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THE STABILITY OF SOME
EIGENVALUE ESTIMATES

ANTONIOS D. MELAS

1. The Faber-Krahn inequality ([7], [8], [13]) states that among all
bounded domains Q C R" with the same volume the ball has the smallest
first Dirichlet eigenvalue.

Also recently it has been proved [1] that the ratio 1,(Q)/4,(€2) of the
first two Dirichlet eigenvalues of a normal bounded domain Q C R” takes
its maximum value if and only if Q is a ball.

In this work we examine how stable these inequalities are. That means
whether a bounded domain Q C R" has to be near the ball in the sense of
Hausdorff distance provided that one of the two quantities /‘LI(Q)|Q|_2/ "
and 4,(Q)/4,(Q) is sufficiently near to the corresponding quantity for the
ball, where |€2| denotes the volume of Q. We prove that this is true under
the additional assumption that Q is convex.

We prove the stability for the Faber-Krahn inequality for convex do-
mains in §2, and for the inequality for the ratio of the first two Dirichlet
eigenvalues for convex domains in §3. Actually an estimate for the Haus-
dorff distance of the domain and a ball can be derived in terms of how near
one of the above quantities is to the corresponding quantity for the ball.
In §4 we give an extension of the stablhty of the Faber-Krahn inequality
for arbitrary bounded domains in R>.

Notation. For a bounded (normal) domain Q C R", 4,(Q) and 1,(RQ)
denote the first two Dirichlet eigenvalues of Q. For a measurable set
E CR", |E| denotes its n-dimensional Lebesgue measure.

2. Theorem 2.1. Let Q CR" be a bounded convex domain such that

(2.1) A(Q) < (1+6)4,(D),

where ¢ > 0 is sufficiently small, and D is a ball with |D| = |Q|. Then
there exist two balls B,, B, CR" such that B, CQC B, and

22)  BI2(1-CeMIQL 1912 (1-Ce By,
where C, >0 is a constant depending only on the dimension n.
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Proof. Assume Q C R”" satisfies the hypothesis of Theorem 2.1. Let
u, > 0 be the first Dirichlet eigenfunction of Q normalized so that

Ja uf(x)dx = 1. For J > 0 we define

(2.3) Q; ={x € Q:u(x)>d}.

Since Q is convex by [2], each Q; is convex. We need:
Lemma 2.1. For any ¢ such that 0<d < %|Q|'1/2 we have

(2.4) 19,1 > [1 - 2nmax(3|Q|'"?, £)1|€.

Proof of Lemma 2.1. Since the function u, —d is C 2 and vanishes
on JQ; by Rayleigh’s theorem,

Jo, 19(u,(x) - &) dx
Jo,(u,(x) = &)*dx

(2:5) 4(Q¢) <

But
/QJ IV (u, (x) — 6) dx = —/Qd(ul(x) — 8)Au, (x) dx

=11(Q)/ (u,(x) = d)u,(x)dx

Q,

1/2
< 4,(Q) (/ﬂ (ul(x)—d)zdx) (/ﬂ uf(x)dx)
<4,(® (/ﬂ

Since u; < J in Q\Q; and 6" < 1, by Minkowski’s inequality we

obtain
1/2
2 2
(/‘;aul(x)dx) - (/;2,5 dx)

1/2
(/ (, (%) —6)2dx)
Q;
1/2
(1 —/ szx) -39 > 1-281Q]'%
Q\Q,
Thus (2.5) gives

(2.6) 4,(Q,) < (1-2619") 7", Q).

If D; is a ball with |D;| = |[Q;], then by Faber-Krahn’s inequality ([7],
[8], [13]) (2.1) and (2.6) we have

(2.7) 2,(Dg) < A,(Q5) < (1-261Q1"%) 7' (1 + £)2,(D).

