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THE STABILITY OF SOME
EIGENVALUE ESTIMATES

ANTONIOS D. MELAS

1. The Faber-Krahn inequality ([7], [8], [13]) states that among all
bounded domains Ω c i " with the same volume the ball has the smallest
first Dirichlet eigenvalue.

Also recently it has been proved [1] that the ratio λ2(Ω)/λι(Ω) of the
first two Dirichlet eigenvalues of a normal bounded domain ΩCR" takes
its maximum value if and only if Ω is a ball.

In this work we examine how stable these inequalities are. That means
whether a bounded domain Ω c i " has to be near the ball in the sense of
Hausdorff distance provided that one of the two quantities /^(Ω^ΩI" 2^
and λ2(Ω)/λ{(Ω) is sufficiently near to the corresponding quantity for the
ball, where |Ω| denotes the volume of Ω. We prove that this is true under
the additional assumption that Ω is convex.

We prove the stability for the Faber-Krahn inequality for convex do-
mains in §2, and for the inequality for the ratio of the first two Dirichlet
eigenvalues for convex domains in §3. Actually an estimate for the Haus-
dorff distance of the domain and a ball can be derived in terms of how near
one of the above quantities is to the corresponding quantity for the ball.
In §4 we give an extension of the stability of the Faber-Krahn inequality
for arbitrary bounded domains in E 2 .

Notation. For a bounded (normal) domain ΩCE", A, (Ω) and λ2(Ω)
denote the first two Dirichlet eigenvalues of Ω. For a measurable set
£ C l " , \E\ denotes its rc-dimensional Lebesgue measure.

2. Theorem. 2.1. Let Ω C R " be a bounded convex domain such that

(2.1) λλ{Ω)<{\+ε)λχ(D),

where ε > 0 is sufficiently small, and D is a ball with \D\ = |Ω|. Then
there exist two balls Bλ, B2C Rn such that BχcΩCB2 and

(2.2) I ^ W l - C / ^ I Ω I , |Ω|>(1-Cy / 2")|^2 |,

where Cn>0 is a constant depending only on the dimension n .
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20 ANTONIOS D. MELAS

Proof. Assume Ω C R " satisfies the hypothesis of Theorem 2.1. Let
«j > 0 be the first Dirichlet eigenfunction of Ω normalized so that
/Ω u](x) dx = 1. For δ > 0 we define

(2.3) Qό = {xeΩ:uι(x)>δ}.

Since Ω is convex by [2], each Ω^ is convex. We need:

Lemma 2.1. For any δ such that 0 < δ < ̂ |Ω|~1/2 we have

(2.4) |Ω* I > [ 1 - 2/i max(<J|Ω| 1 / 2 , ε)]\Ω\.

Proof of Lemma 2.1. Since the function uχ-δ is C 2 and vanishes
on ΘΩό by Rayleigh's theorem,

(2.5)

But

^x) - δ)\2 dx = - f (uι(x)-δ)&uι(x)dx

= λι(Ω) f {uW-δ^Wdx

a
<λ,(Ω) ( / (M (x)-ί)2rfΛr) since fuΛx)dx = \.

\Jsιδ J Ja

Since u{ < δ in Ω N ^ and <J|Ω|1/2 < \, by Minkowski's inequality we
obtain

1/2 / \ 1/2

1/2

/ d x

δ2dx) -δ\a\> 1-

Thus (2.5) gives

(2.6) A 1 (Ω,)<(l-2 ί J|Ω| 1 / 2 )- 1 λ 1 (Ω).

If Dό is a baU with \Dδ\ = \Ωό\, then by Faber-Krahn's inequality ([7],
[8], [13]) (2.1) and (2.6) we have

(2.7) λJDΛ) <λΛΩA) < ( 1
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Hence

r / 2 Λ / 2

> [1 - 2« max(<5|Ω| , c)J assuming 0 < ε < 1. q.e.d.

