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THE HARNACK ESTIMATE FOR THE RICCI FLOW

RICHARD S. HAMILTON

1. The result
1.1. Main Theorem. Let g; ; be a complete solution with bounded cur-
vature to the Ricci flow
1o}
518 = 2R
on a manifold M for t in some time interval 0 <t < T and suppose 8;j
has a weakly positive curvature operator, so that
RjiUijU 20
Jor all two-forms U, Let
Pijk = DiRjk - DjRik
and let
1 1
M,;=AR; ~ 5D,D;R+2R; ;R ~ Ry Ry + 5.R,;.
Then for any one-form W, and any two-form U, ; we have

MWW, + 2P, U;W, + R U;Upy 2 0.
1.2. Corollary. For any one-form V, we have

OR R
—aT+T+2D,~R'Vi+2RijV,~VjZO-

The corollary follows immediately by taking
Uy =30V, ~ VW)

and tracing over W,.

The existence of inequalities on the second derivatives of solutions of
parabolic equations was first noted by Peter Li and S.-T. Yau [12] for the
scalar heat flow on a Riemannian manifold. The author has observed a
similar phenomenon for the matrix of second derivatives in the scalar heat
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flow [9] and for the Ricci flow on a surface [6] and for the mean curvature
flow [10]. Ben Chow has derived similar results for the Gauss curvature
flow [3] and the Yamabe flow [4]. These are called Harnack estimates
because they can be integrated along paths in space-time to produce com-
parisons of the solution between different points at earlier and later times,
as in the classical Harnack estimates.

1.3. Corollary. Let X, and X, be two pointsin M andlet t, and t,
be two different times with 0 < t, <t,. Let c(X,, X,, t|) be the distance
between X, and X, at time t,. Then

—-d(X,, X, 2(t,—
R(X,t2)> e (K0 X0t/ 2=t) Ry gy,

Proof. Take the geodesic path X(¢) from X, to X, at time {, para-
metrized proportional to arc length with parameter ¢ starting at X, at
time ¢, and ending at X, at time #,. At time #, the constant velocity is

d(X,, X,, t,)/(t,—t).
Now consider the path (X(¢), ¢) in space-time. Since the curvature is
weakly positive the metric g, j will be weakly shrinking, so if we take the

velocity vector V= th " ts length at time ¢ > ¢, will be no more than
its length was at time ¢, . Thus

o ) )
g, (X, V'V <d(X, X,, 4,)°[(t, - 1))".
Now from Corollary 1.2 (and replacing ¥V by lV) we have the estimate

dR OR R 1 i
I at+DRV>—-—t——§RVV

where the total derivative dR/dt is the rate of change of R along the
path in space-time. Now R, ; < Rg; ; for weakly positive Ricci curvature,

® d 1 1

We use the estimate on the length of V given above and integrate over
time to get

o R 1) t_l_d(Xl,Xz,tl)z‘

oy N2
R(X,, 1) 1 2(t,— t,)
Now exponentiating and rearranging gives the desired result.

2. The notation

We interpret covariant differentiation in terms of vector fields on the
frame bundle. Let M be the manifold, X a point in M, and Y =
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(Y,,Y,,---,Y,) aframe at X consisting of a basis for the space T M,
of tangent vectors at X . A symmetric connection I" on the tangent bundle
determines a choice of horizontal tangent vectors on the bundle F(M) of
all frames. We let D, be the vector field on the frame bundle which is
horizontal and projects onto the vector Y, in M when we are at the point
Y in F(M). If f is a function on the frame bundle, we denote by D, f
the derivative of f in the direction of the vector field D,. Any tensor
gives rise to a system of functions on the frame bundle. For example if
V:TM — R is a covector then

