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UPPER BOUNDS FOR EIGENVALUES
OF CONFORMAL METRICS

NICHOLAS KOREVAAR

0. Introduction

In this paper we shall study upper bounds for eigenvalues of the Lapla-
cian. In the case of manifolds with boundary we will consider the Neu-
mann eigenvalues y, . (We denote Dirichlet eigenvalues by 4, .) A famous
theorem of A. Weyl asserts that given a domain Q c R” with finite volume
V, u, and A, have asymptotic values as k — oo, given by C,(k JV)H"
[13]. Here C, = 47z2w;2/ ", w, is the volume of the unit ball in R",
and to say that two sequences are asymptotic means that their successive
ratios approach 1. It is well known that this asymptotic formula actually
holds for any compact Riemannian manifold with boundary. (See e.g.
[1].) Of course, the rate at which the eigenvalues become asymptotic to
Cn(k/V)z/ " depends on the geometry of the domain or manifold one is
considering.

G. Polya proved that for certain “tiling domains” in R’ the asymptotic
formula is actually an estimate below for all the Dirichlet eigenvalues, and
an estimate above for all the Neumann eigenvalues [8]. In the same work
(and earlier, [7]) he conjectured that these upper and lower bounds should
hold for Neumann and Dirichlet eigenvalues on general domains. More
precisely, if we define u; = 0 to correspond to the constant function, then
Polya conjectured (in the case n = 2) that for any finite volume Q c R”
we have the estimates

k 2/n
(Ola) )'k > Cn <’I7> ’

k _ 1 2/n
(0.1b) 1 <C, (—7—> .

The generality in which such a theorem might be true is not understood. In
a survey article S. T. Yau generalizes the conjecture and asks for conditions
under which such upper and lower estimates can hold for two-dimensional
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(orientable) Riemannian surfaces (with constant C possibly depending on
genus) [15]. In this paper we shall only consider upper estimates of the
type (0.1b). There is a large literature on lower bounds for eigenvalues
which we will not summarize here.

G. Szego6 had shown before Polya’s result that the first nonconstant Neu-
mann eigenfunction for a simply connected planar domain has eigenvalue
bounded above by that of the disk having the same area; i.e., it is bounded
by pzn/A where p = 1.8412... is the first positive zero of the appro-
priate Bessel function [10]. Since C, = 4n > pzn , Polya knew that his
conjecture held in this case, for u, . J. Hersch used ideas similar to Szegd’s
to prove that for any Riemannian S? there is a sharp upper bound for
U, (or by convention A, = u,), attained with the standard metric, of
the form A, < 8n/A4, where A is again the Riemannian area [3]. (This
estimate arises from a stronger sharp inequality for the sum of the recip-
rocals of the first three eigenvalues.) P. Yang and Yau subsequently used
Hersch’s idea and a branched-cover argument to conclude analogous (but
nonsharp) inequalities for general orientable (M 2 , g) of genus g. In par-
ticular, 4, is bounded above by 8n(g+1)/A4 [14]. Li and Yau introduced
the concept of conformal volume for a manifold (M, g) and were able to
estimate A, above in terms of it and the correct power of actual volume
[6]. This gave a new proof of the upper bound estimate for 4, quoted
above [14]. However the generality of their estimate is limited by the fact
that conformal volumes are not easily estimated for general Riemannian
manifolds with dimension greater than 2.

Earlier S. Y. Cheng had shown that estimates above do exist for u, (and
u,) on (M, g) depending linearly on d™?, where d is the diameter of
(M, g), and on a lower bound on the Ricci curvature for M (and on k)
[2]. In fact, examples of H. Urakawa show that there does not exist any
universal constant C depending only on 7 so that upper estimates of the
form (0.1b) hold for all Riemannian manifolds: he constructs compact
manifolds with volume 1 for which u, = 4, approaches oo [12].

In the case of nonnegative Ricci curvature (or more generally Ricci
bounded below and diameter bounded above), Li and Yau are able to
estimate u, from above in terms of volume [5]. For example, if Ricc >0
they show the existence of a (large) universal constant (depending only on
n) so that

(0.2) u <C <§>2/n .
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It is possible to modify somewhat Weyl’s original cube decomposition
ideas to show that the upper estimate (0.2) also holds for some large C
(depending on n), for arbitrary Euclidean domains. (The author is not
aware of any reference to such a theorem in the literature, however.) In
the present paper we will adopt a new approach to prove that such upper
estimates hold in generality which encompasses more than that of [5] and
of Euclidean domains: Namely, we prove estimates for conformal metrics
on domains of complete manifolds (M, g,) having nonnegative Ricci cur-

vature, or at least having bounds on Ricci - diameter > . One consequence
is a partial answer to Yau’s survey-article question. (See Theorem (0.5)
below.)

The method of proof for the main theorem (0.3) involves a decompo-
sition of (M, g,) relative to the volume concentration of the conformal
metric g = ¢g,. One expects that the ideas in this decomposition could
also be useful for other questions.

The results in this paper are the following.

(0.3) Theorem. Let pu, bethe kth Neumann eigenvalue for the Lapla-
cian, with respect to a ( finite-volume) conformal metric g = ¢g, on (a sub-
domain Q of ) a complete Riemannian manifold (M, g,). Let (M, g,)
have nonnegative Ricci curvature (assume (M, g,) is smooth). Then we

have the estimate
k 2/7!
#k < C- (V) >

where V is the total volume of (M, g) (or of (Q, g)) and C is a (large,
nonsharp) constant depending on n, but independent of the particular met-
ric, domain, manifold, or k .

