ) ~ l > w h e r e Δ / i s t h e

Laplace operator on ^ 7 (associated to the complex in question). The
point here is that the k/4 in the denominator ensures that terms like
/ei{x~y)'u(\u\2 + k/4 - λ)~j du are bounded independent of λ, for λ in
a small neighborhood of 0 € C. The error terms from the above con-
struction are smooth, and for T (defined in (1)) sufficiently large can be
made to have arbitrarily small sup norm and pointwise trace. Increasing
T decreases correspondingly the curvature and connection terms arising
in the above iteration.
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Because m is singular, we no longer have the rapid decay in r of our
integral operators and their error terms which was guaranteed by the terms
of the form [X>2Γ/(m - iA.)2χ~n with all m. - iA. invertible. We may
have decay in some r. directions but not all. In particular, the error terms
will not be trace class. Nonetheless, we set

07)
sing

W h e r e HLg = Σm singular^'"

Remark 6.3. It follows form Remark 5.2 that any factors of C{Wj) or

C(Rj) which occur in the term in H^ζ corresponding to imy + AJ. = 0

occur in terms which are O(e~Γj).

When / = 0 , we use any standard local construction for an approxi-
mation Hφ'a(λ) to {A-λ)~ι with

\\(l-pR/2)((A-λ)-l-Hφ'a(λ))\\
trace norm

= 0((injectivity radius of VφJR)Γ2N\λ\~N) = O(e~2RN\λ\-N),

for any N > 0 and any λ with arg(λ/|A|) bounded uniformly from zero.
(We will primarily be interested in \λ\~ι < t < e~2R/{1~a}.) When λ = 0,
we merely require that the corresponding trace norm be finite. We patch
the HI>a(λ) together to form

(38) »nW = i

(39) Π,(λ) =
I,a

(40)

I,a

where ψj R is a smooth cutoff function equal to one in a large neigh-
borhood of support Pj a R, and satisfying, for a = 1, 2,

i<2n-2k,
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This construction is sufficient to prove that D+ is Fredholm.
Lemma 6.4. D+ is Fredholm.
Proof. P is a bounded operator because of the fc/4 in the denomina-

tor of the Fourier transform of the i/ / Q : (0) . Moreover, we have

DP = Σ
I,a

where ε{ is the sum of all the error terms coming from noncompact neigh-
borhoods, and KQ is the error term associated with the compact neighbor-
hood and is therefore a trace class operator. From the above discussion,
we may assume that εχ has arbitrarily small sup norm. Hence (/ + fij)"1

is a bounded operator, and

DP (I + ε,)" = / + trace class operator.

This implies that D is Fredholm; consequently, D+ is Fredholm. q.e.d.

We now co

(A-λ)H(λ)

We now complete our construction of an approximate to ( Δ - λ) 1 . Set

^
/, α

= I + K{λ)-en(λ)-es{λ),

where K(λ) is again the error associated to the compact neighborhood,

-εn(λ) is the error associated to the noncompact neighborhoods and the

//non , and -εs(λ) is the error associated to the H^° . Set ε(λ) = εn + εs.

The sup norm of e(λ) is O(T~ι). We take

(42) H(λ) = H(λ)(I - ε(λ)Γl = H(λ) £ ε(λ)fl

as our approximation to (A-λ)~ι on the support of pR the convergence
of the sum is guaranteed by the small upper bound on the sup norm of
ε(λ) .Then

~l
(Δ - λ)H(λ) = 1 + K(λ)(I - ε(λ))

We divide ε(λ) into three types of error terms: perturbation, exterior

cutoff, and interior cutoff. Substituting H^° or H^ for H1'" gives

corresponding decompositions of εn and εs. The perturbation error, εp ,
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is the sum of the error terms

This error is O{e~Nr) by construction. This is clear for the terms with

μ φ 0. For μ = 0, this follows from the fact that ΔΓ0 is an O{e~r)

perturbation of Δj+Σ^ Δ p . As (A-λ)~ι was constructed as a perturbation

of (Δ7 + £ . Ap - λ)~ι, the error terms can be taken to be O(e~Nr). We

remark that, in the singular cases, the e~Nr decay is only guaranteed with

respect to some r .

