THE STABILITY OF SOME EIGENVALUE ESTIMATES

ANTONIOS D. MELAS

1. The Faber-Krahn inequality ([7], [8], [13]) states that among all bounded domains $\Omega \subseteq \mathbb{R}^{n}$ with the same volume the ball has the smallest first Dirichlet eigenvalue.

Also recently it has been proved [1] that the ratio $\lambda_{2}(\Omega) / \lambda_{1}(\Omega)$ of the first two Dirichlet eigenvalues of a normal bounded domain $\Omega \subseteq \mathbb{R}^{n}$ takes its maximum value if and only if Ω is a ball.

In this work we examine how stable these inequalities are. That means whether a bounded domain $\Omega \subseteq \mathbb{R}^{n}$ has to be near the ball in the sense of Hausdorff distance provided that one of the two quantities $\lambda_{1}(\Omega)|\Omega|^{-2 / n}$ and $\lambda_{2}(\Omega) / \lambda_{1}(\Omega)$ is sufficiently near to the corresponding quantity for the ball, where $|\Omega|$ denotes the volume of Ω. We prove that this is true under the additional assumption that Ω is convex.

We prove the stability for the Faber-Krahn inequality for convex domains in $\S 2$, and for the inequality for the ratio of the first two Dirichlet eigenvalues for convex domains in §3. Actually an estimate for the Hausdorff distance of the domain and a ball can be derived in terms of how near one of the above quantities is to the corresponding quantity for the ball. In $\S 4$ we give an extension of the stability of the Faber-Krahn inequality for arbitrary bounded domains in \mathbb{R}^{2}.

Notation. For a bounded (normal) domain $\Omega \subseteq \mathbb{R}^{n}, \lambda_{1}(\Omega)$ and $\lambda_{2}(\Omega)$ denote the first two Dirichlet eigenvalues of Ω. For a measurable set $E \subseteq \mathbb{R}^{n},|E|$ denotes its n-dimensional Lebesgue measure.
2. Theorem 2.1. Let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded convex domain such that

$$
\begin{equation*}
\lambda_{1}(\Omega) \leq(1+\varepsilon) \lambda_{1}(D), \tag{2.1}
\end{equation*}
$$

where $\varepsilon>0$ is sufficiently small, and D is a ball with $|D|=|\Omega|$. Then there exist two balls $B_{1}, B_{2} \subseteq \mathbb{R}^{n}$ such that $B_{1} \subseteq \Omega \subseteq B_{2}$ and

$$
\begin{equation*}
\left|B_{1}\right| \geq\left(1-C_{n} \varepsilon^{1 / 2 n}\right)|\Omega|, \quad|\Omega| \geq\left(1-C_{n} \varepsilon^{1 / 2 n}\right)\left|B_{2}\right| \tag{2.2}
\end{equation*}
$$

where $C_{n}>0$ is a constant depending only on the dimension n.
Received June 25, 1991.

Proof. Assume $\Omega \subseteq \mathbb{R}^{n}$ satisfies the hypothesis of Theorem 2.1. Let $u_{1}>0$ be the first Dirichlet eigenfunction of Ω normalized so that $\int_{\Omega} u_{1}^{2}(x) d x=1$. For $\delta>0$ we define

$$
\begin{equation*}
\Omega_{\delta}=\left\{x \in \Omega: u_{1}(x)>\delta\right\} \tag{2.3}
\end{equation*}
$$

Since Ω is convex by [2], each Ω_{δ} is convex. We need:
Lemma 2.1. For any δ such that $0<\delta<\frac{1}{2}|\Omega|^{-1 / 2}$ we have

$$
\begin{equation*}
\left|\Omega_{\delta}\right| \geq\left[1-2 n \max \left(\delta|\Omega|^{1 / 2}, \varepsilon\right)\right]|\Omega| . \tag{2.4}
\end{equation*}
$$

Proof of Lemma 2.1. Since the function $u_{1}-\delta$ is C^{2} and vanishes on $\partial \Omega_{\delta}$ by Rayleigh's theorem,

$$
\begin{equation*}
\lambda_{1}\left(\Omega_{6}\right) \leq \frac{\int_{\Omega_{\delta}}\left|\nabla\left(u_{1}(x)-\delta\right)\right|^{2} d x}{\int_{\Omega_{\delta}}\left(u_{1}(x)-\delta\right)^{2} d x} \tag{2.5}
\end{equation*}
$$

But

$$
\begin{aligned}
\int_{\Omega_{\delta}} \mid \nabla\left(u_{1}(x)-\right. & \delta)\left.\right|^{2} d x=-\int_{\Omega_{\delta}}\left(u_{1}(x)-\delta\right) \Delta u_{1}(x) d x \\
& =\lambda_{1}(\Omega) \int_{\Omega_{\delta}}\left(u_{1}(x)-\delta\right) u_{1}(x) d x \\
& \leq \lambda_{1}(\Omega)\left(\int_{\Omega_{\delta}}\left(u_{1}(x)-\delta\right)^{2} d x\right)^{1 / 2}\left(\int_{\Omega_{\delta}} u_{1}^{2}(x) d x\right)^{1 / 2} \\
& \leq \lambda_{1}(\Omega)\left(\int_{\Omega_{\delta}}\left(u_{1}(x)-\delta\right)^{2} d x\right)^{1 / 2} \quad \text { since } \int_{\Omega} u_{1}^{2}(x) d x=1
\end{aligned}
$$

Since $u_{1} \leq \delta$ in $\Omega \backslash \Omega_{\delta}$ and $\delta|\Omega|^{1 / 2}<\frac{1}{2}$, by Minkowski's inequality we obtain

$$
\begin{aligned}
\left(\int_{\Omega_{\delta}}\left(u_{1}(x)-\delta\right)^{2} d x\right)^{1 / 2} & \geq\left(\int_{\Omega_{\delta}} u_{1}^{2}(x) d x\right)^{1 / 2}-\left(\int_{\Omega_{\delta}} \delta^{2} d x\right)^{1 / 2} \\
& \geq\left(1-\int_{\Omega \backslash \Omega_{\delta}} \delta^{2} d x\right)^{1 / 2}-\delta|\Omega| \geq 1-2 \delta|\Omega|^{1 / 2}
\end{aligned}
$$

Thus (2.5) gives

$$
\begin{equation*}
\lambda_{1}\left(\Omega_{\delta}\right) \leq\left(1-2 \delta|\Omega|^{1 / 2}\right)^{-1} \lambda_{1}(\Omega) \tag{2.6}
\end{equation*}
$$

If D_{δ} is a ball with $\left|D_{\delta}\right|=\left|\Omega_{\delta}\right|$, then by Faber-Krahn's inequality ([7], [8], [13]) (2.1) and (2.6) we have

$$
\begin{equation*}
\lambda_{1}\left(D_{\delta}\right) \leq \lambda_{1}\left(\Omega_{\delta}\right) \leq\left(1-2 \delta|\Omega|^{1 / 2}\right)^{-1}(1+\varepsilon) \lambda_{1}(D) \tag{2.7}
\end{equation*}
$$