V={V,} where V(Y)=V,,
orif V:TM x TM — TM is a tensor then
V ={V,} where V(Y,,Y,)=V,Y,.
We can thus interpret the covariant derivative as applying the vector field
D, to the component functions of the tensor V. In the first case V' = {V,}
we have
DV ={D,V,} where DV (Y, )(Y,)=D,V,,

and in the second case
DV ={D,V'} where DV(Y,)(Y,, Y,) = D,V.Y,.
The same applies to any tensor. . ) _
In local coordinates X = {x'} and Y = {y,} where Y, = y,0/9x".
The vector fields are given locally by

ox'

i 0

i | 8
Da=y2[ o
b

where Ffj(x) are the Christoffel symbols of the connection. We then have
iJ
D,Vy =y 3,DiV;
where oV
j k
Dy; = (‘9';]: - r{‘cj(x) 4

is the usual local formula for covariant derivative.

We also have vector fields tangent to the fibres of the frame bundle
representing the action of the change of frame group G/(n). These are
the vector fields

Va _ yi i
b b P yl

’a
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representing the skewing of the ag-axis into the b-axis for a # b, or the
stretching of the axis when a = b. The action of VZ on tensors is easy

to describe. For example, if V, = yiVj(x) comes from a covector then
ViV, =1I.V,, while if ¥, =y.y]V, (x) then V3V, =I'V,,+1;V,, and
SO on.

It is important to compute the commutators of these vector fields. The
D, and Vz form a basis for the tangent vectors on the frame bundle
F(M). The curvature tensor is given by sz 4 Where

¢ k k i 1
Rapa¥Ve = RijiVaVyVa

and as usual

Then we can easily compute the commutator relation
c d
Dan—DbDa=Radec :

We also have

V,D,- DV, =1.D,
and

A C Cc a A ey C Ce—a
Suppose now that we have a Riemannian metric g with Levi-Civita
connection I'. The metric defines the system of functions g, = g(Y,, Y})
on the frame bundle F(M). The orthonormal frame bundle is the sub-
bundle OF(M) where g, =1, . The vector fields V_, are not tangent.
For this purpose we introduce the vector fields
C 4

Jab = gacvb - gbcva >
which represent infinitesimal notations of the ab-planes. Then D, and
J,. form a basis for the vector fields on OF (M) . For covectors we have

5ach = gacV;; - gch

a b
and similar formulas hold for other tensors. Thus
OubVea = 8acVoa + 82aVeb = 8bcVad — 8baVeu
for a 2-tensor, and in particular J,,g., = 0 which shows that J,, isindeed

tangent to the subbundle of orthonormal frames where g, =1, .
The commutator of D, and D, is given by

Dan -D,D, = %Rabcdacd’
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where R , ., =g, eR aba - Thus for covectors we have
DanVc —DbDaV; = Rabchd’

and similar formulas hold for other tensors. [Note we can sum over low-
ered indices since g, = I, .] The other commutators are

6ach - Dcéab = gacDb - gbcDa
and
049cd — 0:d%p = 8ucOpa + 8paOac ~ 8aaObc — 8bcOaa -
For example in three dimensions we have the usual formulas

(92, 513] = 523 s (043, 01=19),, (023,051 =95,

which generalize as above.

When we come to look at the Ricci flow, we must cross the manifold
with the time axis ¢. We can then just cross the whole frame bundle with
t also. There is thus a single new vector field 2 ; on the frame bundle cross
time. If the metric were constant, the orthonormal frame bundle would
also be constant. But since the metric varies according to the formula

0

37 8ab = -2R,,

we see that the orthonormal frame bundle where g, = I, will now vary
with time. Therefore we modify the timelike vector field to make it tangent
to the orthonormal frame bundle. We let

D, = gt +R,g"V°,
so that D, is the unique vector field which is tangcnt to the orthonormal
frame bundle and has the property that D, — ;,,—, is a space-like vector or-
thogonal to the orthonormal frame bundle [m the metric on F(M) where
D, and Vf are an orthonormal basis]. We can then define the time covari-
ant derivative of a tensor by differentiating its components in the direction
D, . Thus for example for a covector V, we have

