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A CHARACTERIZATION
OF TEICHMULLER DIFFERENTIALS

ALBERT MARDEN & KURT STREBEL

1. Introduction

1.1. A quasiconformal affine mapping Tz has the expression

Tz = A(z + kez) = Ae\[e~wz\ + k[e~wz]),

where 0 < k < 1 if T is not confoπnal. From this expression we conclude
that

(1) there is a unique rectangular coordinate system whose image is rect-
angular, and

(2) in terms of this pair of systems, T can be expressed as a pure stretch:
writing w = u + iv , depending on the scaling, and K = (l+k)/(l —k)9

we have
f Ku + iv (height preserving),

TW = { — r—
{ VKu + iυ/VK (area preserving).

Let g: R —> S be an orientation preserving homeomorphism between
the compact or finitely punctured compact Riemann surfaces R and S of
hyperbolic type. Starting with the assumption that a condition analogous
to property (1) above holds, we will establish that the analogue to property
(2) follows; that is, we will establish by an explicit construction that there
is a Teichmuller mapping in the homotopy class of g . In §9 we will show
that the unique axis theorem for hyperbolic (pseudo-Anosov) elements of
the Teichmuller modular group is a consequence.

In the last part of the paper, it will be shown that the analogue to prop-
erty (1) in fact holds. This leads to a geometric proof of the Teichmuller
mapping theorem (§10).

Our first main theorem is related, via the theory of measured foliations,
to the following result of Masur [11] as completed in Gardiner-Masur [3].
Namely, an equivalence class of transverse measured foliations on a sur-
face determines a unique complex structure in terms of which it is realized
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as the horizontal and vertical foliations of a unique quadratic differential.
There is a dictionary between measured foliations and quadratic differen-
tials on Riemann surfaces of finite types. Our work is carried out in the
latter category, which we believe has a number of advantages.

1.2. We arrive at a necessary condition as follows. A holomorphic
quadratic differential φ on a Riemann surface R has, locally and away
from its zeros, an integral function of its square root,

w

rz

= u + iυ = Φ(z) = / y/φ(z)di

(see, e.g., [12]). Two different local function elements are connected by
the equation

Φ2(z) = ±Φj(z) + const.

We have a well-defined length element \dw\ = \φ(z)\ι^2\dz\, which is
nothing but the Euclidean length element in the Φ-plane. The norm

-IL \φ\dxdy
R

is the surface area. This metric determines a singular Euclidean geometry
on R. There exist the following elements \dv\ of "height" and \du\ of
"horizontal length":

\du\ = \VLε(y/φ(z)dz)\ =

It is evidently enough to consider \dυ\.
For any piecewise smooth closed loop γ on R which is not contractible

to a point we define the "height" of its free homotopy class [γ] by

h (y) :=inf f \dυ\ >0

where γ runs over [γ]. The "mapping-by-heights" gh associates with each
differential φ on R a differential ψ on S which is uniquely determined
by the property that

hψ(g(γ)) = hφ(γ) VγonR

(for existence and uniqueness of ψ — gh{φ) see [5]).
From the assumption that there exists a Teichmϋller mapping / in the

homotopy class of g, we can easily derive a necessary condition for the
associated quadratic differentials φ on R and ψ on S, which we call
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the Teichmύller differentials associated with g. Locally and away from
the zeros ofφ,f has the representation

/ = Ψ " 1 o F o φ ,

with Φ = / y/φ, Ψ = / y/ψ, and F the horizontal stretching by the
dilatation K of / ,

F: w = u + iv —> F(w) = ίΓw + π;.

It follows for every arc γ and its image f(γ) that

) dz)\,) dz)\ = f

just by locally passing to the Φ- and Ψ-plane respectively. Thus, ψ is the
image of φ under the mapping gh .

On the other hand, "horizontal lengths" are stretched by K, since

Jf(γ) Jγ

Looking at -φ and —ψ instead of φ and ψ, we are back to "heights,"
namely

Kh_ψ(y) = h_ψ(f(γ)).

1.3. Denote the vector space of holomorphic differentials of finite norm
by Q{R) and the unit sphere in Q(R) by Q0(R). The homeomor-
phism g: R -* S determines the homeomorphism gh: Q(R) -»• Q(S)
and also the "normed mapping by heights", namely the homeomorphism

between the unit spheres defined by

The differential g^(φ) is uniquely determined by the following two
properties:

(i) \\g*{9)\\ = 1, and
(ii) g#(φ) has heights proportional to those of φ on corresponding

loops.

For, let ψ = g#(φ) and ^ be two such differentials, with proportion-

ality factors λ and λ, respectively. Then ψ/λ2 and ψ/λ2 have the same

heights as φ on corresponding loops. Therefore, by the uniqueness theo-

rem [5] we have ψ/λ2 = ψ/λ2, hence λ = λ and ψ = ψ.
With this normalization of the Teichmϋller differentials φ and ψ =

g#(φ), the affine mapping F becomes

vK
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The area with respect to the two metrics induced by φ and ψ is preserved,
and the total area, which is equal to the norm, is one.

The normed mapping-by-heights g# applied to the Teichmuller differ-
ential φ satisfies g#(φ) = ψ and g#(-φ) = -ψ, or in short,

This is the necessary condition we were aiming at. The goal of the first
part of this paper is to establish its sufficiency. We will then have:

Theorem 1.3. A necessary and sufficient condition for φ € Q0(R) and
hence g#(φ) € Q0(S) to be associated with a Teichmuller mapping f: R —•
S homotopic to g is that

Remark. Teichmuller uniqueness theorem implies that the solution φ
is unique.

1.4. The proof of Theorem 1.3 needs a deeper study of the mapping
gh (we will usually first work with gh and then pass to g# , if necessary).
The introduction of "height of arc between trajectories" instead of just
height of closed loops and the proof of its invariance under gh enable us
to show that:

g determines a bijection between the regular trajectories of any φ and
those of gh{φ) and preserves the vertical distances between them.

This is the second main result of the paper and in fact allows the con-
struction of the Teichmuller mapping if the functional equation is fulfilled.

The discussion will be carried out first for compact surfaces. In §8 the
generalization to compact surfaces with punctures will be made. There is
a version of Theorem 1.3 for compact bordered surfaces as well, but we
will not carry out the details here.

2. Review of previous results

2.1. A trajectory a of φeQ(R) is a maximal arc along which φ(z)dz2

> 0 for tangential dz. It is either closed or a simple arc. In the latter case,
it is called critical if it tends, in at least one direction, to a critical point
of φ (i.e., a zero); otherwise it is called noncritical or regular. A vertical
trajectory of φ is a trajectory of -φ. A geodesic of φ is composed of
^-straight arcs, i.e., arcs along which aτg{φ(z)dz } = const. These meet
at zeros of φ , where both angles are at least 2π/(m + 2), m the order
of the zero. We call it a horizontal geodesic if all its sides are horizontal
(i.e., aτg{φ(z)dz2} = 0).
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An oriented, complete arc is called a left extreme horizontal geodesic if
in addition the angles along its left-hand side at its vertices are equal to
2π/{m + 2). Right extreme horizontal geodesies are defined similarly.