Hence

$$
\begin{aligned}
\frac{\left|\Omega_{\delta}\right|}{|\Omega|} & =\left[\frac{\lambda_{1}(D)}{\lambda_{1}\left(D_{\delta}\right)}\right]^{n / 2} \geq\left(\frac{1-2 \delta|\Omega|^{1 / 2}}{1+\varepsilon}\right)^{n / 2} \\
& \geq\left[1-2 n \max \left(\delta|\Omega|^{1 / 2}, \varepsilon\right)\right] \text { assuming } 0<\varepsilon<1 \text {. q.e.d. }
\end{aligned}
$$

We may without loss of the generality assume that $|\Omega|=1$. Let u_{1}^{*} defined on D be the decreasing spherical symmetrization of u_{1}. Let $\Gamma(t)=\left\{x \in \Omega: u_{1}(x)=t\right\}, \Gamma^{*}(t)=\left\{x \in D: u_{1}^{*}(x)=t\right\}, T=\sup _{\Omega} u_{1}$, and $\psi(t)=\int_{\Gamma(t)} \frac{1}{\nabla u_{1}} d H_{n-1}$ for $0<t<T$, where H_{n-1} denotes $(n-1)$ dimensional Hausdorff measure. Then

$$
H_{n-1}(\Gamma(t))^{2} \leq \psi(t) \int_{\Gamma(t)}\left|\nabla u_{1}\right| d H_{n-1}
$$

and, by the isoperimetric inequality, $H_{n-1}\left(\Gamma^{*}(t)\right) \leq H_{n-1}(\Gamma(t))$. Thus as in the proof of Faber-Krahn's inequality we have

$$
\begin{aligned}
\lambda_{1}(\Omega) & =\int_{\Omega}\left|\nabla u_{1}(x)\right|^{2} d x=\int_{0}^{T} \int_{\Gamma(t)}\left|\nabla u_{1}\right| d H_{n-1} d t \\
& \geq \int_{0}^{T} H_{n-1}(\Gamma(t))^{2} \frac{1}{\psi(t)} d t \geq \int_{0}^{T} H_{n-1}\left(\Gamma^{*}(t)\right)^{2} \frac{1}{\psi(t)} d t \\
& =\int_{D}\left|\nabla u_{1}^{*}(x)\right|^{2} d x=\lambda_{1}(D) .
\end{aligned}
$$

Since $\lambda_{1}(\Omega) \leq(1+\varepsilon) \lambda_{1}(D)$,

$$
\begin{equation*}
\int_{0}^{T}\left[H_{n-1}(\Gamma(t))^{2}-H_{n-1}\left(\Gamma^{*}(t)\right)^{2}\right] \frac{1}{\psi(t)} d t \leq \lambda_{1}(D) \varepsilon \tag{2.8}
\end{equation*}
$$

Assuming $\varepsilon<1 / 4$ we may take $\delta=\varepsilon^{1 / 2}$ in Lemma 2.1 and obtain

$$
\begin{equation*}
\left|\Omega \backslash \Omega_{\delta}\right| \leq 2 n \varepsilon^{1 / 2}|\Omega|=2 n \varepsilon^{1 / 2} \tag{2.9}
\end{equation*}
$$

Thus by Cauchy-Schwarz's inequality we have

$$
\begin{aligned}
\varepsilon & =\dot{\delta}^{2}=\left(\int_{0}^{\delta} d t\right)^{2} \leq\left(\int_{0}^{\delta} \psi(t)^{-1} d t\right)\left(\int_{0}^{\delta} \psi(t) d t\right) \\
& =\left(\int_{0}^{\delta} \psi(t)^{-1} d t\right)\left|\Omega \backslash \Omega_{\delta}\right| \leq 2 \eta \varepsilon^{1 / 2} \int_{0}^{\delta} \psi(t)^{-1} d t
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\int_{0}^{\delta} \frac{1}{\psi(t)} d t \geq \frac{1}{2 n} \varepsilon^{1 / 2} \tag{2.10}
\end{equation*}
$$

From (2.8) and (2.9) it follows that

$$
\begin{aligned}
& \inf _{0 \leq t \leq \delta}\left[H_{n-1}(\Gamma(t))^{2}-H_{n-1}\left(\Gamma^{*}(t)\right)^{2}\right] \\
& \quad \leq 2 n \varepsilon^{-1 / 2} \int_{0}^{\delta}\left[H_{n-1}(\Gamma(t))^{2}-H_{n-1}\left(\Gamma^{*}(t)\right)^{2}\right] \frac{1}{\psi(t)} d t \\
& \quad \leq 2 n \lambda_{1}(D) \varepsilon^{1 / 2}=C^{\prime} \varepsilon^{1 / 2}
\end{aligned}
$$

where C^{\prime} depends only on n. Moreover $\Gamma(t)$ is the boundary of Ω_{t}, and $\Gamma^{*}(t)$ is the boundary of a ball with volume $\left|\Omega_{t}\right|$. Hence there exists a τ such that $0 \leq \tau \leq \delta$. If w_{n} is the volume of the unit ball in \mathbb{R}^{n}, then

$$
\begin{equation*}
H_{n-1}\left(\partial \Omega_{\tau}\right) \leq n w_{n}^{1 / n}\left|\Omega_{\tau}\right|^{1-1 / n}+C \varepsilon^{1 / 2}, \tag{2.11}
\end{equation*}
$$

where ε is sufficiently smail, and C depends only on n, since for ε small enough Lemma 2.1 implies that $\left|\Omega_{\tau}\right| \geq 1 / 2$. Let r be the radius of a disc with volume equal to $\left|\Omega_{\tau}\right|$, let ρ be the in radius of Ω_{τ}, and let B_{1} be a ball of radius ρ with $B_{1} \subseteq \Omega_{\tau}$.

Since Ω_{τ} is convex, we have the following isoperimetric inequality [$D, H, 0$] of Bonnesen style:

$$
\begin{equation*}
\left(\frac{H_{n-1}\left(\partial \Omega_{\tau}\right)}{H_{n-1}\left(\partial B_{1}\right)}\right)^{n / n-1}-\frac{\left|\Omega_{\tau}\right|}{\left|B_{1}\right|} \geq\left[\left(\frac{H_{n-1}\left(\partial \Omega_{\tau}\right)}{H_{n-1}\left(\partial B_{1}\right)}\right)^{1 / n-1}-1\right]^{n} . \tag{2.12}
\end{equation*}
$$

Using (2.11) and the isoperimetric inequality $H_{n-1}\left(\partial \Omega_{\tau}\right) \geq n w_{n}^{1 / n}\left|\Omega_{\tau}\right|^{1-1 / n}$. we obtain

$$
\begin{equation*}
(r-\rho)^{n} \leq\left(r^{n-1}+C \varepsilon^{1 / 2}\right)^{n / n-1}-r^{n} \tag{2.13}
\end{equation*}
$$

Since $1 / 2 \leq\left|\Omega_{\tau}\right| \leq 1$ for sufficiently small ε, (2.13) implies

$$
\begin{equation*}
(r-\rho) \leq C \varepsilon^{1 / 2 n} \tag{2.14}
\end{equation*}
$$

where C depends only on n. Hence

$$
\left|B_{1}\right| \geq\left(1-C^{\prime} \varepsilon^{1 / 2 n}\right)\left|\Omega_{\tau}\right| \geq\left(1-C^{\prime} \varepsilon^{1 / 2 n}\right)\left(1-2 n \varepsilon^{1 / 2}\right)|\Omega|
$$

where $\tau \leq \delta=\varepsilon^{1 / 2}$, and C^{\prime} denotes only on n. Also $B_{1} \subseteq \Omega_{\tau} \subseteq \Omega$. Since Ω is convex, the existence of B_{2} follows from that of B_{1}.
3. Let τ_{n} denote the ratio $\lambda_{2}(D) / \lambda_{1}(D)$, where D is an n-dimensional ball.