0
DY, = 5.V, + 8"V,

and similar formulas for other tensors. Indeed

0 cd cd
Dtgab = Egab + Racg 8pa + Rbcg 84a = 0,

which shows D, is tangent to the orthonormal frame bundle. (We obtain
the same formulas as from the procedure in [8] where instead we vary the
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orthonormal frame.) We can compute the time derivative of the Rieman-
nian curvature tensor as

D,R d = ARabcd + 2(Babcd - Babdc + Bacbd - Badbc) >

t"“abc

where A=D,D, and B, , = RiesfReear 8 in [8].
For our computations we will need the commutators of D, and D, and

d,, - Recall that
N i 0
D =y { L _Fix)py L\,
a ya{axt u( )ybayzc}
For the Ricci flow we have
ad ki
ﬁr‘fj =—g (D;R;;+D;R; ~DiR;;),

so on the frame bundle we compute

0 17} cd b
aDa—Daa=g (DaRbc+DbRac—DcRab)Vd'
Since 5
cd b
Dt = E + Rbcg Vd

and we know the commutator of D, with VZ , We can compute
DtDa _DaDt =RabDb+DbRac'5bc‘
We can also compute the commutator
AD,-D,A=R,D,+D,R, 0, — R, ;D)0
and get the important formula
(Dt - A)Da - Da(Dt - A) = RabcdDbJCd

for commuting the evolution operator D,—A with the covariant derivative
D, . For example,

(D,-A)D,f-D,(D,-A)f=0
for functions f on M, and
(D, = A)D,¥; = D,(D, = AV, = 2R3, D,V
for covectors ¥, , while
(D, = A)D,Vy. —D,(D, - AV, = 2RadbeDd Vee + 2R3 DV

for two-tensors V), and similar formulas hold for higher tensors (as we
must expect from the product rule).
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Finally, since V; = y,';a/a y"; we see that

0 _a ad
Then using
0 dac f S

we also compute
D6, —6,D =0.

t7ab
We summarize these results.

2.1. Theorem. On the orthonormal frame bundle the metric is given by
8, = 1, - A basis for the tangent vectors to the orthonormal frame bundle is
given by the horizontal spacelike tangent vectors D, , the vertical spacelike
rotation tangent vectors 6, ., and the timelike vector D,. The commutators
are given by

Dan - DbDa = %Rabcdacd >
‘Sach - Dcaab = gacDb - gbcDa >
0a69cd — 9a%ap = 8acOpa + 8baac ~ 8aaOsc — 8bcaa
DtDa _DaDt = RabDb +DbRacébc’
Dt(sab —6ath =0.
We also have
(Dt - A)Da - Da(Dt -4)= RabcdDbacd .
The action of 6, on a covector V, is given by
6abV(: = gach - gcha
and extends to other tensors by the product rule. Thus
D,D,V, = DyD,V, = RopeVs
and
(Dt - A)Da% - Da(Dt - A)% = 2RacbchVd >
and these formulas also extend to other tensors by the product rule. The
curvature tensor itself evolves by

(Dt - A)‘Rabcd = 2(Babcd - Babdc + Bacbd - Badbc) ’

where B abed = Raeb f Rcedf :

3. The solitons
We call a solution to an evolution equation a soliton if it moves under
a one-parameter subgroup of the invariance group of the equation. For
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example, the invariance group of the Ricci flow contains the full group
of diffeomorphisms. A Ricci soliton is a solution to the Ricci flow which
changes only by a diffeomorphism. Thus there will be a one-parameter
family of diffeomorphisms such that the metric &up(X, 1) at times ¢ is
obtained from the metric g, (X, 0) at time 0 by the diffeomorphism
X — ¢(X, t). If the subgroup is obtained by exponentiating the vector
field ¥, then we will have

DaV;)+DbV;1=2Rab

since the motion of g is by the Lie derivative of the vector field to be a soli-
ton, and by the Ricci tensor to solve the Ricci flow. Conversely if we start
with a metric which satisfies this equation, it must evolve under the Ricci
flow by composing with the one-parameter family of diffeomorphisms ob-
tained by exponentiating V. If we have a soliton where V, = D_f is the
gradient of a function f, we say it is a gradient soliton. In this case

Danf= Rab

so we have a gradient soliton precisely when the Ricci tensor is the Hessian
of a function. We are indebted to Robert Bryant and Thomas Ivey for an
extensive study of the Ricci soliton and gradient soliton equations in terms
of the calculus of exterior differential systems [1], [11].