More generally, let (M, g;) be complete and satisfy (Ricc)d2 > —a?,
where Ricc is a lower bound for the Ricci curvature on M, d is the diam-
eter of M, and a is a nonnegative constant (if Ricc =0 we take a = 0).
Then the estimate above holds for u, , except that the constant C depends
on a aswell as n.

As an immediate consequence of the proof of (0.3) we will have

(0.4) Theorem. Let f: (]\7 ,8) — (M, g,) be a conformal differen-
tiable map of (topological) degree D, so that every point in M has at
most D preimage points in M and

(f;X’ f;—Y)go = (D(X, Y)g’

for a nonnegative function ¢ on M . Assume that the g-volume of {x € M
such that f: M, — M(x) satisfies f, = 0} is zero. Then, under the same
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hypotheses on (M , g,) as in (0.3), we have the same estimates for u,,
except that C is replaced by C-D*".

Using uniformization theory and the Riemann-Roch theorem from com-
plex analysis, one can quickly apply (0.4) to conformal maps f (arising
from meromorphic maps) whose image is S? to conclude the estimate:

(0.5) Theorem. Let (M,g) be a compact (orientable) Riemannian
surface of genus g and area A. Then there is a universal constant C so
that the kth Neumann eigenvalue u, of the Laplacian may be estimated
above by
(g + Dk

YR

(The idea of using meromorphic functions for this type of estimate
originates in [14] and is also used in [6].)

We will prove Theorem (0.3) first. In §1 we list some preliminaries.
In §2 we create a natural decomposition of M in terms of g,, which
reflects the volume concentration of g. We prove a key technical lemma
(2.5) relating relative volumes for this decomposition. In §3 we apply this
lemma to construct sufficiently many Rayleigh-quotient test functions so
that our Theorem (0.3) can be proven. In §4 we show how to conclude
Theorems (0.4) and (0.5) from the ideas of (0.3). We also include some
further remarks.

w <C

1. Preliminaries

We specify the configuration for Theorem (0.3): Assume we are given
a positive measurable metric g = ¢g, on a subdomain Q Cc M. (So
also we have the relation dV = ¢"/ 2 dV, between the respective volume
elements.) Because both sides of the estimate in (0.3) scale by ¢ ~!if the
metric is scaled by the positive constant J , we assume for technical ease
that the total volume of (Q, g) is 1; it suffices to show the estimate in

that case.
(1.1) We will write m(U) for the conformal-metric volume of a mea-
surable set U, and m(U) for its volume with respect to g,:

m(U)=/U¢"/2dV0.

For a continuous function %, supp(#) will be the support of #; i.e.,
the set on which it is nonzero.



EIGENVALUES OF CONFORMAL METRICS 77

(1.2) We wish to construct test functions 7, and estimate Rayleigh
quotients

JoVnl>dv
fQ '72|dV

In the expression for R(n), |Vr1|2 is the norm squared of the conformal-
metric gradient, |Vr1|2 = ¢7_1|Dr1|2 (and |Dn|2 is the norm squared of the
gradient with respect to g;). It follows from the well-known variational
construction of eigenfunctions that if one can find k disjointly-supported
functions on Q, each with Rayleigh quotient bounded above by C, then
m<C.

We may estimate the Rayleigh quotient by applying Holder’s inequal-
ity to the numerator, and using the conformal invariance: |Vg|"dV =
\Dn|" dV,,:

R(n) =

(J |Dn|" dVy)*" m(supp(Dn))" 2"
[ 0"y av, :

In (1.2) and (1.3) all integrals were at first assumed to be over the domain
Q. If Q# M we formally extend ¢ to be zero on M\Q. A test function
constructed on M gives rise to one for €, and its Rayleigh quotient on
Q may be bounded by (1.3), where the integrals are now taken over all
of M . Thus in the sequel we assume ¢ > 0 is defined on all of M, and
always use (1.3) to estimate Rayleigh quotients.

(1.4) Our estimates will depend on volume growth of geodesic balls and
area growth of geodesic spheres. We collect the relevant constants below.
Let a be the nonnegative constant from the hypotheses of (0.3). Pick
constant @] so that

(1.3) R(n) <

(1.42) sup R"my(B(X, R)) < o}

It follows from standard volume comparison theorems, e.g., [4], that a_)z
may be taken as a " times the volume of the radius a ball in constant-
sectional-curvature space having Ricci curvature —1. In the case a = 0
w’ = w, suffices.

Pick constant w_, so that

(1.4b) sup R~ / (cosp)tddy < w?_,.
x,R §"Y(x,R)

Here S"_l(x , R) is the geodesic sphere of radius R and center x, d4,
is the induced metric from g, and ¢ is the (polar) angle in the tangent
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plane M_ between a fixed vector and the tangent vector to the (length-
minimizing) geodesic from x to a point on N (x, R). (cosp)” is the
positive part of cos ¢ . It follows from surface area comparison theorems,
e.g., [4], that wﬁ_l may be taken as the value of this normalized integral
for a radius a ball in the constant-sectional-curvature space having Ricci
curvature —1. In the case a = 0, coz_l can be taken as w,_,. One
can check the following fact (which will be very important in the sequel):
R"—la)ﬁ_1 majorizes the rate of change (with respect to arclength s) of the
(M, g,)-volume of a tubular neighborhood of radius R about a geodesic
parameterized by arclength s.

