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CONSTANT MEAN CURVATURE
SURFACE, HARMONIC MAPS, AND
UNIVERSAL TEICHMULLER SPACE

TOM Y. H. WAN

1. Introduction

It has been known for some years that the Gauss map of a space-like
surface in Minkowski 3-space M ' is harmonic if and only if the mean
curvature of the surface is constant (see [7]). Using this fact, we can con-
struct, for each holomorphic quadratic differential on a simply-connected
domain Ω in C, an injective harmonic map from Ω into the Poincare
disk D. This harmonic map is unique up to equivalent classes, provided
that it satisfies a completeness condition. In the process, we will find a clas-
sification of all complete hyperbolic space-like surfaces of constant mean
curvature in M 2 ' 1 .

It is also known that harmonic maps between surfaces are deeply related
to the Teichmuller theory of compact Riemann surfaces (see [9]). So, it is
interesting to study the analogy for universal Teichmuller space. For this
problem, we find that a harmonic diffeomorphism from D onto itself is
quasi-conformal if and only if the associated Hopf differential is bounded
with respect to the Poincare metric. From this result, we have a continu-
ous map from the space of equivalence classes of holomorphic quadratic
differentials under the action of the Mόbius group, which is bounded with
respect to the Poincare metric, into the universal Teichmuller space.

The author would like to thank Professor R. Schoen for his continuous
encouragement and support during the last few years. Without his support,
this paper would not have been possible.

2. Geometric preliminaries

The Minkowski 3-space M 2 ' 1 is R2 x R1 endowed with the metric

ds = (dx ) + (dx ) - (dx ) ,
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where x = (x 1 , x2) and x 3 are Euclidean coordinates of R2 and R 1 ,
respectively.

Let S be a space-like surface in M 2 ' 1 , that is, S be a surface whose
induced metric is Riemannian. Then, locally, S is given as a graph of a
function x 3 = f(xι, x2) satisfying the space-like condition \Df\ < 1. As
in the case of a surface in Euclidean 3-space R 3 , we can define the first
and the second fundamental forms of S as follows:

I = gijdxidxj, II = h.jdJdx*.

The mean curvature H and the Gaussian curvature K are given by

Note that K = det(Aj7)/det(gl7) in the Euclidean case (see [7]).

For a space-like surface S in M 2 ' ι , there is a natural projection Π: S —•
R2 defined by U{xι, x 2 , x3) = (x 1 , x2) e R2 for any (x 1 , x 2 , x3) e S.
If Π is onto R 2 , we say that S is entire.

Proposition 1. Let Ω be a domain in C and let S:Ω —• M ' 1 be
a space-like immersion. Suppose that S is complete with respect to the
induced Riemannian metric. Then S is an entire graph and Ω is simply-
connected.

Proof. Suppose that S is not entire. Then d 11(5) is nonempty in C.
So we can find a smooth arc γ: [0, 1] —• 11(5) with finite Euclidean length
such that y[0, 1) c Π(5) and γ(l) e dU{S).

Let z be a point in Ω such that Π o S(z) = γ(0). Since S is a space-
like immersion, Π o S is a local homeomorphism. Therefore, we can lift
a portion of γ, starting from γ(0), up to a path γ* on Ω. Suppose
that 7 is the maximal t e [0, 1] such that we can lift γ . Since Π o S is
a local homeomorphism, either limt^-tγ*(t) exists or the set of limiting
points contains in dΩ. Since the length of γ* with respect to the induced
metric is bounded by the Euclidean length of γ, the latter case contradicts
the completeness of S. Similarly, \imt_^-t γ* (t) must belong to the interior
of S. So we can lift γ for further t. Therefore 7 = 1 and l im,^ γ*(t)
exists and belongs to the interior of S. This contradicts the assumption
that γ(l)€ ΘΠ(S). Hence, S is entire.

