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HARMONIC MAPS, LENGTH, AND ENERGY
IN TEICHMULLER SPACE

YAIR N. MINSKY

Abstract

The limiting behavior of high-energy harmonic maps between closed hy-
perbolic surfaces is analyzed. In general a measured foliation on the
domain is shown to be mapped very nearly (exponentially in the energy)
to its geodesic representative in the range. This foliation is in fact the
horizontal foliation Φh of the Hopf differential Φ of the harmonic
map. Φh is also characterized as nearly maximizing (up to an additive
constant) the ratio of squared hyperbolic length in the range to extremal
length in the domain, among all simple closed curves in the domain. The
same ratio gives the energy of the map up to an additive constant. This
can be viewed as an analogy to other canonical maps between surfaces,
for which different optimization problems are characterized by corre-
sponding length-ratio maximizations.

In addition, the asymptotics of a family of harmonic maps obtained
when the domain surface is varied along a classical Teichmuller ray are
studied. As expected, the limiting Hopf foliation and the foliation deter-
mining the ray are equivalent as topological (not measured) foliations.

1. Introduction

The Teichmuller space of a surface can be viewed as the space of com-
plex (or conformal) structures on the surface, or alternatively as the space
of hyperbolic structures on it. A key feature in the study of Teichmuller
spaces is the construction of comparison maps between surfaces which
are "optimal" in some sense appropriate to the point of view. This pa-
per studies harmonic maps, which are obtained by minimizing energy over
a homotopy class of maps between surfaces. The energy of a map be-
tween Riemannian manifolds is the integral over the domain of the squared
derivative of the map (see §3 for a precise definition). In particular, we
analyze the approximate behavior of such maps (in the case of closed sur-
faces) when their energy is high or, equivalently, when the domain and
range are far apart as points in Teichmuller space. We obtain, in Theo-
rems 7.1 and 7.2, analogies between the behavior of harmonic maps and
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that of other "optimal" maps, namely Teichmϋller maps and Thurston's
stretch maps.

Summary of results. Central to the discussion are the notions of mea-
sured foliations (and equivalently, measured laminations), which are gen-
eralizations of simple closed curves on a surface, and which we can think
of, for now, as "infinite simple curves" (we are avoiding here any explana-
tion of the meaning of "measure"—see §2). Let γ denote such an object,
and let M = (S, σ) be a closed surface S with a hyperbolic metric σ.
Then the geodesic representative γ* can be defined as can its length, de-
noted lσ(γ). The extremal length Eσ(γ) can also be defined in a way that
generalizes the extremal length of a simple closed curve (this being the
reciprocal of the maximal conformal modulus of an embedded annulus in
S whose core is homotopic to γ). We note that Eσ(γ) is the same for
any metric in the conformal class of σ, and thus is properly a conformal
rather than a hyperbolic invariant of γ.

Let N = (S, p) denote a second hyperbolic structure on the surface.
The homotopy class of the identity, viewed as a map from M to N, con-
tains a unique harmonic representative / whose energy !?(/) is minimal
in this class (§ 3). We shall prove

Theorem 7.2. There is a constant C depending only on χ(S), and a
measured foliation φ on S such that

+ C
2Eσ(φ)-""'-2Eσ(φ)

Actually, the inequality \l2Ay)Eσ(y) < %{f) is true for any measured
foliation γ (Proposition 3.1), so it follows that φ gives, up to the constant
C, the maximal value for the ratio L/Eσ over all measured foliations on
S. (Clearly this result is meaningful only for large values of !?(/).)

This situation, in which the solution to a length-ratio maximization
problem for foliations gives an estimate for the solution of an optimization
problem for maps, echoes what happens in the other two examples of
optimal maps, as we now describe.

A Teichmϋller map is obtained by considering the conformal rather
than the metric properties of M and N. The extent to which a map
distorts conformal structure is called its quasi-conformal dilatation, and
Teichmϋller showed (see [10]) that there is a unique map, minimizing this
dilatation in the homotopy class of (say) the identity. Furthermore, there
is a measured foliation ψ in S for which the ratio K = E (ψ)/Eσ(ψ)
is maximal among all measured foliations, and this K is precisely the
dilatation of the Teichmϋller map (see [17]).
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Thurston's stretch maps, on the other hand, are obtained by considering
the hyperbolic metrics of both domain and range, and attempting to mini-
mize the Lipschitz constant of maps in the homotopy class of the identity.
A minimizing map is found (not quite uniquely, however) and again there
is a measured foliation λ such that the ratio / (λ)/lσ(λ) is maximal, and
is equal to the minimal Lipschitz constant.

Harmonic maps, it turns out, compare the hyperbolic structure of TV
to the conformal structure of M since the energy of a map with a two-
dimensional domain depends not on the domain metric itself but on its
conformal class. Thus the appropriate comparison of lengths should in-
volve the hyperbolic invariant / and the conformal invariant Eσ—as

borne out in Theorem 7.2 (why I1 appears, instead of / , will be made
clear in §2.)