Pick (again using volume comparison theorems) constants vfl , rﬁ SO
that:

(1.4c) Any annulus B(x, 2R)\B(x, R) can be covered by a number of
radius 5”'R balls which is bounded by v° .

(1.4d) Any B(x, 50R) can be covered by a number of radius R balls
which is bounded by 7 .

2. Decomposition of M according to its g-volume

Because we are dealing with a conformal metric we must work on differ-
ent size scales relative to the background metric g, , in order to account
for concentration of the conformal-metric volume. We will construct a
family of nested domains in M , related to the local volume density of g.
Our Rayleigh quotient test functions will be supported in these domains
or in annular regions between them.

(2.1) Fix k € N. Let B(x, R) be the open ball of radius R about x
with respect to g,. Whenever we speak of distances, it will be with respect
to g, . For integer j define

(2.1a) S;={B(x,5) s..m(B) > }},
(2.1b) Q ={ystyeBx,5)es}=J Bx,5).
BGSI

The nesting of the Q; (clearly Q; C Q;,,) gives an indication of local
volume densities for g. We construct a related (regularized) family from
the Sj, Qj as follows:

There is a minimum j = J for which Q, and S, are nonempty. For

Jj<J let ej be empty, and for j < J—1 let ﬁj be empty. Pick B, to be
a maximal collection of balls {B(x;, 5 cs ', which are doubly disjoint;
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i.e., the corresponding B(x;, 2.5 ) are disjoint. Let ©, , be the 4.5’
neighborhood of B,; ie., ©,,, = {UB(x;, 5’*"), where B(x,,5") €
Bjinductively define B;, ©,,, asfollows: Let B ; be a maximal collection
of balls in S ; which are doubly disjoint from themselves and from 6 Iz
Then define 6 j+1 1O be the 4-5’-neighborhood of the union of © ; with
the balls in S ;. It is clear (by induction), that © ;= UB(x,, 57), where
the union is over x; for which B(x;,5’) € §,, some r < j.

(2.2) Lemma. We have the inclusions Qj_l co;c Qj forall j.

Proof. 8]. cQ ; is clear from the last sentence of (2.1) above, so we
must only show Qj—l C ©; . First prove Q,CcO,,  :Let yeQ,. Then
y € B(x, SJ) €S,. Now B(x,2- 5J) must intersect some B(x;, 2 - SJ)
for which B(x,, 51) € B, , by maximality. From the triangle inequality
the distance from y to x; is less than 5 - 57, so y € B(x;, SJ“) C
6,.,- We prove the general case by induction. Let y € Q ;_1- Then
y € B(x, 5j—1) € Sj_l . B(x,2- 5j_1) must intersect some B(z, 2-5j"1)
with B(z, 5/ _1) 1S ﬂj_l , or else must intersect © i1 by maximality. In
the first case y is within 5.571 of z,s0isin © It In the second case y is
within 57" +2.57'+ 57! of some z with B(z, 5') € 8., some r < j—1
(by our characterization of ©,_, (1.1)). Thus y € B(z, 5 c 8. qed.

(2.3) We write 8, = UG} , where the 8} are the (connected) compo-
nents of 6 ;- Similarly, g, decomposes into a union of balls ﬂ]’ . We will

use the collection of sets ﬂj’ and éj. = 6;\(8 1Y B j_l) to construct our
test functions.

We use the symbol § to stand for “the number of components.” For
example, §(©,_, 08;.) is the number of components of ©,_, in 6; , and
#(B,_, N©’) is the number of B,_,-balls in ©.

~ . N J .

E(®))=E;,and E(B;) = e, be the (Euclidean-)normalized, background-
metric volumes of éj , € E; =5"my(8)), e = 5""’m0([¥} ). (By
(1.4a) we have e} <al)

The reason the g,-volumes are normalized in this fashion is that we will
be constructing bump-functions and annularly-supported functions to plug
into the Rayleigh-quotient estimate (1.3). Typically they will cut-off in a

Let M; = m(é;), m' = m(/?j'-) be conformal metric volumes. Let
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piecewise-linear manner, say between some 88; and an interior 665._1
(or 9 B;_l). This will lead to |D#n|" of order 57" . Hence the first term

in the numerator of (1.3) will be estimatable exactly if E; is

When we use constants in inequalities, they are independent of the
manifolds (M, g), (M, g,), and the eigenvalue counting index k, but
may depend on dimension » and the Rlcm-dlameter parameter a.

(2.4) Remark. The nesting of the domains 8 and /3 can be de-
scribed naturally by a simply connected graph (“ tree ”), as descrlbed below.
This tree structure will be important for our later analysis.