We may without loss of the generality assume that |Ω| = 1. Let u[
defined on D be the decreasing spherical symmetrization of w r Let
Γ(0 = {xeCl: uχ{x) = *}, Γ*(ί) = {x e D : u\{x) = t), T = supΩ wt,
and ^(/) = / Γ φ j ^ - | dHn_χ for 0 < ί < Γ, where //^j denotes (ΛZ — 1 )-
dimensional HausdorfF measure. Then

Hn_x(T{t)f < ψ(t) I \Vuχ\dHn_χ,
JΓ(t)

and, by the isoperimetric inequality, //^(Γ*^)) < Hn_x(Γ(t)). Thus
as in the proof of Faber-Krahn's inequality we have

AjίΩ)- f \Vu{(x)\2dx= f f \Vuχ\dHn_χdt
JΩ JO JT(ή

Since λ,(Ω) < (1+ β)A,(D),

(2.8) / [Hn_χ{T{t))2 - Hn_

Assuming ε < 1/4 we may take δ = e 1 / 2 in Lemma 2.1 and obtain

(2.9) |Ω\Ω,| < 2nε1/2|Ω| = 2ntβ.

Thus by Cauchy-Schwarz's inequality we have

( rs \2 ( rδ - \ ( rδ \
ε = δ2=\ dt] < / ψ{t) dt\\ I ψ{t)dt\

\ / \. / xa x \ x.

ψ(ή-ldt) \O\aδ\ < 2ηεi/2 ί ψ(t)-ιdt,
J Joand therefore

(2.10)
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From (2.8) and (2.9) it follows that

- 2nε~ι/2 Γ [ / / n - i ( Γ ( 0 ) 2 " Hn-χ(r {t))2]W)dt

where C' depends only on n . Moreover Γ(/) is the boundary of Ω, , and
Γ*(ί) is the boundary of a ball with volume |Ω r | . Hence there exists a τ
such that 0 < τ < δ . If wn is the volume of the unit ball in Rn , then

n

(2.11) Hn-

where ε is sufficiently small, and C depends only on n , since for ε small
enough Lemma 2.1 implies that |Ω τ | > 1/2. Let r be the radius of a disc
with volume equal to |Ω τ | , let p be the in radius of Ω τ , and let Bχ be
a ball of radius p with B{ cQτ.

Since Ωτ is convex, we have the following isoperimetric inequality
[D, H, 0] of Bonnesen style:

- 1

Using (2.11) and the isoperimetric inequality Hn_χ(dΩτ) >ΛtϋyΛ |ΩT | 1" 1 / f I

we obtain

(2.13) (r - p)n < (Λ"1 + Cει/2)n/n~l - Λ

Since 1/2 < |Ω | < 1 for sufficiently small ε, (2.13) implies

(2.14) {r-p)<Cεx}2\

where C depends only on n. Hence

1^1 > ( 1 _ C'ε
λl2n)\Ωτ\ > (1 - C'εl/2n)(l - 2nει/2)\Q\,

where τ < S = ε 1 / 2 , and C' denotes only on n. Also B{ c Ωτ C Ω.
Since Ω is convex, the existence of B2 follows from that of B{.

3. Let τn denote the ratio λ2(D)/λι(D), where D is an /7-dimensional
ball.

Theorem 3.1. Let Ω c l " be a bounded convex domain such that

(3.1)
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where ε > 0 is sufficiently small. Then there exist two balls Bχ, B2 c Rn

such that Bχ c Ω c B2 and

(3.2) \BX\ > (1 - ς / * ) | Ω | , |Ω| > (1 - ς / « ) | £ 2 | ,

vv/zere CΛ > 0 and 0 < an < I are constants depending only on n.
For the proof we need the following:
Proposition 3.1. Let θ > 0 be given. Then there exists a constant

