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GRAPH MANIFOLDS,
ENDS OF NEGATIVELY CURVED SPACES
AND THE HYPERBOLIC 120-CELL SPACE

UWE ABRESCH & VIKTOR SCHROEDER

In this paper we show that a rich class of graph manifolds occur as ends
of complete Riemannian manifolds with finite volume whose curvature is
strictly negative and uniformly bounded from below.

For the purpose of this paper, a graph manifold W is given in the

following way (for a more general notion see [16]): Let W. be a finite

collection of building blocks diffeomorphic to Σ x S , where Σz is a

closed oriented surface with some disjoint open balls removed, and Sι is

the unit circle. The boundary components of W. are tori Sι x Sι, where

the orientation on the first S ̂ factor is induced from the boundary of Σz ,

and the second factor carries the canonical orientation of the S ̂ factor of

W.. We obtain W from the Wt by gluing the tori in pairs, interchanging

the factors, and preserving all orientations.
Then W can be described by a graph where the vertices correspond to

the building blocks W., and the number at each vertex indicates the genus
of Σ.. If two building blocks are glued together on a boundary torus, we
join the vertices by an edge. Examples are described by the graphs shown
in Figure 1.

(a) (g

FIGURE 1
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Theorem 0.1. Let W be a 3-manifold corresponding to a graph in Fig-
ure 1 or to a subgraph obtained by deleting some vertices and the correspond-
ing edges. Then there exists a complete Riemannian 4-manifold (M , g)
with finite volume and sectional curvature K such that -1 < K < 0 and
M4\C is a diffeomorphic to W x (0, oo) for some compact subset C of
M4.

This theorem just describes a few examples in a long and rich list of
possible end structures of complete manifolds with finite volume and neg-
ative curvature K satisfying -b2 < K < 0, a phenomenon quite different
from the rigid behavior in the case of pinched negative curvature where
-b2 <K< -a2 < 0. In this more special case all ends are infranilmani-
folds [9].

Our theorem implies in particular that the graph manifold © — © is the
end of a manifold M with negative curvature and finite volume. Note
that © — © is also the end of Σ 2 χ x Σ2 χ, where Σ2 x is a surface of
genus 2 with one puncture. By [13] any complete metric of finite volume
and nonpositive sectional curvature on Σ 2 χ x Σ2 χ is a product metric.

Therefore the "compact parts" of M4 and Σ 2 χ x Σ2 ι differ essentially,
and the rigidity of Σ 2 { x Σ 2 χ does not imply any rigidity of the end of
Σ 2 , 1 X Σ 2 , 1

Our examples are based on the following result.

Theorem 0.2. Let (Σ, )/!Li be a finite family of compact, totally geodesi-
cally embedded, orientable surfaces with simple normal crossings in a com-
pact hyperbolic space Έf/Γ*. Then M4 := M4/Γ/\ \J. Σ. carries a complete,
smooth Riemannian metric g with finite volume whose sectional curvature
is strictly negative and uniformly bounded from below.

Here the notion of simple normal crossings has been used in the same
way as is customary in algebraic geometry: the only singularities allowed
for U, Σf are simple double points p , where the two sheets intersect per-
pendicularly and their tangent spaces span 7^7(H[4/Γ/).

The end structure of such a manifold M4 can be determined by analyz-
ing narrow distance tubes around the set \Jι:Σi taken away from B4/!^ .
Clearly the intersection of such a tube with M4 is diffeomorphic to W x
(0, e), where W stands for some graph manifold with building blocks
(Σ^{points of intersections}) x Sι. In §3 it will be shown explicitly how
to get each graph manifold W listed in Figure 1 as such a boundary of a
tubular neighborhood of a family of surfaces in some E4/!^ . Thereby we
deduce Theorem 0.1 from Theorem 0.2. Note that the manifold ©—G)
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from Figure 1 (a) is the simplest (orientable) graph manifold which can be
obtained in such a manner.

The obvious restriction for the genus of the building blocks is purely
metrical in nature. An arbitrary graph manifold W consisting of building
blocks Σ x Sι can be obtained by means of the following construction:
embed closed oriented surfaces Σt into S4 with transversal intersections
in such a way that each Σ. has the same genus as the factor Σf. of the
corresponding building block W. and such that Σ intersects Σ̂ . in at
least kjj points, where ktj denotes the multiplicity of the corresponding
edge in the graph. Blowing up superfluous intersection points, one gets
embeddings Σ. «-• Q4 with #(Σz nΣ.) = ktj. Then W is diffeomorphic

to the boundary of a small tubular neighborhood of \J. Σt in Q4 . This
suggests the following definition.

Definition. An (n- l)-manifold W is called a generalized graph man-
ifold iff there is a compact ^-manifold Qn and a finite family (V )f=ι of
compact, immersed, codimension-2 submanifolds in general position such
that W is diffeomorphic to the boundary of a tubular neighborhood of
U, "Vi c Qn The least upper bound on the number of sheets through any
point p0 € UI"^J wiU be called the level of the generalized graph manifold
W.

Here "in general position" means as usual that any k sheets Sχ, , Sk

of \Ji V'. through any given singular point p0 are transversal and that

dim Tp (Γl)=i Sj) = n -2k . Clearly generalized graph manifolds of level

1 are just products with one Sι-factor. Classical 3-dimensional graph
manifolds are generalized graph manifolds of level 2. Notice that the
rotations around the various V{ give rise to locally defined Sι-actions on
W. These actions can actually be chosen in such a way that they commute
near the singularities of |J, ^, Hence a generalized graph manifold W
carries an F-structure in the sense of [5]; this F-structure is nonpure as
soon as the level of W exceeds 1. It appears that in dimensions n > 4
the generalized graph manifolds in the above sense form just the simplest
class of manifolds with a nonpure F-structure.

Using this language we extend Theorem 0.1 as follows.
Theorem 0.3. For every n > 4 and every k < [|] there are infinitely

many generalized graph manifolds Wn~x of level k such that W x (0, oo)
occurs as an end of a complete Riemannian manifold (Mn , g) with finite
volume and sectional curvature K satisfying — 1 < K < 0.

The basic ingredient in the proof of this theorem is the following result
which extends Theorem 0.2 above by means of a general codimension-2
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construction in the sense of M. Gromov and W. Thurston (cf. [12] and [1,
p. 121f]).

Theorem 0.4. Let (V.)f=ι be a finite family of compact, totally geodesi-
cally immersed codimension-2 submanifolds in some compact hyperbolic
space Ή" /T1. Suppose that the various sheets of U, ̂ , intersect pairwise
orthogonally in some set of codimension 4. Then Mn := Mn/Γ\ \J. V. car-
ries a complete, smooth Riemannian metric g with finite volume whose
sectional curvature is strictly negative and uniformly bounded from below.

The new metric g on Mn is obtained by stretching the hyperbolic
metric g0 in certain directions transversal to the codimension-2 subman-
ifolds y.. Explicit formulas for all this will be given in Theorem 1.1 and
throughout § 1, where all the curvature and volume calculations are done.

It is still open whether the above construction also gives metrics with
bounded negative curvature for more general ambient spaces than H" and
CM" or not.

Our next result will exhibit a large class of settings where the hypotheses
of Theorem 0.4 or even those of the more special Theorem 0.2 are satisfied.

Theorem 0.5. Let Ϋ be a torsionfree, normal subgroup of finite index
in some cocompact, discrete group Γ c I so^") = O+(n, 1). Suppose
in addition that Γ contains k commuting rotations pχ, , pk, whose
fixed point sets are codimension-2 hyperbolic subspaces intersecting in some
Ή.n~2k c H " . If at most one of the pt 's has order 2, then the projection
HΛ -> E^/Γ7 maps the subspaces V{ = Fix/?z. onto compact, connected,
totally geodesicaϊly embedded submanifolds TF

i c Ef/Γ' of codimension-
2, which intersect pairwise orthogonally in codimension-4 subsets such that

Recall that in any arithmetic group Γ the congruence subgroups pro-
vide a whole infinite lattice of torsionfree, normal subgroups. So all we
need in order to deduce Theorem 0.3 from Theorems 0.4 and 0.5 is a co-
compact arithmetic group Γ c Iso(Hπ) together with appropriate rotations

Pi > * * * > P[n/2]

Examples of such groups Γ are obtained for all dimensions n from the
quadratic forms

(1) - a dxl + dxΐ + ... + dx2

H9

where a = VD for any fixed square-free positive integer D, or a =
I i ^ 2 y 0 Γ a = 2cos^f. The orthogonal group Γn(a) of each of these
quadratic forms, when taken with coefficients in the ring of integers in
Q(y/d), ( H 1 ^ ) , or Q(cos ψ), resp., is known to be a cocompact arith-
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metic group (cf. [2] and [11]). Moreover, the latter two examples play a
basic role when looking for cocompact arithmetic groups which are gener-
ated by reflections (cf. [4] and [15]). In order to prove Theorem 0.3 it is
sufficient to consider the 90°-rotations p. in the ( 2 / - 1 , 2ϊ) planes, where
I < i < k < [n/2]. These rotations are contained in any group Tn(a) in-
troduced above. By Theorem 0.5 we get manifolds Mn = Έf/Γf\\JiV.,
whose ends are modelled on level k generalized graph manifolds, for
any k < [ | ] . Hence Theorem 0.3 can be deduced from Theorem 0.4
as claimed.