Suppose ΠoS is not one-one. Let z{ and z2 be two points in Ω such
that Π o 5(zj) = Π o S{z2) = w . Take a path σ* in Ω with endpoints
equal to zχ and z 2 . Then σ = ΠoJSΌcr* is a closed path, which may
not be simple, in C. Using the fact that C is simply-connected, we have
a homotopy shrinking σ to the point w . Since σ* is compact and Π o S
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is a local homeomorphism, we can lift the homotopy locally near σ*. In
fact, we can lift the homotopy until we hit a branch point or the bound-
ary. On the one hand, we have no branch point because Π o S is locally
homeomorphic. On the other hand, we cannot hit the boundary because
of the completeness of S. Therefore, we can lift the homotopy. But then
we have a path on Ω with endpoints zχ, z2 which completely lies in
( Π o S ) " 1 ^ ) . This contradicts the fact that Π o S is locally homeomor-
phic. So Π o S is one-one and hence S is a graph. The final conclusion
is now obvious, q.e.d.

From Lemma 1 and a result in [4], we have the following:
Proposition 2. Let S be a complete space-like surface in M 2 ' 1 . Sup-

pose that the mean curvature H of S is constant. Then S can be rep-
resented as a graph of a function JC3 = f(x) = f(xι, x2) such that f is
defined for all x e R2 and satisfies the equation

=2//

Moreover, f is a convex function, and S has nonpositive Gaussian curva-
ture.

Proof. By Lemma 1, we conclude that S is entire and closed with
respect to the Euclidean topology of R 3 . Then the results follow from [4]
(see also [5]). q.e.d.

We say that S is a constant mean curvature cut if S is an entire space-
like surface in M 2 ' 1 with constant mean curvature H > 0, and if it is
complete. Without loss of generality, we assume H = 1 throughout this
paper. We end this section by mentioning that the Gauss map of a space-
like surface in M 2 ' x is harmonic into the hyperbolic 2-space if and only
if the mean curvature is constant (see [7], [5]).

3. Harmonic maps between surfaces

Let Σj and Σ 2 be two surfaces. If ρ2(z)\dz\2 and σ2(u)\du\2 are
the metrics with respect to isothermal coordinate charts on Σχ and Σ 2 ,
respectively, then u: Σ{ -> Σ 2 as a harmonic map satisfies
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and the d and Ί) energy densities are given by

2 2
2 O . ,2 ,77 ,2 0" i ,2

= — \uz\ , |dtι| = —|wγ | .

We have

Lemma 3. At points where du (du, respectively) is nonzero we have

ΔΣi log|dw|2 = - 2K2J{u) + 2KX,

(ΔΣi log |dw|2 = 2* 2 /(κ) + 2 ^ ) ,

wλere # z denotes the Gaussian curvature of Σ., and J{u) = \du\ - \du\
is the Jacobian of u.

Proof See [8].
In this paper, Σ 2 will always be the Poincare disk (D, ds2

p), where

so we have K2 = — 1. We will also restrict ourself to those harmonic maps
which satisfy J(u) > 0 and \du\2 > 0. This is exactly the case when
u is coming from a Gauss map of a constant mean curvature space-like
surface. In this case, w = ^log|9w|2 is a well-defined function on Σ{.

It is also well known that the quadratic differential

Φ(z) = φ(z)dz2,

where φ(z) = σ2(u(z))uzΰz, is holomorphic; that is, φ(z) is a holomor-

phic function on Σ j . If \du\2 > 0, we can write

\du\2 = P\z)\φ(z)\2\du\-2 = | |Φ| | 2(z) |awΓ 2,

where | |Φ||2(z) = p~4(z)\φ(z)\2 is independent of the particular iso-
thermal coordinates. Therefore the first equation in Lemma 3 can be
rewritten as

A 2W | | ^ l | 2 — 2W Tjr

AΣw=e -\\Φ\\e +KV

Note that we have already used the assumption that Σ2 is the Poincare
disk.

In §2, we mentioned that the Gauss map of a space-like constant mean
curvature surface S in M 2 ' 1 is a harmonic map into the Poin-
care disk. The uniformization theorem implies that S is conformally
equivalent to either (C, \dz\2) or (D, ds2). Therefore, we can represent
S as (C, gγ) or (D, g2), where the gt are conformally equivalent to
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the metric \dz\2 , and the composition of the Gauss map and the confor-

mal parametrization u:Σχ -> (D, ds2) is harmonic, where Σ{ is either

(C, \dz\ ) or (D, ds2). The important observation is

Proposition 4. Suppose that the mean curvature of S is constantly one.
Then the induced metric g on S and the Gaussian curvature K of S are
given by

ί\dz\2, K =
(l-MΎ z

Proof See [2] or [1].