Cn θ > 0 depending only on n and θ such that if Ω C R " is a bounded

convex domain such that A2(Ω) > ( l + β μ ^ Ω ) , then λ^Ω) < Cn θ\Ω\~2/n .
Before we can give the proof of the proposition we need the following

lemmas:
Lemma 3.1* Assume Ω is a domain, and u{ > 0 is the first Dirichlet

eigenfunction of Ω normalized so that fςιu](x)dx = 1. For 0 < s <

supΩ Mj we define

Then for all 0 <s < supΩ wt

Proof We may assume that Ω5 is a normal domain. Since the function
uχ — s vanishes on dΩs,

/OflV(M1(x)j)|rfx_a L
) *C T Λ . ( i ώ )

'

Since Aj(Ω5) = (1 + κ{s))λχ{Ω) , from the Minkowski's inequality

α x 1/2 x x 1/2

inequality (3.3) follows. __
Lemma 3.2. Ler Ω c l " tea bounded convex domain with 0 e Ω c

Σ^, wΛm> Σ^ = {(x,, , JcJ e RΛ : 0 < Xj < rf} . For 0<η<d/6 we
define Ω.η = Ω n

(3.4)
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Proof, Since 0 € Ω c Σd and Ω is convex, we conclude that

so that

be the monotonicity of the first eigenvalue and the inequality η/d < 1/6.
Lemma 3.3 / / Ω C R Π is a bounded normal domain, and Ωλ, Ω 2 are

disjoint normal subdomains of Ω, then

(3.5) A 2 (Ω)<maxμ i (Ω 1 ),Λ 1 (Ω 2 )} .

Proof This follows by a standard variational argument as in the proof
of Courant's nodal domain theorem.

Proof of Proposition 3.1. Without loss of the generality we may assume

that diam Ω = 1, Ω c Σ j = {{xχ, , xn) e ΈLn : 0 < xχ < 1}, and 0,

(1, 0, , 0) e Ω. Let uλ > 0 be the first Dirichlet eigenfunction of Ω

normalized so that Jau
2

{{x)dx = 1. Let a = fQxιu](x)dx > 0. Since

/Ω(Xj - a)u\{x) dx = 0 by the Rayleigh-Ritz inequality for λ2 , we have

Λ2(Ω) - /|V(*α)iyW^ L

Using the assumption Λ2(Ω) > (1 + ^)λ,(Ω) therefore yields

(3.6) A, (Ω) < ̂  jΓ (x, - α)2«J(x) dx} .

Since 0 < a < fau](x)dx = 1 and 0, (1, 0, •• , 0) e Ω, without loss
of the generality we may assume that a > 1/2. For 0 < s < supΩMj
define Ωs = {x e Ω : u,(x) > s} and

I (J) = inf{>/ > 0 : Ω5 C {(x,, ••• , χn) € l " : α - η < x, < α + //}}.

By Lemma 3.2 we obtain, for d = a + η(s) and η = 2η(s),

λ,(Ωα-" ( ί )) < (1 + Πf ίjjμ^Q0-1-'^) < (1 + 12^(5))^(Ω,),

as long as 0 < »/(j) < 1/24, since Ω5 C Ωα + I ? ( ί ) by the definition of
η{s). But Q.a~η<'s' and Ω^ are disjoint normal subdomains of Ω; hence
by Lemma 3.3 we have

Λ2(Ω) < maxμ.tΩ,), AjίΩ"-^)} < (1 +
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if η(s) < 1/24. Since (l + 0)λ,(Ω) < λ2(Ω) , using the notation of Lemma
3.1 gives that

1 + 0 < (1 + I2η(s))(l + κ{s)) if 0 < η(s) < £ .

Thus there exists cχ > 0 depending only on θ such that

(3.7) η(s) > c, whenever κ(s) < \θ,

which implies, by the definition of η(s),

Ω5 Π {{xχ, , xn) € Σj : \xχ - a\ > c,} Φ 0, whenever κ(s) < jθ.