In order to define the exterior and interior cutoff terms we refine our
choice of ψhα ? by assuming that ψt a%R = ψ€%hRΨi%aa%R, where ψe j R

is a cutoff function equal to one in a neighborhood of 3fj , with d(x, y) >
R/2, for every (x9 y) e supportVψ e J > R x support/?, α ^ , and ψifOίtiiR

is the pullback to (Δ*)'7' x t/α of a cutoff function on 2Jι supported
on a coordinate neighborhood and satisfying d(x, y) > T/2 for every
(x,y) e support V ^ / α / Λ x support/?, α Λ . Here d(x,y) denote the
distance between x and y .

With these choices we define the exterior cutoff error, εe , to consist of
the sum of the error terms

e e I a R = ([A, ψIaR] - ψe , > Λ[Δ, r / . β , / ,

and the interior cutoff error, εt, to be the sum of the error terms

We write εn , εn e, εn j :, εs , εs e , and εs . for the corresponding sum-
mands of εn and εs.

Let ^ be a curve in C which surrounds the spectrum of Δ, with

arg(λ) e (b, 2π - b), for some 6 > 0, for all λ e Wt. Moreover, we

assume that ί|max(-ReΛ, 0)| < 1, and \λ\ > Γι. For example, we may

take 8J to be the image of R under the map u -> \u\ + iu - t. By

construction, ||A^(A)||tr = O(tN) for λ e Ψt. Hence we can ignore this

term in our computations.
Remark 6.5. When one uses the functional calculus to compute the

heat kernel

[e~tλ(A-λ)~l dλ,[
γ

the well-known phenomenon that e~tA becomes easier to compute as t
tends to zero is realized by choosing y = Wt. As indicated above, this
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allows one to make the error terms involved in standard local approxima-

tions to ( Δ - λ ) " 1 to be O(tN). One cannot, of course, use Ct for t

small to compute e~TA for T large. The hypothesis that T = t is used

to bound \e~tλ\, λ e %.

Set ε' = ε + ε and ε' = ε - εc _. We will also write εc , „ to de-

note the summand of ε̂  coming from the / , a neighborhood. Expanding

(I - ε(λ))~ι into a power series in ε'n an dε^, we write

( Z - ε ( λ ) Γ 1 =I + En + Es,

where En is the sum of terms in (I-e(λ))~ι where ε'n occurs to a positive
power. We expand H(λ) as

where Hn = Hn{λ)Es + H(λ)En and Hs = Hs{λ)Es.

Lemma 6.6. (2πί)" 1 Trτ/ g ; e~'ιHn{λ) dλpR{\ - p2R) = O{R~λ).

Proof. We remark that the τ~q~q bound on the sup norm of εq

nε
q

s im-

mediately reduces the estimate of the trace norm of Hn(λ)Es and

H(λ)En to that of Hn(λ)εs and ε'n respectively. The desired estimate

is clear for Hn(λ)Es and for εn . For εe (and similarly for its derivatives)

we have the estimate

(44) KaJ,R

for (x,y) e support(Vye 7 R) x support(/?7 α R), and B and Bf > 0
depending on & . This estimate follows from integrating the explicit form
of H!'a and implies the desired estimate of the trace norm.

Lemma 6.7. (2π/)~ 1 Trτ/ r e~tλHs{λ)dλpR(l - p2R) is O{R~ι).

Proof. We have T r τ ^ n g

7 oefIaRpR(\ - p2R) = O(e~R) for all N,

because the factors of C(Ri)C(W ) which we need for nonzero trace only

enter with O(e~2Γί) coefficients. (See the remark following (37).) More

generally we have

Claim 6.8. If there exists an Ia e {/0, , /7} such that Ia c I., for

all j e {0, ••• , /}, then

Proof of claim. This follows as above because the necessary
C{Ri)C{Wi) factors only enter with O{e~1Γi) decrease.
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In order to pick up the extra factors of C{Ri)C{Wi) required for non-
vanishing trace, we must compose error terms coming from distant neigh-
borhoods; thus, we must consider terms of the form

with some / not contained in / + 1 and show that this trace is O(R~ ) .
Let (x, y) e support es 7 a R x support εs j β R , with / not contained in
/ and / not contained in / . As before, we have the estimate

Hence

,I,a,R

<c [•••[ ...dtnT~n.