Theorem 0.5 is also useful in the proof of Theorem 0.1, where more
precise statements about the topology of the ends in certain 4-dimensional
settings have been made. This additional piece of accuracy requires the
calculation of a fundamental domain for the cocompact arithmetic group
Γ under consideration. For this reason we choose to work with the Lanner
groups, i.e., those discrete reflection groups Γ c Iso(H4) which act transi-
tively on a suitable simplicial decomposition of H4 . They are arithmetic
and a case-by-case examination (cf. Figure 3 (p. 316) and Proposition 2.1)
exhibits the required rotations p{ and p2 in order to apply Theorem 0.5.

A particularly nice example is attached to the reflection group Γ with
Coxeter diagram:

Here the 4-manifold is the hyperbolic \20-cell space, which arises as the
quotient of H4 by a normal subgroup Γ7 < Γ of index 14400 [8].

As we shall see in §3, the above construction gives two oriented, totally
geodesically embedded surfaces Σ{, Σ 2 of genus 2, each of them invari-
ant under a subgroup of order 20 in Iso(El'7Γ/), which is isomorphic to
Dl0. In particular, the Σz allow automorphisms of order 5. A standard
application of the Hurwitz theorem shows that this already determines the
conformal structure of Σ.. The surfaces intersect orthogonally at precisely
two points. One of these points of intersection can be removed by pass-
ing to a suitable 5-fold covering of B4/!^ . The preimages of the surfaces
Σ. in this covering consists of five components ΣJ., 1 < j < 5, which
intersect as depicted in Figure 2 (next page). This explains Theorem 0.1
not only in the case of Figure l(b) but also in the case of Figure l(a)
and its subgraphs like © — © . Figures l(c) and l(d) are associated with
some further coverings (cf. §3.4), and the proof of Theorem 0.1 is entirely
explicit.
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FIGURE 2

Our results fit nicely into the theory of collapsing Riemannian manifolds
as described in [5]. The hypotheses of Theorem 0.4 imply that Mn carries
an F-structure outside of a compact set. By [5, Chapter 5] Mn carries
a complete metric of finite volume and bounded curvature. In our more
special context we are also able to control the sign of K.

In all our examples, the end or the ends of (Mn, g) come with a fo-
liation by graph manifolds or generalized graph manifolds such that the
second fundamental form and thus the intrinsic sectional curvatures of all
leaves are uniformly bounded. Their volume and injectivity radius tend
to zero. Since, in the terminology of J. Cheeger and M. Gromov, we are
collapsing a nonpure F-structure, the intrinsic diameter of these graph
manifolds must be unbounded (cf. [5, Chapter 3]). In our examples the
diameter grows linearly as a function of the distance to some base point.
"Adjacent components" of the boundary Mn{oo) have Tits distance equal
t o f .

This description of Mn{oo) explains why our approach to Theorem 0.4
differs that much from the standard warping constructions. So it should
not be surprising that our curvature calculations are technically much more
subtle than K. Fujiwara's [10], who has already handled the case where
the V. 's are smoothly embedded, totally geodesic submanifolds without
intersection.

1. Curvature computations

The goal in this section is to prove Theorem 0.4. We shall construct the
complete, strictly negatively curved metric g with finite volume explic-
itly. Our curvature calculations depend on precise information about the
geometry in a neighborhood of the intersecting codimension-2 submani-
folds in Mn/Γf. We shall make use of some exact cancellations, and so it is
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doubtful whether one can replace H^/Γ7 by some manifold with pinched
negative curvature. However, our calculations can be carried over to the
quotients of the complex hyperbolic space CM" , but this is not the subject
of the current paper.

Recall that two subspaces Eχ and E2 of some Euclidean vector space
Rn intersect orthogonally in some /-dimensional subspace iff the intersec-
tion E := Eχ n E2 has dimension / and the subspaces Eχ n E± and
E2ΠE± are orthogonal. We shall say that a family (V?)ieI of embedded,
codimension-2 submanifolds Ft. c I π / Γ ' has normal crossings if and only
if at any point p e V^ΠV'., i Φ j , the tangent spaces TV. and TpV. in-
tersect orthogonally in some (n - 4)-dimensional subspace of Γp(H/2/Γ/).
This definition is extended to families of immersed, codimension-2 sub-
manifolds V. by putting the same orthogonality condition on all self-
intersections.

Theorem 1.1. Let (V^f^ be a finite family ofcompact, totally geodesi-
cally immersed, codimension-2 submanifolds with normal crossings in a
compact, hyperbolic manifold Έf/Γ*. Let ε0 > 0 be so small that the dis-
tance function dist( , U/T .̂) Aαs n o critical points inside the tubes
Uε (Uj ̂ j ) > and let f be a smooth nonnegative function such that

f(r) = 0 forr>ε0,

/V)<0 forr<ε0.

Then the metric g on Mn := H^/Γ^J,- ^/> defined by modifying the hy-
perbolic metric g0 as

(3) g(X, Y) = go(X, Y) + Σ{f o ryf dry{X) drγ(Y),
7

has strictly negative sectional curvature K, provided the sum in {3) is taken
over all locally minimizing geodesies γ to the set (J V , and rγ is the local
distance function defined by γ. For more special functions f the metric g
has the following additional properties:

(i) // f\r). f(r) > -atanh(r). (1 + f{rf cosh"2(r)). (1 + f(r)2) for
some constant a > 0, then the curvature of Mn is bounded in terms of a,
εo,and k := [f] by

(4) - ( 1 + α)(2 + a){\ + kε]f <K<0.

(ii) // /o

ε° f(r) dr = oo, then {Mn , g) is complete.

(iii) // /o

ε° f(r) sinh(r) dr < oo, then \o\(Mn ,g)<oo.
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When picking any ε < ε0, an appropriate smooth approximation / of
the function

ε/r + rjε-2 for r < ε,

i 0 for r > ε

satisfies all the hypotheses in this theorem, including those in (i)-(iii),
provided a = a(ε) is chosen sufficiently large for each e e (0, e 0 ). We
thus get Theorem 0.4 in the introduction as a direct corollary to this more
detailed result.

The new metric g on M can be thought of as the hyperbolic metric g0

stretched into certain directions. The following propositions will prepare
for the proof of Theorem 1.1 by establishing general curvature formulas
for such metric deformations.

Proposition 1.2. Let (Mn, g0) be a Riemannian manifold and let
φ.: Mn -> R, 1 < j < k, be smooth functions. Then the curvature tensor
R of the modified metric

k

(6) g(X,Y):=go(X,Y) + Σ d

on Mn is given by

g(R(X, Y)Z, W) = go(R°(X, Y)Z, W)

(7)

where D and R° denote the covariant derivative and the curvature tensor
of g0 and (mlJ)ij is the inverse of the matrix {δ.. + go(dφi, dφj))ij .

Proof Formula (7) is obtained directly from the Gauss equations for

the embedding of the manifold (Mn , g) as a graph into the product ~Mn+

of (Mn, g0) and a Euclidean factor Rk. This isometric embedding is

given by

: M -> M

where (^ )y=1 denotes the standard basis of Rk . For a tangent vector X

of the manifold Mn , let Ύ := dF(X). By writing ( , ) Ή for the product

metric on Mn , the Gauss equations in their standard form are

g(R(X, Y)Z , W) = (R(X, Ϋ)Z, W)Ή+(h(Ϋ, Z), h(X, W))Έ

-(h(X,Z),h(Ϋ,W))Ή,
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where R is the curvature tensor of ~Mn+ , and h is the second funda-

mental form of Mn in M" + . Note that

(9) (R(X, Ϋ)Z,W)ΰ=go(RO(X, Y)Z, W).

The vectors ϋ. := (-grad^ , et), / = 1, , k, form a basis of the
normal space to Mn . Let wi be the dual basis, i.e., go(Wj, vt) = δij.
Then

k

(10) h(X, Ύ) = Σ > ( X , Ϋ)>Vi)MUi.
i=\

The covariant derivative 2) of ~Mn+ is of course the product of D and
the flat connection on Rk , hence

(11) (h(X, Ϋ),vi)Ή=(-DΎvi,Ϋ)Ή=g0(Dχgmdφi, Y) = D2

χγφr

Now, combining (8)-(l 1), we obtain formula (7) with mιj = go{wi, ΰ; .) .
The latter matrix is the inverse of

hence the proposition, q.e.d.
Let us now return to the curvature calculations required for Theorem

1.1. Outside the tube Uε (U, ̂ , ) c ^ / Γ 7 the metric g defined in (3) is
identical with the hyperbolic metric. The geometry of the tube itself can
be studied by considering the analogous situation in Έf : let ^. c HΛ ,
1 < j < k := [ | ] , be mutually orthogonal, codimension-2 hyperbolic
subspaces through a common point p0 such that dim(^nVj) = n-4 for
/ φ j . We set r. := dist( , Vλ and consider the metric

k

(12) g(X, Y) = go(X, Y) + 'Σt(forj)
2drj(X)drj(Y).