Since Ω is convex by [2], we conclude that each Ω5 is convex. Hence
there exists c2 > 0 depending only on n (in fact we may take c2 = 4"Λ)
such that if

Ω!s = {xeΩs:\Xj-a\>±cx}9

then

(3.7') |Ω |̂ > c2\Ωs\ whenever κ(s) < \θ.

Now we have

( {x -afu\{x)dx>C^ f u]{x)dx

whenever 5 is such that 0 < 5 < supΩ^ Wj, and κ(s) < 0/2, where we

have defined

(3.8) /,= fS2t\Ωt\dt.
Jo

But s > supΩ/ uχ implies that η(s) < cχ , so that κ(s) > \θ by (3.7).

Hence we have

(3.9) f {xχ - afu]{x) dx > c3ls whenever κ(s) <{θ,
Jςi

where c3 > 0 depends only on 9 on «.
Since Ω/ < Ωt> for t' < t, κ(s) is an increasing function. Since λx is

continuous under continuous deformations of the domain [5], κ(s) is con-
tinuous on (0, supΩ ux). Moreover lim^^^ κ(s) = 0 and UΠI J _ S U P Ω M I K(S)
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= + 0 0 . Hence there exists s{ G (0, sup Ω uχ) such that κ(s{) = 0/2 . Now
we have

ί u]{x) dx = / «J(JC) rfx /
VΩ^ JQ JΩ\QS{

= 1 - Γ ' 2* |Ω, Π (Ω\Ω, )| dt > 1 - Γ 2*|Ω,| dt = i - Is ,
Jo Jo !

/. = Γl2t\Ωt\dt> f
1 JO JO

and also

From Lemma 3.1 it follows that

Λ / K. 1 v. 1 ^

so that

(3.10) 7 >

Since κ(s{) = 0/2, by (3.9) we have

f 2 2 θ2c,
(3.11) / (JC. -a) u2Λx)dx>c,L > —, i-
V J JςiK x } l V } ~ 3 J» " 202 + 40-
Hence using Lemma 3.6 we obtain

<C'nθ,

where C'n θ depends only on n and 0.

Finally, since diamΩ = 1, |Ω| < wn = volume of the unit ball in Rn

and therefore |Ω|~2 / n > w~2/n . Thus, taking Cnθ = w2JnC'nJ), we have

(3.12) ^ ( Ω ^ ς ^ l Ω f 2 7 " .

Remark. For n = 2 one can also prove the proposition as follows:
By dilating Ω one can show that there exist rectangles R{ , R2 such
that T ? - 2 C Ω C Λ 1 ? R{ has side lengths 1 and N, and R2 has side
lengths 1 - cN~2/3 and 2cNί/2 for some constant c > 0, where N is
comparable to the ratio of the diameter to the inradius of Ω. Then the
proposition follows by the monotonicity principle of the eigenvalues since
λ2(R2)/λ[(Rι) is arbitrarily close to 1 if N is large enough [9].
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Lemma 3.4. If Ω is a bounded convex domain, and ux > 0 is a first
Dirichlet eigenfunction of Ω, then

(3.13) | 1 | χ / 1 ( ) p

Proof If Ω is smooth and strictly convex, then by the same method
as in [12], \Vuχ\

2 + λ,(Ω)w2 assumes its maximum at an interior point
where \Vux\ vanishes. Hence \Vux\

2 + λ{(Ω)u] < λ1supςku] and (3.13)
follows. The general case follows by approximation.