The critical graph of a differential φ is the union of its zeros and the
horizontal rays emanating from them. If the critical graph contains no
closed loops, then φ is called admissible. We will however not use this
condition in our proofs.

2.2. Most of our work will be carried out in D, the universal covering
surface of R, which we may take to be the unit disk. Denote the unit
circle by c?D. Each φ e Q{R) has a lift φ to D, uniquely determined by
the projection map. Generally we denote a lifted object by a tilde; thus a
is a lift of the trajectory a of φ , which is of course a trajectory of φ .

As shown in [6], a geodesic ά of φ has two distinct endpoints on dΏ.
Distinct horizontal geodesies άχ and ά2 which have their endpoints in
common project to parallel simple loops aχ and a2 in R, bounding an
annulus swept out by closed horizontal trajectories.

2.3. Assume now R is compact. Then it was shown in [9] that distinct
trajectory rays from z 0, zχ e D cannot have a common endpoint unless
they project to parallel closed loops.

An important fact for a compact surface is that the metric in D deter-
mined by a holomorphic quadratic differential φ ψ 0 is complete, which
means that the boundary ΘB is at infinite distance from any interior point
(see, e.g., [7]).

The following result about convergence of trajectories will be used in
§5. Suppose {φn} is a sequence of normalized, holomorphic quadratic
differentials which converges locally uniformly to φ. Let φn and φ be
the lifted differentials to D. Let a be a regular trajectory ray of φ with
initial point zQ € D and assume zn-> zQ. Then any sequence of geodesic
rays άn of φn with initial points zn and leaving zn with the limiting
direction of α tends uniformly to a (see [7, Theorem 2]).

2.4. Suppose that g: R —• S is an orientation preserving homeomor-
phism of R onto another Riemann surface S. It lifts to a homeomor-
phism g: D —> D which in turn extends to homeomorphism g: dΏ —• dB.
The map g also induces an isomorphism of the fuchsian covering groups
θ: G -> H by the formula

g(Tz) = θ(T)g(z), VΓ G G, Vz e D U dH.

Conversely, every isomorphism θ: G —• H is induced by a homeomor-
phism g: R-> S whose homotopy class is uniquely determined by θ. The
isomorphisms θ and θx determined by different lifts of g are
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related as

θχ(T) = BΘ(ATA~l)B~l

for some A e G and B e H, VΓ e G.
2.5. The fundamental tool in our work is the realtionship of the maps

g: dB^dB and g#.
Assume first that φ e Q0(R) is admissible. Then each component of the

critical graph of φ in D contains only a finite number of critical points.
We showed in [7, Theorem 3] that two points xχ, x2 e dB are the end-
points of a horizontal trajectory (resp., extreme horizontal geodesic) of the
lift φ in D if and only if g(xχ) and g(x2) are the endpoints of a horizon-
tal trajectory (resp., extreme horizontal geodesic) of g#(φ)~. Moreover,
g and g# determine a certain correspondence between critical points of φ
and g#(φ). The simplest situation is when neither φ nor g#(φ) have sad-
dle connections (critical horizontal trajectories of finite length connecting
critical points). In this case, there is a one-to-one correspondence between
critical points of φ and g#(φ), and more strongly, critical points of the
lifted φ and g#(φ)~. The correspondence is given as follows. Corre-
sponding to each horizontal ray a of φ emanating from a critical point
ζ eB with endpoint x e dB is a horizontal ray g#(ά) of g#(φ)~ ema-
nating from a critical point g#(ζ) and terminating at g(x) e dB.

The introduction of vertical distance of trajectories will enable us to
show that the correspondence of regular horizontal trajectories by gh is
generally true, i.e., without the assumption of admissibility.

2.6. For the proof of the convergence of geodesic connections of
boundary points of D we will need a uniform version of Lemma 3 in
[7], namely:

Lemma 2.6. Let φn —• φ and \\φn\\ = \\φ\\ = 1. Let {zn} and {z'n}
be two sequences of points in B with zn —• ζ and z'n-+ ζf, ζ Φ ζ' e dB.
Then there exists r < \ such that the φn-geodesic τn between zn and zn

has a point in Br\ \z\ < r for all n.

The proof rests on the fact that the closed geodesies γn of φn in a fixed
free homotopy class of R tend to the closed geodesic y of φ . (If γ is
not unique, the sequence {φn} has a subsequence and a choice of γ for
which this is true.) With this supplementary remark, the proof of Lemma
3 in [7] can be applied.

2.7. The same is true for Theorem 1 of [7]. The uniform version which
we need is

Lemma 2.7. Let φn -> φ and \\φn\\ = \\φ\\ = 1. Let {ζn} and^ {Q

be two sequences of boundary points of B which tend to ζ and ζf Φ ζ
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respectively. Then the φ-geodesics τn between ζn and ζ'n tend to the φ-
geodesic τ between ζ and ζ' uniformly in the Euclidean metric of the
disk. If the latter is not unique, there is a subsequence and a choice of τ
for which this is true.

The proof is a straightforward adaptation of (ii) of Theorem 1 in [7].

3. The vertical distance of horizontal geodesies

3.1. Let φ ^ 0 be a holomorphic quadratic differential on a compact
Riemann surface R of genus > 2 . Let aχ and α 2 be two not necessarily
distinct given trajectories or, more generally, horizontal geodesies of φ.
An arc γ joining a point Pχ e aχ to a point P2 e a2 is said to be freely
homotopic to an arc / , joining P[ e aχ to P'2 e a2, if there exists a
continuous deformation of γ into y which lets slide the points Pi on
at, respectively. Such a family of freely homotopic arcs is called a free
family of arcs and denoted by [γ] rel (aχ, α 2 ) .

Definition 3.1. Given φ e Q{R), the height of the free family [γ]
rel (aχ, a2) of piecewise smooth arcs or, alternatively, the vertical dis-
tance between the trajectories (or horizontal geodesies) aχ and a2 in the
homotopy class of γ is

Δ (aχ, α2) := inf / \dv\,
y ~yJy'

where y varies in the free homotopy class of γ.
Remarks. (1) Since dυ = 0 along horizontal arcs, we can add arbitrary

subintervals of aχ and α 2 respectively at the ends of an arc γ. We
therefore get the same number if we fix the points Pχ e aχ and P2 e a2

and just work with the usual homotopy of arcs with fixed endpoints.