1/2

1/2
(u,(x) —5)2 dx) since / uf(x) dx =1.
Q

(3

1/2

v

v
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Hence

L%—[Admr/i 1-250'"2\"”
Q] ~ [4,(Dy) - 1+¢

>[1-2n max(de[l/z, e)] assuming0<e<1. q.e.d.

We may without loss of the generality assume that [Q| = 1. Let u;
defined on D be the decreasing spherical symmetrization of u,. Let
F={xeQ:ux)=1}, T(t)={xeD:uj(x) =1}, T =supqu,,
and ¥(t) = fr(, ]#,[dHn-l for 0 <t < T,where H,_, denotes (n—1)-
dimensional Hausdorff measure. Then

H_ (T < () /r L IVuldH,

and, by the isoperimetric inequality, H, (I (¢)) < H,_,(I'(t)). Thus
as in the proof of Faber-Krahn’s inequality we have

T
4,(Q) = / |Vu,(x)|2dx=/ / \Vu,|dH,_, dt
Q 0 JF()

T 2 1 T x, 2 1
> [C 8, @0f S [, @0 d

= /D|Vuj(x)|2dx=,11(p).
Since 4,(Q) < (1 +¢)A, (D),

(2.8) / [H, F(t) (F (t)) ]—-(—) dt < A(D)e.
Assuming & < 1/4 we may take d = ¢'/? in Lemma 2.1 and obtain
(2.9) IQ\Q,| < 2ne'%(Q = 2ne'"?

Thus by Cauchy-Schwarz’s inequality we have

i s \?2 5 s
e=5 =(/0 dt) 5(/0 w(t) dt) (/0 w(t).dt)
= ( / "y dt) 1Q\Q,| < 272 / OR
0 0

and therefore

| 1 12
g [ as ton
(2.10) o v 2n
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From (2.8) and (2.9) it follows that
0L (H,_ (T(0) = H,_,(T"(0)’]

< 2ne ‘/2[[ (@@ - H,_ (")) ]—(—5(1:

< 2nd,(D)e'? = C'e'?,

where C’ depends only on n. Moreover I'(z) is the boundary of Q,, and
I'™(¢) is the boundary of a ball with volume |Q,|. Hence there exists a 7
such that 0 < 7t <. If w, is the volume of the unit ball in R", then

(2.11) H,_,(09Q,) <nwl"Q """+ ce'?,

where ¢ is sufficiently smail, and C depends only on n, since for ¢ small
enough Lemma 2.1 implies that |Q | > 1/2. Let r be the radius of a disc
with volume equal to | |, let p be the in radius of Q_, and let B, be
a ball of radius p with B, CQ_.

Since Q, is convex, we have the following isoperimetric inequality

[D, H, 0] of Bonnesen style:
1/n—1
(Hn_,(ant)) .
H,_ (0B,

H_ 09)\"""

(2.12) B, (08,) €2 >
H, ,(88)) 1Byl

Using (2.11) and the isoperimetric inequality H, (8Q,) _>_-nw,ll/ "|Qt|'_l/ "

we obtain

(2.13) (r=p)" < ("' +Ce
Since 1/2 < |Q, | <1 for sufficiently small ¢, (2.13) implies

n

I/Z)n/n—l _ rn

(2.14) (r-p)<Ce'?,

where C depends only on n. Hence
1B, 2 (1= C'e"™)Q | > (1= C'e"™™)(1 - 2ne' )|,

where 7 < = ¢/?, and C’' denotes only on n. Also B, CQ CQ.
Since Q is convex, the existence of B, follows from that of B,.
3. Let 7, denote the ratio 4,(D)/A,(D), where D isan n-dimensional
ball.
Theorem 3.1. Let Q CR" be a bounded convex domain such that
A4,(Q)

(3.1) mzr”—a,
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where € > 0 is sufficiently small. Then there exist two balls B, B, C R"
such that By CQ C B, and

(32)  IBI2(1-CeMiQl. Q]2 (1-Ce™)|B,,

where C, >0 and 0 < a, < 1 are constants depending only on n.