These are steady solitons, which exist for —oco < ¢ < co. There are also
homothetically expanding solitons for 0 < ¢ < oo, and shrinking solitons
for —co < t < 0, corresponding to the fact that the Ricci flow equation
is also invariant under a one-parameter group of homotheties, where time
dilates like space squared. For a homothetically expanding soliton we have

1
DaVb+DbVa =2Rab+ —t'gab

and the opposite sign for a shrinking one. The expanding gradient soli-
tons are closely related to the Harnack inequality, because it becomes an
equality in this case. Indeed this is how we found the correct Harnack
expression. Moreover it is a great aid in doing the calculations to check at
each step that we get equality on the expanding gradient solitons.

Here is how we derive the Harnack expression Z. On an expanding

gradient soliton
1

DaVb = Rab + z_tgab
since V, = D_f implies D, ¥, = D,V,. Differentiating and commuting
give the first order relations

DaRbc - DbR Rabcd Vd ’

ac —
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and differentiating again gives

1
DanRcd - DaDcRbd = DaRbcdeVe + RaeRbcde + ERbcda :

We take the trace of this on @ and b to conclude that

a cab’” ¢
where

1 1

M b= ARab - 2DanR + 2RacbdRcd - RacRbc + ZRab

a

and
Pabc = DaRbc - DbRac
as before. The first relation was then

P V+Racde;V;1=0’

cha’ ¢

and in order to get a good expression we add the two equations to make

Mb+(Pab+Pcba)V;+Racde;Vd =0.

a C

We apply this to an arbitrary vector W, and get
MWWy + (Pogp + Popd) W W Ve + Roepa W, VWV = 0.

c cha
If we write
Uy, = 3(V, W, = V, W)
for the wedge product of V' and W, the above can be rearranged as
Z = MabVVa% + 2Pachaprc + RabchabUcd =0,

which shows that the Harnack inequality becomes an equality on an ex-
panding gradient soliton.

Since there are other expressions which vanish, one may ask how we
come to select this one. One important criterion is that if Z > 0 for all
choices of W and U then when Z = 0 on the soliton we must also have
0Z/0W =0 and 0Z/0U = 0. This dictates that we need to take the
trace of the second derivative expression, since otherwise we cannot mix
it with the first derivative expression, and it also shows we must take an
equal amount of each.

The author has written down a steady gradient soliton in dimension two
(see [6]) given by
2 _ dx* + dy’

dst = dX Ay
1+x%+)°
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which has positive curvature and one end of finite circumference like a
cylinder. In dimension three Robert Bryant [2] has proved the existence
of a rotationally symmetric complete steady gradient soliton by proving
existence of a solution to an ODE which is hard to solve in closed form. It
has positive curvature and opens more like a paraboloid. There seems little
doubt that the same techniques will prove existence of both steady and
expanding rotationally symmetric complete solitons of positive curvature
operator in all dimensions. The proof of the Harnack inequality by no
means depends on such an existence result. We use it only as inspiration.
As an example of this, on the soliton we chose

1
Uy = 5V, W, = V,W,)
and we have {
DaVb = Rab + ft'gab‘
If we take the arbitrary section W, such that D,W, = 0 at a point, then
we get
1 1
Danc = E(Rabu/c - RacI/Vb) + 4—t(gabVVc - gacVVb) >

which is a choice we will make in the proof of the Harnack inequality.
Now you will know where it comes from.