For each domain 8 and each ball B , construct a vertex at “height
parameter” j. Two vertlces on adjacent levels are connected by an edge
(ie., 1dent1ﬁed) 1f and only if the lower-level vertex corresponds either to

a 9' _y ora ,8 _, contained 1n 6 where 6 is the upper-level vertex.
In this case we will say that 6 iy Or B = is a child of éj., and é; is

the parent of éj.l_l or ﬁ;.,—]
The “leaves” of this (possibly infinitely high) inverted tree are defined
to be vertices connected only to higher-level vertlces (children with no

offspring), and correspond exactly to particular ﬂ For a nonleaf vertex

é; , define the forking number f (8;.) to be the number of children, minus
one. (For a leaf vertex, define the forking number to be zero.) Since the
Euler characteristic of a (finite) tree is one (the number of vertices minus
the number of edges is one for a simply connected graph), and since above
a certain “height” our tree has no more forks, we conclude that the number
of leaves can be computed as one plus the sum over all nonleaf vertices
Oj. of f (9}) . Since forking at vertices will be important in our estimates,

we define for a given éj. and s€Z, s>0,

(2.4a) fo=Y 16).
6 _.co

For each leaf ﬂj’ = B(x, 5/ ) of the tree we are able to construct a radial

test function # which is one on B(x, 5’), zero outside B(x,2-5’), and
linearly interpolates one and zero between radii 5’ and 2-5'. By our
“doubly-disjoint” construction, these test functions have disjoint supports.

Now we estimate the Rayleigh quotient for such a bump function: Let
'): be defined as in (1.4c). the support of D7 is contained in the annulus

B(x,2- 5/ N\B(x, 5/ ), and this set can be covered with uf, balls of radius
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57!, each of which has conformal metric volume less than 1/k, since
the annulus is in the complement of Q i1 (2.2). Also, f n2 dV is at least

1/k, since B(x, 5/ YEB . Hence, estimating with (1.3), we have

(2.4b) R(n) < 4(w2)2/n(vﬁ)(n—2)/n . k2/n '

Thus, if for some fixed fraction y > 0 there are more than yk leaves,
we will conclude that Bpprger < C. kz/"; ie., B; < C- (j/y)z/" , for j =
[vk]1+1, the greatest integer function [-], and the constant C from (2.4b).
Alternately, it is possible that the number of leaves is, < yk (for example,
if our metric manifold has a long skinny cylindrical region, there may
not be many leaves). In this case one wants to construct test functions
with support on annular regions obtained from (unions of) the é; . The
estimates of Lemma (2.5) below will imply that in the case of a small
number of leaves, §8 < yk (y > 0 and small to be chosen later), the mass
and metric volume of the annular regions can be controlled well enough
so that for some 7 > O there are at least y'k annular test functions,
each with Rayleigh quotient bounded by a multiple of k™ . This will
essentially prove Theorem (0.3).

(2.5) Basic Lemma. Using the notation above we have the estimates
for the background and conformal volumes of é; :

. C j=J-1 e
(2.52) M;ST‘ (1+2 ZO 5 Sfj(s)) ,
S=l
‘ j—I-1 .
(2.5b) E; <wy+20,_ > 5°f(s).
5s=0

Proof of (2.5). To prove (2.5a), we note first that by (2.2), é; is in

the complement of Q 2 Hence any radius 5~2 ball which intersects
it has conformal volume bounded above by 1/k. Therefore it suffices to
estimate above the number of such balls required to cover the larger set
9} , by some constant C, times the parenthesized expression in (2.5a). To

show (2.5b) we will estimate the background volume of é; above by that

of 6; . In both cases it is useful to consider the digression (2.6) below.
(2.6) Digression. Recall (or define) that a (finite connected) metric
graph G is a finite collection of “points” or “vertices” {z,, z,, -+ , z,},
together with a finite set of “edges” and lengths {E_, L }, where an edge
E = Efj identifies (connects) the points z; and z; and has positive

a
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“length” L_. Out of each edge Ef ; We may construct two oriented edges
or “vectors” (or “rays”), V;, V};, rays connecting z, to z; and z; to
z; , respectively, each with length ij )

(2.6a) The natural notion of a path in G is an ordered sequence of
vectors V;i , where the ending point of one vector in the sequence is the
starting point of the next. We assume that any two points in G can be
connected by a path. (This is the “connected” assumption.) The length
of a path is the sum of the vector lengths. The points in a metric graph
inherit a natural metric space structure, by defining the distance between
two points as the minimum of all possible lengths of paths connecting
them. Distance-realizing paths are called geodesics. Clearly any subpath
of a geodesic is also a geodesic.

(2.6b) A subgraph T of G consisting of all the points {z,, z,, -, z,}
and a subset {E,} of the edges is called a “maximal tree” for G if T (is
connected and) is simply connected, i.e., if T has exactly r — 1 edges.
Given a graph G one may construct a maximal tree for G as follows: Pick
a point, say z,. First, take the union of all vectors which are contained
in geodesics connecting z, to the other points z,,--- , z,. Note, if the
vector V,j is in this collection, the the vector V;’, cannot be. Whenever two
or more vectors in this union end at a given point z i they must both be the
last vectors of a geodesic from z, to z It and so we may delete all but one
of them from our collection while still being able to construct geodesics

from z, toallof z,,---, z,. Do this deletion process successively to
vectors ending at points z,,--- , z, until each z i Jj > 2, has exactly
one vector ending at it. Take 7 to be {z,,---, z,} together with the

edges corresponding with these remaining vectors. Since z, can have no
vector ending at it, the Euler characteristic of our final graph 7 is 1, and
it is simply connected.