Lemma 3.5. Let C > 0. Then there exist cn > 0 and βn (0 < βn < 1)

such that if Ω C R* is a bounded convex domain with λj(Ω) < C|Ω|" 2 / w ,

and uχ > 0 is the first Dirichlet eigenfunction of Ω normalized so that

JΩ W I (*) dx = I, then for any δ > 0

(3.14) | {* G Ω : W l (x) > δ}\ > (1 - CΛ

vvΛer̂  Cw α«rf )SΠ depend only on the dimension n and on C.
Proof We may assume that |Ω| = 1. Let p e Ω be the point with

^\{p) = supΩWj . Then 1 = fίιu](x)dx < u2

χ(p)\Ω\ = u\{p), and there-
fore ux(p) > 1. Since λj(Ω) < C by the assumption, Lemma 3.4 implies
|VMJ| < y/λ1(Ω,)supςluι < C'n , where C'n depends only on the dimension
n and on C, and we have used the fact that HwJÎ  < Cnλχ{Ω)nl2, Cπ

depending only on n . Since Wj = 0 on <9Ω, we have dist(/?, dΩ.) > l/Cn

and moreover there exists σ > 0 depending only on n and C such that
the ball B(p\ σ) is contained in Ω and

(3.15) ux{x)>\ for every x eB(p\ σ).

Since Ω is convex, |Ω| = 1, and B(p σ) c Ω, there exists a constant Cχ

depending only on n and a such that Hn_ι(dΩ) < Cλ and diamΩ < Cx,
where Hn_λ denotes (n - 1 )-dimensional Hausdorff measure, q.e.d.

We need the following lemma:
Lemma 3.6. Let σ{ > 0 be given. Then there exists a homogeneous

harmonic polynomial P on Rn of degree N depending only on n and
σx, whose restriction on Sn~~ι has a nodal domain Γ of diameter less than
σχ.

Proof We can construct P from a Legendre function having a suffi-
ciently small first zero.

Now fix a polynomial P from Lemma 3.6 corresponding to σx = C^xσ.
Then the degree N of P depends only on n and C. Let Γ be a nodal
domain of P\ s«-ι of diameter less than σx. Then we may assume P > 0
in the interior of Γ. Fix a point ξQ e Γ and let c0 = P(ξ0) > 0.
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Let y be a point in Ω. We choose the coordinate axes so that we
have: 0 e dΩ, the points p, y, and 0 are on the same line, y is between
p and 0, and p = \p\ξ0. Since Γ has diameter less than σχ = C[ σ
and |/?| < diamΩ < Cχ, the set |p|Γ has diameter less than σ . Since it
contains p, we have |/?|Γ c !?(/> σ) hence, by (3.15),

(3.16) Uι(\p\ξ) > i whenever ξ e Γ.

Define
K = { J C : 0 < | J C | < | P | , J C / | X | G Γ } ,

and w = uχ-lP on F, where / = (2supΓ l^l)"1. Then by (3.16) w > 0
on |p|Γ, and ti; > 0 on dV since P is zero on the boundary of Γ. Also
Aw = Au{ = —Λ,(Ω)ι/j < 0 in V since P is harmonic. Hence, by the
maximum principle, w > 0 in V. In particular, Wj(y) > lP(\y\ξ0) =
col\y\ since p, y, and 0 are on the same line. Since Ω is convex and
B(p σ) c Ω, we have

d i s t ( y , 9 Ω ) > ~ ϊ > σχ\y\.

If we let Cj = colσχ , then

(3.17) Uχ (y) > cx [άist{y, dΩ)f for all y € Ω,

where Cj > 0 and N depend only on n and C. Hence (3.14) follows

from (3.17) with βn = ΛΓ1 and CΛ = cχ

ι/nCι, since /ί^jίβΩ) < C{

and (3.17) implies

{ jceΩ: M l ( jc)<(!}c{ jceΩ: dist(jc, dΩ) < (c~ιδ)1/N}.

Proof of Theorem 3.1. Let λχ = λx(Ω)9 and let a = j n / 2 _ { x and

j8 = 7rt/2-i ^ e Λe first positive zeros of the Bessel functions /Λ/2-i a n ( ^

/ Λ / 2 , respectively. Let Ω* be the ball centered at 0 such that |Ω*| = |Ω|,

and let u\ defined on Ω* be the spherical decreasing symmetrization of

u{, where uλ > 0 is the first Dirichlet eigenf unction of Ω normalized so

that Jau
2

χ{x)dx = 1. Also let Sx = {x e Rπ : |JC| < γ~1} be the ball

with λx(Sχ) = λχ(Ω), where γ = yJTja, and let 2 be the first Dirichlet

eigenf unction of S{ normalized so that fs z2{x)dx = 1.