Corresponding estimates hold for the derivatives of εs 7 α R o o
εs j g R(x, y). The integral takes place over a region with \x - ί,| +

— I - |ίπ —^| > R/2. Hence the integral is O(RΓX) and so too is the trace.
Lemma 6.9.

(2πi)-lΊτpR(l-p2R) f e-'λH(λ)dλ

= (2πi)-ιΎτpR(l - PlR)e-'* + O(R~l).

Proof. From Lemmas 6.6 and 6.7, we conclude that

ΎτpR(l-p2R) f e-'λH(λ)dλ

= ΎτpR(ί-p2R) f e-'λ

Moreover,

fl
(Δ- λf1 - H{λ)pR{\ - p2R) = (Δ- λfl (I - (Δ- λ)H{λ))pR{\ - p2R)

= (A-λ)-1K(I-ε(λ)ylpR(l-p2R).

The estimate ||AΓ(Λ)||tr = O(tN) and the boundedness of the sup norms of
ι (A))"1, for λ € %, imply

e-'λ{(A-λΓl-H(λ)}dλpR(l - p2R) = l

t r

(Δ - λ)~ι and (/ - e(A))"1, for λ € %, imply

The result follows.
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7. The trace

We continue the notation of §6. In this section we compute
TrτpR(l - p2R)e~tA, using Lemma 6.9. First fix F7 a with |/| = k and
consider the contribution of Vj a to the trace. We compute

ι)k λ π ι J%\sι)k %

(112*11 + / i l l 2 - A ) w * "

where the dθ integral is the integral over the second factor in

Recall that hι is constructed from hι_ι by applications of conjugates of
Δ = Δ2 + Δ 3 , where Δ2 and Δ3 have masses 2 and 3 respectively and are
defined in (29) by

Δ3 = Σ(Wj + AjHCiWJCiRj) - C(WJ)C(RJ)) ,
j

(for Riemann-Roch calculations this is replaced by Δ'3 =

Σj(wj + ^j)C(Zj)C(Zj)), All other factors of C{Wj)C{Rj) that arise

are O(e~Γj). Inductively this implies that

(45) the mass of Λ7 < 2/ + min{/, k}.

Because Δ3 has mass 3 one might expect the above bound to be mass
hι < 3/, but one observes that after k applications of Δ 3 , there are no
additional Clifford factors added by higher powers. Write

Λz(x, x, λ, v, m) = ^2(\\2πυ + μ\\2-λ)~σhlσ(x,υ,μ),
σ

and
h^σ{x,v,μ) = J2^ σ A B c(x)vAμBe~rC,

with Λz σ A B c(x) bounded. The hlσ with σ > 0 arise from terms
(and their derivatives) of the form

and
(\\2πv + μf - λ)didβ2πv + /z||2 - λ)~

arising in the construction of hι. These operations raise the mass of hi

by less than two. Hence our earlier mass considerations imply
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\A\ + \B\ - \C\ + Clifford degree of h, σ A B c(x)
(4θ) ' ' '
v ' < σ + 2/ + min{/,A:}.

Set

l'(m) = {j:mj = 0}, and ΐ(B) = {j:Bj = 0}.

Any term with μ = 0 or B. — 0 clearly cannot have Δ3 contributing
C{Wj) or C(Rj) in a term of mass greater than 2. Thus we may refine
(46) to obtain

\A\ + \B\ - \C\ + Clifford degree of h, A B c(x)
(47) / / ' ' '

< a + 2/ + min{/, k - \I (B) U /\m)\}.

Recall that trτhr = 0 unless the Clifford degree of ht > n. Hence if
tTτfll,σ,A,B,c(X) ϊ °' W e h a v e

n + \A\ + \B\ - \C\ < σ + 2/ + min{/, k - \l'(B) U /'

We compute.

±-.( f e-tλtrτHI'a(λ)dλ
2πι y(5i)* JWι

Σ
m /=n/4

"If
J% JRn~

(48) N

= Y Y -
L^ L^ (

_tλ \ττhι (x, v , μ)
e — ^ dv dλ

-t\\2πυ+μ\\ J+σ

-Σ
N tl+σ+(k-\A\-n)/2χrτh

f
j R n k
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Here μ = 2πμ + μ , with μ the projection of μ onto R""^ determined
by the norm || ||2 .