(2.6c) We will call the collection {z,,---, z,} together with r—1 vec-
tors { Vﬂ} a “directed tree,” DT, of G, with initial point z , if the
corresponding collection of edges and points are a maximal tree 7 of G,
and if each Vs is of the form V,;, with i< j (and j=2,---,r). We
write in this case i/ = p(j) (meaning i is the predecessor of j). Given
a maximal tree T it is easy to construct a directed tree DT as follows:
First, repeat the process (2.6b) on T , using the point z, as indicated. No
vectors can be deleted, since the Euler characteristic is already maximized,
so the result will just be to pick “positive” orientations V; ; for each edge
E;.
Now we shall renumber z,, --- , z, (and relabel the rays V] j) according
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to a natural tracing algorithm: Start at z, . Some vector(s) must leave this
point. Pick one, and call the endpoint z,. Renumber the just traversed ray
as ¥}, . Proceed inductively as follows. Assume we have redefined points
Zys Zys 5 2, and rays Vp(i)’i for 2<i<j. If z; has rays leaving it,
pick one, call its endpoint z INE and V; 4l is the new ray. (Since each
point z i j > 2, is hit by exactly one ray, then z j+1 cannot be a point
which has already been renamed, assuming by induction that z ; was not.)
If z ; has no rays leaving it, then back up to the most recent (renamed)
z; (1.e. i < j with i largest possible), which has so-far untraversed rays
leaving it. Pick one of these rays, call its endpoint z jp1oand Voo is the
new ray. This inductive process ends after a finite number of steps. The
points which are traversed in the process are a connected subset of T, so
areall of {z,,---, z,}, and we have constructed a directed tree DT .

(2.6d) Lemma. Let {z,,---,2} C (M",g) and {V,;, ;} (2 <
i <r) be a collection of vectors Vp(i), ; with lengths p,, so that we have a
directed tree in the sense of (2.6c). Assume that the lengths p; are actually
the distances on (M, g;) between Zy) and z;. Define | = p, to be
the “total length.” Let R > 0. Then {z ,---,z} can be covered by
[L/R]+ 1 (or fewer) closed balls of radius R (where [-] is the greatest
integer function).

Proof. To prove the lemma we first construct distance-realizing geo-
desics y; from Z,i) 10 Z;. Let the cycle I' be the sum y, +7,+---+7,,
parameterized by arclength. (So I' has length equal to L.) For points
P €T define the “farthest distance function” ¢(P), as follows: From P
there are a finite number of positively oriented (2.6¢) (continuous) paths
on I' (leading to terminal points of the tree). Let ¢(P) be the maximum
length of such a curve.

If L < R (or more generally, if ¢ < R onall of I'), then the closed ball
B(z,, R) covers {z,,---, z,} and (2.6d) holds. If ¢ > R somewhere,
pick P € I" with ¢(P) = R. Then B(P, R) covers all of the positively
oriented paths emanating from P, and these paths have total length at
least R. Therefore, if we construct a new directed tree by deleting the
union of these paths (but keeping P), we have decreased the total length
by at least R. Repeat the process above on the reduced tree, and after at
most [L/R] steps the total remaining length will be less than R. This last
remaining piece can be covered by F(z1 , R), and the lemma is proven.

(2.6¢) Lemma. Let {z,---,z}C(M",g) and {V,;,;} 2<i<
r) be a collection of vectors V;(i)’i with lengths p;, so that we have a
directed tree in the sense of (2.6¢c). Assume that the lengths p, are actually
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the distances on (M, g,) between z,, and z;. Let Ng(z,, z,, -+ , z,)
be the set of points within (g,—) distance R of the points {z,--- , z,}.
Then my(Ny(z,, z,, - , 2,)) is bounded above by
r
My(Ng(zys 25, -+, 2,)) S OiR" + i RS p,.
i=2

Proof. Note first the geometric meaning of the inequality’s right-hand
side: If, in R", points z; are placed on the x! axis, with x'-coordinates
0, py, py+ Py, 5 2 p;, then the right-hand side is exactly the volume
of the R-neighborhood of the line segment from z, to z,.

Note also that a cruder version of this estimate is obtainable from (2.6d).
Namely, if we take the (open) balls of radius 2R, with centers determined
from the covering process (2.6c), then they cover N(z,, z,,- -, z,).
From (2.6¢c) we conclude that

my(Ng(z,, 2, » 2,)) < w2(2R)"(1 + L/R),

where L is again ) p,. This estimate would actually suffice to prove our
eigenvalue estimates, albeit with even more astronomical constants. We
prove the estimate (2.6e) because it is sharp, and easy.

To prove the lemma we mimic the proof of (2.6d): Let I' = y, +
7, + -+ + 7, be constructed and parameterized as in that lemma. For
arclength parameter s, let m(s) be the g,-volume of the R-neighborhood
of {I'(¢), 0 <t <s}. Then my(s) is a Lipschitz function, because our tree
is directed in the sense of (2.6c). (That is, every time we jump locations
on our cycle, we start from a location at which the R-ball is already in
our neighborhood.) m(0) is bounded by w;R", by (1.4a). Also, by the
discussion in (1.4b), we have

(2.6f) %mo(s) < a)z_lR"_l
Upon integrating, we have (2.6e). q.e.d.