Theorem 3.1. Let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded convex domain such that

$$
\begin{equation*}
\frac{\lambda_{2}(\Omega)}{\lambda_{1}(\Omega)} \geq \tau_{n}-\varepsilon \tag{3.1}
\end{equation*}
$$

where $\varepsilon>0$ is sufficiently small. Then there exist two balls $B_{1}, B_{2} \subseteq \mathbb{R}^{n}$ such that $B_{1} \subseteq \Omega \subseteq B_{2}$ and

$$
\begin{equation*}
\left|B_{1}\right| \geq\left(1-C_{n} \varepsilon^{a_{n}}\right)|\Omega|, \quad|\Omega| \geq\left(1-C_{n} \varepsilon^{a_{n}}\right)\left|B_{2}\right| \tag{3.2}
\end{equation*}
$$

where $C_{n}>0$ and $0<a_{n}<1$ are constants depending only on n.
For the proof we need the following:
Proposition 3.1. Let $\theta>0$ be given. Then there exists a constant $C_{n, \theta}>0$ depending only on n and θ such that if $\Omega \subseteq \mathbb{R}^{n}$ is a bounded convex domain such that $\lambda_{2}(\Omega) \geq(1+\theta) \lambda_{1}(\Omega)$, then $\lambda_{1}(\Omega) \leq C_{n, \theta}|\Omega|^{-2 / n}$.

Before we can give the proof of the proposition we need the following lemmas:

Lemma 3.1. Assume Ω is a domain, and $u_{1}>0$ is the first Dirichlet eigenfunction of Ω normalized so that $\int_{\Omega} u_{1}^{2}(x) d x=1$. For $0<s<$ $\sup _{\Omega} u_{1}$ we define

$$
\Omega_{s}=\left\{x \in \Omega: u_{1}(x)>s\right\} \quad \text { and } \quad \kappa(s)=\frac{\lambda_{1}\left(\Omega_{s}\right)-\lambda_{1}(\Omega)}{\lambda_{1}(\Omega)} .
$$

Then for all $0<s<\sup _{\Omega} u_{1}$ we have

$$
\begin{equation*}
s^{2}\left|\Omega_{s}\right| \geq\left(\frac{\kappa(s)}{1+\kappa(s)}\right)^{2} \int_{\Omega_{s}} u_{1}^{2}(x) d x \tag{3.3}
\end{equation*}
$$

Proof. We may assume that Ω_{s} is a normal domain. Since the function $u_{1}-s$ vanishes on $\partial \Omega_{s}$,

$$
\begin{aligned}
\lambda_{1}\left(\Omega_{s}\right) & \leq \frac{\int_{\Omega_{s}}\left|\nabla\left(u_{1}(x)-s\right)\right|^{2} d x}{\int_{\Omega_{s}}\left(u_{1}(x)-s\right)^{2} d x}=\lambda_{1}(\Omega) \frac{\int_{\Omega_{s}} u_{1}(x)\left(u_{1}(x)-s\right) d x}{\int_{\Omega_{s}}\left(u_{1}(x)-s\right)^{2} d x} \\
& \leq \lambda_{1}(\Omega) \frac{\left(\int_{\Omega_{s}} u_{1}^{2}(x) d x\right)^{1 / 2}}{\left(\int_{\Omega_{s}}\left(u_{1}(x)-s\right)^{2} d x\right)^{1 / 2}}
\end{aligned}
$$

Since $\lambda_{1}\left(\Omega_{s}\right)=(1+\kappa(s)) \lambda_{1}(\Omega)$, from the Minkowski's inequality

$$
\left(\int_{\Omega_{s}}\left(u_{1}(x)-s\right)^{2} d x\right)^{1 / 2} \geq\left(\int_{\Omega_{s}} u_{1}^{2}(x) d x\right)^{1 / 2}-s\left|\Omega_{s}\right|^{1 / 2}
$$

inequality (3.3) follows.
Lemma 3.2. Let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded convex domain with $0 \in \bar{\Omega} \subseteq$ Σ_{d}, where $\Sigma_{d}=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}: 0 \leq x_{1} \leq d\right\}$. For $0<\eta<d / 6$ we define $\Omega^{\eta}=\Omega \cap$ int $\Sigma_{d-\eta}$. Then

$$
\begin{equation*}
\lambda_{1}\left(\Omega^{\eta}\right) \leq\left(1+\frac{3 \eta}{d}\right) \lambda_{1}(\Omega) \tag{3.4}
\end{equation*}
$$

Proof. Since $0 \in \bar{\Omega} \subseteq \Sigma_{d}$ and Ω is convex, we conclude that

$$
\left(1-\frac{\eta}{d}\right) \Omega=\left(1-\frac{\eta}{d}\right) \Omega+\frac{\eta}{d} 0 \subseteq \Omega \cap \operatorname{int} \Sigma_{d-\eta}=\Omega^{\eta}
$$

so that

$$
\lambda_{1}\left(\Omega^{\eta}\right) \leq \lambda_{1}\left(\left(1-\frac{\eta}{d}\right) \Omega\right)=\left(1-\frac{\eta}{d}\right)^{-2} \lambda_{1}(\Omega) \leq\left(1+\frac{3 \eta}{d}\right) \lambda_{1}(\Omega)
$$

be the monotonicity of the first eigenvalue and the inequality $\eta / d<1 / 6$.
Lemma 3.3. If $\Omega \subseteq \mathbb{R}^{n}$ is a bounded normal domain, and Ω_{1}, Ω_{2} are disjoint normal subdomains of Ω, then

$$
\begin{equation*}
\lambda_{2}(\Omega) \leq \max \left\{\lambda_{1}\left(\Omega_{1}\right), \lambda_{1}\left(\Omega_{2}\right)\right\} \tag{3.5}
\end{equation*}
$$

Proof. This follows by a standard variational argument as in the proof of Courant's nodal domain theorem.