4. The computation
We assume we have a solution to the Ricci flow and let

Ppp = DaRbc - DbRac

abc

and ) :
Mab = ARab - EDanR + 2RacbdRcd - RacRbc + z_tRab ’
and form the quadratic
Z=M,WW,+2P, U,W.+R,,UyUy,

abc ™ ab

where W, is a one-form and U,, is a two-form, depending on space and
time.
4.1. Theorem. At a point where

1
(D, = W, = 1 W, (D, DU, =0,

1 1
DapVb=o and Danc=E(Rabn/;—Racu/b)-l-4_t(gabVVc_gacVVb)’
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we have

(Dt -A)Z = 2RacbnddI'VaPV;) - 2Pachbdc u/;l I/Vb
+8R e Pupe U W, + 4R 1y 1Ry s Uy Uy
+ [Pabcu/; + Rabcd Ucd][Pabe VV; + Raberef] .

Proof. First we must compute the evolution of the coefficients M, ,
P abc? and Rabcd .
4.2. Lemma.

(Dt - A)Rabcd = 2(Babcd - Babdc + Bacbd - Badbc) ’
where B, , is the quadratic
B bed = Ruep chedf'
Proof. This is the standard formula.
4.3. Lemma.

(Dt - A)Pabc = 2Radbep

dec

+ 2Radcedee + 2RbdcePade - 2RdeDdR
Proof. The evolution of the Ricci tensor is given by
(Dt - A)Rbc = 2RbdceRde
and from the commutator formula
(D,-—A)D,R,. =D,(D,— AR, +2R ;, DR, +2R
Evaluating the first term on the right gives
(Dt - A)l)aRbc = 2RadbeDdRec + 2RadceDdReb
+ 2RbdceDaRde +2R,;,D Rbdce :

de~a

abce *

D,R,,.

adce

Now we use
Pabc = DaRbc - DbR

and the second Bianchi identity
DaRbdce + DbR

to complete the lemma.
4.4. Lemma.

(D,—AM,, =2R, , M, + 2R ;[D P, + D Fy,

ac

+D,R,,,, =0

dace abce —

1
+2R 4R R

+2P Pbcd —4F, b, ce” ‘adbe — E?Rab :

acd acd” bdc

Proof. 1t is easiest to start from

1
Mab = DcPcab + RacbdRcd + ZRab >
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which can be easily checked. The commutation formula gives

(Dt - A)DcPcab = Dc(Dt - A)Pcab + 2RdeDdPeab
+2R Dcheb + 2RcdbeDchae .

cdae

We now use the identities

Pabc+Pbca +Pcab = 0’ Dc‘Rcdab = Pabd’
DchRcabe = Ddeea + Rdefabe + Bdaeb + Bdeab - Bdabe - Bdbae >
and

Rcdae [D cRdeb; +D dRceb] =0
which comes from the symmetry and antisymmetry in ¢ and 4 to con-
clude that
(D, =A)D Py = 2R, ;D P,y + 2R j(D Pypy, + D Fy,) + 2P, 1Py y

e’ ec
- 4Pachbdc + 2RcdR R + 2DeRacbdD R

ce” “adbe e cd

- 2Rcd(Babcd + Bacbd - Bacdb - Badcb)

using the fact that the tensor B, , =R, 1 Reear has the symmetries

Byed = Bedas = Braac = Bucva -
Also
(Dt - A)[RacbdRcd] = 2Racbd[Rcedeef] - 2DeRacbdDeRcd
+ 2R 4(Byyeq + Bacoa = Bacar — Baach)

and
1 1 1
(D, - 4) ft'Rab = 2R, 44 2_tRcd - i_tfRab :

Adding these reuslts completes the lemma, once we use
1

Mca’ = DeP cd +Rcedeef+ 2t

[4

Rcd

and observe the obvious cancellations.
Now when

Z=M,WW,+2P, U,W +R, ,U,U,
and we are at a point where

D,W,=0 and (D,-AU,, =0,
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we compute
(D, - MZ = (D, - MW, W,
+ 2[(Dt - A)Pabc] Uavac + [(Dt - A)Rabcd]Uab Ucd
+2AM, W, + Pachab](Dt -/,
-4D P, DU W —4DeRabcdD U Ucd

et abc”e~ab" ¢ e ab

- 2RabcdD e UabD Ucd :

e

If we substitute the computed values for (D, —A)M,,, (D, —A]P,,., and
(D,—A)R,; ., from the lemmas, and the chosen values for (D,—A)W, and
D,U,., the result in the theorem follows from the obvious cancellations.