For the proof we need the following:

Proposition 3.1. Let 8 > O be given. Then there exists a constant
C,.¢ > 0 depending only on n and 6 such that if Q C R” is a bounded

n
convex domain such that 2,(Q) > (1+6)4,(Q), then 4, (Q) < Cn’glﬁ‘_z/" .
Before we can give the proof of the proposition we need the following
lemmas:
Lemma 3.1. Assume Q is a domain, and u, > 0 is the first Dirichlet
eigenfunction of Q normalized so that [, uf(x) dx=1. For 0 < s <
supg, u, we define

A(Q)-4(Q
Q ={xeQ:ux)>s} and x(s):jﬁf—(——l.
Then for all 0 <s < supgu, we have v
2 K(s) 2[ 2
(3:3) 0 212 (1 +K(S)) qul(x) 4

Proof. We may assume that Q_ is a normal domain. Since the function
u, —s vanishes on 9Q_,

fo, V) =9 dx - Jo (), (x) ) dx
fo (uy(x) -5 dx ! Jo (u,(x) = 5)* dx
(Jo, u(x) dx)'"?
(fgs<u:1 (x) = 5)2dx)"/*
Since 4,(,) = (1 + k(5))4,(Q2), from the Minkowski’s inequality

1/2 1/2
(/ (u,(x) —s)zdx) > (/ uf(x)dx) —slﬂsll/z,
Q Q

inequality (3.3) follows. .

Lemma 3.2. Let Q CR" be a bounded convex domain with 0 € Q C
T, where £, ={(x,, - ,x,) €R":0<x, <d}. For 0 <n<d/6 we
define Q" = Qnint 2, - Then

4,(Q,) <

<4(Q)

(3.4) Q" < (1 + 3;1—") A (Q).
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Proof. Since 0 € Q and Q is convex, we conclude that

cx
(1-3)e=(1 _§)9+"ocgmmzd =9,
so that
AI(Q”)gll((l—g)g)=(l—g)_211(9) (1+3’7)x.(9)

be the monotonicity of the first eigenvalue and the inequality n/d < 1/6.
Lemma 3.3. If Q CR" is a bounded normal domain, and Q,, Q, are
disjoint normal subdomains of Q, then

(3.5) 1,(Q) < max{4,(Q,), 4,(Q,)}.

Proof. This follows by a standard variational argument as in the proof
of Courant’s nodal domain theorem.

Proof of Proposition 3.1. Without loss of the generality we may assume
that diamQ =1, QC X, = {(x;, - ,x,) €R":0<x, <1}, and 0,
(1,0,---,0)€ Q. Let R > 0 be the first Dirichlet eigenfunction of Q
normalized so that fQ ((x)dx =1. Let a = fgxlu (x)dx > 0. Since

Jo(x, —a)u (x) dx =0 by the Rayleigh-Ritz inequality for 4,, we have

fQIV X, —a)| (x)dx _ 1
Jo(x, —a)’u (x) dx Jolx, = a)zuf(x) dx’

Using the assumption 4,(Q2) > (1 + 8)4,(Q) therefore yields

-1
(3.6) 2,(Q) < (e /Q (x, —a)zuf(x)dx) .

Since 0 < a < fguf(x)a'x =1and 0,(1,0,---,0) € Q, without loss
of the generality we may assume that o > 1/2. For 0 < s < sup, ¥,
define Q = {x € Q:u,(x) > s} and

n(s)=inf{n>0:Q C{(x,, -+, x,) ER " :a—n<x, <a+n}}
By Lemma 3.2 we obtain, for d = a + n(s) and n = 2#5(s),
4@ < (14 127(9))3,(Q7™) < (1 + 127(5)4,(R,),

as long as 0 < n(s) < 1/24, since Q, C Q" by the definition of

n(s). But Q* " and Q. are disjoint normal subdomains of Q; hence
by Lemma 3.3 we have

1,(Q) < max{4,(Q,), 4,(Q°7")} < (1 + 125(s))4,(R,)
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if n(s) < 1/24. Since (1+6)4,(Q) < 4,(RQ), using the notation of Lemma
3.1 gives that

1+ 6 < (1+127())(1 +x(s)) if 0 < n(s) < .
Thus there exists ¢, > 0 depending only on 6 such that
(3.7) n(s) > ¢, whenever k(s) < 16,
which implies, by the definition of #(s),
QNn{(x;, - ,x,)€Z, :|x,—al >c,} #3, whenever x(s) < 16.