Assume now that Ω satisfies the hypothesis of Theorem 3.1. We may
assume without loss of the generality that |Ω| = 1. Since

β2



THE STABILITY OF SOME EIGENVALUE ESTIMATES 29

Proposition 3.1 implies that λχ(Ω) < Cn , where Cn depends only on n if
ε is sufficiently small. Hence there exists a constant C*n depending only
on n such that

(3.18) γ<C'n and |Vz| < C'n. .

By Faber-Krahn's inequality we have S, C Ω*. Let

r J JRΎMT .

(3.19) w(x)= -

and

(3.20) B(x) = w\x) + (n - 1 )^~.

x
In [1] it is proved that w is increasing, B is decreasing, and moreover
l i m ^ ^ t ί / ^ c) < 0. Hence there exists C depending only on n such
that
(3.21) (1 - x)2 < C{w{l) - w{x)) for 0 < x < 1.

By choosing the origin appropriately the following inequalities are proved
in [1]:

_^ _ < <

λλ{Cϊ) ) ~ Saw{yr)2u\{x)dx " /Q.

2

<jff - α = α ( τ M - l ) .

Thus using the assumption λ2(Ω)/λι(Ω) >τn-ε we obtain

(3.22) 0< / w{yr)2uΛx)2dx- ί w{yrf z{xf dx

< Cγe ί w{γrfz{x)2dx < Cλ

where C{ depends only on n .
By Chiti's comparison result ([3], [4]) there exists r{ with 0 < r{ < l/γ

such that

(u\(r)<z(r) i f O < r < r , ,

l«I(r )>2(r ) i f r , < r < l / y .
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Hence, if r* is the radius of Ω*, then

ί w{yrfuΛx)2dx- [ w(γr)2z(x)2dx
JΩ* JS,

= f w{yr)2(u\{x)2-z{xf)dx
Jθ<\x\<rx

w(yr)2(u\{x)2~z{x)2)dx

w{yrfu\(xf dx

>w(γrΛ2 I (uUx)2- z(x)2)dx+ w(\)2 I uΛx)~ dx
hλ JΩ*\S,

= [w(l)2-w(γrχf] f uχ{xfdxy

since /Ω* u\{x)2dx = fQu2

χ(x)dx = fs z2(x)dx = 1, and w is increas-

ing. Also since u\ is decreasing, fQ^s u\[xf dx > w1(l/y)2 |Ω*\5 r,|. By

(3.21) and w(\) > 0 we have w(l)2 - w{yrχ)
2 > c{\ - yrχf, where c

depends only on n . Hence (3.22) implies

(3.24) ( l - y r . ) V

where C depends only on n.
Moreover by (3.18), (3.23) and z(ί/γ) = 0, we obtain u\{rχ) = z{rχ) =

z(rχ) - z(l/y) < C(l - γrx), where C depends only on n. Thus from
(3.24) and the fact that u\ is decreasing, it follows that

(3.25) u\{\lyγ\ti\Sx\<CB,

where C depends only on n. Let δ = u\{\/y). Therefore the definition
of u\ and Lemma 3.5 yield

|S,I = \{x e Ω : M l (x) > δ}\ > (1 - C ^

Since |Ω| = 1, we have |Ω*\S'1| < Cnu*χ{l/y)β» and, by (3.25),

(3.26) \Ω*\Sχ\<Cεβ\

where β'n = ( 4 ^ ] 4-1)"1 , and C depends only on n.