We now give the idea of the proof, in a form which is not quite rigorous,
but shows why it works. We shall have to mess the formula up a bit to
sneak an ¢ > 0 in, as is usual in making maximum principle arguments
work, so it is best to see what is really happening before it gets too messy.

If the manifold is compact and the curvature operator is strictly positive,
then the quadratic form Z will be strictly positive for small time. If it
ever becomes negative, there will be a first time ¢° when it is zero, and this
will happen at some point X° and in the direction of some eigenvector
W. and U, . We can extend these in space-time to sections W, and U,
with W = W;° and U, = U:b, and we can do so however we please
and still have Z > 0 up to time ¢°. In particular we can make the first
derivatives in space and time anything we like; so we can extend first in
space to make

D W, =0
and : :
Danc = E(RabVVc - RacVVb) + 4—t(gabVVc - gacu/})) >

and then, knowing AW, and AU, , we can extend in time to make

(D, —A)W, = %Wa and (D,-A)U,, =0.
éctually, if we compute carefully, it turns out that at a null eigenvector of
Z it does not matter what (D, —A)W, or (D, - A)U,, is anyway, but it
is easier to prescribe than compute. In the evolution of Z the quadratic
term
[Pabcu/; + Rabcd Ucd][Pabe I/Ve + Raberef]

is clearly nonnegative. Actually at a null eigenvector,

P, ch + Rabcd Ucd =0

abc
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anyway. The fact that (D, —A)Z >0 at (X°, ¢°) then follows from the
lemma below. Since Z > 0 everywhere at time ¢° we get AZ > 0, and so
D,Z > 0. Thus wherever Z first becomes zero it is nonincreasing. This
sort of shows Z stays > 0, but we need to sneak an ¢ > 0 in somewhere,
as we mentioned before. The crucial step is the following.

4.5. Lemma. If the quadratic form in W and U

Z= Mab I/VaVVb + 2Pabc Uab VI/C + Rabcd Uab Ucd
is weakly positive, so is the quadratic form
Q= 2RacbnddVVaVVb - 2PachbchVaVVb
+8R e Pupe UnpWe + 4R 4o 1Ry e U Uy -

ProoF. A weakly positive quadratic form can always be written as a
sum of squares of linear forms. This is equivalent to diagonalizing a sym-
metric matrix and writing each nonnegative eigenvalue as a square. Write

Z=3 (X, W, +Y,U,)" .
N
This makes
M, = %:X:XcN’ Pope = Z YachN’
Ripea = ZN: Y;ZYCZ,

where X:’ is a one-form, and YGIZ is a two-form for each N . It is then
easy to compute

M N N M M N 2
Q= Z (Yac Xc I'Va - YacXc VV; - 2Yac ch Uab) >
M,N

which shows Q is also a sum of squares of linear forms and hence is a
weakly positive quadratic form.

5. The argument

We assume that we have a complete solution to the Ricci flow with
bounded curvature and nonnegative curvature operator. We may easily
assume we are working on a closed time interval 0 < ¢t < T, for if we only
start with a solution for 0 < ¢ < T we can pass to the interval ¢ <t < T,
and let ¢ — 0. By the work of W. X. Shi [13] we can then also assume
bounds on the covariant derivatives of the curvature. Note that the final
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conclusion is independent of these bounds. In what follows we will let C
denote various constants which depend only on the dimension, the time
interval T', and bounds on the curvature |Rm| and its derivatives |DR, |
and |D2Rm| . The constants will vary from line to line, and to be precise
could be indexed by the order of occurrence.