Theorem 7.1, from which Theorem 7.2 follows, gives a geometric char-
acterization of a harmonic map in terms of this "maximal stretch folia-
tion," in further analogy with the other two types of maps. To discuss this
result we need briefly to describe the two canonical concrete realizations
of a measured foliation on a Riemann surface.

The first, relevant to the conformal structure, is as the horizontal folia-
tion of a holomorphic quadratic differential. In brief, this means there is a
Euclidean metric with singularities which is conformally equivalent to the
hyperbolic metric, and the leaves of our foliation are Euclidean straight
lines which meet in prongs of three or more at the singularities.

In the hyperbolic point of view, we do not obtain a foliation of the
entire surface. Instead, we straighten each leaf to its hyperbolic geodesic
representative (if there are closed leaves then a whole family of homotopic
leaves will collapse to one geodesic), obtaining a closed set of geodesies
whose complement consists of surfaces bounded by closed or infinite geo-
desies (the simplest example is an ideal triangle in the hyperbolic plane).
This is called a geodesic lamination. Each complementary region of the
lamination corresponds to a configuration of singularities in the quadratic
differential picture above.

A Teichmϋller map is obtained, geometrically, as follows. The measured
foliation ψ maximizing E jEσ is realized via a holomorphic quadratic
differential ψσ in the domain, and via ψ in the range. The Teichmϋller
map takes the leaves of ψσ to those of ψp , in the process expanding the
Euclidean metric by exactly K along the leaves.

Similarly, let λ maximize the ratio I /lσ . A Thurston stretch map is
obtained by mapping the leaves of the geodesic representative of λ in
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M to those of its representative in N, and filling in the complementary
regions (in a nonunique way).

The analogous result for harmonic maps is that the leaves of the qua-
dratic differential in M are mapped, approximately, to the leaves of the
geodesic representative in N. The full statement of the theorem is some-
what technical, and we summarize it here. The distance d( , ) is the Eu-
clidean metric of the quadratic differential, and &R refers to a region of
the surface M containing the singularities of the metric and correspond-
ing roughly to the complementary regions of the geodesic representative
of the foliation.

Theorem 7.1. The harmonic map f:M-+N takes the leaves of φ
e-close in a C 1 sense to the geodesic representative of their images in N,
where e at each point p e M is given by A exp(-Bd(p, &R )), A and B
being a-priori positive constants depending only on the topological type of
S.

We note that the diameter of M in the singular Euclidean metric is at
least proportional to <§*(/)^2, whereas the diameter of &n is bounded,

0

so that "most" of the leaves of φ are in fact mapped quite close to their
geodesic representatives.

In §8, we consider the family of harmonic maps obtained when the
target N is fixed and the structure of the domain M is allowed to vary
(as a point in Teichmuller space). Fixing a surface Mo , Teichmuller space
can be parametrized by Teichmuller rays based at Mo these are one-
parameter families of deformations of Mo, each ray obtained by squeezing
the conformal structure (via a Teichmuller map) along a fixed foliation.
The foliation φ associated to the harmonic map changes as we progress
along such a ray, and its limiting values are described by

Theorem 8.1. A limit point of the foliations φ along a Teichmuller ray
is equivalent (as an unmeasured foliation) to the foliation determining that
ray.

We note that there is a subtlety involving the measures which will be
briefly discussed in §8. Not having defined the notion of measure for a
foliation, we avoid this issue for now.

In §4 we develop, as tools for the proof of the main theorems, some
estimates of conformal moduli that may be of independent interest. In
particular, we convert geometric information about annuli in a singular
Euclidean metric (arising from a holomorphic quadratic differential) to
information about moduli. We define the notion of a regular annulus
(which generalizes standard examples like round annuli in the plane) and
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compute a simple geometric invariant μ which estimates the modulus via:
Theorem 4.5 and 4.6. Fix a holomorphic quadratic differential metric

on M. For a regular annulus A c M,

μ(A) < Mod(A) < μ(A) + min (cχμ{A),

If A is any homotopically nontrivial annulus in M and Mod(^4) < mQ,
then A contains a regular annulus B such that

μ(B)<c3Mod{A)-c4,

where the constants m0 and cχ , c4 depend only on χ(M).
The author is very grateful to Mike Wolf for his considerable help and

encouragement through various stages of this project. It is worth noting
here that in [31]—[33] Wolf has already analyzed in detail some special
cases of the phenomena we describe in §§7 and 8—in particular, he has
considered the case where M is fixed and N degenerates, and also a
particular type of degeneration of M, when a finite number of simple
closed curves is pinched.