(2) Let φ be the lift of φ to the universal covering surface D. Choose
an arbitrary lift zχ of Pχ. Then the lift y of y with initial point zχ

determines a lift z2 of P2. Let άχ and ά2 be the lifts of aχ and a2

through zχ and z2, respectively. The vertical distance of aχ and α 2 in
the homotopy class of γ becomes

Aγ(a2, a2) = A(άχ, ά2) = inf / | ίm(y/φ(z) dz)\,

where the infimum is taken over all arcs γ joining zχ to z2 (or joining any
point of άj to a point of α 2 ) . This means that in the universal covering
surface we can just speak of the vertical distance of two trajectories or
horizontal geodesies.
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3.2. The infimum is in fact a minimum, and there are many arcs along
which it is assumed. A special one is the shortest connection γ0 (with
respect to the ^-metric) of zχ and z 2 . Since the boundary 9D: \z\ = 1 is
at infinite ^-distance from any point z e D (see, e.g., [7, Lemma 2]), there
exists such a curve γ0 (see, e.g., [12, p. 84]). It is uniquely determined by
its two endpoints.

Lemma 3.2. The vertical distance of two trajectories or, more generally,
horizontal geodesies άχ and ά2 of φ is equal to

Δ(ά.,ά,)= ί \dϋ\,

where γ0 is the shortest connection of two arbitrarily fixed points zχ e ά{

and z2e ά2.
Proof Let γ be an arbitrary (piecewise smooth) arc joining zχ and

z2 (Figure 1). It is, together with γ0, contained in a disk DΓ: \z\ < r < 1.
There are only finitely many zeros of φ in D r . Look at the relatively
regular trajectories through γ0, i.e., the horizontal intervals cutting γ0 but
not meeting a zero in DΓ . We continue these, from γ0, in both directions,
up to their first intersection with dΏr. The configuration we get consists
of a finite number of open horizontal strips. Each of these is traversed
exactly once by y0: since γ0 is a geodesic, it cannot have two points in
common with a trajectory unless it contains it, which is impossible.

Let bi be the heights of the strips traversed by γ0 . Then

f
Jy0

On the other hand, each of these strips is also traversed by γ, whence

proving that the height of γQ is minimal.
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4. Convergence of vertical distances

4.1. Let {φn} be a sequence of holomorphic quadratic differentials on
R converging locally uniformly to φ φ 0. Let aχ and a2 be two regular
horizontal trajectories of φ and let Pχ e aχ and P2 e a2 be given points.
Choose two sequences of points PXn -> Pχ and P2/J —> P2 such that the
#>π trajectories aXn through Pln and a2n through P2n are noncritical.

Let γ be a ^-geodesic from Pχ to P 2 . In small neighborhoods Nχ of
Pχ and iV2 of P2 choose smooth arcs τXn and τ2n connecting Pχn to
Pj and P2n to P 2 , respectively. There is a ^-geodesic γn from PXn to
P 2 n uniquely determined by the requirement that y'n be homotopic to γ,
where y'n is formed from yn by adjoining τXn and τ2 λ Z.

Lemma 4.1.

lim \dυn\ = / \dυ\.
Jy

That is, the φn-distance Δγ (aXn, a2n) converges to the φ-distance

Aγ(aχ,a2), where the class [γn] with fixed endpoints PXn and P2n is re-

lated to the class [γ] with fixed endpoints Pχ and P2 as described above.
Proof. The proof is performed in the universal covering surface D.

Choose lifts άχ of aχ and γ of γ from a point zχ over Pχ . Theendpoint
z2 of y over P2 lies on a uniquely determined lift ά2 of a2 . Lifting the
small neighborhoods Nχ and Λ̂ 2 we can uniquely determine lifts zXn of
PXn and z2n of P2n which converge to zχ and z2, respectively. Likewise,
the lift yn of yn from zXn terminates at z2n . Because of the uniqueness
of geodesies the φn -geodesies yn converge to γ. Hence, by the locally
uniform convergence, lim/~ \dϋn\ = /~ \dϋ\. q.e.d.

We can proceed similarly with right and left extreme horizontal geo-
desies (see [7, p. 371]). Any such geodesic of φ is approximated by
regular horizontal trajectories of φ , either from the right or from the left.

Finally, the same is true if the limit of the horizontal trajectories ain is
any horizontal geodesic αf. of φ .

5. The mapping-by-heights for simple differentials

5.1. For simple differentials, the correspondence of trajectories deter-
mined by gh is a matter of definition.

Recall that given a simple loop γ , the simple differential φ[γ] dz2 cor-
responding to γ is uniquely characterized up to a positive constant by the
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fact that all its regular trajectories are closed and lie in the free homotopy
class [γ] of γ. That is, the complement of the critical graph in R is a
cylinder whose separating curves lie in [γ]. The simple differentials are
dense in Q(R) ([10], [5]).

Let φ be a simple differential on R, with b the height of its cylinder.
Choose any closed trajectory α. Denote by ψ = gh(φ) the simple dif-
ferential on S with closed trajectories β freely homotopic to g(a) and
with the same height of cylinder b . That φ and ψ have the same heights
on corresponding closed loops is a consequence of the invariance of the
geometric intersection numbers (see [5]).

We now have
Lemma 5.1. Let R and S be compact Riemann surfaces of genus > 2

and let g: R —• S be an orientation preserving homeomorphism. Then,
for any simple differential φ on R, gh takes the regular (i.e., closed)
trajectories of φ into those of ψ = gh(φ).

Proof Let A be the cylinder of φ with an arbitrarily chosen orien-
tation. Then g induces an orientation of the cylinder B of ψ. To any
closed trajectory a of φ we assign the closed trajectory β of ψ which
subdivides B in the same way as a subdivides A . We set β - gh(a).

5.2. In D the correspondence is less trivial. Fix a lift of g and denote
by g: dB —• dB its extension to the boundary (one may think of g as
being quasiconformal). A connected lift of the cylinder A of φ is swept
out by the lifts a of the closed trajectories a with the same initial and
endpoints p and q on dB, respectively. We call this a slice. The points p
and q are the fixed points of a cover transformation Γ of P . The points
r = g(p) and s = g(q) are the fixed points of the cover transformation
Θ(T) corresponding to T by the group isomorphism θ. The points r
and s are the endpoints of a slice of ψ. The lifted map gh: φ -> ψ is
well defined, since the lifts φ and ψ of φ and ψ, respectively, are well
defined. But we can now also define β = gh{ά) as the oriented trajectory
β connecting r with s and subdividing its slice in the same way as a
subdivides its (oriented) slice. Orientation is gaken over by distinguishing
initial and endpoints. We now have

Lemma 5.2. Let gh: a —• β be the mapping of trajectories defined in
the preceding lemma. Fix a lift of g and the induced boundary homeo-
morphism g: dB —• dB. Then g induces a well-defined mapping of the
regular trajectories a of φ onto the regular trajectories β of ψ. Corre-
sponding trajectories have corresponding initial and endpoints and subdivide
their slices proportionally. We set β = gh(a).
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Note that this correspondence in general does not go over to the critical
points and critical trajectories, as the following example shows (Figure 2).

We take two pentagons R and S with sides parallel to the axes. R is a
bus shaped region, while S is a rectangle with an additional distinguished
point or vertex on one of the vertical sides. The heights of the two figures
are the same, and the vertices with number 3 are on the same horizontal
(dotted) line. This line subdivides the figures into two rectangles R{, R2

and S{, S2, respectively. The quadratic differentials, in terms of the plane
parameter, are φ = ψ = 1. The two differentials φ and ψ correspond to
each other via the mapping by heights. This follows from the fact that Rχ

and Sχ have the same height, and so do R2 and S2 . The differential φ
has a zero, namely the corner pointing to the inside, while the differential
ψ has no zero (the zero and a first-order pole cancel at the vertex 3).