In order to understand the contribution of (48) to the index, we need
to compute its integral over [R, 2R]k . (In the limit as R —• oo, there is
no difference if pR{\ - p2R) is replaced by the characteristic function of
[R, 2R] .) First we estimate the quantity

<49> Σ,Γ-Γ tl^k-^-n)/2μBe-rCe-^ drr- drk,
m J R J R

under the assumptions that

n + \A\ + \B\ - \C\ < σ + 2/ + min{/, k - \f(B)\},

Ct > 1, for all / G Ϊ{B), Bj is even,

f <te <ε, a > 0 to be determined.

The condition that Ci > 1 for i e l'{B) arises from the fact men-
tioned above that, for i e If(B), factors of C{Wi)C{Ri) only enter with
coefficients which are O(e~Γi). For the purpose of the estimate, it suffices
to replace ||μ||2 by Σjelr>{m. - iAj)2 . Then we may estimate (49) by

Γ
JR

Consider first the term

- ιAj) J eκ >
pez

(50) te2R 2el(p-'Λi>

JB.-C.-2l

We may use the Poisson summation formula to estimate (50) as

P€Z

Γ r^-Ci)/2(d/dp)B>e-ap2/rr-ι/2dr/r

where c. and a are positive constants. This expression may be rewritten
as
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for some positive constants c'j and c" which vanish if B} φ 0. Recall

that te2R = e-2R'{λ-a)e2R = e~2aR/{1-a) = f . Thus for some c > 0, (49)
can be estimated by

dtl+σ+(k-\A\-n)/2γr

A:|//(5)|}+/)/2π αίC+l)^,

where / = σ+2/-hmin{/, A: —|//(.B)|} —1̂ 4| —|.B|H-|C| —Λ isnonnegativeby
assumption. Choose a sufficiently small so that for all C, f pairs which
arise in the iteration process, / - Σ)7 α(C + 1) > 1/10, unless / = 0, in
which case — Σ^ α(C. + 1) > -1/10. This is possible because / grows as
fast as Cj . Thus (49) is dominated by

This is shrinking to zero as t —• 0 unless

(7 = 0 ,

n + \A\ + \B\-\C\ = 2l + k.

The above three relations imply that only the terms in hι of mass
2/ + k contribute to the index computation (in the summand
l i n i β ^ ^ T r / ^ l - p2R)τe~tA). These are the terms of maximal mass. In
particular, if we discard all terms of mass < 2 in Δ when computing h ,
we see that it suffices to replace Δ| I m T by

Δm = Δ, + 5 > ' ' ( m , - iAj) - ιT%f - d2ldr).
j

We remark that we have also discarded some terms of mass 2, for example,
those of the form Xae~ΓjC(WJ)C(RJ) . We can do this because we have
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shown above that only those terms with C{W.)C{R.) entering as factors
in mass 3 terms contribute to our computation. Recall (28) that

Γj^ = -e~rjϊj - Pj + lower real mass terms,

where γ. = C(πi/j/2), and p. = C(RJ)C(WJ)/2. The maximal mass

terms in our parametrix for e~ι are given by the maximal mass terms in

1R

In particular, up to terms which vanish as te tends to zero, our trace is
given by the maximal mass terms in

—tieHrri — iAΛ+ie Jy{+iPi) to or;

? J J J J e J

iβ^-tie'Jimj-iAJ+ie-'Jγj+ipj)2

m j

where La is Clifford multiplication by ik~nl1 times the component of
the stable L polynomial (or Todd polynomial etc. for other complexes)
of 2j of Clifford degree a. The orientation of 2Jι is determined by the
complex structure. We have used the result of the calculation in the main
theorem in [5, p. 113] to compute the small t asymptotics of e~tAl. We
compute now

2^\2nitfk-n+a)l\nt)^\xτLaΠ ί2Rγ/e-t{e'(<H^+ie"γ'+ip'fdr
a j J R 9€Z

+Π Γ
j J R

We use the Poisson summation formula to rewrite this as

πx
1R
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a

x Π ΓΣ( e-nπq{x+iΛ>-ie~1'γrie"ι'')e-telrχldxdr + o{\).
i JR n «/R

The maximal mass terms in the above are given by

π ΓΣe2π9iAre~2'γre~rpj)e~re~"We~2r/'dr+oM

/•OO 1/2 r\— / 2 2

Π / \2e2π9Aje~2Mβp{7'+r p>)P-^-e~n q pltdp + o

Π Γ
j JΌ

x Π Έ
j q*0 b=\

We have used te~4R < e~R to change the limits of integration and have
used again the fact that maximal mass terms are those in which each p.
occurs exactly once. Let