Since Q is convex by [2], we conclude that each Q. is convex. Hence
there exists ¢, > 0 depending only on n (in fact we may take c, = 47
such that if
/
Q ={xeQ :|x;—a|> 3¢},
then
(3.7 Q.| > ¢,|Q,| whenever k(s) < 16.

Now we have
2

c
/ (x, — a)ul(x)dx > -+ uf(x) dx
Q QN{x€eR" : |x,—al>c,/2}

2 2 Sup,s u
c
= —c’/ uf(x)dx——‘/ % ]2t|Q;|dt
4 Q(’] 4 0

2 2
C
>9 /0 20,Q|dt = D21,

whenever s is such that 0 < s < Supgy Uy and k(s) < /2, where we
have defined

S
(3.8) I= / 21Q,) dt.
0

But s > supy u, implies that 7(s) < ¢;, so that x(s) > 16 by (3.7).
Hence we have

(3.9) /Q(x1 - a)zuf(x) dx > c,1, whenever k(s) < 36,

where ¢, > 0 depends only on 6 on n.
Since Q, < Q, for t < t, x(s) is an increasing function. Since Ay 18
continuous under continuous deformations of the domain [5], k(s) is con-

tinuous on (0, supg, #,) . Moreover lim_, . x(s) = 0 and lims_’suprz " K(s)
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= +o0. Hence there exists s, € (0, supg #,) such that x(s;) = 6/2. Now
we have

/Q,l uf(x)dx = /Quf(x) dx —/ ! u?(x) dx

) S
=1—/l2t|Qtn(Q\Qsl)|dt21—/12t|Q,Idt=l—Isl,
0 0

and also s s
1 ! 2
Is, =/0 2t|Qt|dtZ/o 2t|Qsl|dt=s1|§2sl}.

From Lemma 3.1 it follows that
2

2 K(s,) 2/ 2 6 ) _
Is.ZsllQSIIZ(ﬂTSJ) o, uj(x)dx > 5 d (1-1),
so that
2
2ot
1T 267 + 46 + 4
Since x(s,;) = 6/2, by (3.9) we have

(3.10)

' 2
2 2 0°c
(3.11) /Q(xl "C!) ul(x)dx > C3Isl > m.

Hence using Lemma 3.6 we obtain

!

A(Q) < (w/n(x1 ~ a)'ul(x) dX)_l <G o

where C,',, ¢ depends only on n and 6.
Finally, since diamQ =1, |Q| < w, = volume of the unit ball in R”

and therefore |Q|™¥/" > w_*/" . Thus, taking C, o= wi/"C;ya , we have

(3.12) 1,(Q) < C, o

Remark. For n = 2 one can also prove the proposition as follows:
By dilating Q one can show that there exist rectangles R,, R, such
that R—2 C Q C R, R, has side lengths 1 and N, and R, has side
lengths 1 —¢cN =23 and 2¢N'? for some constant ¢ > 0, where N is
comparable to the ratio of the diameter to the inradius of Q. Then the
proposition follows by the monotonicity principle of the eigenvalues since
A,(R,)/A\(R,) is arbitrarily close to 1 if N is large enough [9].
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Lemma 3.4. If Q is a bounded convex domain, and u, >0 is a first
Dirichlet eigenfunction of Q, then

3.13 Vu, | <+/A,(Q)s .
(3.13) | ll_\/,()gpu‘

Proof. If Q is smooth and strictly convex, then by the same method
as in [12], IVuII2 + }.,(Q)uf assumes its maximum at an interior point
where |Vu,| vanishes. Hence |Vu1|2 +/11(Q)uf <A supﬂuf and (3.13)
follows. The general case follows by approximation.