This paper has developed from a portion of the author's Ph.D. thesis
[20], written at Princeton University. He is grateful to his advisor, Bill
Thurston, for help and inspiration, and to Dick Canary, for years of talk-
ing and listening. The referee deserves thanks as well, for his relentless
comments and suggestions, and for his willingness to read the paper care-
fully.

A generalization of these results to the case where the image is a hy-
perbolic 3-manifold will appear in [21]. This requires a revision of the
analytical estimates in §3, as well as a somewhat careful use of the prop-
erties of pleated surfaces.

Method of proof. We conclude the introduction with a brief discussion
of the techniques used in proving Theorem 7.1. Let us fix the harmonic
diffeomorphism / : M —• N. The first piece of information, namely
the measured foliation appearing in Theorems 7.1 and 7.2, is obtained
as follows. To a harmonic map of a surface is associated a holomorphic
quadratic differential on the domain, known as the Hopf differential (see
§3.2 or [16], [25], [31]), and written as Φ. It defines a Euclidean metric
with singularities, as hinted above (and described in detail in §2), which
we write as | Φ | , and a foliation by straight lines which we call Φh . This
foliation is characterized by the condition that, at each point on the sur-
face, the direction in which df has the greatest expansion is tangent to
a leaf of Φh . The metric |Φ| has the additional characterization that its
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area measure is, away from the singularities, an approximation to energy
density for the map (inequality (3.5)).

The Jacobian of / obeys an elliptic second-order partial differential
equation (3.2) from which follows an estimate (§3.3) that implies that
the images of Φh are tightly squeezed together and are nearly geodesic
in the hyperbolic metric p, provided the leaves are sufficiently far from
the singularities, of Φ, as measured in the |Φ| metric. These estimates
fail at the singularities and in regions of M where the injectivity radius
of |Φ| is small, but improve exponentially with |Φ|-distance from these
"bad" regions. Accordingly, in §5 , we show how to construct a family of
regions &R c M (R > 0) such that &R includes an ^-neighborhood of
the bad regions, as measured in | Φ | , while maintaining control over the
size (area, boundary length, etc.) and shape of &R .

§6 gives the main body of the proof, in which this local information
about the curvature of images of the foliation leaves outside &R (for
sufficiently large R) is converted to the global fact that these are mapped
enclose to their geodesic representatives. This is not a trivial assertion,
because the lack of control on curvature inside PR means, a priori, that
the image leaves could be anywhere on the surface.

The main idea is to control these leaves by using Thurston's train-tracks.
A train-track may be visualized as a sight thickening of a 1-complex whose
edges meet tangently at its vertices. The thickened edges are foliated by
short "ties" transverse to the edges, and we define a train route as a path
that is transverse to the ties. If the edges of the 1-complex have suffi-
ciently low curvature (in a hyperbolic surface), then any closed train route
is (correspondingly)close to its geodesic representative.

The regions &R are shaped in such a way that their complements have
a natural train-track structure with respect to which the leaves of Φh de-
scribe train routes. For large enough R, the image of this in the /^-metric
is a train-track with nearly straight edges, and it is with this train-track that
we obtain control over the geodesic representative of ΦΛ . Controlling the
leaves in the complement of this train track is the main concern of §6,
in which the fact that the complement is a (nearly) convex subsurface in
the hyperbolic metric p, and the existence of bounds on the lengths of
the runaway leaves, are used to "straighten" them without disturbing the
well-behaved leaves.

2. Structures on surfaces

Hyperbolic constructions. References for the material in this section
can be found in [4]-[6], [9], and [28].
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Let M = (S, σ) denote a closed surface S of genus g > 1 with a
hyperbolic metric σ . A geodesic lamination on M is a closed subset of
M which is a disjoint union of complete geodesic leaves. Such a set has
zero area (in fact Hausdorff dimension 1). Denote by GL(M) the set of
geodesic laminations on M.

Let JB?{M) be the set of geodesic laminations equipped with trans-
verse measures, A transverse measure assigns Borel measures to arcs trans-
verse to the lamination, which are invariant under translation along the
lamination. The mass of the measure assigned to a by λ e JKS?(M) is
denoted i(a, λ), and arcs disjoint from the lamination have zero mea-
sure. J(Sf{M) has a natural topology which should be thought of as
the geometric topology, weighted by the measures. To be more precise, a
neighborhood of a lamination λ in this topology is determined by a finite
number of (say) smooth arcs transverse to λ and a number e > 0, and
contains laminations that are transverse to these arcs and deposit a mea-
sure on them differing from that of λ by at most e . ^^£2f{M) is the
projectivization of Jf3*{M), identifying measures that are multiples of
each other. &Jfi?{M) is a sphere of dimension 6g - 7 (see [28], [9]),
and in particular is compact.