The idea gf the proof is to perturb the expression Z slightly to Z so
as to make Z very positive if ¢ — 0, or if the point X — co in case the
manifold is not compact. Also our perturbation must add a little positive
push, so that wherever Z first acquires a zero it is strictly increasing. It
then follows that Z never could make it to zero after all. Since we can
take Z as close to Z as we like on compact sets in space-time avoiding
t=0,weget Z >0 as desired.

We take Z in the form

Z = MavaaI'Vb + 2PachabVVc + Rabcd Uab Ucd >

where we take

— 1
Mab = Mab + ?q’gab >

N 1
Rabea = Rapea + 5 ¥(8ac8ba — 8ad8be)>
for suitably chosen functions ¢ and y . In fact we will later choose
Q= —%eA'f(X) and y = se™
with 4 and B large and ¢ and J small, and where f(X) is a function
of position only such that f(X) — co as X — oo but the derivatives of
f are bounded. In case the manifold is compact we just take f=1.

First we review the construction of f, as in Greene and Wu [5] and
W. X. Shi [13].

5.1. Lemma. There exists a smooth function f such that f > 1 ev-
erywhere and f(X) — oo as X — oo but all the covariant derivatives are
bounded, so that |Df| < C and |D2 f| < C fora constant C.

Proof. Let d(X) be the distance from some fixed point at time zero,
let p(V) be a smooth function on Euclidean space which is rotationally
symmetric with support in a small ball, and let

£(X) = /T p(V)d(exp, V) dV

be the integral over the tangent space T, at X . If the size of the support
of p(V) is small compared to the maximum curvature, it is well known
that this smoothing gives a function with f(X) — oo as X — oo, while
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its derivatives are bounded (See Greene and Wu [5]). We can also easily
bound f from below, and by dilating p(¥') by a constant we take f > 1.
Finally (as W. X. Shi does in [13]) we can bound covariant derivatives of
f at times ¢ > 0 using the standard estimate on the change in the metric
and the change in the connection, all of which is easily controlled.

5.2. Lemma. Given any constant C, any n > 0, and any compact set
K in space-time we can find functions y = y(t) depending on time alone
and ¢ = ¢(X, t) depending on both space and time such that

(1) w <n everywhere, and y > 6 for some 6 >0,

(2) ¢ <n ontheset K, and ¢ > ¢ for some ¢ >0, while (X, t) — o0
if X — oo in the sense that the sets ¢p < M are all compact in space-time
for 0 <t < T (if the manifold is compact this condition is vacuous),

(3) (D,~A)p > Cp,

4) Dy >Cy,

(5) 2> Cy.

Proof. We look first for ¢ in the form

o(X, 1) = ee™ f(X)

with f as before. Since Af < C and f > 1 we get Ap < Cop, and so
to make (3) work we only need D,p > C¢ with a different C. But this
works if we pick 4 > C. To make (2) work we need

e<ne’ max f(X),

which we can do.

Then we look for y in the form w(¢) = de®' and find that (4) works
when B > C. To make (1) work we take § < ne'BT and to make (5)
work we take d < se_BT/ C and use e >1 and f > 1. This proves the
lemma.

Now we study the evolution of Z. We observe the extra terms which
are added, which are few because D, W, =0 and (D,-A)U,, =0 at our
point as before, and y depends onlyon ¢ so D,y =0 and Ay =0. The
extra terms come (1) when (D, —A) fallson ¢/t, (2) when (D, —A) falls
on y, (3) when (D,—A) fallson W, and there is an extra ¢/t in ﬁab ,
and (4) when the A distributes as one derivative on each of U, and U,
and there is an extra y in R, . This gives us

(D,-A)Z = (D,-AZ + % [(D, —A)p — %¢] ||

2 2 2
+Z0W (D, = AW, + (D y)|U|" + ¥|D,U,|
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If again we take