Lemma 3.5. Let C > 0. Then there exist c, >0 and 8, (0< B, <1)

such that if Q CR" is a bounded convex domain with 1,(Q) < C|Q|™",
and u, > 0 is the first Dirichlet eigenfunction of Q normalized so that
Jo uf(x) dx =1, then for any 6 >0

(3.14) {x € Q:u (x)> 6} > (1-C,6")Q,

where C, and B, depend only on the dimension n and on C.

Proof. We may assume that |Q| = 1. Let p € Q be the point with
u,(p) = supqu,. Then 1 = [, uf(x)dx < uf(p)|$2| = uf(p), and there-
fore u,(p) > 1. Since 4,(Q) < C by the assumption, Lemma 3.4 implies
|Vu,| < /4,(Q)supqu, < C,, where C, depends only on the dimension
n and on C, and we have used the fact that Mulllio < Cn,l](Q)"/2 , C,
depending only on n. Since u; =0 on 0Q, we have dist(p, 9Q) > l/C:,
and moreover there exists g > 0 depending only on n and C such that
the ball B(p; o) is contained in Q and

(3.15) u,(x) > 5 forevery x € B(p; 0).

Since Q is convex, |Q =1, and B(p; g) C Q, there exists a constant C,
depending only on » and ¢ suchthat H, ,(0Q) < C, and diamQ < C,
where H, , denotes (n — 1)-dimensional Hausdorff measure. q.e.d.

We need the following lemma:

Lemma 3.6. Let o, > 0 be given. Then there exists a homogeneous
harmonic polynomial P on R" of degree N depending only on n and
g, , whose restriction on S™~' has a nodal domain T of diameter less than
g .

l Proof. We can construct P from a Legendre function having a suffi-
ciently small first zero.

Now fix a polynomial P from Lemma 3.6 corresponding to g, = C| 'g.
Then the degree N of P depends only on n and C. Let I' be a nodal
domain of P|-: of diameter less than ¢, . Then we may assume P >0
in the interior of I". Fix a point £, € " and let ¢, = P({,) > 0.
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Let y be a point in Q. We choose the coordinate axes so that we
have: 0 € 6Q, the points p, y, and 0 are on the same line, y is between
p and 0, and p = |p|¢,. Since I' has diameter less than g, = C, o
and |p| < diamQ < C,, the set |p|T" has diameter less than ¢ . Since it
contains p, we have |p|I" C B(p; o) ; hence, by (3.15),

(3.16) u,(|pl€) > 3 whenever £ €T

Define
V={x:0<|x|<|p|, x/lx| €T},

and w =u,—[P on V, where [ = (25up1.|P|)_l . Then by (3.16) w >0
on [p|I',and w >0 on 4V since P is zero on the boundary of I". Also
Aw = Au; = —A(Q)u, < 0 in V since P is harmonic. Hence, by the
maximum principle, w > 0 in V. In particular, u (y) > [P(|y|§,) =
¢l |y|N since p, y,and O are on the same line. Since Q is convex and
B(p; o) C Q, we have

dist(y, 0Q) > ﬁ > a,lyl.
If welet ¢, = colalN , then
(3.17) u,(v) > ¢, [dist(y, 0Q)]" forally € Q,

where ¢, > 0 and N depend only on n and C. Hence (3.14) follows
from (3.17) with 8, = N™' and C, = ¢["/"C,, since H,_,(8Q) < C,
and (3.17) implies

{x € Q:u(x) <3} C {x €Q:dist(x, 0Q) < (¢ '8}

Proof of Theorem 3.1. Let i, = 1,(Q), and let a = j,,_, , and
B =], 21 be the first positive zeros of the Bessel functions J, 12-1 and
/2 » Tespectively. Let Q" be the ball centered at O such that |Q"| = |Q],

n
and let u] defined on Q" be the spherical decreasing symmetrization of
u,, where u; >0 is the first Dirichlet eigenfunction of Q normalized so
that fuuj(x)dx = 1. Also let S, = {x € R" : [x| < ™'} be the ball
with 4,(S|) = 4,(Q), where y = /2 /a, and let z be the first Dirichlet
eigenfunction of S, normalized so that fs, zz(x) dx=1.