(2.7a) We return now to the proof of estimates (2.5a), (2.5b). We wish to
construct an optimal directed tree for the points {z € 9; st. B(z,5) €
B,, some r < j— 1}, and then apply the estimates (2.6d), (2.6e). We
construct our tree via an inductive process on decreasing .

Consider first the subset of z’swith B(z, 5 ') € Bi_yssay z,---, 2, .
If this set is empty proceed to the induction step. Otherwise, we know
by construction (each 8; is connected) that each of these z;’s is either
within 2-5’ of another such z, , or within 2- 5/ ofa z in our set having
B(z,5) e B,, r < j—1. Construct a formal metric graph (2.6) having
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vertices for each z,, -, z, > as well as for each set 8 4 C 8 Add
edges between “points” as follows if the two points are z ’s, 1 < r<r,
then add an edge (with “length” 2.5’ ) if the distance between them is less
than 2-5’. If one vertex is a z,, 1 <r <r;, and the other is an 6] 1
then add an edge (with “length” 2. 5/ ) if there is a ﬂ-pomt z € 8.
with |z, —z| < 2- 5/ . If the vertices are 9 _, and 9 _, then add an edge
(with “length” 25 ) if there are ,B-pomts z; and z,. in the respective
sets, with |z, — z,#| < 2- 5.

We have now constructed a connected metric graph, and using (2.6c)
we pick a maximal tree T for it. The number of edges in T is exactly

16 j) = f] (0) (2.4a), and each has length 2-5’ . We now repeat the process
inductively on all the 6§I_s ,s=1,2,---. At each step we construct a
lower order maximal tree TJ'I_ 5 - The total number of edges at level j—s is
exactly fj'(s) , and they each have length 2.5’ . Now glue the maximal
trees together in the natural way to get a tree for our entire set {z € 8}
st. B(z,5) € B,, some r < j —1}: For example, in the first stage we
glue a maximal tree Tj‘l_1 to sz as follows. Let DTj be the directed tree
made out of T]’ , with initial point z, . Then there is a unique ray pointing
to Gj.’_l . Replace this with a ray pointing to a (j — 2) subset of Gj.l_ q
containing a z-point which was distance less than 2 -5 from the ray’s
origin. Construct the directed tree Dle_l with this initial point. If there
is a j-level ray pointing out of 85_1 , replace it with one pointing out of
an appropriate (j — 2) level subset.

At the end of our inductive process we have constructed a maximal tree
for our entire set, and by applying (2.6c) again if necessary we may assume

we have a directed tree DT (we suppress [ — j dependence). Letting p,
be the actual (M", g,)-distance from z we have the estimate for

p(i), i
L=} p;:
j=J-1

(2.7b) S S 2-57fs)
s=0

By our preliminary remarks, to prove (2.5a) it suffices to estimate the
number of radius 52 balls required to cover 6}. But (2.6d), with R =

5/, implies that ej. can be covered by [L/R]+ 1 radius 2- 5/ balls (take
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radius 2 -5’ balls centered at the covering balls’ centers). Recalling the
definition of 7% (1.4d) we let C, = 7%, and the number of 5’ =2 balls
required to cover 8;. is bounded above by C,(1 + L/R). Substituting in

our estimate (2.7b) for L and using R = 5/ yield (2.5a).
Applying Lemma (2.6e) with R = 5/, and using the estimate (2.7b), we
immediately get
) ) fi—J-1 o
my(®)) < wis” +wj_ 5" ( 3 2-5"“‘1}’(s)) .
=0

Upon dividing by 5" , this gives (2.5b).

3. Annular test functions

We use the estimates (2.5a), (2.5b) to show that if the number of leaves
on our graph (2.4) is small, then we can construct enough annular test
functions to conclude Theorem (0.3). To this end we define 0 < a <1 by

(3.1a) I8 = ak,

so a is a fraction measuring how many leaves our graph has relative to
our subdivision parameter k .

In order for our strategy to succeed, for small a we cannot have too
many vertices on our graph with large mass M]f (for that will decrease the
estimatable number of vertices and annular test functions, as well as cause
trouble in the second numerator term of the Rayleigh quotient estimate
(1.3)), nor can we have too many vertices with large E; (for that will cause
trouble in the first numerator term of (1.3)). We are led therefore to the
following two estimates:

(3.1b) Y. E; <50),_ak = Cyok,
E;>20)]
(3.1c) Y M <5Ca=Co.
M;>2C, [k

(And for later reference, define M, = 2C,.) These results are immediate
consequences of (2.5b) and (2.5a): For example, the proof of (3.1b) is:
. A j=J—-1 4
S E<2 Y E-ehswl T Y 5L
E}>20! E{>20] 6;‘. 5=0

1
< 4(0i_1 (iTI/—S) ak = Swz_lak .
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In this calculation we applied (2.5b) for the second inequality, and summed
over all nonleaf vertices é;. . For the third inequality we interchanged the
order of summation and summed the appropriate geometric series. The
proof of (3.1c) is formally the same, using (2.5a) in place of (2.5b).

(3.~2) Now we partition M " by taking connected unions of the various
sets 9;. , B} , into larger sets having conformal-metric volume at least 1/k .
We require this partition to be “maximal” in the sense that none of the
unions can be subdivided into smaller admissible pieces. (Of course each
BJ'. has conformal-metric volume > 1/k, so will be in a distinct set of this

maximal partitioning, but successive é; ’s may have to be unioned with
themselves or elements of S in order to attain mass at least 1/k. ) Call
this partitioning P = UP,- . P has a tree structure; it is obtainable from
that of the é; , ﬂ; sets (1.4) by identifying vertices which belong to the
same Pj.