7=1

Clearly, the tube Ue (U,-"̂ ,-) c ^["/Γ7 equipped with the metric g defined

in Theorem 1.1 is covered by the open sets which are isometric to the cor-

responding pieces of the tube Uε (U7 V.) c H " equipped with the metric

g given by (12).
We thus have reduced the curvature calculations for Theorem 1.1 to the

model situation in Έt described above. In order to employ Proposition
1.2, we set φ. := (//) o r.. Notice that

(13) dφj = {forj)drr
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For the sake of brevity we set f. := for., f. := for., thj := tanh or., and
Vj := gradΓy . The Weingarten map of the hypersurface {r. = const} will

be denoted by A. := Dgmάr. = Hessr^, and ζ. :=\\ζj\\~ιζj stands for the
normalized Killing field associated to the rotation about the codimension-2
subspace V.. Introducing the bilinear forms /?J := go( , Vj)go(Vj, •) and

p) := go{-, ζj)gQ(ξj, •), we have

(14) g = go

(15) =thj (go(X, Y)-pVj(X, Y))+(±--thΛ p){X, Y),

and

= fj go(AJX,Y) + /J pv

j(X,Y)

( 1 6 ) = fjthj • go(AjX, Y) - (-/j + thjfj) p]{X, Y)

Under the hypothesis of Theorem 1.1 the symmetric bilinear form D2φ.
has signature (n — 1, 1), and thus it is by no means a priori clear that
the sectional curvature of the new metric g is negative, even without any
restriction on the number k of the intersecting subspaces. All this requires
more detailed computations.

Proposition 1.3. (i) Given any two of the mutually orthogonal codimen-
sion-2 hyperbolic subspaces Vi9 V. c Hn introduced above, the angles be-
tween the initial vectors υ. and Vj of the minimizing geodesies yt and y.
from some point q to these subspaces are given by

(17) go(yi^j) = ̂ -^)'δij + thrthj.

(ii) For the metric g on H/z\|Jy Vj defined in formula (12), the matrix

{mιj)ij=ι introduced in Proposition 1.2 w given by

m" =
(18) 1 m /A1

l+σ l+ffr-th]) \+fj{\-th)y
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where

(19) σ:=

(iii) 77*e curvature tensor of the metric g from (12) cα« 6e expressed as

(20) £(*(., .)•, •) = Y^r ρ®Q - £ > , (pj +pJ)®0>; + />J),

where the coefficients c. and the symmetric bilinear form ρ are given by

CJ :=

l+ff(l-thj)

and

1 + J ? ( 1 ί A j } ^^^^
Note that the wedge product of the symmetric bilinear forms is defined

by

a®β(X, Y,Z, W):= - a®β(X Λ Y, Z Λ W)

(23) :=a(Y,Z)β(X,W)-a(X,Z)β(Y,W).

Formula (20) reveals a nice Wocfc structure for the curvature operator
of the metric g from (12). For instance, a coefficient of the curvature
tensor clearly vanishes when it is defined by inserting any of the vectors
ζj, 1 < j < k, into precisely one slot of g(R( , •)" > #) This fact can
also be seen directly by means of a parity argument: for any j there is
a reflection which fixes the point q under consideration and maps ξ. to

There is no such obvious argument for the sign of the sectional curva-
ture of the metric g nevertheless, its curvature is strictly negative. In
Proposition 1.4 below we shall deduce this fact from formula (20).

Proof (i) The v. are unit vectors by their very definition, i.e., we want
to compute the cosine of the angle between vt and v., whenever / Φ j .
The two geodesies γ. and γ. determine a totally geodesic hyperbolic plane

H2 c Hn which intersects the two codimension-2 subspaces V. and V.
perpendicularly. Thus we are in fact considering a hyperbolic quadrilateral
with three 90° angles, and (17) is precisely the well-known formula from
planar hyperbolic geometry for the cosine of the fourth angle in such a
quadrilateral.
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(ii) In view of formula (13) one gets that go(dφi, dφj) = fifj'g0{vi, v.).
Using the expression for go(υi9 vj) from (17), the matrix m introduced
in Proposition 1.2 can be described as

(24) m = (Id+D + Γ Γ t Γ Γ \

where D denotes the diagonal matrix with entries ff{\- thf), and T

stands for the column vector {f. ίλ,-)^ . Now the summation formula

for the geometric series yields

m = (Id+{ld+D)~lTTtτ)~l (Id+Z))"1

oo

= Σ(-l)μ - ((Id+D)~lTTtτ)μ (Id+Z))"1

μ=0

(25)
- ( I d +D) ' - ( I d + 2 ) ) lT-^2(-σ)μ'Ttτ(ld+D) {

μ=0

1 + σ

where the scalar σ denotes the inner product TXτ(Id+DyιT. The claim
follows upon evaluating σ in terms of the f. and th..

(iii) By substituting the expression (16) for the Hessian D2<Pj into for-

mula (7), the curvature tensor of the metric g turns out to be

g(R( , •)•,•)=( - 1 +

i x J

(26)

+ Σ ( Σ m'Jfj*j) • [uί - Uhi) (go®p> + P!®8O

Now we can use formula (18), which has been established in the previous
part of the proposition, to evaluate the various coefficients in the expres-
sion (26) as follows:
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- 1

( 2 8 )

The next two coefficients are only calculated for iφ j :

\+ή{\-th))

T h e last coefficient, however, will b e n e e d e d for general p a i r s (i, j) again:

(32)

I I J J

Substituting (27)-(32) into (26), collecting terms appropriately, and notic-

ing that all the bilinear forms pv. and p*j have rank 1, which implies

that all the products pv®pv and p ®P: vanish, we get formula (20) and
thereby finish the proof of Proposition 1.3.

Proposition 1.4. (i) // f(r) > 0 and /(r) < 0, then the metric g on
Mn = H"\ U. V defined by (12) has strictly negative sectional curvature.

(ii) If, moreover,

f{r)-f{r) > -fltanh(r) (1 +/(r)2cosh"2(r)). (1 +/(r)2)

for some constant a > 0, then the sectional curvature K of the metric g
can be bounded in terms of a, e0, and k = [f ] :
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Proof, (i) Recall that the bilinear forms pv. and pξ. are represented

with respect to the metric gQ by means of the orthogonal projectors Pj: X

-• go(X, Vj)Vj and PJ: X -> go(X, ζβξj. Since the various vectors ξ.
are mutually orthogonal, it is evident that

The coefficients of pj in (22) are nonnegative by hypothesis, and hence
the bilinear form ρ defined by (22) is positive definite. It follows that

(35) - — - ρ @ ρ < 0 onΛ 2 ΓJIf\
1 + σ q

All the remaining terms in (20) have coefficients -c. < 0 as pv. +p* > 0,

all of them are negative semidefinite on A2TqM
n , hence the claim.

Actually our argument even shows that the curvature operator of the
new metric g is negative definite.

(ii) By hypothesis, we have

Combining this estimate with formula (14) and inequality (34), we get the
following bounds:

(-f + fth^fthj v

<37) <«0 + E «
7

Here we have made use of the bound ε0 for the support of / and
of the upper bound k = [ | ] for the number of orthogonal hyperbolic
codimension-2 subspaces V. in Ή" through one point pQ . As σ > 0, we
conclude that

(38) ρ©ρ < (1 + a + akεlf g($g.
1 + o υ

In order to estimate the sum of the remaining terms in (20) as well, observe
that, by hypothesis, their coefficients satisfy the inequality

(39) o < c . < ( i 4 - ^ ) ( i - ^ 2 ) ( i



GRAPH MANIFOLDS 313

All k reflections Id -2FJ: TqM
n -• TqM

n are isometric with respect to
both metrics g0 and g. Moreover, they preserve

j

We shall view this expression as a symmetric bilinear form on

A2TqM
n . The eigenvectors for all its nonzero eigenvalues are of the form

XAξt simply because all its eigenspaces are invariant under the involutions

ld-2Pj . Using (39), one estimates

\<^,X)
(40) j '

= cx -p^X, X) < fl(l +/?) .pv

t(X9 X) < g(X, X).

Hence

and the claim follows upon combining (38) and (41). q.e.d.
Using only the completeness of the hyperbolic metric g 0, which is due

to our assumptions, the next statement will be evident from inspecting
formulas (3) and (12) for the new metric g.

Proposition 1.5. If f(r) > 0 and β° f(r) dr = oo, then both the spaces

(Ήn/Γf\\JiVi, g) and (Mn\\JjVj9 g) are complete.
It is a consequence of the arguments given when setting things up for

Proposition 1.3 that our next result will actually finish the proof of Theo-
rem 1.1.