Assume now that Q satisfies the hypothesis of Theorem 3.1. We may
assume without loss of the generality that |Q| = 1. Since
() B

2,(L) Zt"—8=?

-&,
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Proposition 3.1 implies that LEQ)<C,, where C, depends only on # if
¢ is sufficiently small. Hence there exists a constant C; depending only
on n such that

(3.18) y<C, and |Vz|<C..

By Faber-Krahn’s inequality we have S, C Q". Let

Jupd(BX)] Ty 1y (X)), 0<x<l,
_J I n/2-1
(3.19) w(x) = { w(l)=lim___w(x), x21,
and
. ’ w(x)2
(3.20) B(x)=w (x)+(n-1) .

In [1] it is proved that w is increasing, B is decreasing, and moreover
lim__, w"(x) < 0. Hence there exists C depending only on n such
that

(3.21) (1 -x)* < Cw(l) —w(x)) for0<x< 1.

By choosing the origin appropriately the following inequalities are proved
in [1]:

2 (w_) B 1) < Jo BOyr)ui(x) dx _ Js, B(ynz*(x)dx
4,(Q) Jownul(xydx ~ fg w(yr)ul(x)* dx
(ﬂ -a )fs w(yr)’z (x)dx < B -atm e - 1)
jg.w(yr) (x) dx "

Thus using the assumption 4,(Q)/4,(Q) > 7, — ¢ we obtain

(3.22) 0< /Q _w(yr)zu}(x)z dx — [S lw(yr)zz(x)z dx
< Cls/ w(yr)zz(x)zdx < Clw(l)ze,
Sl

where C, depends only on 7.
By Chiti’s comparison result ([3], [4]) there exists r, with 0 <r <1/y
such that

(3.23) { Wi <z(r) if0<r<r,

uy(r)>z(r) ifr,<r<i/y.
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Hence, if r* is the radius of Q*, then

/ w(yr)zu:(x)zdx—/ w(yr)’z(x)’ dx
o s,
= [ wln i’ - =) dx
0<ix[<r
w [ o) - 2 dx
<|xi{<t/y
2 * 2
+//y<'x|<r w(yr) u,(x)" dx

> wim)? [ () - 207 dx + w(1) / (%) dx

1

=) —won) [ i dx,

since [ 4] (x)*dx = fo ul(x) dx = fs %(x)dx =1, and w is increas-
ing. Also since u1 is decreasing, [ \s, ¥ (x) dx > u( l/y) |Q* \S,l. By
(3.21) and w(1l) > 0 we have w(l)2 - w(yrl)2 > (1l — yrl)z, where ¢
depends only on »n. Hence (3.22) implies

(3.24) (1= yr)'uy (1/7)1Q°\S,] < Ce,

where C depends only on n.

Moreover by (3.18), (3.23) and z(1/y) =0, we obtain u;(r,) = z(r,) =
z(r,) = z(1/y) £ C(1 - yr)), where C depends only on n. Thus from
(3.24) and the fact that u] is decreasing, it follows that

(3.25) uy(1/2)19°\S,| < Ce,

where C depends onlyon n. Let 6 = u?(l /7). Therefore the definition
of u; and Lemma 3.5 yield