Since the harmonicity depends only on the conformal class of the metric

on Σ j , we can choose any metric in the conformal class which is conve-

nient to us. In the case where the metric on Σ{ is given by g0 = p2\dz\2,

the induced metric on S is given by

g = \du\2p2\dz\2 = \du\2g0.

Remark. From the proposition, we see that if a harmonic map u is

given by a Gauss map of a constant mean curvature cut, then \du\2 > 0

and J(ύ) = \du\2{-K) > 0, since K < 0 by Proposition 2.

4. Classification of hyperbolic constant mean curvature cuts

Let S be a hyperbolic constant mean curvature cut. Then there exists
a conformal diffeomorphism from D onto S, and we can consider the
Gauss map of S as a harmonic map from the Poincare disk into itself.
Therefore, we can associate a holomorphic quadratic differential on D
for each S. Notice that the differential depends only on the equivalent
class of isometric surfaces of S, but not on S itself. Hence, we have a
well-defined map s/ from the set E of equivalent classes of hyperbolic
constant mean curvature cuts into the space QD of equivalent classes of
holomorphic quadratic differentials on D under the action of the Mόbius
group (this corresponds to change of conformal parameters on S.) We
will show that J / is actually one-one and onto.

Theorem 5. J / : E —• QD is one-one and onto.
Let S be a representative of an element in E, M be the harmonic map

associated to S, and Φ(z) = φ(z)dz2 be its Hopf differential. Then

is a well-defined function on D, and e2wds2 is the induced metric on S.
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The harmonicity of u yields that w and | |Φ|| satisfy

(1) Apw = e -\\Φ\\e - 1.

Moreover, the assumption that S is complete implies that (D,e2wdsp) is
a complete Riemannian manifold.

Conversely, if we can uniquely solve a solution w for a given | | Φ | | ,
then we can use the following equations to solve for htj :

hn+h22 = 2 4

n+h22 = 2e hn-h22

where fR(φ) and 3(φ) are the real and imaginary parts of φ, respectively.
Using those Af., we can construct two two-forms which satisfy the Gauss
and Codazzi equations. Namely, if

I = e2wds2

p, II = hudxιdxj,

then the Gauss equation is translated to (1), where the fact that Φ is holo-
morphic is equivalent to the Codazzi equations being satisfied. Therefore,
by the fundamental theorem of differential geometry, we can construct lo-
cally a space-like surface, unique up to Lorentz motions, in M ' with
first and second fundamental forms equal to I and II, respectively. Since
D is simply-connected, we actually have a global solution surface S. By
construction, S has constant mean curvature one. If e2wds2 is complete,
then by Proposition 2, S is a complete hyperbolic constant mean curva-
ture cut. Finally, by Proposition 4, the holomorphic quadratic differential
associated to S is exactly given by Φ . Therefore, the map sf being
one-one onto is equivalent to the uniqueness and existence of w for the
equation

(2) i + Δ ^ = ^ _ | | φ | | V 2 ™ ,

such that e2wds2

p is complete and e2w - | |Φ| | V2™ > 0.

5. Uniqueness

For the uniqueness of (2), we will prove a slightly more general theorem.
Theorem 6. Let h be a continuous function defined on a domain Ω c

C, and let w be a solution of

in Ω such that e2w\dz\2 is a complete Riemannian metric on Ω. Then,
for any other solution υ of the equation, v < w .
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Proof. Let η = v -w . Then

which implies

A 2ι; , 2 -2υ 2w , 2 —2w

Aη = e -he -e + h e

where Δ^ is the Laplacian on Ω with respect to the metric g = e2w\dz\2,

and \μ\2 = h2e~™ . Since em -h2e~m > 0, we have \μ\2 < 1. Therefore

Aeη>e2η-e-2η-l.

A result in [3] shows that η is bounded from above, provided that g
is complete and its curvature is bounded from below. The metric g is
assumed to be complete, so we only need to check that the Gaussian cur-
vature K(g) is bounded from below. In fact

Now we can apply the generalized maximum principle to conclude that
there is a sequence { z j e Ω such that

lim η(zk) = η = supη, limsupΔ w(z,) < 0.