After conformal mapping onto the unit disk and completion by
reflection we get Figure 3. We have two annuli, R\, Rf

2 and S[, S2,

5 4 .
R\ j 3

R2

) 4

52

2 1

FIGURE 2

FIGURE 3
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FIGURE 4

respectively, separated by a component of the horizontal critical graph
(dotted lines in the figure).

5.3. To show that the mapping-by-heights gh leaves vertical distances
unchanged, let aχ and α 2 be arbitrary closed trajectories of the simple
differential φ . Let y be an arc connecting a point Pχ e aχ with a point
P2 e a2. Choose a point zχ e D above Pχ and denote the lifts of aχ

and y from the point zχ by άj and γ, respectively. The lift ά 2 of
α 2 is determined by the endpoint z 2 of y. Let ^ t , ^ and /?2, q2 be
the initial and endpoints on dB of άχ and α 2 , respectively (Figure 4).
Then, the image trajectories βx = gh(ά{) and β2 — gh(ά2) are well de-
fined, according to §4.1: they have initial and endpoints g(p.) and g{qt) 9

respectively, and subdivide their oriented slices in the proper ratio. (By
projection, the image trajectories β. = gh{at), / = 1, 2, are determined,
and so is the free homotopy class of arcs connecting βχ and β2 on S
which corresponds to the class [γ] on R.)

Lemma 5.3. Let φ be simple. Choose arbitrary closed trajectories aχ

and a2 of φ and an arc y joining aχ to a2. Let άχ and a2 be a
pair of lifts determined by y. Then the corresponding trajectories βχ and
β2 determined as above have the same vertical distance with respect to the
image differential ψ = gh(φ): A(βχ, β2) = A(άχ, ά 2 ) .

Proof First, let aχ = a2 = a be the middle line of the cylinder of φ
and let y be an arc with initial and endpoint on a. For simplicity, we
can choose these to be the same point Pea. Let γ0 be the geodesic with
initial and endpoint P and homotopic to γ. Every slice, i.e., lift of the
cylinder of φ, has two distinct endpoints. Unless it coincides with the
slice containing άχ or α 2 it either separates these two trajectories or it
does not. Let N be the number of separating slices. Then
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where b is the height of the slices of φ (or the cylinder of φ).
Whether a slice separates άx and ά2 depends on whether its endpoints

separate the endpoints of άχ from those of ά2. The slices of φ cor-
respond to those of ψ by the correspondence of their endpoints on SO
which is given by g. Therefore the number of slices separating ά{ and
ά2 is the same as the number of slices separating βχ and β2, showing
that

A(ά{, α 2 ) = A(β{, β2).

In the general case, let aχ and a2 be arbitrary closed trajectories of φ
and γ an arc joining them. The two lifts άχ and ά2 are lying in well-
defined slices. The vertical distance of the corresponding middle lines is
invariant. We orient the cylinder of φ and take this orientation over to
the cylinder of ψ by the homeomorphism g . By the lifting each slice is
(individually) oriented, and this orientation is taken over by the boundary
map g. Depending on the orientation we have to add or subtract vertical
distances coming from the inside of the two slices. Since the topological
situation is the same on both sides and the distances in the slices are the
same too, we have shown the invariance of vertical distances in this case.

6. The mapping-by-heights for arbitrary

holomorphic quadratic differentials

6.1. In this section we will frequently make use of the approximation
by simple differentials on the surface R. It is useful to know that, unless
the limit φ is itself simple, the heights of the cylinders of the approximat-
ing sequence tend to zero.

Lemma 6.1. Let the sequence of normed simple differentials φn tend
locally uniformly to φ . Assume that the heights of the cylinders of the φn

are bounded away from zero. Then φ is simple and there exists n0 such
that φn = φ for n> nQ.

Proof Denote the circumference of the cylinder An of φn by an,
and its height by bn . Then anbn = \\φn\\ = 1. Assume bn > b > 0
for all n. It follows that the lengths an are bounded above, an < \jb.
Let a be a regular trajectory of φ and assume that it carries a nonclosed
interval of length c > l/b. Then a is the middle line of a ^-rectangle
Ro which is schlicht on R, and has length c and height ε > 0. For
large enough n , there exists a regular ^-trajectory in Ro, since the φn

approximate φ uniformly in Ro . Also, by the same reason, it must have
^-length greater than l/b. But all the regular trajectories of the φn are
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closed and have length < l/b, which is a contradiction. Therefore, all the
regular trajectories of φ are closed. There are only finitely many possible
free homotopy classes. Each of these is equal to the class of an for all
sufficiently large n. Therefore, φ is simple, with closed trajectories a,
say. There exists nQ such that an ~ a for n > n0 . By the uniqueness for
simple differentials with given homotopy of closed trajectories (see, e.g.,
[12]) we get φn = φ for n > n0 .

6.2. We are now able to show that the mapping gh , applied to an
arbitrary holomorphic quadratic differential φ on a compact Riemann
surface R, takes the regular trajectories of φ into those of ψ = gh(φ)
and preserves the vertical distances. In the first step, using g again, we
show that the images of the endpoints of a regular trajectory of φ are
joined by a horizontal geodesic of ψ .

Lemma 6.2. With the above notation let p and q be the endpoints of a
regular trajectory a of φ . Then r = g(p) and s = g{q) are the endpoints
of a horizontal geodesic β of ψ.

Proof Let φ φ 0 be holomorphic on R, and not simple. Then φ
can be approximated by a sequence of simple differentials φn (see, e.g.,
[5, Corollary 6.5]). The lifts φn tend to φ locally uniformly. Let a be
a regular trajectory of φ , z e a. Choose a sequence of points zn —• z
such that the trajectory άn of φn through zn is regular (it is the lift of a
closed trajectory of φn). By §2.3, the trajectories άn tend uniformly (in
the Euclidean metric) to d. In particular, the endpoints pn and qn of
άn tend to the endpoints p and q of a.

The differential ψn = gh(φn) is simple. Its lift ψn has a regular trajec-
tory βn with endpoints g(pn) = rn and g(qn) = sn. In order to fix the
ideas, we can take βn to be the middle line of the slice of ψn connecting
rn and sn . Since g is continuous and pn -> p and qn -> q, we have
rn^r = SiP) a n d Sn -> S = S{Q) -

The approximating sequence {φn} has heights converging to the heights
of φ [5, Proposition 2.3]. Then, by [5, §5], the simple differentials ψn =
gh(φn) converge in norm to ψ = gh{φ). Therefore, the sequence of lifts
{ψn} converges locally uniformly to the lift ψ of ψ .