But (3.26) implies λχ(Ω) < (1 + c V μ ^ Ω * ) , where C7 depends only

on n . Hence Theorem 3.1 follows from Theorem 2.1 with an = β'jln .
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4. Theorem 4.1. Assume Ω c R2 is a bounded domain such that
λγ(Ω) < (1 + ε)λ{(D), where ε > 0 is sufficiently small, and D is a disc
with \D\ = |Ω| . Then there exists a disc Dχ such that

(4.1) lΩίΊDjI > (1 - CεllA)\Ω\JDχ\,

where C is a universal constant. Moreover, if Ω is simply connected, we
may also assume that D j C Ω .

Proof. Without loss of generality we may assume that Ω has smooth

boundary and |Ω| = 1 . Let u{ > 0 be the first Dirichlet eigenfunction

of Ω normalized so that /Ω u\(x)dx = 1. As in §2 for δ > 0 we define

Ω^ = {x e Ω : u{{x) > δ}. Then as in the proof of Theorem 2.1 there

exists a τ such that 0 < τ < £ 1 / 2 , Ωτ is a disjoint union of a finite number

of smooth connected domains C7. (0 < j < m), and

(4.2) L{dςiτf<*π\ςiτ\ + Cχε
ll\

where L{dΩτ) denotes the length of dΩτ and Ci is a constant. Moreover
by (2.6) (whose proof does not use convexity) we obtain

(4.3) A 1 (Ω τ )<(l-2ε 1 / 2 )Λ 1 (Ω).

Since A1(ΩT) = min o < y . < m λ 1 ( t/ / ) , assuming λ{(Ωτ) = λ{(UQ) we have as
in the proof of Lemma"^.1 that

(4.4) | t / 0 | > ( l - 4 ε

if ε > 0 is sufficiently small. (4.2) and the isoperimetric inequality imply,
respectively,

r T 2
m

•r i , r'M1

J=0 7=0

and 4π\Uj\ < L(dUj)2 for \<j<m. Hence

(4.5)

Let U be the convex hull of Uo, and let V be the union of Uo and all

the bounded components of M.2\U0. Then Uo C V C U, V is simply

connected, and also L(βU) < L(dV) < L(dU0), since Uo is a connected

domain in I 2 with smooth boundary. Let a = \U\U0\. Then by the

isoperimetric inequality and (4.5) we have

L{dUof < 4π\U0\ + C,e' / 2 = 4π\U\ - 4πα + C,ε' / 2

< L(dU)2 - 4πa + C,e' / 2 < L(dU0)
2 - 4πa + Cχε

m.
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Hence

(4.6) \U\U0\<C2ε
{/2

for some constant C2 . If x e dV and dist(x, dU) = d, then L(dV) -
L{dU)>2d. Since

(4π|C/0 |)
1 / 2 < (4π|C/|)1/2 < L(dU) < L(dV) -2d< L(dU0) - Id,

and (4.6) implies \V\ < |t/0 | + C 2ε 1 / 2 < |Ω| + C 2 ε 1 / 2 = 1 + C 2 ε 1 / 2 , we have,
by (4.5),

(4.7) sup d i s t ( x , d ί / ) < C 3 ε 1 / 2 .
€dV

From L(dU) < L(dU0), \U\ > \U0\ and (4.5) it follows that L{dUΫ <
4π|ί/ | + Cj£1 / / 2. Since U is convex, the Bonnesen-style isoperimetric
inequality (2.12) implies as in the proof of Theorem 2.1 that there ex-
ists a disc D(x0 p) centered at x0 e V and of radius p such that
D(xo;p)CU and

(4.8) |/)(jco;/7)|>(l-C4β

1

Let D{ = D(JC 0 ; p - C 3 ε 1 / 2 ) . Then, by (4.7), and by (4.6) and (4.8), we
have, respectively, DχQV and

(4.9) IC/oΠ^J > (1 -C5f i

1/4)|C7OUZ>1U

if ε > 0 is sufficiently small.
Thus using (4.4) and (4.9) we obtain (4.1) if ε > 0 is sufficiently small

Moreover, if Ω is simply connected, then K C Ω and hence D j C Ω .
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