Proposition 1.6. (i) The Lebesgue measures μσ and μQ associated to
©0 °

the hyperbolic metric g0 and the new metric g respectively satisfy:

/ k \ 1/2

(42) ^ = ( 1 + Σ Σ VΛ•/?" '/?) mμ*>>
^ j=l jι< <ji

where s. . := det(gJυ. , υ. ))' ; y = 1 . In particular, s,.... < 1, and hence
J\'Ji Jμ Jv " ' J\ Ji

k

(ii) ///(r) > 0 and /o

ε° f{r) sinh(r) dr<oo, then \o\g{W\\Jj Vj)<oo

for any bounded, measurable subset W c (H n , gQ).
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ff PjΫ/2
Proof, (i) By formula (14) we get μg = det(Id + Σj ff PjΫ/2' t*go

 J t

remains to evaluate the determinant. For short we set ω. := gQ(Vj, •) and

ω. := f2ω.. Now it is straightforward to calculate that

Γ * / ' M 1 / 2

1+Σ Σ d e t ( Σ ^ ώ J -
L /=1 y <•••</ Xμ=\ / J

I 1/2

(44) _ _
^ = 1

k

The claim follows upon identifying each determinant det(Σ' λ υ. <g> ω. )
A* Jμ Jμ

with the /-dimensional Gram determinant s...... = det(gn(ι;, , v. ))' .. , ,
J\'"Ji ^ ./« ^ i/ r*1 i *^ *•

which is always < 1.

(ii) Because of inequality (43), all we need to show is that

fwT\kj=ι(l + ffΫ^vol converges. When n is odd, let us introduce in

addition the distance function r0 := dist^ ( , VQ) to the 2/c-dimensional,

totally geodesic, hyperbolic subspace Vo := expp (φk

=ι(Tp Vj)^) and its

^-gradient field v0 := gradr0 . We obtain the following proper maps:

ψ •= (r.)k.λ: ( H π , # n ) -+ Rk for n = 2k,

Ψn:=(rj)k

j=0:(Mn,g0)->Rk+{ foτn = 2k+l.

The set W is bounded with respect to the hyperbolic metric # 0 and thus
is contained in some "polydisc"

(46) hι'"b* ' " β

 n

 Vj < j ' ~ J "
^ ...̂  :== I/7 € HI I r. < b., 0 < j < k} for n = 2k + 1.

The integral over such a larger set can be estimated by using the coarea
formula. We show the computation for the case where n = 2k + 1 the
other case is similar.

For any point f = (fj)k
j=0 e Q := (0, b0) x x (0, bk) the fiber ψ~\f)

is a torus T (f). Let gf denote the restriction of the metric g0 to this
torus. Then

k

(47) vol(Γ*(r), gf) = (2πf . J ] sinhr.,
7 = 1
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and the coarea formula in its standard form becomes:

h(p)-\\Ak+l(dψ{p)\\dμg(p)

( 4 8 )

where h: Z^...^\U/ Vj -• R may be any nonnegative, locally Lebesgue

integrable function. By the standard compactness argument there is a con-
s t a n t C V A > ° s u c h t h a t C V Λ - HΛ*+W|P)II f0Γ

Combining this inequality with formulas (43), (47), and (48), we estimate

(49) < V Λ / [
J z \ U V ιj=\

j=\

By hypothesis, each factor of the last product of (49) is bounded. There-
fore all the polydiscs and hence also all g0-bounded, measurable sets W
have finite volume with respect to the new metric g as well, despite the
fact that g > g0 everywhere.

2. Group theoretic arguments

The main purpose of this section is to prove Theorem 0.5 and to ex-
plain how it can be applied to all the Lanner groups for the case of di-
mension 4.

Proof of Theorem 0.5. Since Γ7 is supposed to be torsionfree, its action
on Mn is fixed point free, and the quotient space Ήn/Γ/ is a manifold.
Note that H^/Γ7 is compact as required in Theorem 0.4 simply because
by assumption Hn/Γ is compact and [Γ : Γ'] < oo. It is also clear that
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the projection pf: HΛ —• H^/Γ7 maps the codimension-2 subspaces Vt =
Fix p. c Έf, 1 < / < k, onto connected, totally geodesically immersed
submanifolds Ύ..

An additional argument is required in order to guarantee that the V.
are actually compact and embedded. The basic ingredient into this is
the hypothesis that Γ' < Γ is normal, so that Γ/Γ7 acts as a group of
isometrieson Ήn/Γ/ by means of covering transformations. In particular,
the cosets ~p. of p( act isometrically on i f/Γ ' . Hence their fixed point
sets Fix 7̂ . are compact, totally geodesically embedded submanifolds in
Hπ/Γ/ which may—and in general do—consist of several components.
Clearly V. = pr(Fix/?z) is one component of Fix/*; for each i.

Note that Π/Li J7,- contains the image pf(Π/Li V.) and hence is not
empty. So it remains to show that the Vi can only have normal crossings.

This is in fact true at any point p e Πf=i Fiχ7>/ > a s c a n ^ e s e e n ^om the
Jordan decomposition of the commuting rotations dΓp^-. q.e.d.

It has already been explained in the introduction how to apply this
theorem to certain cocompact arithmetic groups and to prove Theorem
0.3 as the final result. The next goal is to handle the discrete, cocompact
reflection groups, which act on El in such a way that a simplex can be
chosen as the fundamental domain. There are precisely five such groups
(cf. [3], [14], [15]), the so-called Lanner groups, which are classified in
terms of their Coxeter diagrams listed in Figure 3.

In the cases (a)-(c), the fundamental domain is an orthoscheme rather
than just a simplex. Anyway, all five groups in question give rise to nice

(a)

(b)

(e) •φ.
FIGURE 3
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tessalations of H 4 . Inspecting their Coxeter matrices, all the Lanner
groups are moreover recognized to be arithmetic, and again we can pick
torsionfree, normal subgroups of finite index, making use of the congru-
ence subgroups.

In Proposition 2.1 below we shall exhibit appropriate rotations px and
p2 for all five Lanner groups, and so in principle each of them is useful
in our context. It is example (c) which, when worked out in more detail
in the next section, provides the various families of surfaces in compact
hyperbolic 4-manifolds necessary to deduce Theorem 0.1 from Theorem
0.2, as announced in the introduction.

Proposition 2.1. Each of the five Lanner groups Γ on H4 contains two
commuting rotations px and p2 such that Σχ = Fixpι and Σ2 = Fixp2

are hyperbolic subspaces of codimension 2 in H 4 , Fixpχ Π Fixp2 consists
of a single point, and pχ has order > 2.

Proof (a)-(d): Set px := rχr2 and p2 := r5r4, and the claimed prop-
erties follow directly, since in either case the diagram implies that both
the hyperplane reflections rχ and r2 commute with both the reflections
r4 and r5.

(e) In this case the rotations px and p2 have to be constructed dif-
ferently. We shall look for them in the subgroup Γ 1 3 4 5 = (rχ, r 3, r4, r5)
this is the stabilizer of the vertex v2 of the fundamental simplex, and it
is itself a Coxeter group with diagram = — — . Moreover, it is
the automorphism group of the standard 4-dimensional cube in Tv H 4 .
Writing this as the cartesian product of two squares, we find a subgroup
of rotations in Γ 1 3 4 5 , which is isomorphic to Z4 x Z4 . Evidently, pχ and
p2 can be taken as the generators of this subgroup.

3. Surfaces in the hyperbolic 120-cell space

This hyperbolic 4-manifold has been constructed by M. W. Davis in
1985 [8]. The construction is based on the Coxeter group Γ associated to
the diagram

r2

This group induces a tesselation of H4 by hyperbolic 120-cells with dihe-
dral angles equal to ψ each of these 120-cells consists of 14400 funda-
mental orthoschemes. This tesselation has already been known to Coxeter
[6], [7]. The point in Davis' paper was to exhibit a torsionfree subgroup
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Γ7 < Γ which has precisely such a hyperbolic 120-cell as its fundamental
domain. So one gets the hyperbolic 120-cell space as the quotient Έ^/Γ* .

Important for our purposes is that Γ7 comes as a normal subgroup in
Γ so that Theorem 0.5 can be applied with pχ = rχr2 and p2 = r5r4 . This
yields two connected, totally geodesically embedded surfaces Σ{, Σ 2 c
H /Γ7 with simple normal crossings.

In this section the main purpose is to determine the genus, the conformal
type, and the intersection patter of Σ{ and Σ 2 . In order to obtain Theorem
0.1 for all the graph manifolds listed in Figure 1, we shall also be interested
in the corresponding data in certain finite covering spaces of E4/!^ . For
this aim we need a detailed description of the hyperbolic 120-cell space.
All the required information is collected in §§3.1-3.3, where we recover the
hyperbolic 4-manifold in question by means of an arithmetic construction,
which does not seem to be in the literature so far.