By Theorem 1 of [7] the points r and s are connected by a ^-geodesic
β . It is uniquely determined except for the case when r and s are joined
by a family of parallel ^-trajectories, which of course cannot be excluded
a priori (see [7, Theorem 1, (ii)]). Using Lemma 2.7 we conclude that there
exists a subsequence {ψn} such that the corresponding regular trajectories
βn converge uniformly to some β connecting r and s. From the locally
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uniform convergence of the sequence {ψn} to ψ it follows easily that the
geodesic arc β is horizontal, q.e.d.

If the ^-geodesic between r and s is unique, it follows by well-known
arguments that the convergence to β holds for the original sequence {ψn}
and arbitrary άn —> a. If not, all geodesic connections of r and s belong
to a horizontal slice.

6.3. The next step is to show that β is actually a trajectory. Because of
the possible nonuniqueness we have to work with the above subsequence
{ψn} > which we however denote by {ψn} again. Assume β is not a

trajectory. Then it is a subarc of a component Γ of the critical horizontal
graph of ψ. This component f has at least one branching, possibly on
only one side of β (see Figure 5).

We choose a trajectory a of φ close to a, with endpoints p and
q . We approximate a by trajectories an of a subsequence {φn } such

that the trajectories β'n of the differentials ψ'n converge to a horizontal

geodesic β1 connecting r = g(pf) and s' = g(qf). Because g is continu-

ous, it is possible to choose a such that β1 cuts f. By the invariance of

vertical distances for simple differentials (Lemma 5.3) and the convergence

of vertical distances (Lemma 4.1) we conclude that

A(ά,ά')=A(βJ')=A(Γ,β') = O,

which is a contradiction because a and a necessarily have positive ver-
tical distance. We have

Lemma 6.3. Let p and q e <9O be the endpoints of a trajectory a of
φ. Then r = g(p) and s = g(q) are the endpoints of a trajectory β of
ψ f ψ = gh(φ). If the geodesic connecting r and s is unique, then, for
every sequence of simple differentials φn —• φ and trajectories άn —• a, the
trajectories βn of the ψn tend to β.

FIGURE 5
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If, moreover, β and β' are two unique trajectories corresponding to a
and a , then they have the same vertical distance in the φ- and ψ -metric,
respectively,

6.4. Let us now assume that the geodesic connection of r and s is
not unique. Then there exists a (horizontal) slice B between r and s
projecting onto a ring domain B swept out by closed trajectories of ψ .

Choose two trajectories β and β' in B . Going backwards by an anal-
ogous approximation procedure, but starting with a sequence {ψn}, we
find that there are two trajectories a and a connecting p and q with
the same vertical distance. Therefore p and q are connected by a slice
A which projects onto a ring domain A swept out by closed trajectories
of φ . It follows from the above that both cylinders A and B must have
the same height.

Orient A from p to q . Let a be the left boundary of A. It is a right
extreme horizontal geodesic connecting p and q (as such it is unique).
Let a be an arbitrary trajectory of A. Approximating a from the right
by trajectories άn and a arbitrarily by trajectories an we see that the
trajectories βn tend to the left boundary β of B, whereas the β'n tend
to the trajectory β'. By Lemmas 5.3 and 4.1 we get

Aψ(βJ')=Aφ(ά,ά').

Note that, for any convergent sequence of simple differentials with a
limit which is not itself simple, the heights of the cylinders tend to zero. It
is therefore not relevant which closed trajectory of the simple differential
we concentrate on: e.g., we can always take the middle line.

Theorem 6.4. Let R and S be compact Riemann surfaces of genus
at least two, and let g: R —• S be an orientation preserving homeomor-
phism. Then the mapping-by-heights gh: ψ —> ψ takes the regular horizon-
tal trajectories of φ onto those of ψ. The correspondence gh: a -> β is
determined by projection from the universal covering surfaces. The closed
trajectories of a cylinder of φ are mapped onto the closed trajectories of the
corresponding cylinder of ψ.

In D we have the mapping gh: φ —• ψ of the lifts. The mapping of
the trajectories gh: a —• β — gh(ά) is given by the endpoints on <9D and
the mapping g: dB —• <9D. Vertical distances are left invariant.

Note that the mapping does not extend to critical trajectories and critical
points!
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7. Construction of the Teichmuller mapping

7.1. Let g: i? —• S be an orientation preserving homeomorphism and
g#: Q0(R) -> Q0(S) the induced normalized mapping-by-heights. Assume
a certain φ e Q0(R) satisfies the equation g#(-φ) = -g#{φ). Let ψ =
g#(φ). By Theorem 6.4, gh and thus also g# induces a mapping of the
regular horizontal trajectories of φ onto those of ψ. Since the vertical
trajectories of φ are the horizontal trajectories of -φ, it follows from
the assumption that g# also induces a mapping of the regular vertical
trajectories of φ onto those of ψ. At the same time, the horizontal
and vertical distances are multiplied by certain fixed factors λ and μ,
respectively. These facts allow us to construct the Teichmuller mapping /
homotopic to g, first on the universal covering surfaces, then by projection
on the surfaces themselves.

As usual, we denote the lifts of φ and ψ to ΏR and D 5 by φ and ψ,
respectively. Besides, we fix a lift of g and denote the induced boundary
mapping by g: 03R —• dΏs . For any point z eBR which is the intersec-
tion of a regular horizontal and a regular vertical trajectory of φ we define
w = f(z) e Bs to be the intersection of the image trajectories. This is
well defined by the endpoints of these trajectories if none of them has a
projection which is closed (belongs to a slice). But it is also well defined in
the case of closed trajectories: recall that corresponding closed trajectories
bisect their respective annuli (and slices in D) proportionally, the factors
being λ for vertical trajectories and μ for horizontal trajectories.

The mapping / is thus defined on the set of intersections z of regular
horizontal and vertical trajectories of φ in ΏR . It is a bijection of this set
onto the analogous set of ψ in Ώs. The set is dense on every (regular)
horizontal and vertical trajectory and / can therefore be extended by
continuity to all of these entire lines.

Any one of the remaining points z e BR except for the zeros of φ
can be enclosed in an arbitrarily small rectangle, the sides of which are
subintervals of horizontal and vertical trajectories. Letting the rectangles
shrink to the point z we define w = f(z) to be the intersection of the
images of these rectangles. We see that / is a homeomorphism of the
complement of the zeros of φ in BR onto the complement of the zeros
of ψ in Ώs.

7.2. The next step is to show that / is quasiconformal. It is in fact
a Teichmuller map associated with φ on ΏR and ψ on D 5 . To this
end we again enclose an arbitrary point zQ eΏR, φ{z0) Φ 0, in a small
^-rectangle U and its image w0 = f(zQ) in the image rectangle U'. The
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maps

and ζf = Ψ(w)= \

send U and U' conformally onto Euclidean rectangles. From the fact
that horizontal distances of regular vertical trajectories are multiplied by
a factor λ, whereas vertical distances of regular horizontal trajectories are
multiplied by a factor μ (the φ- and ^-distances are of course the Eu-
clidean distances in the Φ- and Ψ-planes, respectively), and the continuity
we conclude that the induced mapping from U onto Uf is affine,

C' = ζ' + iη =λξ + iμη.