Proof of Proposition 3.1. Without loss of the generality we may assume that $\operatorname{diam} \Omega=1, \Omega \subseteq \Sigma_{1}=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}: 0 \leq x_{1} \leq 1\right\}$, and 0 , $(1,0, \cdots, 0) \in \bar{\Omega}$. Let $u_{1}>0$ be the first Dirichlet eigenfunction of Ω normalized so that $\int_{\Omega} u_{1}^{2}(x) d x=1$. Let $\alpha=\int_{\Omega} x_{1} u_{1}^{2}(x) d x>0$. Since $\int_{\Omega}\left(x_{1}-\alpha\right) u_{1}^{2}(x) d x=0$ by the Rayleigh-Ritz inequality for λ_{2}, we have

$$
\lambda_{2}(\Omega)-\lambda_{1}(\Omega) \leq \frac{\int_{\Omega}\left|\nabla\left(x_{1}-\alpha\right)\right|^{2} u_{1}^{2}(x) d x}{\int_{\Omega}\left(x_{1}-a\right)^{2} u_{1}^{2}(x) d x}=\frac{1}{\int_{\Omega}\left(x_{1}-\alpha\right)^{2} u_{1}^{2}(x) d x}
$$

Using the assumption $\lambda_{2}(\Omega) \geq(1+\theta) \lambda_{1}(\Omega)$ therefore yields

$$
\begin{equation*}
\lambda_{1}(\Omega) \leq\left(\theta \int_{\Omega}\left(x_{1}-\alpha\right)^{2} u_{1}^{2}(x) d x\right)^{-1} \tag{3.6}
\end{equation*}
$$

Since $0<\alpha<\int_{\Omega} u_{1}^{2}(x) d x=1$ and $0,(1,0, \cdots, 0) \in \bar{\Omega}$, without loss of the generality we may assume that $\alpha \geq 1 / 2$. For $0<s<\sup _{\Omega} u_{1}$ define $\Omega_{s}=\left\{x \in \Omega: u_{1}(x)>s\right\}$ and

$$
\eta(s)=\inf \left\{\eta>0: \Omega_{s} \subseteq\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}: \alpha-\eta \leq x_{1} \leq \alpha+\eta\right\}\right\}
$$

By Lemma 3.2 we obtain, for $d=\alpha+\eta(s)$ and $\eta=2 \eta(s)$,

$$
\lambda_{1}\left(\Omega^{\alpha-\eta(s)}\right) \leq(1+12 \eta(s)) \lambda_{1}\left(\Omega^{\alpha+\eta(s)}\right) \leq(1+12 \eta(s)) \lambda_{1}\left(\Omega_{s}\right)
$$

as long as $0<\eta(s)<1 / 24$, since $\Omega_{s} \subseteq \Omega^{\alpha+\eta(s)}$ by the definition of $\eta(s)$. But $\Omega^{\alpha-\eta(s)}$ and Ω_{s} are disjoint normal subdomains of Ω; hence by Lemma 3.3 we have

$$
\lambda_{2}(\Omega) \leq \max \left\{\lambda_{1}\left(\Omega_{s}\right), \lambda_{1}\left(\Omega^{\alpha-\eta(s)}\right)\right\} \leq(1+12 \eta(s)) \lambda_{1}\left(\Omega_{s}\right)
$$

if $\eta(s)<1 / 24$. Since $(1+\theta) \lambda_{1}(\Omega) \leq \lambda_{2}(\Omega)$, using the notation of Lemma 3.1 gives that

$$
1+\theta \leq(1+12 \eta(s))(1+\kappa(s)) \quad \text { if } 0<\eta(s)<\frac{1}{24} .
$$

Thus there exists $c_{1}>0$ depending only on θ such that

$$
\begin{equation*}
\eta(s) \geq c_{1} \quad \text { whenever } \kappa(s) \leq \frac{1}{2} \theta \tag{3.7}
\end{equation*}
$$

which implies, by the definition of $\eta(s)$,

$$
\bar{\Omega}_{s} \cap\left\{\left(x_{1}, \cdots, x_{n}\right) \in \Sigma_{1}:\left|x_{1}-\alpha\right| \geq c_{1}\right\} \neq \varnothing, \quad \text { whenever } \kappa(s) \leq \frac{1}{2} \theta
$$

Since Ω is convex by [2], we conclude that each Ω_{s} is convex. Hence there exists $c_{2}>0$ depending only on n (in fact we may take $c_{2}=4^{-n}$) such that if

$$
\Omega_{s}^{\prime}=\left\{x \in \Omega_{s}:\left|x_{j}-\alpha\right|>\frac{1}{2} c_{1}\right\}
$$

then

$$
\left|\Omega_{s}^{\prime}\right| \geq c_{2}\left|\Omega_{s}\right| \quad \text { whenever } \kappa(s) \leq \frac{1}{2} \theta
$$

Now we have

$$
\begin{aligned}
\int_{\Omega}\left(x_{1}-\alpha\right)^{2} u_{1}^{2}(x) d x & \geq \frac{c_{1}^{2}}{4} \int_{\Omega \cap\left\{x \in \mathbb{R}^{n}:\left|x_{1}-\alpha\right|>c_{1} / 2\right\}} u_{1}^{2}(x) d x \\
& =\frac{c_{1}^{2}}{4} \int_{\Omega_{0}^{\prime}} u_{1}^{2}(x) d x-\frac{c_{1}^{2}}{4} \int_{0}^{\text {sup }_{\Omega_{0}^{\prime}} u_{1}} 2 t\left|\Omega_{t}^{\prime}\right| d t \\
& \geq \frac{c_{1}^{2}}{4} \int_{0}^{s} 2 t c_{2}\left|\Omega_{t}\right| d t=\frac{c_{1}^{2} c_{2}}{4} I_{s}
\end{aligned}
$$

whenever s is such that $0<s \leq \sup _{\Omega_{0}^{\prime}} u_{1}$, and $\kappa(s) \leq \theta / 2$, where we have defined

$$
\begin{equation*}
I_{s}=\int_{0}^{s} 2 t\left|\Omega_{t}\right| d t \tag{3.8}
\end{equation*}
$$

But $s>\sup _{\Omega_{0}^{\prime}} u_{1}$ implies that $\eta(s) \leq c_{1}$, so that $\kappa(s)>\frac{1}{2} \theta$ by (3.7). Hence we have

$$
\begin{equation*}
\int_{\Omega}\left(x_{1}-\alpha\right)^{2} u_{1}^{2}(x) d x \geq c_{3} I_{s} \quad \text { whenever } \kappa(s) \leq \frac{1}{2} \theta \tag{3.9}
\end{equation*}
$$

where $c_{3}>0$ depends only on θ on n.
Since $\Omega_{t} \leq \Omega_{t^{\prime}}$ for $t^{\prime}<t, \kappa(s)$ is an increasing function. Since λ_{1} is continuous under continuous deformations of the domain [5], $\kappa(s)$ is continuous on $\left(0, \sup _{\Omega} u_{1}\right)$. Moreover $\lim _{s \rightarrow 0^{+}} \kappa(s)=0$ and $\lim _{s \rightarrow \sup _{\Omega} u_{1}} \kappa(s)$
$=+\infty$. Hence there exists $s_{1} \in\left(0, \sup _{\Omega} u_{1}\right)$ such that $\kappa\left(s_{1}\right)=\theta / 2$. Now we have

$$
\begin{aligned}
\int_{\Omega_{s_{1}}} u_{1}^{2}(x) d x & =\int_{\Omega} u_{1}^{2}(x) d x-\int_{\Omega \backslash \Omega_{s_{1}}} u_{1}^{2}(x) d x \\
& =1-\int_{0}^{s_{1}} 2 t\left|\Omega_{t} \cap\left(\Omega \backslash \Omega_{s_{1}}\right)\right| d t \geq 1-\int_{0}^{s_{1}} 2 t\left|\Omega_{t}\right| d t=1-I_{s_{1}}
\end{aligned}
$$

and also

$$
I_{s_{1}}=\int_{0}^{s_{1}} 2 t\left|\Omega_{t}\right| d t \geq \int_{0}^{s_{1}} 2 t\left|\Omega_{s_{1}}\right| d t=s_{1}^{2}\left|\Omega_{s_{1}}\right|
$$