3.1. The standard Coxeter model for Γ. The diagram = — — =
of Γ is defined to be a brief form for the Coxeter matrix

/ 2 - τ
- τ 2 - 1

(50) g = (g(ei,ej))5

i j=ι= - 1 2 - 1
- 1 2 - τ

V - τ 2 ,

where τ = 2 cos f = \{\ + yβ), i.e., τ is a root of τ 2 - τ - 1. This
matrix defines a nondegenerate, symmetric bilinear form g on the free
Z[τ]-module E generated by e{, , e5. The extension of g to ER =
E ®Z[T] E has signature (4, 1), and so the reflections

T^-'"
 ι s ' 'SJ

act on the hyperbolic 4-space H4 = {[v] e ΨER \ g(v, v) < 0}. The
Coxeter group Γ := ( η , ••• , r5) is clearly a subgroup of O(E, g) c
Gl(5, Z[τ]) and thus arithmetic. Note that Z[τ] is the ring of integral
elements in Q( \/5). Set
(52)

vχ := ex + 2(1 + 2τ)e2 + (4 + 7τ)e3 + 2(3 + 5τ)e4 + (5 + 8τ)e5,

v2:= τe{+ 2e2+ (2 + τ)e 3 + 2(1 + τ)e4 + (1 +2τ)e5,

v3:=(l + 2τ)eι+ 2( l+τ)e 2 + (2 + τ)e3+ 2(1 +τ)e4 + (1 + 2τ)e5,

v 4 : = ( l + 2 τ ) έ ? , + 2 ( l + τ ) e 2 + (2 + τ)<?3+ 2e4 + τe5,

v5 := (5 + 8τ)<?, + 2(3 + 5τ)e2 + (4 + 7τ)e3 + 2( 1 + 2 φ 4 + *>5.
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It is straightforward to verify that g(υ.9 e.) = 0 for i φ j and that
g(vt, Vj) < 0 for all pairs (/, j). So the points [υ{], , [υ5] are the
vertices of the simplex:

(53) = {[v]erER\g(v,ej)-g(v9v5)>09 I < j < 5} c 3

Actually, this simplex is an orthoscheme and is the fundamental domain
for the action of Γ o n I 4 .

Evidently, the subgroup Γ 1 2 3 4 = (r{, r2, r3, r4) is the stabilizer in Γ of
the vertex [υ5] of P. Γ 1 2 3 4 is a spherical Coxeter group; its diagram is
• = — — , and so the star of [v5], i.e., the set Γ 1 2 3 4 P, is recognized as
a hyperbolic 120-cell. It has dihedral angles ^ , as we have deleted a triple
line in the diagram of Γ when passing to Γ 1 2 3 4 . M is tesselated into such
hyperbolic 120-cells. The dual tesselation of H4 also consists of hyperbolic
120-cells; this time their centers are the points Γ {[υ{]} . The reason for
this self-duality is the symmetry of the diagram = — — = of Γ,
which can be expressed in a more concrete way in terms of the involution
ϋe O(E, g)\Γ given by

(54)

Later on, we shall also make use of the elements ε1 2 3 and ε3 4 5 given by

/ - I

(55) ε i23 ~

/ I

(56) ε345 ~

- 1

0
1

2 +

- 1

τ
2(1 +τ)
1 + 2τ

l + 2 τ
2(1+τ)

2 + τ
1
0

- 1
- 1

They act as - Id on span{^j, e2, e3} and as + Id on its orthogonal com-
plement, respectively as - I d on span{e3, e4, e5} and as +Id on the
orthogonal complement. Both elements ε1 2 3 and ε3 4 5 lie in Γ and not
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only in O(E, g). More precisely, ε1 2 3 generates the center of Γ 1 2 3 :=
(rj, r2, r3) the explanation is that Γ 1 2 3 (its Coxeter graph is = —•)
is the symmetry group of the icosahedron, whose center is known to be
generated by the antipodal map. In fact, Γl23/Center = A5. Similarly,
ε3 4 5 generates the center of Γ 3 4 5 := (r3, r4, r 5 ) .

There is also an antipodal map ε 1 2 3 4 e Γ 1 2 3 4 . On H4 this element acts
as the reflection at the point [υ5] it is given by the matrix

(57) β 1 2 3 4 =

- 1 4(3 + 5τ)
- 1 2(4 + 7τ)

- 1 4(1 +2τ)

1 J

3.2. Natural quotient maps. Mapping τ to j ( l + >/5), the Gaus-
sian integers Z[τ] can be considered as a subring of Z5[Λ/5] , where Z5

stands for the 5-adic integers. We are going to employ the valuation
v5\ Z5[\/5] —> M+, z ι-> 5~ord5(z) and the corresponding ring homomor-
phism Φ: Z5[Λ/5] -^ F 5 onto the residue field. Note that Φ(τ) = 3. The
following is an analogue to Minkowski's theorem:

Proposition 3.1. The kernels of the induced homomorphisms

(58) Φn: Gl(/i, Z 5h/5]) -> Gl(n, F 5 ) , i e N ,

are torsionfree.
Proof. Suppose, conversely, that there exists some torsion element x e

kerΦw . Without loss of generality, we may assume that x / 1, but xp = 1
for some prime number p . Clearly x can be written in the form

(59) x = 1 + 5* a with { e \ . N, ae gl(n, Z5[Λ/5]) .

Increasing ξ if necessary, we may also assume that

(60) us(a) := max{i/5(αl7) | 1 < ι, 7 < Λ} = 1.

Case p Φ 5 : Calculating modulo 52<^, we get 1 = xp = 1 •+• p 5̂  a, a
formula which contradicts condition (60).

Case p = 5: Here, taking into account that 55ξ = 0 mod52<^+1 by
(59), the full binomial formula yields a similar contradiction:

2α2 + 5*+ 1 2α3 + 5 4 ί + 1 V + 5* α5

= 1 + 5 ί + 1 a mod 5 2 ί + 1 . q.e.d.
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Let us now restrict Φ 5 to the image of the inclusion O(E, g) «->
O(EZ [ v ^ j , g) c Gl(/sz [ v^j). This defines a homomoφhism

(61) p : 0 ( E , * ) - > G l ( ^ s ) ,

whose image is of course a subgroup of O(E¥ , g) Π ({±1} x Sl(E¥ )),

where g is the induced bilinear form on Eγ .

Corollary 3.2. (i) keτ{φ: O{E, g) -> G1(£F )) am/ /Aws a&o Γ" :=

Γnker$!> are torsionfree, normal subgroups of finite index in O(E, g) and

Γ, respectively.
(ii) ί? maps the stabilizers Γv,mjmmm5 of the vertices [υ ] injectively onto

their images Γ γ . j _ 5 c 0(i?F , # ) .

The point behind the second claim is that the stabilizers in question are

pure torsion groups, and so this claim also follows directly from Proposi-

tion 3.1. The induced bilinear form g on the quotient E¥ , however, is

degenerate. More precisely, we have (cf. formulas (62) and (63) below)

Lemma 3.3. rad(g) = F 5 ϋ5, where ϋs - φ(v5) denotes the image of

the vertex v5 under the mod(y/5)-reduction homomorphism.

So it is natural to consider the quotient map ψ: Eψ —• E¥ / md(g).

For the sake of brevity, we set Έ := E¥ /rad(g) the induced bilinear

form on the quotient space Έ will be denoted by ~g. In the same spirit,

we set Γ := φ(Γ) and Γ := ^(Γ) = ψ o φ(Γ) more generally, a double

overbar will always indicate objects related to E¥ and a single overbar

will indicate corresponding objects for E.
For most subsequent calculations concerning the homomorphisms φ

and π := ψ o φ , it will be convenient to work with respect to the basis

bι:=2 eι+4 e2 + 0 + e4+4 e5,

b2:=4>e{+ e2 + 0 +4>e4 +2-e5,

(62) b3 := 3 e{ + 2 e2 + 0 + 2 e4 + 3 e5,

b4:= 0 + 0 -f £>3+ 0 + 0,

6 5 : = 4 β 1 + i 2 + 0 + 4 ^ 4 -h ey

With respect to this basis, the bilinear form g, the reflections ~rχ, , r 5 ,

and the ^ndomorphisms ϋ, ε 1 2 3 , ε 3 4 5 , and ε 1 2 3 4 are represented by the
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matrices:

=B
r2

(63)

=B

ε345

/2
2

0 1
1 2

V '

/4 1
1 0

2 1 4
1

2 0 0 4 :

/I 0
4 1
2 1 4

1

) 3 0 1 \J

/0 1 \
1 0

1
1

VO 0 0 0 A)
/I λ

4
4

4
Vθ 2 4 0 1

=5
r, =

/ 4

1
1

=B
r

=B

0 0 0 \J

(\ \
1

1
4 4

VO 0 0 0 \)
(\

4
1

1
VO 2 0 0 \)

/4
1

4
4

3 0 1 0 \)

=B

ε 1234

4 1 0 1

In particular, the proof of Lemma 3.3 is a mere inspection of the matrix

gB . It is also worthwhile noticing that bs = v59 and hence, with respect
to this basis, the homomorphism ψ is given by passing to the upper left
4 x 4 submatrix. Later in §3.4, where we calculate the properties of the

surfaces Σ{ and Σ 2 with respect to coverings, the basis bχ, , b5 will
turn out to have some further nice properties.

Let us now proceed with
Proposition 3.4. (i) The homomorphism π — ψoφ\ O(E, g) —• O(E, g)

maps the symmetry group Γ 1 2 3 4 of the 120-cell isomorphically onto its

image Γ 1 2 3 4 . _ ^

(ii) In fact Γ 1 2 3 4 = Γ, and this is the index-2 subgroup of O(E, ~g) gen-

erated by the reflections at the vectors v e E with ~g{v, v) = 2 (quadratic
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nonresidues). Note that O(E, ~g) = O+(4, F 5 ), where " + " indicates the

standard quadratic form on F 4 .