By taking a subsequence, if necessary, we can assume

| / | ( f c )
K—KX)

Therefore, by taking limit as k —• oo in the above equation, we have

which implies v < w .
Corollary 7. Let h be a continuous function defined on a domain Ω c

C, and let w{ and w2 be two solutions of

(3) Aw = e - h e > 0

in Ω such that e2Wi\dz\2 are complete metrics on Ω for i = 1 ,2 . Then
wι=w2.

Corollary 8. We have at most one solution of (2) such that the metric
is complete.

Proof Let wi9 i = 1, 2, be two solutions of (2) such that both metrics
are complete. Then wi, defined by
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are solutions of (3) with h = |Φ| the Euclidean norm of Φ. Therefore,
w{ =w2, which implies w{ =w2.

6. Existence

For the existence, we treat a special case first. As we will see later that
this corresponds to those harmonic maps which are quasi-conformal. The
basic theorem which we use here is the theorem on the method of sub-
and super-solutions. Since it is not easy to find a reference for the case
of complete noncompact manifolds, we include a sketch of the proof here
for a version in our setting.

Theorem 9. Let M be a complete Riemannian manifold, and
F(x, u) be a C°°-function on M x R such that

If there exists ψ_ < ψ e C°(M) n Hι(M) such that

Aψ<F(x,ψ)
weakly,

Aψ_ > F(x, ψ)

then there exists u e C°°(M) such that Au = F(x, ύ) and ψ_ < u < ψ,
where ψ_ and ψ are called the sub- and super-solutions respectively.

Sketch of proof Choose a sequence of domains {Dk}™={ in M such
that Dk c Dk+ι ,\J^={Dk = M, and with sufficiently regular boundary.
Then choose a boundary data ψk for each Dk such that ψ_ < ψk < ψ on
Dk . The method of sub- and super-solutions for compact domain implies
that there is a C°° solution uk on Dk such that ψ_<uk<ψ.

Using the fact that | £ > 0 and ψ_ < uk < ~ψ, the interior Schauder esti-

mate [6] yields that {uk+k^x is bounded in C 2 α ( 2 ) ^ ) . Since {Dk}™=ι

is an exhaustion of M, we have, for any compact subset K c M,

for all positive integers k. Hence there is a subsequence {uk>} which
converges in C^OC(M), and the limiting function u is a C2 solution of
the equation. Standard regularity theory [6] implies that u is C°° . Since
ψ_<uk> < ψ, we also have ψ < u < Ί/7, which completes our proof.

Proposition 10. Let Φ be a holomorphic quadratic differential on D
such that | |Φ|| is bounded. Then (2) has a unique C°° solution w which
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satisfies

2

where a = sup | | Φ | | .
Proof. We shall use the method of sub- and super-solutions. First of

all, we have

Claim 11. ψ_ = \ log+ | |Φ| | is a weak subsolution of (2), where

log||Φ||

0

Proof of claim. In fact ψ_ = sup{0, j log | |Φ| | } , so we only need to

show that \ log | |Φ| | and the constant zero are weak subsolutions of (2).

The constant zero is obviously a subsolution. For \ log | | Φ | | , we notice

that 5 log |0| is a weak subharmonic function. Therefore,

A 1i ιι>fviι 2(log||Φ||/2) ,,>MI2 -2(log||Φ||)/2 - i A , , ι. ^ Λ

Δ p £ l o g | | Φ | | -e v " l l / ; + | | Φ | | e v " "" + 1 = £ Δ p l o g | 0 | > 0

weakly. This proves the claim.

It is obvious that the constant ^(1 + \/l + 4a2) is a super-solution.
So, together with the claim and the theorem on the method of sub- and
super-solution, we have proved our result, q.e.d.

This proposition actually is true for all disks with any radius R, as long
as we use the corresponding Poincarέ metric 4R2\dz\2/(R2 - \z\2)2 .

We now remove the restriction that | |Φ| | is bounded.
Theorem 12. Let Φ be a holomorphic quadratic differential on D.