Therefore, / is a Teichmύller mapping with dilatation K = max{^ , f}
associated with φ and ψ. By continuity it extends to the zeros of φ.
Furthermore, by construction, / induces the same isomorphism between
the universal covering groups as does g: fT(f)~ι = gT(g)~ι, where
T is any cover transformation over R. Therefore, / projects to the
Teichmϋller map / : i? —• S which is homotopic to g . We have

Theorem 7.2. Let R and S be compact Riemann surfaces of genus
> 2 and let g: R —> S be an orientation preserving homeomorphism. Let
g#: Q0(R) —• Q0(S) be the induced normalized mapping-by-heights. If there
exists a φ e Q0(R) such that g#(-φ) = -g#(φ), then the differentials φ
and ψ = g#(φ) are Teichmύller differentials associated with g.

8. Compact surfaces with punctures

8.1. Let R and S be compact Riemann surfaces, and let {Xv} and
{Yu} be finite sets of punctures on R and S, respectively. Let g be
an orientation preserving homeomorphism of R onto S which takes the
punctures Xy onto the punctures Yv . Assume that the punctured surfaces
R = RXIX^} and S = S\{Y^} have the universal covering surface D.

We consider holomorphic quadratic differentials of finite norm on R
and S, respectively. They have at most first-order poles at the punctures.
These points are added to the critical points of the differentials, even if
these are reglar there and different from zero.

We will use approximation by simple differentials (see [5, Corollary 6.5])
and the Heights Theorem [5]. This allows the construction of the mapping-
by-heights gh associated with g, and of course the "normed mapping-by-
heights" g# . We want to show that gh has the same properties as in the
compact case.
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8.2. The definition of the vertical distance of two trajectories aχ and
a2 with respect to a given free homotopy class of connecting arcs γ is the
same as in §2.1. It is also true that we can fix two points Pχ e aχ and
P2 e a2 and only consider homotopic arcs connecting these two points.
Homotopy is always meant on the punctured surface, where all arcs are
supposed to lie. However, a shortest connection of P{ and P2 does in
general not exist in R: it will be a limiting arc γ0 passing through some of
the punctures Xv . It consists of ^-straight arcs connecting critical points
of φ (including some of the punctures). As such, it is uniquely determined
(see [8]). In general, there is no curve in R connecting Pχ and P2 in the
given homotopy class which has minimal height. However, the limiting
arc γ0 has minimal height. The proof can be based on approximation by
compact surfaces as in [8], using the fact that for compact surfaces the
shortest curve also gives the smallest height (Lemma 3.2).

8.3. Convergence of vertical distances. Let the sequence {φn} tend to
φ in norm, \\φn - φ\\ —• 0. This is equivalent to φn —• φ locally uniformly
on R, if we take square roots as local parameters near the first-order poles.

Let P, P1 e R and let γ be a shortest curve (in the above sense) in
the ^-metric joining P and P1. Let Pn —• P and P'n -> P1, and let γn

be the shortest connection of Pn and P'n in the ^-metric. According to
§8.2 it is clear what we mean by saying that γn is in the same homotopy
class as γ.

Then, because of the uniqueness of γ, the curves yn tend to γ, and so
do their heights. We have

Lemma 8.3. Let φn —• φ. Then the vertical distance of φn-trajectories
in the φn-metric tends to the vertical distance of their limits with respect to
the φ-metric.

8.4. Let φ be holomorphic and of finite norm on an arbitrary Rie-
mann surface. In [6] it was shown that geodesies on the universal cov-
ering surface ID have well-determined, distinct endpoints. However, the
asymptotic convergence of trajectories in P was only proved for compact
underlying surfaces in [7], whereas we need it here for compact surfaces
with punctures.

The boundary of the universal covering surface of a punctured surface
is not at an infinite distance from the points of P every puncture can be
reached along a critical trajectory ray of finite length, the lift of which is
a boundary ray of P of finite length.

It is however not hard to see that every regular trajectory ray of φ (and
therefore also its lift) has infinite length. If it is closed, this is evident. If
it is not closed, it is recurrent and hence passes infinitely often through a
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fixed ^-rectangle of positive length on R, thus has infinite length.
With this property we can prove as in [7]
Lemma 8.4. Let R, φ, and φn be as in §8.1. Assume that the sequence

{φn} converges in norm to φ . Let a be a regular trajectory ofφ, z e a.
Then, for every sequence of points zn —> z such that the trajectory άn of
φn through zn is regular, we have άn —• a uniformly in the Euclidean
metric of the disk ID).

8.5. We are now ready to prove the preliminary form of our main
theorem.

Lemma 8.5. Let p and q be the endpoints of a regular trajectory a of
φ. Then r = g(p) and s = g(q) are the endpoints of a horizontal geodesic
of ψ, where ψ = gh{φ).

Proof Let the sequence {φn} of simple differentials approximate φ .
Then there is a sequence of lifts άn of the middle lines an of the cylinders
of φn which approximate a. Therefore, their endpoints pn and qn tend
to p and q, respectively. The images rn = g(pn) and sn = g(qn) are the
endpoints of properly chosen lifts of the middle lines of the cylinders of
ψn = gh(φn). They tend to r and s, respectively, which are therefore the
endpoints of a horizontal geodesic of ψ. q.e.d.

However, a horizontal geodesic β can go not only through zeros of ψ
but just as well through punctures. As punctures correspond to parabolic
fixed points, a lift β of β can go through such fixed points, perhaps
infinitely often. A successive pair of fixed points on β bounds a segment
of β in D, whose ends approach dB nontangentially.

8.6. In order to rule out both possibilities we first show that for arbi-
trary regular trajectories a and a of φ the image geodesies β and β'
have the same vertical distance. This follows, as before, by approximation
with simple differentials, for which the invariance of the vertical distance
is already shown.

Assume now that the horizontal geodesic β = gh(ά) goes through a
puncture of S. Then its lift β has, besides its two endpoints r and
s, another point, t, say, on <9ID> (Figure 6). Approximating a on the
vulnerable side by another regular trajectory a it is easy to see that its
image βf must eventually meet β. This is only possible at a zero or a
puncture (parabolic fixed point on ΘΏ), as a look at Figure 6 shows. But
horizontal arcs meeting at a puncture have the same height, because there
are arbitrarily short arcs going around the puncture and joining them (even
if the puncture represents a first-order pole of ψ). This contradicts the
fact that ά and a have positive vertical distance. We have
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FIGURE 6

Theorem 8.6. Let R = R\{XU} and S = S\{Yu} be punctured surfaces
with the disk as universal covering surface. Let g: i? —• S bean orientation
preserving homeomorphism with g{Xv) = Yv for all v . Then the mapping-
by-heights ψ = gh(φ), applied to the holomorphic quadratic differentials
φ of finite norm on R, takes the regular trajectories of φ into those of ψ
and leaves their vertical distance invariant.