C ί A \ \ ^ 2nnA ,
+(s'Aj) = l e l

and

Then (51) may be rewritten:
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a

(52)

j 6=1

-2ζ_(2b-l,Aj)

Taking the limit as t —• 0, we obtain the following expression for the
above trace:

2k-nl\-\fxrIτI

(53)

where τ7 denotes Clifford multiplication by zn/2 fc times the volume form
of 2Jι, and tr7 denotes the trace over Λ T3fj <8> E. When A.. = 0,
C+(^, ^ ) reduces to the Riemann zeta function ζ(s), and ζ_{s, ^ y ) = 0.
We recall the following well-known formula for ζ(2b):

ζ(2b) = π2b22b-\-l)b-ιB2b(0)/(2b)\,

where Bix) is the yth Bernoulli polynomial. Recall also that the stable
L polynomial is the polynomial generated by the power series

0=1

6=1

Define the twisted L polynomial L{x,A.) with values in End(£*) by
(54)

L(x,Aj)

x \2b ί x \2b~ι

6=1

In fact, we may rewrite this as (see [15, p. 202])

(A \ χ2b (A \ γ2b~ι
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with Bj(x), j > 1 extended to matrix arguments in the usual manner.
For j = 1, we define B{(A) = (A - 1/2) o (/ - πΛ), where πA denotes
projection onto the kernel of A. These Bernoulli polynomials can be
intepreted as polynomials in Chern classes using [4, (B.3)].

Substituting these equations into the expression (53) we find that the
product of the trace and the volume form of 3 ι is given by the term of
top degree in

(55) 2nl\xEL(T<$I) Λ \\{L{y., Λj) - \)/vj ,
j

where XτE denotes the trace over E of the end(E) valued class.
We summarize these computations and definitions with
Proposition 7.1.

= 2n/2 [ L(TM) + £ / 2n/2L(Γ^7) Λ
J J
[
M

One could also define a twisted Todd polynomial T{x, Aβ by replacing
the coefficients of ζ(2b) in its expansion by combinations of ζ(2b, A.).
Instead, we will merely note that

L(x)- 1 = T(x)- 1 -x/2,

and express our results for the d and spinor Laplacians in terms of the
twisted L polynomials. One has the following.

Proposition 7.2. Let AS®E denote the spinor Laplacian with coefficients
in a bundle E with a connection which is Dirac-good in the sense of 4.3.
Let TrS(g)£ denote the trace over L2(M, S <8> E) (S denotes the spinors).
Then

^SVE™'^V " PIR)

= ί ch{E)ΛA(TM) + J2 I ch(E) A A(T3fj)

iei

Let F be a holomorphic vector bundle with good connection {in the sense
of 4.2). Let TτRF denote the trace over the square integrable (0, *) forms
with coefficients in F, and Ώ the d-Laplacian with coefficients in F. Then
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= f ch(F) Λ T(TM) + Σ I ch(F) Λ T(T3ft)

Finally, we have

lim TrτV Δ ( l - p2R) = [ e(TM).

Proof. The demonstration of each of the above cases except the last
is the same as for the signature complex. One merely substitutes the cor-
rect formula for γ. and p. corresponding to the complex at hand. For
the auxiliary bundles D and F, γ. and p. clearly do not change. One
merely adds the extra curvature terms which lead to the Chern character
contribution. For the Euler characteristic one applies Proposition 5.1(ii)
to obtain the additional vanishing.

8. The commutator term

Finally, we are left to evaluate l i m ^ ^ Ύr[D, p2R] f™ De~sAdsτ/2.

We use the construction for e~sA given above. The support of p2R may

be covered with sets of the form VIa(R) = (Δ^) | / ! x JJ1 a(R) as before.

It is elementary to check that

lim / tr[D, p2R] ί°° De~sA ds τ/2T = 0, if m - iA φ 0.