Then (2) has a unique C°° solution.
Proof For any positive integer k, let

Dk = {ze D: d(z) < k} = {z e D: \z\ < Rk},

where d(z) = log[( 1 + |z|)/( 1 - \z\)] is the Poincare distance function from

the origin, and Rk = (ek - l)/{ek + 1) < 1. Then we have

By Proposition 10, for each k, we have a unique solution wk to the
problem

ί Awk - e2ϋ>k

\ {Dk,e™k\d

k | | V2 t &* > 0 on Dk,
k \ {D™k\dz\2) complete.
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Moreover, wk satisfies
2

2tt). ^-K>ir . 4

e

Since (Dk, e2Wk\dz\2) is complete and wk+ι restricted to Dk is still a
solution to the equation

A ~ 2w , ^ , 2 -2ιu

Δw = e -\Φ\ e ,

we have, from Theorem 6, ϋ)fc+1 < wk in Z)fc . Hence wk+j < wk in Dfc

for all positive integers j . Using the fact that e2Wk > 4/(1 - |z|2) , we
see that wk converges pointwise to a function w . However, in order to
complete the proof, we need to show, at least for a subsequence, that

t ^ - t ί inq2

0 C(D),

i.e., for any compact subset K c D, wk is defined on K for all large
enough k, and

Since (JJtLi ̂  = D, we only need to show this for K = T5k . Now consider
the sequence {%+y+2^i o n ^k - Choose a disk Bk such that Dk c Bk c
DA : + 1. Since 5^ satisfies the uniform interior cone condition, we have the
Sobolev inequality

and from the elliptic interior L2-estimate [6] it follows that

where Ω' m Ω and C = C(/, Ω', Ω).
So, in order to estimate ll%+y+2Hc3φ )» w e o n ly n e e d to estimate

\\™k+j+2\\wι>2(Dk+ιy

In fact

implies

| 2

+j+ e~2ύ)k^2V|Φ|2

which in turn implies

^ < C[l + ll
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where C = C(k) is independent of j . So, by an interior L2-estimate and
iterating the procedure, we obtain

provided Ω' C Dk+ι. Therefore, taking Ω' = Bk and using the Sobolev
inequality yield

provided \\wk+j+2\\wuι ^ < C(k).

To estimate W^k+j+i^w^^ίD )> we consider the equation

on Dk+2.

Choose a positive test function φ c C™(Dk+2) such that φ = 1 on Dk+ι.
In the following calculation, we shall write w for wk+ + 2 . Then

2 ,

W
= / ?Vώ-|Φ|2<r2 ώ)>o,

J Dk 2

which implies

V(flΛδ) Vw < 0.

Thus by using Holder's inequality and integration by parts we obtain

f φ2\Vw\2<lf w2\Vφ\2,

which implies, in consequence of φ = 1 on Dk+ι,

j f \Vw\2 < C(fc)||t»||L2 ( l ) i k + 2 ).

That is,

Since \\wk+j+2\\L2iDM) < \\wM\\L2iDk+2), we have, for any k,

for all positive integers j .
So, using the Arzela-Ascoli theorem and a diagonal trick, we can find a

subsequence {wk,}^=ι which converges to w in C loc(D), so that w is a
solution of

Aw =e - \Φ\ e
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Finally, since e2™k > 4/(1 - | z | 2 ) 2 , (D,em\dz\2) is also complete.
This implies that w , given by 4e 2 w/(l - | z | 2 ) 2 = e2™ , satisfies (2). Hence
our proof is complete.

7. Criteria for quasi-conformality

A harmonic diffeomorphism between compact Riemann surfaces is al-
ways a quasi-conformal mapping. The study of harmonic maps between
compact Riemann surfaces leads to a parametrization of finite Teichmϋller
spaces. So it is interesting to understand the relationship between uni-
versal Teichmuller space and quasi-conformal harmonic diffeomorphisms
between Poincare disks.

In view of the result in §6, it is reasonable to study under what condition
on the Hopf differential the harmonic map from D into itself is actually
a quasi-conformal mapping. The following result gives a complete answer
to this question.

Theorem 13. Let u be an orientation preserving harmonic map from
D onto itself and let Φ be the Hopf differential of u. Then u is quasi-
conformal if and only if supz/€D | |Φ||(z) < +oo. In fact, the fact that u
has bounded dilatation suffices to imply that u is a quasi-isometry of the
Poincare disk.

Proof If u is quasi-conformal, even if u only has bounded dilation,
then, for some δ > 0,

So

e - | |φ|| e =e (l-\μ\)>δe .

\w > δe2w -

and the maximum principle implies e2w < δ 1 . Since | |Φ|| < e2w, we
have sup | |Φ| | < +oo. Moreover, together with 1 < e2w , we conclude that
u is a quasi-isometry of the Poincare disk.