(iii) The homomorphism ζ := (π,Γ ) - 1 oπ,Γ: Γ —• Γ 1 2 3 4 is a left inverse

to the embedding Γ 1 2 3 4 «-• Γ, and as such it is characterized by the identity

( 6 4 ) C(^5) = ε i 2 3

where ε1 2 3 and ε 1 2 3 4 are the antipodal maps of the dodecahedron and the

120-cell, respectively (cf formulas (55) and (57)).

(iv) ζ is unique up to twisting with an (εn34)-valued character. More

concretely, the only other left inverse to the embedding Γ 1 2 3 4 *-» Γ is the

homomorphism ζ: Γ —• Γ 1 2 3 4 given by ζ(r5) = ε 1 2 3 .

Proof (i) Clearly Γ 1 2 3 4 is itself a discrete reflection group; it is char-

acterized by the Coxeter diagram = — — , and its standard model

is a group acting on the Z[τ]-submodule £ ( 4 ) = span{^ , , e4} c E,

which is of course equipped with the metric g ( 4 ) = g.^w^w . It is the

group Γ(4) c O(E{4), # ( 4 )) generated by the reflections

The identification with Γ 1 2 3 4 is done by means of the isomorphism

'• t +r., 1 < / < 4 .

Notice that the composition E^ ^ E - ^ Ev --^ E maps e. to

~e. = ^ .+rad(g), 1 < j < 4, and therefore it coincides with the mod(\/5) -

reduction homomorphism φ^: £ ( 4 ) -> £"^4), up to the canonical identifi-

cation of E^4) and Έ by means of ^ 4 ) «-> ^ - ^ £ , of course. So there

is a commutative diagram:

(66) 4 _ U
Γ 1 2 3 4 C Γ ^ Γ ^ Γ

As a matter of fact # ( 4 ) is positive definite, and Γ(4) and 0{E{4), ^ ( 4 ))
are finite groups. Using Proposition 3.1 in the same way as in Corollary
3.2(ii), we therefore see that φ{4): O(E{4), # ( 4 )) -> O(E, J) is injective,
and by the above diagram (ψoφ),Γ must be injective as well.
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(ii) Looking at the matrices (63), we see that det~gB = 1, i.e., d e t g e
( F * ) 2 , and therefore (E, ~g) is isomorphic to F 4 equipped with the stan-
dard quadratic form. This identifies the orthogonal group in question
with 0 + ( 4 F 5 ) , a group of order 2 x 4 x 30 x 120 = 28800. Note that
| Γ 1 2 3 4 | = 14400 and that Γ is generated by the reflections rχ, ••• 9f5

at the vectors e{, , e5 e Έ with ~g(ei, e ) = 2 for 1 < / < 5 .
Now, from the general theory of Chevalley groups it can be read off that
[O(E, g):T] = 2, hence Γ 1 2 3 4 = Γ c O(Έ, g).

In this particular case, however, the results also follows from an easy ex-
plicit calculation based on the character of χ: O(E, ~g) -» O(E, #)/Γ 1 2 3 4 =
Z/2Z evidently χ(r.) = 1 for 1 < i < 4, and moreover

(67) χ(r5) = χ(r4). *(r 5) z ( ( γ 5 ) 5 ) = (*(r 4r 5)) 6 = 1.

(iii) In view of (i) and (ii), (π,Γ ) - 1 o π ( Γ is a well-defined homomor-
phism and, in fact, is a left inverse to the embedding Γ 1 2 3 4 -̂> Γ. As
such, it is determined by the image of r 5 . Formula (64) is obtained by
comparing the upper left 4 x 4 blocks in the matrices given in (63).

(iv) By (i) it is equivalent to classify all homomorphisms ζ: Γ -* Γ 1 2 3 4

such that Cir = 7C\r Such a homomorphism is evidently determined
I 1 1234 I 1 1234

by its image ζ(r5). This element must be an involution which commutes
with rl9r29r3

m

9 in particular, it must map all three subspaces F 5 ^ j , F 5 e2 ,
F 5 e3 into themselves. Using the bilinear form ~g, we see that either ζ(r5)
or ε 1 2 3 4 C(r5) = -~ζ(r5) acts as the identity on span{^j, e2, e3} . There
are only two possibilities for such an element: the identity map Id^r, and
the reflection ε 1 2 3 e1 234 (cf. (64)). It remains to rule out the case where
ζ(r5) e {Id]F, ε 1 2 3 4 } . The latter are central elements in O(E9~g), and
therefore we obtain

(68) r4 = r5

4 = ( V C ^ ) ) 5 ^ ) = C{(r4r5)
5Π(r5) = ζ(r5) e {Id¥, ε1 2 3 4},

contradicting the fact that r4 does not lie in the center of Γ 1 2 3 4 .
Remark. The reflection r5 fixes precisely one face of the hyperbolic

120-cell. The map ε 1 2 3 4 fixes the line through the center of this particular
dodecahedron and the center of the 120-cell, acting as - Id on the normal
space of this line. Hence:

(i) r5 ε 1 2 3 has a fixed point in H 4 , the center of the dodecahedron
mentioned above, and

(ii) 5̂ £i23 *εi234 is a transvection on HI which identifies two opposite
dodecahedral faces of the hyperbolic 120-cell (cf. [8]).
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3.3. The hyperbolic 120-cell space and its 625-fold covering. In this sub-
section we are going to explain how to recover in our setup the hyperbolic
120-cell space constructed by Davis.

Theorem 3.5. (i) Γ7 = Γ n k e r π is torsionfree, and so Ή4/!^ is the
oriented, compact, hyperbolic 4-manifold obtained by gluing opposite faces
of the hyperbolic 120-cell with dihedral angles ψ bymeansoftransvections.

(ii) Γ7 < Γ is the unique, torsionfree, normal subgroup which acts on

H4 with the hyperbolic 120-cell as its fundamental domain. In particular,

H4/Γ7 must be the hyperbolic 4-manifold constructed by Davis.

(iii) The Euler characteristic χ{Έ^/T1) is 26. In fact, E4/? comes
with a cell decomposition into one vertex, 60 edges, 144 regular 5-gons, 60
dodecahedra, and one cell of dimension 4 (the hyperbolic 120-cell).

(iv) ψ: H4/Γ" -> E^/Γ7 is a normal covering of degree 625 with deck

transformation group Y1/Γ77 = (F 4 , + ) .

Remark. Evidently, Γ = Γ/Γ7 acts isometrically on H^/Γ7 . It can be
characterized as the group of those isometries of H 4/]" 7, which preserve
the cell decomposition from 3.5(iii). However, even the underlying tri-
angulation into 14400 orthoschemes is preserved by a bigger group; the
involution ϋ e O(E, g) defined in (54) induces an isometry of E^/Γ7

which maps the fundamental orthoscheme described in (53) into itself,
switching vertices. This is clear by the following group theoretic consider-
ations: obviously, ϋ lies in the normalizer Noi^E j(Γ), and so (d) Γ c

O+(E, g) = {γ e O(E, g) I g(γ υ5, v5) < 0} is an extension of degree 2

of Γ, which acts faithfully on H4 . By Proposition 3.4 and formula (63)

π maps (ϋ) Γ onto ϋ Γ = O(E, J), and hence ker π Π ((ϋ) Γ) = Γ7.

Altogether:

((#) Γ)/Γ is the group of those isometries of E^/Γ7 which preserve

the triangulation into 14400 orthoschemes. As a group, it is isomorphic to

O+(4; F5) and thus it is an index-2 extension of Γ/Γ7. In fact (ϋ) Γ =

O+(E,g).
Proof of Theorem 3.5. (i) and (ii): Let us begin with the uniqueness

statement claimed in (ii). Observe that for any torsionfree, normal sub-
group Γ7 <Γ which acts on H4 with the hyperbolic 120-cell Γ 1 2 3 4 P as
its fundamental domain, we have the following split exact sequence:

1 -> Γ7 -> Γ -> Γ/Γ7 -+ 1
(69) ΐ Z

1 1234

Thus Γ' can be considered as the kernel of a left inverse to the embedding
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Γ 1 2 3 4 <-> Γ, and by Proposition 3.4(iv) there are only two possibilities:

(i) Γ' = ker£ and (ii) Γ'

As explained in the remark below the proof of Proposition 3.4, kerζ is
not torsionfree, i.e., the quotient H4/ker£ is not a manifold.

As a result the only candidate for a torsionfree, normal subgroup Γ7 < Γ
which acts on M4 with the required fundamental domain is the group ker ζ
from Proposition 3.4. But such a normal subgroup or more precisely such
a homomorphism ζ: Γ —• Γ 1 2 3 4 is actually the piece of data which Davis
constructs in his paper, and so we can refer to his proof that ker ζ is
torsionfree and read off the existence of a hyperbolic 120-cell space as
described in (i) from Davis' paper. All the properties mentioned in part
(i) of the theorem also follow directly; we can refer to Davis' paper or to
our exposition in the previous sections, in particular to Proposition 3.4
and the remark below.

For the sake of completeness, let us recall that the basic idea in proving
Γ7 to be torsionfree is to show that

(70) Γ7 n γ IY......5 γ~l = 1 Vy e Γ, VI < j < 5.