1
[D, - AW, = —W,

a b
1 1
Danc = —Z'(Rabu/c - Rac%) + E(gabu/c - gacu/b)
at our point, substitute above and use [Rm| < C and ¢ < C, we get
(D,-A)Z > (D,-A)Z

1 1 C
+ 1 [0- 20+ 10 - Su W+ 00T

Now starting from our previous computation of (D, — A)Z we replace
Mab by M, and R, , by ﬁabcd and bound the resulting errors. This
gives
(D,—A)Z 2 2R, , M W W), — 2P, ;P W W,
+ 8Raa’ceP dbe Uabu/c + 4Raec f Rbedf Uab Ucd

+ Py W + Ryp g Ue gl Py W, + Ry U, ]

C 2 2 2
S+ o)Wl - CylUlIW|-Cy" +y)|UI".
We can simplify some of these errors. First
2 2
y|UIIW| < yw|W|" + y|U|

gets rid of the cross-term. Then using ¥ < ¢ (we even have Cy < ¢)
and y <1 (we even have ¥ < n and since we want 7 small we can make
sure 1 < 1) the errors reduce to

C
~olW|* + Cy|UI’.

Combining this with the preceding calculation we get the following result.
Theorem. Let ¢ and y be as in Lemma 2, and let W, be a one-form
and U, a two-form which at a given point satisfy

1
(D, - MW, = 7 W,

a’

(Dt — A)Uab =0, DaWb =0
and : )
Danc = f(Rabu/; - Rac%) + 4_t(gavac - gach) .
Let
— 1
Mab = Mab + 7¢gab ’

-~ 1
Rabcd = Rabcd + EW(gacgbd - gadgbc)
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and form the quadratic
Z=MabVVaVVb+2P U I/Vc"-RabchabUcd'

abc ~ab

Then
(Dt - A)Z 2 2Racbnddn/;zVVb - 2Pachbdcu/;1PVb
+ 8Radcedee Uab VV; + 4Raechbedf Uab Uad

+ [Py W, + Ry g U gl Py W, + Ry (U ]

abc abe
1 1 C 2
+3 (D,—A)¢+;¢— TV/—C(P L4

+[D,y - Cyl|UI*.

Now we finish the argument rigorously along the previous lines. Note
that R, , is nonnegative, P, is bounded and M,, is the sum of a
bounded term plus 1/¢ times a nonnegative one. It follows that

Z>-cwi’ - ciw||U|

and hence :
= 2
22 (o-C) WP - WUl + piUP.

Now y > ¢ while ¢/t is big when either ¢ is small or the point X is
outside a compact set. So we see that the quadratic form Z is strictly
positive outside of a compact set in space-time that avoids ¢ = 0. We
claim of course that Z is in fact always strictly positive, or we would get
a contradiction.

For suppose we look at the first time ¢° > 0 where Z has a zero
eigenvector, occurring at some point X° in the direction of the one-form
W,. and the two-form U, . Extend then to sections W, and U, with
W,=W, and U, = U,, at X° in such a way that we have

1

(D~ AW, = W,, (D,~A)U,, =0, DW,=0

a’ a

and : )
Danc = E(RabVVa - Racu/b) + a_t(gabu/c - gac%)

at the point X°. Then arguing on (D, - A)Z we see as before that the
quadratic terms are nonnegative at a zero eigenvector. But now the esti-
mates of Lemma 2 give (D,~A)Z > 0 (since either W #0 or U # 0 for
an eigenvector). But Z > 0 everywhere at the time ¢°, so AZ > 0. This
makes D,Z > 0 at X° at the time ¢° when Z = 0. But then a short
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time before Z must have been negative at the point X°, for some choice
of W, and U,, coming from our extension. Since this is a contradiction,

it follows that Z > 0 always and everywhere.
Now it remains to let 7 — 0 in Lemma 2, and we get Z > 0 in the
limit. This finishes the rigorous proof of the Harnack inequality.
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