From Lemma 3.1 it follows that

$$
I_{s_{1}} \geq s_{1}^{2}\left|\Omega_{s_{1}}\right| \geq\left(\frac{\kappa\left(s_{1}\right)}{1+\kappa\left(s_{1}\right)}\right)^{2} \int_{\Omega_{s_{1}}} u_{1}^{2}(x) d x \geq\left(\frac{\theta}{2+\theta}\right)^{2}\left(1-I_{s_{1}}\right)
$$

so that

$$
\begin{equation*}
I_{s_{1}} \geq \frac{\theta^{2}}{2 \theta^{2}+4 \theta+4} \tag{3.10}
\end{equation*}
$$

Since $\kappa\left(s_{1}\right)=\theta / 2$, by (3.9) we have

$$
\begin{equation*}
\int_{\Omega}\left(x_{1}-\alpha\right)^{2} u_{1}^{2}(x) d x \geq c_{3} I_{s_{1}} \geq \frac{\theta^{2} c_{3}}{2 \theta^{2}+4 \theta+4} \tag{3.11}
\end{equation*}
$$

Hence using Lemma 3.6 we obtain

$$
\lambda_{1}(\Omega) \leq\left(\omega \int_{\Omega}\left(x_{1}-\alpha\right)^{2} u_{1}^{2}(x) d x\right)^{-1} \leq C_{n, \theta}^{\prime}
$$

where $C_{n, \theta}^{\prime}$ depends only on n and θ.
Finally, since $\operatorname{diam} \Omega=1,|\Omega| \leq w_{n}=$ volume of the unit ball in \mathbb{R}^{n} and therefore $|\Omega|^{-2 / n} \geq w_{n}^{-2 / n}$. Thus, taking $C_{n, \theta}=w_{n}^{2 / n} C_{n, \theta}^{\prime}$, we have

$$
\begin{equation*}
\lambda_{1}(\Omega) \leq C_{n, \theta}|\Omega|^{-2 / n} \tag{3.12}
\end{equation*}
$$

Remark. For $n=2$ one can also prove the proposition as follows: By dilating Ω one can show that there exist rectangles R_{1}, R_{2} such that $R-2 \subseteq \Omega \subseteq R_{1}, R_{1}$ has side lengths 1 and N, and R_{2} has side lengths $1-c N^{-2 / 3}$ and $2 c N^{1 / 2}$ for some constant $c>0$, where N is comparable to the ratio of the diameter to the inradius of Ω. Then the proposition follows by the monotonicity principle of the eigenvalues since $\lambda_{2}\left(R_{2}\right) / \lambda_{1}\left(R_{1}\right)$ is arbitrarily close to 1 if N is large enough [9].

Lemma 3.4. If Ω is a bounded convex domain, and $u_{1}>0$ is a first Dirichlet eigenfunction of Ω, then

$$
\begin{equation*}
\left|\nabla u_{1}\right| \leq \sqrt{\lambda_{1}(\Omega)} \sup _{\Omega} u_{1} \tag{3.13}
\end{equation*}
$$

Proof. If Ω is smooth and strictly convex, then by the same method as in [12], $\left|\nabla u_{1}\right|^{2}+\lambda_{1}(\Omega) u_{1}^{2}$ assumes its maximum at an interior point where $\left|\nabla u_{1}\right|$ vanishes. Hence $\left|\nabla u_{1}\right|^{2}+\lambda_{1}(\Omega) u_{1}^{2} \leq \lambda_{1} \sup _{\Omega} u_{1}^{2}$ and (3.13) follows. The general case follows by approximation.

Lemma 3.5. Let $C>0$. Then there exist $c_{n}>0$ and $\beta_{n}\left(0<\beta_{n}<1\right)$ such that if $\Omega \subseteq \mathbb{R}^{n}$ is a bounded convex domain with $\lambda_{1}(\Omega) \leq C|\Omega|^{-2 / n}$, and $u_{1}>0$ is the first Dirichlet eigenfunction of Ω normalized so that $\int_{\Omega} u_{1}^{2}(x) d x=1$, then for any $\delta>0$

$$
\begin{equation*}
\left|\left\{x \in \Omega: u_{1}(x)>\delta\right\}\right| \geq\left(1-C_{n} \delta^{\beta_{n}}\right)|\Omega| \tag{3.14}
\end{equation*}
$$

where C_{n} and β_{n} depend only on the dimension n and on C.
Proof. We may assume that $|\Omega|=1$. Let $p \in \Omega$ be the point with $u_{1}(p)=\sup _{\Omega} u_{1}$. Then $1=\int_{\Omega} u_{1}^{2}(x) d x \leq u_{1}^{2}(p)|\Omega|=u_{1}^{2}(p)$, and therefore $u_{1}(p) \geq 1$. Since $\lambda_{1}(\Omega) \leq C$ by the assumption, Lemma 3.4 implies $\left|\nabla u_{1}\right| \leq \sqrt{\lambda_{1}(\Omega)} \sup _{\Omega} u_{1} \leq C_{n}^{\prime}$, where C_{n}^{\prime} depends only on the dimension n and on C, and we have used the fact that $\left\|u_{1}\right\|_{\infty}^{2} \leq C_{n} \lambda_{1}(\Omega)^{n / 2}, C_{n}$ depending only on n. Since $u_{1}=0$ on $\partial \Omega$, we have $\operatorname{dist}(p, \partial \Omega) \geq 1 / C_{n}^{\prime}$ and moreover there exists $\sigma>0$ depending only on n and C such that the ball $B(p ; \sigma)$ is contained in Ω and

$$
\begin{equation*}
u_{1}(x) \geq \frac{1}{2} \quad \text { for every } x \in B(p ; \sigma) \tag{3.15}
\end{equation*}
$$

Since Ω is convex, $|\Omega|=1$, and $B(p ; \sigma) \subseteq \Omega$, there exists a constant C_{1} depending only on n and σ such that $H_{n-1}(\partial \Omega) \leq C_{1}$ and diam $\Omega \leq C_{1}$, where H_{n-1} denotes $(n-1)$-dimensional Hausdorff measure. q.e.d.

We need the following lemma:
Lemma 3.6. Let $\sigma_{1}>0$ be given. Then there exists a homogeneous harmonic polynomial P on \mathbb{R}^{n} of degree N depending only on n and σ_{1}, whose restriction on S^{n-1} has a nodal domain Γ of diameter less than σ_{1}.

Proof. We can construct P from a Legendre function having a sufficiently small first zero.