1S, = [{x € Q:u,(x) > 8} > (1 - C,8™)|Q| = (1 - C,6")Q.
Since Q] = 1, we have |Q"\S,| < C,u}(1/7)" and, by (3.25),
(3.26) 2\, | < Ce,

where g/ = (487" +1)”', and C depends only on n.
But (3.26) implies 4,(Q) < (1+ C'¢")A,(Q"), where C’ depends only
on n. Hence Theorem 3.1 follows from Theorem 2.1 with a, = /5‘,', /2n.
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4. Theorem 4.1. Assume Q C R’ is a bounded domain such that
4,(Q) < (1 +¢&)A (D), where & > 0 is sufficiently small, and D is a disc
with |D| = |Q|. Then there exists a disc D, such that

(4.1) QnD,| > (1-ce’Qup,|,

where C is a universal constant. Moreover, if Q is simply connected, we
may also assume that D, C Q.

Proof. Without loss of generality we may assume that Q has smooth
boundary and |Q| = 1. Let u;, > 0 be the first Dirichlet eigenfunction

of Q normalized so that [, uf(x) dx=1. Asin §2 for § > 0 we define
Q; = {x € Q:u/(x)>0d}. Then as in the proof of Theorem 2.1 there

existsa 7 suchthat 0 < 7 <¢'/? , Q_ is a disjoint union of a finite number
of smooth connected domains U i (0<j<m),and '

(4.2) L(OQ) <4nQ |+ C,e'?,
[4 7 1

where L(8Q, ) denotes the length of §Q_ and C, is a constant. Moreover
by (2.6) (whose proof does not use convexity) we obtain

(4.3) A,(Q,) < (1-2¢")4,(Q).

Since 4,(Q,) = min0<j<mil(Uj) , assuming 4,(Q ) = 4,(U,) we have as
in the proof of Lemma 2.1 that

(4.4) [Upl = (1 —4e7)|Q,

if ¢ > 0 is sufficiently small. (4.2) and the isoperimetric inequality imply,
respectively,

1/2

2
m m
IZ L(BUJ.)} <4nd |U|+Ce"”
Jj=0

j=0
and 4n|Uj| < L(éiUJ.)2 for 1 < j < m. Hence

(4.5) LOU,) < 4n|Uy| + C,e'".
Let U be the convex hull of U, and let V' be the union of U, and all

the bounded components of Rz\Uo. Then U, €V C U, V is simply
connected, and also L(8U) < L(8V) < L(8U,), since U, is a connected

domain in R> with smooth boundary. Let a = |[U\U,|. Then by the
isoperimetric inequality and (4.5) we have

LOU,) < 4n|Uy| + C,&'"* = 4n|U| - dma + C '
< LQU) - 4na + Cie'* < L(OU,)’ — 4na + C,e'>.
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Hence
(4.6) [U\U,| < Cye'?
for some constant C,. If x € 3V and dist(x, dU) =d, then L(OV) -
L(8U) > 2d . Since
(4n|U,))"* < (dn|U)'* < L(8U) < L(@V) - 2d < L(dU},) - 2d,

and (4.6) implies |V| < |Uy|+C,e"/* < |Q|+ C,e'? = 1+C,e'/?, we have,
by (4.5),
(4.7) sup dist(x, 8U) < Ce'/?

x€V
From L(3U) < L(3U,), |U| > |U,| and (4.5) it follows that L(aU)2 <
4n|U| + C,s'/ 2. Since U is convex, the Bonnesen-style isoperimetric
inequality (2.12) implies as in the proof of Theorem 2.1 that there ex-
ists a disc D(x;; p) centered at x, € V' and of radius p such that
D(x,; p) €U and
1/4
Mo,
Let D, = D(x,; p — C4¢'/*). Then, by (4 7), and by (4.6) and (4.8), we
have, respectlvely, D, CV and

(4.8) [D(xq; P) 2 (1 - Cpe

(4.9) |U,nD,| > (1-Ce'™U,uD,],

if ¢ > 0 is sufficiently small.
Thus using (4.4) and (4.9) we obtain (4.1) if ¢ > 0 is sufficiently small.
Moreover, if Q is simply connected, then ¥ C Q and hence D, C Q.
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