We may speak of the parent p(P;) of P; and of any possible children
c(Pj) , in analogy to the discussion in (2.4). (These will be elements of P .)

In p(Pj) , the nearest éf to Pj , not in Pj , (the ©-parent) will be denoted

by 5(P;) . Similarly we will speak of the éf or f;-children of P, , denoted
by c"'(Pj). (They are the union of all the children of the constituents of
P.)
J
For nonleaf P; we write f (P;) for the number of forks, i.e. f (P;) =
fc(P;)— 1. Each leaf of P will contain a (unique) B’ , but because leaves

ﬂ; of our original graph may be absorbed into nonleaf elements of P,
our new graph may have fewer leaves than the original. Thus the sum of
f(P;) is bounded above by (§8) —1=ak —1.

We wish to construct test functions # which are = 1 on a given P,=0

on nonparent and nonchild éf , Bf , and linear functions of the (M, g)-
distance to P; in between. In estimating how many of these we may
construct, and in estimating the Rayleigh quotient of each (1.3), it is help-
ful to know f (P;) =0 (note this allows for the case that P, is a leaf (2.4)),
f(ﬁ(Pj)) = 0, and to know bounds for m(ﬁ(Pj)) , E(B(P}), m(e(P)),
and E (é(Pj)) (2.3). Accordingly, we define P; to be “good” if (recall
M, =2C)

f(P)=0,  f((P))=0,
(3.22) EG(P) <20,  E@(P)) <20,
m(p(P) < MJk,  m(&(P) <
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If P, is good define n as above. More precisely, if p(P) = éf, let
n(d) = (1 -2"".5""4)" there, and if &P, = 6] exists, let n(d) =

(1-—2"‘-5_'1+1d)+ there. (Here d is the function “(g,) distance to P;.”)
Estimating the Rayleigh quotient of # from (1.3) yields

(3.2b) R(y) < (25) 2 a)2/nM(n 2/n g 20n

(3.3) The next sequence of inequalities will let us find an estimatable
number of good P;.
We have immediately from the relationship between forks and leaves
that
P, s.t. f(P) > 1} <ak,

(3.3) t{P; s-t. f(B(P))) > 1} < 2ak.

This last inequality has the factor of 2 because a given set éf may be
parent to several P, , but the number is bounded by f (Gi) +1<2f (Gf) ,
if f(8)>1.

Estimates (3.1b) and (3.1c) give

ak,

: : o C
(3.30)  HP; st f(B(P)) =0 and E(3(P)) > 207} < 2%

H{P; s.t. f(P) 0 and E(¢(P ))>2w } < 2Caak

(3.30) #{P; s.t. f(B(P;)) =0 and m(p(P;)) > M,/k} < %ak’

#{P; s.t f(P;)=0and m(¢é(P;)) > M, /k} < %ak.
1
For a given P;, let h(p;) (“heavy”) be the particular éi or B in P,
with the largest conformal-metric volume. Each connected component of
Pj\h(Pj) has mass less than 1/k, by maximality. Therefore (counting
the component in the parent direction and the possible components in the
child directions of h(P].) , we have

(3.3d) m(P,) < (h(P))+2+f( )

Let
(3.3¢) M,=M, +2.
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If m(P;) > M,/k, then (3.3d) implies that either m(h(P,)) > M, /k or
m(h(Pj)) < M,/k and f(P].) > 1. Therefore in the case m(P,) > M, [k,
we absorb the middle term of the right-hand side of (3.3d) and get one of
the corresponding estimates

(P,
m(P;) < (1 + M%) m(h(P))) + f‘k’) . if m(h(P) > %
m(P,) < M_ﬁﬁ, if £(P)> 1 and m(h(P,)) < 7L

Summing these inequalities over m(Pj) > M,/k, and applying (3.1c),
(3.3a) we get

(3.3) S omp) < (1 + Mi) Cya+ (M, +4)a = Cya.
m(P;)>M,/k !

Since the volume of (M, g) was normalized to be one, we know that
3 m(P;) = 1. Therefore (3.3f) yields

k
(3.3g) Ii{Pj} >(1- C4a)ﬁ2 .
Combining (3.3a), (3.3b), (3.3c), and (3.3g) we see that
k C Cc, 2C
P.s.t. P, good} > — — | =% =2 43
(3.3h) 1P, s ,EOO}_M2 (M2+3+wZ+Ml)ak
= (¢, — Csa)k.

(3.4) We may now conclude Theorem (0.3) as follows: First, let C, be
the larger of the two Rayleigh-quotient bounds from (2.4b) and (3.2b):

n 1

(3.42) C, = max{4(e”" 2/n(vz)(n—2)/n , (_22_5> (Zw:)Z/nM(n—Z)/n}'

Let y be given by
2

(3.4b) Ak ren

Case I: the number of leaves ak satisfies a > y. In this case (2.4) im-
plies we may obtain [yk]+ 1 independent bump-function Rayleigh quo-
tients, each bounded by C6k2/ ",

Case II: the number of leaves ak satisfies o < y. In this case (3.3h)
implies that the number of good Pj is at least 3yk . Since an annular test
function constructed from a good Pj has support on at most two other
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good P, we may construct at least [yk] annular test functions in this
case, with Rayleigh quotients bounded by C6k2/ ",

Therefore, for any k € Z*, we conclude
2/n
(3.4¢) Hopy < Co-k

For j=1,2,--- pick k =[2j/y]. Then yk > y(2j/y-1)22j-y 2>,
s0 (3.4c) yields

.\ 2/n
(3.4d) ujgcﬁ(z?f> =C,j".