This suffices, since Γ7 c O+(E, g) acts faithfully on H 4 , so that the tor-
sion elements have fixed points on the walls of the associated triangulation
of H4 . Since Γ7 < Γ is normal, it is even enough to show that

(71) Γ/nΓ1.,. j...5 = 1 for 1 <j<5.

The case of Γ 1 2 3 4 and, by symmetry, also the case of Γ 2 3 4 5 = ^•Γ1234 d" 1

have been handled in Proposition 3.4(i).

The remaining three cases are also easy to handle in our setup. By

Corollary 3.2(ii) it is of course sufficient to show that ψ maps the three

subgroups Γ 1 2 3 5 , Γ 1 2 4 5 , and Γ 1 3 4 5 = ϋ Γ 1 2 3 5 ϋ~ι injectively onto their

respective images. Using part (iv), which will be established independently

below, a possible kernel of ψ | Γ 1 2 3 5 must lie in any 5-Sylow subgroup of

Γ 1 2 3 5 = Γ 1 2 3 x Z/2Z, and hence in Γ 1 2 3 c Γ 1 2 3 4 . This reduces the case

of Γ 1 2 3 5 and similarly that of Γ 1 3 4 5 to the two a priori solved cases. The

same idea works for Γ 1 2 4 5 it has a unique 5-Sylow subgroup, the group
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(Z/5Z) generated by

(72)
=B =B =B

and

(73)
=B =B =£

P l = r S - r4

/I 4
1 0

2 1 4
1

V4 0 0 2 \)

/I 0
1 4
2 1 4

1
10 1 0 3 \)

On this subgroup the homomorphism ψ, which is given by restricting to
the upper left 4 x 4 submatrices, is clearly injective.

(iii) The value of the Euler characteristic #(H4/Γ/) is a direct conse-
quence of the data of the cell decomposition. Such a cell decomposition in
turn follows directly from the construction. As far as the counting is con-
cerned, notice that the /^-dimensional cells correspond bijectively to the
points in the orbits of the vertices [v5_k] of the fundamental orthoscheme
P under Γ, 0 < k < 4, and

(74)
14400

= 60,

10-10

(iv) Clearly N := {γ = Id+ϋ 5 <8> α | a e Λ 1 ^ such that a(v5) = 0} is

a subgroup in ker ^ . Another obvious subgroup of ker ψ in Fj which is

embedded into O(Eγ , g) is

(75) ae¥*5}.

It is easy to see that in fact ker^ = A x N. However, the image

φ{O(E, g)) is smaller than ker^, since dety must be ±1 for any γ e

φ{O(E, g)). The intersection of this image with Γ = ^(Γ) is even smaller:

(76) Γnkeryc./V,

simply because the generators 7,, , r5 of Γ fix ϋ 5 (cf. formulas (63)).
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Of course, N is the group of order 625 isomorphic to (F 5 , +) men-
tioned in the theorem. Thus we just need to establish equality in (76). To
this end we compute:

/4

(77)
=B =B

σ, := r-
=B

ε345

\2
/4

(78)
=B
σ2 = r4

-B eB

123

2 4

4
2 4

V3 3 1

4
0
1
4
1
0
4
1
4
4 1

and therefore the elements represented by the matrices
(79)

=B

Pi

/ I

/ I

1

0 0

=B

Pi
= B _4

( σ )

2 0

1
0

1

0

,=B,-4 =B

/ I

o o

1

/ I

=B
'Pi =

2 0

1
2

generate a subgroup iV125 c N of index 5. The required fourth generator

of N can be obtained by conjugating the element (σ,)4(p1)~1(σ,)~4p1,

which is the same as (^2"1(σ2)4^2(σ2)~4, with r^ . This finishes the proof

of (iv) by establishing the isomorphism N = Γ'/Γ" . q.e.d.
In the next subsection, we shall come back to the subgroup Nl25 c N,

and make use of the fact that

(80) Tl245cN=(Nl25),

which is easy to verify by means of formulas (63) and (79).

3.4. Surfaces in H4/Γ", Ή4/!^, or some intermediate covering. Recall
that pχ = rχr2 and p2 = r5r4 are two commuting rotations by ^f . Their
fixed point sets Σχ = Fixpχ and Σ 2 = ¥ixp2 are 2-dimensional hyperbolic
subspaces in H 4 , which intersect each other perpendicularly at the point
[v3]. The involution ϋ interchanges Σ{ and Σ 2 .
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FIGURE 4

Lemma 3.6. The faces P 3 4 5 := [^3][^4][^5] and P 3 2 1 := [^H^H^J
of the fundamental orthoscheme P lie on Σχ and Σ2, respectively. The
interior angles in these triangles are f, § , and f§ .

Proof. Since the two triangles in question are interchanged by the isom-
etry ϋ, it is sufficient to consider the triangle P 3 4 5 . The edges [v3][ϋ4],
[v4][^5], and [v5][v3] lie on the lines F i x ^ , r2, r 5 ) , Fix(r{, r2, r 3 ) , and
Fix(r{, r2, r 4 ) . The hyperplane reflections rυ: x ι-> x-2(x, υ)/g(υ , v)-v,
which fix such a line and map Σ t into itself, are given by

(81) '5 = V Γ 4 a n d r 4 = r-4'

where e3 := (l+2τ) ^ 1+(2+2τ) ^ 2 +(2+τ) e3 is a vector in the intersection

span{βj, e2, ^3} n span{^t, e2}
L . The size of the various angles can now

be read off from the scalar products

(82) g(e5,e5) = 2, g{e'3,e5) = 0,

using the identities τ = 2 cos | and y/lΛ-τ = 2 cos f^ . q.e.d.

The reflection re, does not lie in Γ. However, ε1 2 3 does, and its ac-

tion on Σj coincides with the action of re>. Thus the subgroup Gχ :=

(r5, r 4, ε123) c Γ acts as a discrete reflection group on Σχ, having the

triangle P 3 4 5 as its fundamental domain. By formulas (77), (78), and

Lemma 3.6, both the elliptic isometries r5εm and r5re, have order 2,

and both the elliptic isometries r4εl23 and rAre, have order 10. Hence the

action of Gχ on Σχ is faithful. Since P 3 4 5 is a fundamental domain, the

embedding Σ{

 c-> H4 is a simplicial map with respect to the triangulations

induced by Gx and Γ, respectively. Therefore

(83) S t a b j ^ ) :={γeΓ\ γ(Σχ) = Σ ι } = G{x(rχ, r 2 ) ,
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where

{rx, r2) = {γ e Γ | γ{[υ]) = [v] for all [v] e Σ J :=

Because of the involution ϋ, there are corresponding results for the surface
Σ 2 , and the above considerations yield:

Proposition 3.7. (i) StabΓ(Σ1)/FixΓ(Σ1) = NΓ((r{, r2))/(rι, r2) acts as
a reflection group on Σ{, having the triangle P345 = [v3][v4][υ5] as a fun-
damental domain. This action is represented faithfully by the Coxeter group
^i = (r5> r4> εn?) * whose diagram is:

5 10 _

(ii) Similarly, StabΓ(Σ2)/FixΓ(Σ2) = NΓ(r4, r5)/(r4, r5) acts as a discrete
reflection group on Σ 2 , having the triangle P32l = [^3]['y2][^1] as a funda-
mental domain. This action is represented faithfully by the Coxeter group
G2 = {r{, r2, ε345) its diagram is

.JO-
'2

Remark. It is of course always true that the triangulation of H4 in-
duced by Γ restricts to triangulations of the walls Σj and Σ 2 . However,
in general, these triangulations are not associated with reflection groups
on the surfaces. One may get several nonisometric, top-dimensional sim-
plices, and the (dihedral) angles may even be irrational. Such an ex-
ample arises for instance when starting out from the Coxeter diagram
•— — — = rather than = — — = the antipodal map
ε 1 2 3 does not lie in the subgroup (rχ, r2, r 3 ) , which in this context is
the tetrahedral group, and indeed, the triangle P 3 4 5 = [^3][^4][^5] on

Σj = Fix(rj, r2) has angles f , f, and arccosyl « 0.29 π , i.e., it

has one irrational angle at the vertex [v5].

Return to the hyperbolic 120-cell space, and recall that by Theorem 0.2

the images Σ{ = p ϊφj) and Σ2 = pr(Σ2) under the projection H4 —•

M 4 /^ are compact, totally geodesically embedded surfaces, which inter-

sect each other in simple normal crossings. The next proposition will

therefore establish Theorem 0.1 for the end depicted in Figure l(b).

Proposition 3.8. Σj and Σ 2 are orientable surfaces of genus 2 in the

hyperbolic 120-cell space B4/!^. Their isometry groups Gj = π(G{) and

G2 = π(G2) are isomorphic to the dihedral group Dl0, and their intersec-

tion Σj n Σ 2 consists of precisely two points. It is the orbit of pf(Σj Π Σ2)
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under the isometry σ\ = σ\ of order 2, which generates the center of Gχ

as well as the center of G2.
Proof Notice that the isometries p2 = r5r4 and σ2 = r4εχ23 (resp.