Now fix a polynomial P from Lemma 3.6 corresponding to $\sigma_{1}=C_{1}^{-1} \sigma$. Then the degree N of P depends only on n and C. Let Γ be a nodal domain of $\left.P\right|_{S^{n-1}}$ of diameter less than σ_{1}. Then we may assume $P>0$ in the interior of Γ. Fix a point $\xi_{0} \in \Gamma$ and let $c_{0}=P\left(\xi_{0}\right)>0$.

Let y be a point in Ω. We choose the coordinate axes so that we have: $0 \in \partial \Omega$, the points p, y, and 0 are on the same line, y is between p and 0 , and $p=|p| \xi_{0}$. Since Γ has diameter less than $\sigma_{1}=C_{1}^{-1} \sigma$ and $|p| \leq \operatorname{diam} \Omega \leq C_{1}$, the set $|p| \Gamma$ has diameter less than σ. Since it contains p, we have $|p| \Gamma \subseteq B(p ; \sigma)$; hence, by (3.15),

$$
\begin{equation*}
u_{1}(|p| \xi) \geq \frac{1}{2} \quad \text { whenever } \xi \in \Gamma . \tag{3.16}
\end{equation*}
$$

Define

$$
V=\{x: 0<|x|<|p|, x /|x| \in \Gamma\}
$$

and $w=u_{1}-l P$ on V, where $l=\left(2 \sup _{\Gamma}|P|\right)^{-1}$. Then by (3.16) $w \geq 0$ on $|p| \Gamma$, and $w \geq 0$ on ∂V since P is zero on the boundary of Γ. Also $\Delta w=\Delta u_{1}=-\lambda(\Omega) u_{1} \leq 0$ in V since P is harmonic. Hence, by the maximum principle, $w>0$ in V. In particular, $u_{1}(y)>l P\left(|y| \xi_{0}\right)=$ $c_{0} l|y|^{N}$ since p, y, and 0 are on the same line. Since Ω is convex and $B(p ; \sigma) \subseteq \Omega$, we have

$$
\operatorname{dist}(y, \partial \Omega) \geq \frac{\sigma}{|p|} \geq \sigma_{1}|y|
$$

If we let $c_{1}=c_{0} l \sigma_{1}^{N}$, then

$$
\begin{equation*}
u_{1}(y) \geq c_{1}[\operatorname{dist}(y, \partial \Omega)]^{N} \quad \text { for all } y \in \Omega \tag{3.17}
\end{equation*}
$$

where $c_{1}>0$ and N depend only on n and C. Hence (3.14) follows from (3.17) with $\beta_{n}=N^{-1}$ and $C_{n}=c_{1}^{-1 / n} C_{1}$, since $H_{n-1}(\partial \Omega) \leq C_{1}$ and (3.17) implies

$$
\left\{x \in \Omega: u_{1}(x)<\delta\right\} \subseteq\left\{x \in \Omega: \operatorname{dist}(x, \partial \Omega)<\left(c_{1}^{-1} \delta\right)^{1 / N}\right\}
$$

Proof of Theorem 3.1. Let $\lambda_{1}=\lambda_{1}(\Omega)$, and let $\alpha=j_{n / 2-1,1}$ and $\beta=j_{n / 2-1}$ be the first positive zeros of the Bessel functions $J_{n / 2-1}$ and $J_{n / 2}$, respectively. Let Ω^{*} be the ball centered at 0 such that $\left|\Omega^{*}\right|=|\Omega|$, and let u_{1}^{*} defined on Ω^{*} be the spherical decreasing symmetrization of u_{1}, where $u_{1}>0$ is the first Dirichlet eigenfunction of Ω normalized so that $\int_{\Omega} u_{1}^{2}(x) d x=1$. Also let $S_{1}=\left\{x \in \mathbb{R}^{n}:|x|<\gamma^{-1}\right\}$ be the ball with $\lambda_{1}\left(S_{1}\right)=\lambda_{1}(\Omega)$, where $\gamma=\sqrt{\lambda_{1}} / \alpha$, and let z be the first Dirichlet eigenfunction of S_{1} normalized so that $\int_{S_{1}} z^{2}(x) d x=1$.

Assume now that Ω satisfies the hypothesis of Theorem 3.1. We may assume without loss of the generality that $|\Omega|=1$. Since

$$
\frac{\lambda_{2}(\Omega)}{\lambda_{1}(\Omega)} \geq \tau_{n}-\varepsilon=\frac{\beta^{2}}{\alpha^{2}}-\varepsilon,
$$

Proposition 3.1 implies that $\lambda_{1}(\Omega) \leq C_{n}$, where C_{n} depends only on n if ε is sufficiently small. Hence there exists a constant C_{n}^{\prime} depending only on n such that

$$
\begin{equation*}
\gamma \leq C_{n}^{\prime} \quad \text { and } \quad|\nabla z| \leq C_{n}^{\prime} \tag{3.18}
\end{equation*}
$$

By Faber-Krahn's inequality we have $S_{1} \subseteq \Omega^{*}$. Let

$$
w(x)= \begin{cases}J_{n / 2}(\beta x) / J_{n / 2-1}(\alpha x), & 0 \leq x<1 \tag{3.19}\\ w(1)=\lim _{x \rightarrow 1-} w(x), & x \geq 1\end{cases}
$$

and

$$
\begin{equation*}
B(x)=w^{\prime}(x)+(n-1) \frac{w(x)^{2}}{x^{2}} \tag{3.20}
\end{equation*}
$$

In [1] it is proved that w is increasing, B is decreasing, and moreover $\lim _{x \rightarrow 1-} w^{\prime \prime}(x)<0$. Hence there exists C depending only on n such that

$$
\begin{equation*}
(1-x)^{2} \leq C(w(1)-w(x)) \quad \text { for } 0<x \leq 1 \tag{3.21}
\end{equation*}
$$

By choosing the origin appropriately the following inequalities are proved in [1]:

$$
\begin{aligned}
\alpha^{2}\left(\frac{\lambda_{2}(\Omega)}{\lambda_{1}(\Omega)}-1\right) & \leq \frac{\int_{\Omega^{2}} B(\gamma r) u_{1}^{2}(x) d x}{\int_{\Omega} w(\gamma r)^{2} u_{1}^{2}(x) d x} \leq \frac{\int_{S_{1}} B(\gamma r) z^{2}(x) d x}{\int_{\Omega^{*}} w(\gamma r)^{2} u_{1}^{*}(x)^{2} d x} \\
& =\frac{\left(\beta^{2}-\alpha^{2}\right) \int_{S_{1}} w(\gamma r)^{2} z^{2}(x) d x}{\int_{\Omega^{*}} w(\gamma r)^{2} u_{1}^{*}(x)^{2} d x} \leq \beta^{2}-\alpha^{2}=\alpha^{2}\left(\tau_{n}-1\right)
\end{aligned}
$$