8.7. A Teichmϋller mapping / with / |9D = g\dΏ is constructed
as before in the compact case. The lifted differentials φ and ψ have
trajectory structures which are invariant under corresponding cover trans-
formations T and Θ(T), respectively. Therefore, / is invariant. Since
it induces the same isomorphism of the covering groups as the lift of g,
its projection is homotopic to g.

We can now restate Theorem 7.2 for compact surfaces with punctures.

9. Application: The unique axis theorem

9.1. Fix a Riemann surface which arises from a compact surface of

genus g > 0 from which JV > 0 punctures have been removed, 3g + N-

3 > 0. We think now of Teichmϋller space Tg N defined geometrically

as the set of pairs {(S, /)} , where f:R-+S is a quasiconformal map,

subject to the equivalence (S{, fx) = (S, /) if fxf~
X: S —• Sγ is homo-

topic to a conformal map. It is a complete metric space in the Teichmuller

metric d(p, q) = \ \ogK(p, q), where K(p, q) is the maximal dilatation

of the Teichmuller map homotopic to fxf~
X: S —> Sχ, with p = (S, /)

and q = (Sχ, fχ) e Tg N. Of course, it is a complex analytic manifold of

dimension 3# + N - 3, but here we will only use metric properties.

Let h: R —• R be a quasiconformal automorphism. It determines the

bijection h,

h:{S9f)-+{S,fh),

which is an isometry of Tg N . Conversely, it is a result of Earle-Kra that
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every isometry of Tg N is of the form h . The group of all isometries is
discrete and is called the Teichmuller modular group.

The Teichmuller line L through (S, f) G TgfN in the direction φ,
where φ is a quadratic differential of finite norm on 5 , is the set
{(St, ftf)} . Here ft: S -> St is the Teichmuller map satisfying

If the isometry h maps a line L onto itself, then L is called an axis
of Λ, in line with the conventional terminology for hyperbolic Mόbius
transformations in the disk.

The Teichmuller line L from (S, /) e Tg N through (S, fh) has di-

rection φ , where φ is associated with the Teichmuller map h0 homotopic

to fhf~ι: S —> S. The line L is itself preserved by h if and only if the

point (S, /Λ/z) also lies on I . A necessary and sufficient condition for

this to happen is that hQ be a stable (uniquely extremal) map: that —φ

be the differential associated with A"1 ([1], [9]).
An element h of the Teichmuller modular group has an axis if and

only if it arises from a pseudo-Anosov automorphism h (for expositions
of pseudo-Anosov maps see, for example, [2] or [9]). Bers [1] showed that
such elements have axes (see also [4] and [9]). Conversely, if h preserves
the line L through (S, /) in direction φ, then fhf~ι: S —> S is ho-
motopic to a stable Teichmuller map associated with φ which can only
be pseudo-Anosov. The uniqueness of the axis L goes deeper, in that it
requires extensive knowledge of the map g# .

9.2. Theorem 9.2. A pseudo-Anosov map acting on T N has a unique
axis.

Remark. The only reference we have to an earlier treatment is Lemma
16 of Expose 12 by Fathi and Pόenaru in [2]. We are grateful to the
referee for the remark that it also follows from Royden's theorem that the
Teichmuller and the Kobayashi metrics coincide.

Proof of Theorem 9.2. We may choose the base point (R, id) to lie
on an axis L of the pseudo-Anosov map h , and to have direction φ at
(R, id). Hence, h#(φ) = φ and h#{-φ) = -φ .

Suppose (S, /) lies on a possibly different axis in direction ψ . Then
on S, {fhf~ι)#(ψ) = ψ and (fhf~ι)#(-ψ) = -ψ. We claim that
f#(ψ) — Ψ a n d f#(—φ) = —ψ This is true for the following reason. For
any simple loop γ on R, the sequence of simple differentials {φ[hn(γ)]}
converges to φ as n -> +oo and to -φ as n —• -oo (see [9]). Likewise
on S, {φ[fhnf~xf{y)\\ converges to ψ as n —> +oo and to -ψ as
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n -• -oo. Furthermore, f#{φ[hn{y)\) = φ[fhn(γ)]. Our assertion is now
a consequence of the continuity of f#: Q0(R) —• Qo(^)

All that remains is to apply the construction of §6: the Teichmύller map
homotopic to / is itself associated with φ . This means (S, f) e L, and
ψ = φ . The axis Lχ coincides with L.

10. A geometric proof of the Teichmϋller mapping theorem

10.1. In the last part of this paper we give a new proof of the Te-
ichmϋller mapping theorem. It is based on the characterization of the
Teichmϋller differentials developed in the first part and consists in solving
the relation

g*{-φ) = -g*{φ)

for φ . It is however easier to work with the horizontal stretching version,
which is equivalent with the above.

Assume φ and ψ are the Teichmϋller differentials associated with g .
Then ψ = gh(φ) 9 which means that the heights are the same. On the
other hand, the horizontals are stretched by K > 1 (we assume that there
is no conformal mapping homotopic to g). Therefore, | |gΛ(p)|| = \\ψ\\ =
K\\φ\\. In the next section we will establish a general norm inequality for
the mapping gh . The Teichmϋller differentials will then turn out to be
the solutions of an extremum problem related to this inequality.

10.2. Let R and Rf be compact Riemann surfaces with distinguished
points Pv and P'v, respectively. Let g: R -• R', g(Pu) = P'u Vi/, be
a homeomorphism. The quadratic differentials φ on R and ψ on Rf

are holomorphic on the punctured surfaces R\{PU} and ϋ'\{/^}, respec-
tively, and have at most simple poles at the punctures.

Theorem 10.2. Let g be a quasiconformal mapping with maximal di-
latation K. Then, for any φ on R and ψ = gh(φ) on R!, the norm
inequality

(1) ^\\φ\\<\\ψ\\<K\\φ\\

holds.
Proof. Assume first that φ has closed trajectories. Denote the ring

domains swept out by the trajectories by R., their moduli by M{, and

their heights by ft.. Let R( = g(Rt) have the modulus Mt. Then

(2) 4-<tf-L
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After multiplication with b2 and summation over all ring domains we find

(3) Ί.hr < KΣ^r.

The sum on the left-hand side is minimized by the set of ring domains

R'j of the quadratic differential ψ = gh{φ) (for a proof of the minimum

property see [12, Theorem 20.5]). Denote their moduli by M[ the heights

are of course the same b\ = bt. Thus,

b2 b2 b2

(4) Σ ^ i
The left- and right-hand side of (4) are the norms of ψ and φ, respec-
tively. This proves the right-hand side of (1) for quadratic differentials
with closed trajectories. To prove the left-hand side we start with ψ and
go backwards to φ = g^\ψ): we get \\φ\\ < K\\ψ\\. For the general case
we use approximation by differentials with closed trajectories, q.e.d.

Of course one can replace K by its smallest value, i.e., the maximal
dilatation K of an extremal quasiconformal mapping homotopic to g.

10.3. By Theorem 10.2, the quotients

ψ = gh{φ)>

are bounded. On the other hand, the mapping gh clearly is homogeneous
with respect to positive constants,

(6) gh(λφ)=λgh(φ), λ>0.