P\ = r\ri a n c * σ\ = r2ε345) a c t o n ^i ( r e s P Σ2) *n a n orientation-
preserving way. We set

(84) G°χ:=(p2,σ2), G°2 := (pχ, σχ),

which are the index-2 subgroups of Gχ and G2 obtained by intersecting

with ker(det). In group theoretic terms the orientability of Ή4/!^ means

that Γ7 is a subgroup of ker(det) Πθ+(E, g); thus Γ ' π G ^ Γ ' π G for

1 = 1,2. Now Proposition 3.7 implies that

(85) Σf. = P(Σ.) = Σ ΛΓ7 Π Cfj) for / = 1, 2,

hence the orientability of the images Σχ and Σ 2 in H 4/!^ . Their ̂ e/2W5
will be obtained by computing the Euler characteristic from the Gauss-
Bonnet Theorem. The required angle information is supplied by Lemma
3.6:

-2n.X(lx)= #G 1 .Area(P 3 4 5 )
( 8 6 >

Similarly -2π /(Σ 2) = #G2 % . As the homomorphism ψ: Γ -> Γ is given
by passing to the upper left 4 x 4 submatrix, it is a direct consequence of
formulas (79) that ~pι=σ4

ι and ~p2 = σ2 . Hence, computing the order of
the ~σi from the matrices given in (77) and (78), we get that

(87) G° = (cr.) £

Substituting this into (86) yields

for 1 = 1, 2.

(88)

2π
as required.

In view of (87) the groups Gt are identified with the dihedral group

σ̂ "1Dι0 by verifying the relations r1 σ, T "̂1 = σ "̂1 and 75 σ2 = a?
For this purpose we use (63), (77), and (78), to compute

/I \ /I

(89)
1

1

U 0 0
1
3

1

4 0
1
2
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The intersection Σχ ΠΣ2 is evidently contained in Γ pr([υ3]), and more
precisely, it is the set (Gι x (fx, r2)ΠG2 x (r 4, r5)) pr([v3]). We can easily
calculate

(90) a\ = σ\, Gx ( r , , r2) Π G2 x x {σ\) •

(σ5)Since (fι 5 r 2 , r 4 , r 5 ) is the stabilizer of pτ([v3]) in Γ, we see that (σ5

{) =

(σ5

2) ^ Z/2Z acts faithfully and simply transitive on Σj n Σ 2 , hence the

claim.
Remarks, (i) Using the matrices from (63), it is not hard to identify

the stabilizer of the intersection point pf([f3]) as follows:

H := {γeO(E, g) \ γopf([v3]) =

(91)

= {y € O(E, g) I 7(63) = b3} a O+(2; F5) x F^.

The normalizer of this group H c O(^, g) is a centro-affine group:

(92) . •>

Notice that N^-^H)/!! = (η), where η £ O(E, #) is the element of
order 4 given by the matrix

/ I

(93)

λ

2 4
0 37

σ r rIn particular, (f/)2 = σj r1 r5 interchanges the two points of intersection
of Σj and Σ 2 , whereas the element η itself maps both Σχ and Σ 2 onto
different components of Fix/jj and Fix^ 2 , possibly interchanging the
indices, as ϋ does. Our reasoning also shows that each Σt is precisely one
out of two isometric connected components of Fix/?z. The total intersection
pattern is:
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(ii) Observe that Iso(Σf.) = Dχo contains a unique 5-Sylow subgroup,
which is of course cyclic of order 5. Conversely, there is—up to conformal
equivalence—precisely one Riemann surface of genus 2 which admits an
automorphism p of order 5:

(94) Σ = {[z0 : zχ : z2] | z\ = (zχ - z0) z]z\} c CP 2 .

For a proof one considers the branched normal covering Σ -» Σ/(p). The
Hurwitz theorem enforces that Σ/(p) « CP1 and that there are precisely
three branch points over, say, 0, 1, and oo thus Σ can be reconstructed
from the homomorphism πx(Σ\{branch points}) —• Z/5Z into the deck
transformation group. In particular, it is sufficient to know the images
α 0 , aχ, and a^—all of them are nonzero—of the simple loops around
the branch points. Of course aQ + ax + a^ = 0. Up to permuting 0 , 1 ,
and oo and up to an automorphism of Z/5Z, there is only one solution:
ao = aoo = 2, ax = 1, hence formula (94).

This choice singles out the branch point [ 1 : 1 : 0 ] , whereas the other
two branch points [1 : 0 : 0] and [ 0 : 1 : 0] can still be interchanged by
means of the involution [z0 : zχ : z2] »-• [zχ : z0 : - z 2 ] . When identifying
Σ and Σt the latter two branch points must therefore correspond to the
two points in the intersection Σχ Π Σ 2 .

Finally, we are going to investigate the preimages of Σχ and Σ 2 in some

covering spaces. By Theorem 3.5 the projection pi: H4 -+ M4/!^ factors

over some 625-sheeted normal covering space:

(95)

Ή4/r/

The group of covering transformations Γ7Γ" is the group N = (F 4 , + ) .
Our next result explains Figure 1 (d) in the context of Theorem 0.1.

Proposition 3.9. The images Σ. = ff(Xf.), i = 1,2, are compact ori-

entable, totally geodesically embedded surfaces in HI4/]^ of genus 26, which

intersect each other orthogonally at five points. They are 25-fold coverings

of the Σr and so each total preimage ψ~ι(Σi) consists of 25 components,

each of which is isometric to Σ(.

Proof This proposition is almost a direct consequence of Proposition
3.8 and diagram (95). All we need to show is that (i) the degree of the
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covering ψ: Σt —• Σ. is indeed 25 and not another divisor of 625, and (ii)

#(1^) = 5.
By Proposition 3.7 these questions are reduced to questions about the

group U = GJiT" Π Gt) or, even simpler, about ~G. := G?/(Γ" Π G?).
o =o

These are of course extensions of Gf. and Gt , respectively. Since Gt =
(Pi, ^, ), it can be seen from (79) that

(96) +) for i = 1, 2,

Gt) = 25 as claimedwhich show that deg(^: Σ̂  —• Σ̂  ) =
in (i).

In order to get the second claim, we observe that the points in Σ, n Σ 2

are in one-to-one correspondence with the elements in

(97) N.:=(ψ^)~ιCi
|G2

) \σ\).

Since
/ 4

U 2

4
4

4 0

/ 4

V3 4 1
4
0 1

it follows from formulas (79) and (96) that N5 is a cyclic group of order

5 generated by (pχ)~x{σιγ~pι(σλ)~A, which represents the same element

of O(E¥ ,g) as the word (σ2)
4(p2)~ι(σ2)~4p2 . q.e.d.

The chain of subgroups Γ7 = φ~l(N) D φ~l(Nl25) D φ~ι(N5) Dkerφ =

T" , where N 1 2 5 c i V c Γ has been defined in the proof of Theorem 3.5,

defines intermediate coverings. The projection ψ: H/Γ" -• H/Γ7 there-

fore factors as

(98) fl*/Γ" Ju M4/φ-\N5) ^ M4/φ-{(Nl25) ^ β 4 / ^ .

Clearly, d e g ^ = deg^3 = 5 and deg^2 = 25. Using formulas (79) in
the same manner as above, it is now easy to determine the behavior of the
corresponding surfaces in these intermediate coverings.

Proposition 3.10. (i) The images ^(Σ^ ), / = 1, 2, are compact, ori-

ented, totally geodesically embedded surfaces in M4/φ~ι(N5) of genus 6,

which intersect each other precisely at one point.

(ii) The images ψ2o ψ^Σ.), i = 1,2, are compact, oriented, totally

geodesically embedded surfaces in E4/φ~l{Nl25) of genus 2, which intersect
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each other precisely at one point. Each total preimage ψ^1^,.) consists of
five such components, whose intersection pattern has been depicted in Figure
2.

This proposition finishes off the proof of Theorem 0.1 the two parts
correspond precisely to the remaining possibilities for the end structure
of M4 listed in Figures l(a) and l(c). More precisely, the end of M4 =
M 4/^" 1(^ 1 2 5)\(^ 3" 1(X 1) U ΨΪl(Σ2)) is modelled on the graph manifold
defined in Figure l(a). Of course, it is also possible to delete just some
components of ψ^x (Σ{) U ψ^1 (Σ 2 ), and the end is modelled on a subgraph
along the lines of Theorem 0.1. The simplest subgraph which we obtain
in this way is ©—©. It corresponds to the tubular neighborhood of two
genus-2 surfaces, which intersect perpendicularly precisely at one point and
have an automorphism of order 10 each (cf. Remark (ii) below the proof
of Proposition 3.8). In Figures l(c) and l(d) we have already restricted to
the simplest possible subgraph for the intermediate covering with genus-6
surfaces and the original genus-26 surfaces, respectively.

This discussion explains that we have explicitly investigated only a few
very basic examples associated to the hyperbolic 120-cell space E4/!^ . In-
tersecting Γ7 with an arbitrary congruence subgroup of O(E, g), which
is of course not necessarily associated to the prime number 5, one obtains
plenty of normal covering spaces of H 4 / ^ they come in towers. More-
over, one gets many more intermediate coverings as well. Hence even the
single Coxeter diagram = — — Ξ leads to a long and rich list of
possible genera and intersection patterns.
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