Conversely, if sup | |Φ|| is bounded, then by the maximum principle,

1 < e2w < ^[1 + ^/l+4(sup| |Φ| | ) 2 ] < C

for some fixed C . So (D, e2wds2) is equivalent to (D, ds2

p). This im-

plies that (D, e2wds2) has exponential volume growth.

Let Br(x) be a geodesic ball in D with radius r and center JC, and
let Lr(x) be the length of dBr(x). Then £Lr(x) = JQBM) kg , where kg
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is the geodesic curvature of dBr(x). But £V(Br) = Lr, where V(Br) is
the volume of Br, therefore

ldBr

 8'T2V{B')= ί
dr hi

The Gauss-Bonnet theorem now yields

lΊV(Br)-π= f -K.
drλ JBr{x)

Since V(Bχ) has exponential growth, we have, for any ε > 0, a large
enough R > 0 such that for any x eΌ there exists some r, 0 < r < R,
such that

d2

— V(Br)>π + ε,
ar

so that

ε </ -K.

A straightforward calculation gives

Ag(-K) < 2(-K).

Since e2wds2

p is complete, has exponential volume growth, and its curva-
ture is bounded from below, the super-mean value inequality (see [5])

VBr(X) )

holds for some C and 0 < p < 1 independent of x. Therefore, K(x) <
—δ for some δ > 0, which implies

\μ\2=l+K<l-δ.

Hence, u is quasi-conformal.
Remark. It then follows from this theorem that a harmonic diffeomor-

phism between Poincare disks has bounded energy density if and only if
it is a quasi-conformal mapping. L. F. Tarn pointed out to us that this
statement may have higher dimensional generalization while holomorphic
quadratic differential is only defined for dimension two.

8. Universal Teichmuller space

Universal Teichmuller space has at least three equivalent definitions.
It is most convenient for us to prove our result by using the complex
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characteristic of quasi-conformal maps between disks to define the univer-
sal Teichmϋller space.

Let Jί be the set of all bounded measurable functions μ defined on
the unit disk with ||/^||oo < 1. Then for any μ e ^ , there exists unique
f :C —• C, such that f has complex characteristic equal to μ inside
D, and is conformal outside D with fixed points 1, i, - 1 . We say that
μ ~ v for μ, v e Jί if

f \ = f \

Then the universal Teichmϋller space T can be defined as Jt/ ~.
We also have Teichmϋller metric on T. Let p, q e T; then the

Teichmϋller metric is given by

1 + | | ( 0 - , / ) / ( ! - 3

Moreover, T is path-connected.
From the above definition of T and the result in §7, we see that for

any Φ e BQD = { Φ e QD: | |Φ|| < 4-00}, we can associate an element
[μ] in T, where μ is the complex characteristic of the quasi-conformal
harmonic diffeomorphism associated to Φ which fixes 1, 1, and - 1 . We
denote this map by 3S . Then we have the following result about SB :

Proposition 14. &: BQD —• T is continuous.
Proof. Let Φj and Φ 2 be two elements in BQD, and let pt = ^(Φ,-) e

T. Then the complex characteristics μ. associated to Φ. are representa-
tives for pt. By the definition of d{pχ, p2), we only need to show

where | | | Φ | | | = sup | | Φ | | .
Consider the equations

Let η = w{ -w2; then

' - | | Φ , | | e

—2w 7 A —2η , ,2 — 2η

e 2Apη = e - \μ2] e -

If

and the maximum principle implies, for some 0 < a < 1,

e2η < U1 - a + 2ε + J(l - a2 + 2ε)2 + 4a2],
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which tends to 1 as ε —> 0. So

limsup (wχ - w2) < 0.
II|ΦI-Φ2IIM>

Similarly, the above inequality with w{ and w2 interchanged also holds.
Hence 11^ - w2\\ -* 0 as H ^ - Φ2 | | | -• 0. This implies \\μ{ - μ2\\ -> 0
as | | | Φ 1 - Φ 2 | | H 0 . q.e.d.

We end our discussion with the following question. Is SB a homeomor-
phism between BQD and T ? This question is equivalent to the existence
and uniqueness of the ideal boundary value problem for a harmonic map
between Poincare disks with quasi-symmetric boundary data.
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