Therefore, one can normalize φ , \\φ\\ = 1, in the quotients (5). It follows
by the continuity of gh and the compactness of the unit sphere {φ
1} that they have a maximum value. Setting

(7) L = sup ί\M MX
I M l ' HvllJ

we may assume that L is attained by the quotient HίHI/IMI We thus
have

(8) h

with maximal L, 1 < L < K.
10.4. The proof of the Teichmϋller mapping theorem consists in show-

ing that the pair of differentials φ, ψ = gh(φ) of (8) satisfies the relation

(9) gh(~φ) = const, (-ψ),



A CHARACTERIZATION OF TEICHMULLER DIFFERENTIALS 25

with a positive constant (which will be l/K2).
Theorem 10.4. Let R and R! be compact surfaces with punctures, and

let g: R —• Rf be a quasiconformal homeomorphism. Denote by gh the
induced mapping-by-heights of the holomorphic quadratic differentials with
finite norm on R onto the analogous set on R!. Assume that

(10) \\gh{φ)\\=L\\φ\\

and that L > 1 is maximal. Then gh(-φ) - const.(-gh{φ)), with a
positive constant.

Proof In [13] the goal was achieved by a variational method estab-
lished in [12]. This was possible because the quadratic differentials as-
sociated with the configurations all had closed trajectories. On a generic
compact surface this is however not the case. But for differentials with one
cylinder the variational lemma becomes superfluous. This is the reason for
the following approximation procedures by simple differentials.

Let φ and ψ = gh(φ) satisfy (10), and let

(11) Φ = gπ\-Ψ)'

(Note that in this section we use the tilde to denote a variation of the
given quantity.) We want to show that φ = const(-^), with some positive
constant. We approximate φ by a sequence of simple differentials φn (if
φ itself is simple, we set φn = φ for all n the same in the following
approximations). Let

(12) Ψ« = 8h(Ψn)

We have ψn —• ψ locally uniformly on Rf. The ring domains of the

differentials φn are denoted by Rn , and those of ψn are denoted by R'n .

Of course we have the limit relations

(13) -Ψn->-ψ,

and by continuity of the mapping-by-heights

(14) φn := gh\-ψn) ->φ = g^(-ψY

The differentials -ψn are in general not simple (nor do they have closed
trajectories). Therefore we again approximate -ψn for every fixed n by
a sequence of simple differentials

(15) ψnk^-Ψn9 k^oc.

We set

(16) Φnk = 8h\ψnk)
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and get

(17) φnk —> φn , k —> oo for each n.

The ring domains of the ψnk are denoted by R'nk , and their heights (in
the ψnk-metric) are denoted by d'nk . Correspondingly, the cylinders of
the φnk are Rnk, with heights tf?ΛA: = d'nk. Note that the trajectories of
the —ψn are the vertical trajectories of the ψn . Therefore, the heights of
the -ψn are the horizontal lengths of the ψn . This is nothing but the
equation

With this setting we can now compute the norm of φ . We denote a generic
local parameter of R by z = x + iy, whereas the parameter determined
by φn is

08) zn=Xn + iyn

We work in the ring domain i?^ of #?rt, with the parameter zn. Note
that Rn covers the entire surface R up to finitely many analytic arcs.
Let an be an arbitrary closed trajectory of φn in Rn . Its length in the
φnk -metric, in terms of the parameter zn and with the notation

(19)

is

(20)

= ί \φj/2\dzn\

= ί \l(dΰnk)
2 + {dvnkγ > f \dvnk\

Clearly the last term is greater or equal to the height of an with respect to
the differential φnk , which is the same as the height of a'n with respect to
ψnk , by definition of the differentials and because a'n ~ g{an). Therefore
inequality (20) continues with

d\k\>hφk[an) h [an].

Now let k —• oo for fixed n and fixed an . Since ψnk —• -ψn , we have

(22) hφJc!n^hψ[a'u] = a'Λ = LnaH.

Here, an is the φn-length of an , a'n is the ^-length of a'n , and Ln is

defined by the last equation. From | | p j | = anbn, \\ψn\\ = anbn, \\φn\\ ->



A CHARACTERIZATION OF TEICHMULLER DIFFERENTIALS 27

\\φ\\, and \\ψn\\ -

ί/z^ = dxn + /rfyΛ =

(23)

Integrating over yn from zero to

(24)

= L\\φ\\, we conclude Ln^L for n -> oo. Since

π along αn , we have in the limit k —• oo

dϋ.

dxn

we find

dxndyn

Because the ring domain Rn covers R, this is in fact an integral over the
entire surface. For a passage to the limit n —> oo we switch to fixed local
parameters, which we genetically call z = x + iy. The transformation
rules give, with an evident slight abuse of notation,

(25)

(26)

I 1 / 2

dxndyn= -jf

1 ~ (
\<PnZ

if

) | 1 / 2

n

2

dxdy,

(27) |rfzj = |^(z)|1 / 2 |rfz|.

The inequality (24) without the middle terms now reads

(28) jRj\φn{z)\XI2\φn{z)\ll2dxdy>Ln\\φnl

Letting n —> oo , this gives

(29) I J\φ(z)\l/2\φ(z)\l/2dxdy>L\\φ\\.

Applying the Schwarz inequality and dividing by \\φ\\ we finally find

(30) | |0||>L2 |M|=L||H.

Here, equality must hold, because L is maximal.
10.5. In order to see that in fact φ = cφ with c = L2 , we specify the

parameter z to z = f yfφ, which is legitimate on R outside the zeros
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of φ . In terms of this parameter we have φ = 1. Therefore (24), in the
limit n —• oo, becomes (we have equality in (29)!)

(32)
Γ I Λ # 1 dxdy = L\\φ\\.

We conclude that dϋ/dx = 0, which means that the trajectories of φ are
orthogonal to the trajectories of φ, and hence

(33) φ = g-\-ψ) = -L2φ.

Applying gh , we get

(34) gh{-<P) = \{-ψ).

Of course, L is the dilatation of the Teichmuller mapping / homotopic
to g and constructed in §7. We put again L = K.

Corollary. Equality on the right-hand side of (I) holds iff φ and ψ =
gh{φ) are the Teichmuller differentials associated with g, and the
Teichmuller mapping f is the horizontal stretching by K equality on the
lφ iff Ψ and ψ are the Teichmuller differentials and f is the horizontal
contraction by l/K.

Proof. Assume φ and ψ = gh(φ) are the Teichmuller differentials,
and / is the horizontal stretching by K. Then, evidently | |^ | | = K\\φ\\
(see §1.1). Conversely, let | |^ | | = AΓ||^|| and ψ = gh{φ). By (1), the
factor K is maximal, therefore φ and ψ are the Teichmuller differentials
associated with g. Since K is the smallest maximal dilatation for the
mappings homotopic to g, the Teichmuller mapping is the horizontal
stretching by K.

To prove the second statement, we look at the inverse mapping φ =
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