Thus using the assumption $\lambda_{2}(\Omega) / \lambda_{1}(\Omega) \geq \tau_{n}-\varepsilon$ we obtain

$$
\begin{align*}
0 & \leq \int_{\Omega^{*}} w(\gamma r)^{2} u_{1}^{*}(x)^{2} d x-\int_{S_{1}} w(\gamma r)^{2} z(x)^{2} d x \tag{3.22}\\
& \leq C_{1} \varepsilon \int_{S_{1}} w(\gamma r)^{2} z(x)^{2} d x \leq C_{1} w(1)^{2} \varepsilon
\end{align*}
$$

where C_{1} depends only on n.
By Chiti's comparison result ([3], [4]) there exists r_{1} with $0 \leq r_{1} \leq 1 / \gamma$ such that

$$
\begin{cases}u_{1}^{*}(r) \leq z(r) & \text { if } 0 \leq r \leq r_{1} \tag{3.23}\\ u_{1}^{*}(r) \geq z(r) & \text { if } r_{1} \leq r \leq 1 / \gamma\end{cases}
$$

Hence, if r^{*} is the radius of Ω^{*}, then

$$
\begin{aligned}
& \int_{\Omega^{*}} w(\gamma r)^{2} u_{1}^{*}(x)^{2} d x-\int_{S_{1}} w(\gamma r)^{2} z(x)^{2} d x \\
&= \int_{0 \leq|x| \leq r_{1}} w(\gamma r)^{2}\left(u_{1}^{*}(x)^{2}-z(x)^{2}\right) d x \\
&+\int_{r_{1} \leq|x| \leq 1 / \gamma} w(\gamma r)^{2}\left(u_{1}^{*}(x)^{2}-z(x)^{2}\right) d x \\
&+\int_{1 / \gamma \leq|x| \leq r^{*}} w(\gamma r)^{2} u_{1}^{*}(x)^{2} d x \\
& \geq w\left(\gamma r_{1}\right)^{2} \int_{S_{1}}\left(u_{1}^{*}(x)^{2}-z(x)^{2}\right) d x+w(1)^{2} \int_{\Omega^{*} \backslash S_{1}} u_{1}^{*}(x)^{2} d x \\
&= {\left[w(1)^{2}-w\left(\gamma r_{1}\right)^{2}\right] \int_{\Omega^{*} \backslash S_{1}} u_{1}^{*}(x)^{2} d x }
\end{aligned}
$$

since $\int_{\Omega^{*}} u_{1}^{*}(x)^{2} d x=\int_{\Omega} u_{1}^{2}(x) d x=\int_{S_{1}} z^{2}(x) d x=1$, and w is increasing. Also since u_{1}^{*} is decreasing, $\int_{\Omega^{*} \backslash S_{1}} u_{1}^{*}(x)^{2} d x \geq u_{1}(1 / \gamma)^{2}\left|\Omega^{*} \backslash S_{1}\right|$. By (3.21) and $w(1)>0$ we have $w(1)^{2}-w\left(\gamma r_{1}\right)^{2} \geq c\left(1-\gamma r_{1}\right)^{2}$, where c depends only on n. Hence (3.22) implies

$$
\begin{equation*}
\left(1-\gamma r_{1}\right)^{2} u_{1}^{*}(1 / \gamma)^{2}\left|\Omega^{*} \backslash S_{1}\right| \leq C \varepsilon \tag{3.24}
\end{equation*}
$$

where C depends only on n.
Moreover by (3.18), (3.23) and $z(1 / \gamma)=0$, we obtain $u_{1}^{*}\left(r_{1}\right)=z\left(r_{1}\right)=$ $z\left(r_{1}\right)-z(1 / \gamma) \leq C\left(1-\gamma r_{1}\right)$, where C depends only on n. Thus from (3.24) and the fact that u_{1}^{*} is decreasing, it follows that

$$
\begin{equation*}
u_{1}^{*}(1 / \gamma)^{4}\left|\Omega^{*} \backslash S_{1}\right| \leq C \varepsilon \tag{3.25}
\end{equation*}
$$

where C depends only on n. Let $\delta=u_{1}^{*}(1 / \gamma)$. Therefore the definition of u_{1}^{*} and Lemma 3.5 yield

$$
\left|S_{1}\right|=\left|\left\{x \in \Omega: u_{1}(x)>\delta\right\}\right| \geq\left(1-C_{n} \delta^{\beta_{n}}\right)|\Omega|=\left(1-C_{n} \delta^{\beta_{n}}\right)\left|\Omega^{*}\right| .
$$

Since $|\Omega|=1$, we have $\left|\Omega^{*} \backslash S_{1}\right| \leq C_{n} u_{1}^{*}(1 / \gamma)^{\beta_{n}}$ and, by (3.25),

$$
\begin{equation*}
\left|\Omega^{*} \backslash S_{1}\right| \leq C \varepsilon^{\beta_{n}^{\prime}} \tag{3.26}
\end{equation*}
$$

where $\beta_{n}^{\prime}=\left(4 \beta_{n}^{-1}+1\right)^{-1}$, and C depends only on n.
But (3.26) implies $\lambda_{1}(\Omega) \leq\left(1+C^{\prime} \varepsilon^{\beta_{n}^{\prime}}\right) \lambda_{1}\left(\Omega^{*}\right)$, where C^{\prime} depends only on n. Hence Theorem 3.1 follows from Theorem 2.1 with $\alpha_{n}=\beta_{n}^{\prime} / 2 n$.
4. Theorem 4.1. Assume $\Omega \subseteq \mathbb{R}^{2}$ is a bounded domain such that $\lambda_{1}(\Omega) \leq(1+\varepsilon) \lambda_{1}(D)$, where $\varepsilon>0$ is sufficiently small, and D is a disc with $|D|=|\Omega|$. Then there exists a disc D_{1} such that

$$
\begin{equation*}
\left|\Omega \cap D_{1}\right| \geq\left(1-C \varepsilon^{1 / 4}\right)\left|\Omega \cup D_{1}\right| \tag{4.1}
\end{equation*}
$$

where C is a universal constant. Moreover, if Ω is simply connected, we may also assume that $D_{1} \subseteq \Omega$.

Proof. Without loss of generality we may assume that Ω has smooth boundary and $|\Omega|=1$. Let $u_{1}>0$ be the first Dirichlet eigenfunction of Ω normalized so that $\int_{\Omega} u_{1}^{2}(x) d x=1$. As in $\S 2$ for $\delta>0$ we define $\Omega_{\delta}=\left\{x \in \Omega: u_{1}(x)>\delta\right\}$. Then as in the proof of Theorem 2.1 there exists a τ such that $0<\tau<\varepsilon^{1 / 2}, \Omega_{\tau}$ is a disjoint union of a finite number of smooth connected domains $U_{j}(0 \leq j \leq m)$, and

$$
\begin{equation*}
L\left(\partial \Omega_{\tau}\right)^{2} \leq 4 \pi\left|\Omega_{\tau}\right|+C_{1} \varepsilon^{1 / 2} \tag{4.2}
\end{equation*}
$$

where $L\left(\partial \Omega_{\tau}\right)$ denotes the length of $\partial \Omega_{\tau}$ and C_{1} is a constant. Moreover by (2.6) (whose proof does not use convexity) we obtain

$$
\begin{equation*}
\lambda_{1}\left(\Omega_{\tau}\right) \leq\left(1-2 \varepsilon^{1 / 2}\right) \lambda_{1}(\Omega) \tag{4.3}
\end{equation*}
$$