We are thus left to compute the contribution of the m - iA = 0 terms.
Let Ts = Σ W _ M = O Tm - This projection is zero for a Dirac operator with
coefficients in a bundle with Dirac-good connection; hence, its commutator
term vanishes in the limit. As observed in Lemma 6.7, the C(Rj) and

C{W) terms in e~sATs vanish in the limit as R -> oo. In order for

this term to make a nontrivial contribution to the index, the C(Rj) and

C(Wj) factors must come from [D, P2R]D. Thus only those terms with

|/| = 1 contribute. In the case of the signature operator, it is evident that

for appropriate p2R (θ -invariant), [D,p2R]DTs does not contribute any

factor of C(Wj). Hence we have
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Proposition 8.1. For the signature operator with coefficients in a bundle
with good connection and the Dίrac operator with coefficients in a bundle
with Dirac-good connection,

/

oo

De ds τ/2 = 0.

We now consider the contribution of the commutator term arising from
a neighborhood of a single component <©, of the divisor 2J. For the
Gauss-Bonnet complex and the Dolbeault complex, we have respectively

2[D, p2R]D = C(Ri)C{Ri)C(Wi)C(Wi)dp2R/dr + lower mass terms,

2[Z), p2R]D = C(Zi)C(Zi)dp2R/dr + lower mass terms.

Let τ. = C{Ri)C{Ri)C{Wi)C{Wi)τ or CΪZJCίZJτ depending on the
complex in question. It is clear that d/dr ft°

ctre~sATsdsτi is rapidly

decreasing as R tends to oo. Thus the contribution of the above term to

the index is given by

ί f°° — A
lim / dp2R/dr / tre s dsτi

= lim

Let U^R) = | J α Ui a(R), and let D. denote the Dirac operator associated
to 3χ and our complex. Then for any function fχ which is the sum of a
constant and a rapidly decreasing function,

/

oo

De~s fχ(s)dsτ

(56) r r°° i

= hm 2^ / / 2 ^ 'Λ^)^ ^ '

and the contribution of the commutator term to the index is obtained by
setting fχ{s) = 1. Let Fχ(t) = ft°° fχ(s)e~s/4ds/4. Recall from (32) that

Index(Z>z)

(57)

Js l
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where in an abuse of notation index^) denotes the index of the re-
striction of the selfadjoint operator Z>z to the appropriate subdomain (for
example, even forms). Incorporating (57) in (56) gives

lim Tr[D, p2R] Γ De'^f^dsτβ
Λ->OO Jt

Σ {lndex(D() - Tr[Z>,., p2R ,.]

= lim WlndexίZ),.)^)- Γ Tr[Z>,., p2R ,]
K-^OO . { Jt

Using the obvious extension of (56) to the operator D. and the assumption
that t = t(R) —• 0 as R -> oo, we conclude that the commutator term
(58)

lim 53 / Γtrr^'V

•?{•
Γ j v ^ J°° tr τtJe-'^ (Fι (s) - F{ φ))e~φ) ds/4 1 ,
j ιJ )

+ lim
R

where all /j subscripts denote objects associated to the divisor 3ftr\3f. c
3{ in the same manner as the /-subscripted objects were associated to the
divisor 3i. The derivation of (56) may now be iterated, setting f{ = 1,
and fi+ι(s) = (F^s) - F^O)). We obtain the following expression for the
commutator term.
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Proposition 8.2.

lim Tr[D, p2R] f De~s&dsτ/2

Here the factor of |/|! counts the multiplicity of 3fj in the above it-
eration. For example, 3f.j is counted twice because it arises both as a
boundary of 3r. and a boundary of 3f.. The integral factor arises from
the JF (O) factors defined above. Combining (32) and Propositions 8.2,
7.1, and 7.2 we obtain the following.

Theorem 8.3. Let E be a unitary flat vector bundle with logarithmic
connection along 2 . Then the l}-signature of (M, h, E) equals

2n/2 f L{TM) + 2n/2 £ ί L{T9f,) Λ XrE

Let F be a holomorphic vector bundle with a good connection in the sense
of (4.2). Then

χ2{M,h,F)= I

+ Σ / Ch(F)AT(T3fI)
I 3 2 ι

2F 7 denotes the restriction of F to 3\. ΓAe L2-Euler characteristic
of (Af, Λ) equals

ί
JM "1

The index of the Dirac operator on M with coefficients in a bundle F with
a Dirac-good connection {see 4.3) is given by

ch{E) Aί ch{E)ΛA(TM) + J^ f
JM J J&
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