Rescaling our conformal metric to arbitrary volume yields Theorem (0.3),
with C=C,.

4. Generalizations and related questions

(4.1) We show how Theorem (0.4) follows from the proof of Theorem
(0.3). Let f: (ﬂ ,8) — (M, g, be a conformal differentiable map as
in the statement of (0.4). We assume (M, g) is as in (0.3), and we will
decompose it as previously, except that for a subset U C M we now define
m(U) to be the g-volume of f _I(U ) (contrast with (1.1)). We construct
test functions on M by pulling back ones on M ; i.e., we use functions of
the form 7o f.

We compute the relatlons between corresponding function 1 gradients and
volume elements on M and M as follows. At points x € M where fis
a local diffeomorphism we pull back g, to Mx , by

&K, V)= (£.X, LX), = 0(x)(X, Y),.

So, locally (on M ), (ﬂ , 8) is conformal to an isometric copy of (M, g;),
with conformal factor ¢"1 . As in §1, and with (o_l replacing ¢ , we see
that

(4.1a) IV(no I =lDnl,  dV, =
Using (4.1a) we may estimate the Rayleigh quotient of no f:
(fu V(o f)d ’@)Z/n m(supp(Dn)" ="
[yn’d
B Ol )7 m(supp(Dn))‘"‘”/"
m({n* > 1} '

n/ZdV

R(no f) <
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It follows from (4.1b) that any Rayleigh quotients for 5 o f which we
construct using §2 or §3 techniques can be estimated above by D™ times
the old estimates (2.4b), (3.2b).

(4.1c) The additional condition imposed on (0.4), namely that the g-
volume of {x € M st. f: Xfx - M, satisfies f, = 0} be zero,
guarantees that the definition of {8, 8} (2.1)-(2.4) can be carried out:
Under this condition it follows that for any 1/k with k € N), there is an
N = N(k) so that no ball of radius 57N (or smaller) can contain mass
as much as 1/k. Indeed, the g-volume of Q, = {x € M st o(x) <¢e}
must approach 0 as ¢ — 0. Therefore, picking ¢ so that the g-volume
of Q, isless that 1/2k, it follows that for B(y, r) C (M, g,)

-n/2

m(B(y, r)) <1/2k + De ""my(B(y, r)).

Hence for r sufficiently small, m(B(y, r)) < 1/k, independently of y
(depending on the constant a (0.3)).

The calculation (4.1b) and the remark (4.1c) are enough to guarantee
that the decomposition process of §§2, 3 can be repeated to prove (0.4).

(4.2) Theorem (0.4) implies (0.5) by the following remarks: The Rie-
mann-Roch theorem guarantees that any compact oriented Riemann sur-
face (M 2, g) (i.e., M has Gauss curvature k = —1) has a degree g + 1
meromorphic function f: M — s? [9]. By uniformization theory any
compact surface of genus g is conformally equivalent to such a Riemann
surface; i.e., it is isometric to (M2 , 9,8), where (MZ, g) is as above.
The meromorphic map f satisfies the conditions of (0.4), with degree
D =(g+1), so conclusion (0.5) follows.

(4.3) It is not clear exactly how the genus should effect a sharper estimate
of u, (cf. Theorem (0.5)). One might expect that for low eigenvalues it
could enter as it does in our result, but for higher eigenvalue estimates it
should no longer be a factor. Indeed, M. Troyanov has recently shown
such a result, albeit under certain curvature assumptions [11].

(4.4) We have not optimized the constant C in our Theorems (0.3)-
(0.5) as much as possible. One could get a better constant by replacing 7
(in the intermediate region supp(Dn)), with something which is closer to
being harmonic with respect to the metric g,. Furthermore, the number
“5” used repeatedly in §2 may be replaced with (3+2y) forany y > 0, if
the disjointedness condition is modified from “doubly disjoint” to “ (1+y)-
disjoint.” (This will lead to new constants in the estimates.) Lastly, for
low eigenvalue estimates one may proceed in a more ad-hoc manner, using
these general decomposition ideas, to obtain much better bounds than the
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general estimate for u, predicts. (For example, the author claims that
using these ideas he can bound u, = 4, above for a conformal metric on

s? , by 43n/A. Of course, from the introduction we know that the sharp
upper bound in 87/A4.)

Acknowledgment. The author gratefully thanks S. T. Yau for bringing
the questions which this paper addresses to his attention.

Added in proof. It is an implicit assumption in all of our calculations
that the variational approach to finding eigenvalues and eigenfunctions
works for the domains or manifolds in question. In particular, our results
only apply to the cases where the Rellich compactness theorem holds. For
nondegenerate conformal metrics on compact manifolds or smooth com-
pact subdomains this assumption is automatically satisfied, although for
singular metrics or unbounded or singular subdomains it may not be so.
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