Since $\lambda_{1}\left(\Omega_{\tau}\right)=\min _{0 \leq j \leq m} \lambda_{1}\left(U_{j}\right)$, assuming $\lambda_{1}\left(\Omega_{\tau}\right)=\lambda_{1}\left(U_{0}\right)$ we have as in the proof of Lemma 2.1 that

$$
\begin{equation*}
\left|U_{0}\right| \geq\left(1-4 \varepsilon^{1 / 2}\right)|\Omega| \tag{4.4}
\end{equation*}
$$

if $\varepsilon>0$ is sufficiently small. (4.2) and the isoperimetric inequality imply, respectively,

$$
\left[\sum_{j=0}^{m} L\left(\partial U_{j}\right)\right]^{2} \leq 4 \pi \sum_{j=0}^{m}\left|U_{j}\right|+C^{\prime} \varepsilon^{1 / 2}
$$

and $4 \pi\left|U_{j}\right| \leq L\left(\partial U_{j}\right)^{2}$ for $1 \leq j \leq m$. Hence

$$
\begin{equation*}
L\left(\partial U_{0}\right)^{2} \leq 4 \pi\left|U_{0}\right|+C_{1} \varepsilon^{1 / 2} \tag{4.5}
\end{equation*}
$$

Let U be the convex hull of U_{0}, and let V be the union of U_{0} and all the bounded components of $\mathbb{R}^{2} \backslash U_{0}$. Then $U_{0} \subseteq V \subseteq U, V$ is simply connected, and also $L(\partial U) \leq L(\partial V) \leq L\left(\partial U_{0}\right)$, since U_{0} is a connected domain in \mathbb{R}^{2} with smooth boundary. Let $\alpha=\left|U \backslash U_{0}\right|$. Then by the isoperimetric inequality and (4.5) we have

$$
\begin{aligned}
L\left(\partial U_{0}\right)^{2} & \leq 4 \pi\left|U_{0}\right|+C_{1} \varepsilon^{1 / 2}=4 \pi|U|-4 \pi \alpha+C_{1} \varepsilon^{1 / 2} \\
& \leq L(\partial U)^{2}-4 \pi \alpha+C_{1} \varepsilon^{1 / 2} \leq L\left(\partial U_{0}\right)^{2}-4 \pi \alpha+C_{1} \varepsilon^{1 / 2}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left|U \backslash U_{0}\right| \leq C_{2} \varepsilon^{1 / 2} \tag{4.6}
\end{equation*}
$$

for some constant C_{2}. If $x \in \partial V$ and $\operatorname{dist}(x, \partial U)=d$, then $L(\partial V)-$ $L(\partial U) \geq 2 d$. Since

$$
\left(4 \pi\left|U_{0}\right|\right)^{1 / 2} \leq(4 \pi|U|)^{1 / 2} \leq L(\partial U) \leq L(\partial V)-2 d \leq L\left(\partial U_{0}\right)-2 d
$$

and (4.6) implies $|V| \leq\left|U_{0}\right|+C_{2} \varepsilon^{1 / 2} \leq|\Omega|+C_{2} \varepsilon^{1 / 2}=1+C_{2} \varepsilon^{1 / 2}$, we have, by (4.5),

$$
\begin{equation*}
\sup _{x \in \partial V} \operatorname{dist}(x, \partial U) \leq C_{3} \varepsilon^{1 / 2} \tag{4.7}
\end{equation*}
$$

From $L(\partial U) \leq L\left(\partial U_{0}\right),|U| \geq\left|U_{0}\right|$ and (4.5) it follows that $L(\partial U)^{2} \leq$ $4 \pi|U|+C_{1} \varepsilon^{1 / 2}$. Since U is convex, the Bonnesen-style isoperimetric inequality (2.12) implies as in the proof of Theorem 2.1 that there exists a disc $D\left(x_{0} ; \rho\right)$ centered at $x_{0} \in V$ and of radius ρ such that $D\left(x_{0} ; \rho\right) \subseteq U$ and

$$
\begin{equation*}
\left|D\left(x_{0} ; \rho\right)\right| \geq\left(1-C_{4} \varepsilon^{1 / 4}\right)|U| \tag{4.8}
\end{equation*}
$$

Let $D_{1}=D\left(x_{0} ; \rho-C_{3} \varepsilon^{1 / 2}\right)$. Then, by (4.7), and by (4.6) and (4.8), we have, respectively, $D_{1} \subseteq V$ and

$$
\begin{equation*}
\left|U_{0} \cap D_{1}\right| \geq\left(1-C_{5} \varepsilon^{1 / 4}\right)\left|U_{0} \cup D_{1}\right| \tag{4.9}
\end{equation*}
$$

if $\varepsilon>0$ is sufficiently small.
Thus using (4.4) and (4.9) we obtain (4.1) if $\varepsilon>0$ is sufficiently small. Moreover, if $\boldsymbol{\Omega}$ is simply connected, then $V \subseteq \Omega$ and hence $D_{1} \subseteq \Omega$.

Acknowledgement

The author wishes to thank Professor S.-Y. Cheng for suggesting the problem and for his interest in this work.

References

[1] M. S. Ashbaugh \& R. D. Benguria, Sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions, preprint.
[2] H. J. Brascamp \& E. Lieb, On extensions of the Brunn-Minkowski and Prekopa-Leindler theorems including inequalities for log concave functions and with an application to a diffusion equation, J. Funct. Anal. 22 (1976) 366-389.
[3] G. Chiti, A reverse Hölder inequality for the eigenfunctions of linear second order elliptic operators, Z. Angew. Math. Phys. 33 (1982) 143-148.
[4] __, An isoperimetric inequality for the eigenfunctions of linear second order elliptic operators, Boll. Un. Mat. Ital. A (6) 1 (1982) 145-151.
[5] R. Courant \& D. Hilbert, Methods of mathematical physics, Vol. 1, Interscience, New York, 1953.
[6] A. Dinghas, Bemerkung zu einer Verschärfung der isoperimetrischen Ungleichung durch H. Hadwiger, Math. Nachr. 1 (1948) 284-286.
[7] C. Faber, Beweiss, dass unter allen homogenen Membrane von gleichen Fläche und gleicher Spanning die kreisförmige die tiefsten Grundton gibt, Sitzungsber-Bayer. Akad. Wiss., Math.-Phys., Munich, 1923, 169-172.
[8] H. Hadwiger, Die isoperimetrischen Ungleichung im Raum, Elemente Math. 3 (1948) 25-38.
[9] D. Jerison, The first nodal line of a convex planar domain (Internat. Math. Research Notices, 1991, No. 1), Duke Math. J. 62 (1991).
[10] E. Krahn, Über eine von Rayleigh formulierte Minmaleigenschaft des Kreises, Math. Ann. 94 (1925) 97-100.
[11] R. Osserman, Bonnesen-style isoperimetric inequalities, Amer. Math. Monthly 86 (1979) 1-29.
[12] L. E. Payne \& I. Stakgold, On the mean value of the fundamental node in the fixed membrane problem, Appl. Anal. 3 (1973) 295-303.
[13] G. Pólya \& G. Szegő, Isoperimetric inequalities in mathematical physics, Annals of Math. Studies, No. 27, Princeton University Press, Princeton, NJ, 1951.