Any simple closed geodesic γ admits the counting measure, which as-
signs to a transverse arc a the mass i(a, γ) = #(aΠγ). The simple closed
geodesies endowed with positive multiples of the counting measures are
dense in JtSf{M). The notion of hyperbolic length lM{y) for a simple
closed geodesic generalizes to a continuous function on JZS?(M) which
scales homogeneously:

V M ) = clM{λ).

It is computed as the mass of the measure defined locally as the product of
the transverse measure with the regular length measure along the geodesic
leaves.

The geometric intersection number of simple closed geodesies similarly
extends to a continuous nonnegative function

i: Jfi?(M) x JZ2?{M) -> R,

which is homogeneous in both arguments. It is given by the mass of the
measure on the surface defined locally as the product of the transverse
measures of the two laminations. We note also that, as for closed curves,
i(α, β) can be considered to be defined on a homotopy class of lami-
nations, as it gives the minimal intersection number over all homotopic
representatives of a and β (see [18] for a discussion).
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Conformal constructions. If we consider only the conformal structure
induced by σ, then M becomes a Riemann surface, and a different set
of constructions is natural. A holomorphic quadratic differential Φ is
a differential expressed as Φ(z)dz2 in a local holomorphic coordinate
system, such that Φ(z) is holomorphic in z (see [27]). The space of such
differentials on M is denoted (λD(M), and is a 6g-6 (real)dimensional
vector space. Removing 0 and taking a quotient by the positive real
numbers, we obtain a sphere, PQD(M).

Any Φ e QD(M) determines a pair of measured singular foliations
on M: away from the (isolated) zeros of Φ choose a branch of the
square root and define a local holomorphic coordinate ζ(z) by integrat-
ing dζ = y/Φ(z)dz. This defines ζ up to sign and translations, and in
the ζ coordinate system Φ = dζ . The lines of constant Im (ζ) form
a well-defined foliation on M, called Φh or the horizontal foliation, and
similarly the lines of constant Re (£) form the vertical foliation Φv . At
the zeros of Φ, these foliatios have (k + 2)-prong "saddle" singularities,
where k is the degree of the zero. To visualize this, draw the integral
curves of the line field v = ±z~k/1 around z = 0 (or see Figure 5 in §5).

The foliation Φh inherits a natural transverse measure from Φ—the
measure of a (short) transverse arc is its vertical height in the ζ plane
(and vice versa for Φv).

Φ also determines a (singular) metric written as |Φ| or |Φ(z) | | Jz | 2 ,
which is just the Euclidean metric in the ζ plane. At a zero the |Φ|
metric has concentrated negative curvature which is an integral multiple
of π . We will explore the global properties of such metrics in more detail
in §4.

A Teichmύller map is a homeomorphism between two Riemann surfaces
that achieves the lowest possible quasiconformal distortion in its homotopy
class. Such a map is always given by a quadratic differential Ψ on the
domain surface M and a number K > 1 the conformal structure of the
range is obtained by dilations in the horizontal and vertical directions of
Ψ whose ratio is K. For example we can define a metric on the range by
contracting the |Ψ| metric on the domain by K along the leaves of Ψh

and leaving it unchanged in the Ψv direction. The conformal class of this
metric gives a Riemann surface Mψ κ , and the quadratic differential Ψ*
defined by the foliations of Ψ and that metric has a horizontal foliation
in the same measure class as Ψh. Note that this is the reverse of the
usual definition, where the vertical foliation is contracted with respect to
the horizontal. This will seem more reasonable in §8, and at any rate the
difference amounts to replacing Ψ by - Ψ .
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We will call {Mψ κ : K > 1} the Teichmύller ray along Ψ based at M.

Topological constructions. QD(M) and J?Jϊ?(M) are related to a
purely topological construction, and hence to each other. Let J^(S)
denote the space of measured foliations on S with only saddle singular-
ities, modulo isotopy and Whitehead moves (which collapse singularities
that are connected by a leaf of the foliation).

The map

sending Φ to [Φh] is a homeomorphism (see [17], [15]). Similarly, there
is a map

which produces a lamination from a foliation by "straightening" all the
leaves to geodesies, in the process creating spaces between the leaves (see
[19] for a detailed discussion). This map, too, is a homeomorphism. All
these maps descend to homeomorphisms between the associated projec-
tivized spaces (see also [14]).

A lamination is minimal if it contains no proper sublamination. Every
measured lamination decomposes into a union of finitely many minimal
components (see [28], [6]). Note that this is false for a general geodesic
lamination λ, which may contain a proper sublamination whose comple-
ment in λ is not closed. We briefly discuss this decomposition, and the
way it appears from the point of view of foliations. This will become
relevant in §8.

Say that a closed subsurface R c M is a supporting subsurface for a
lamination λ c R if R is incompressible (i.e., 7i{(R) injects into πχ(M)),
and if any essential closed curve a c R which is disjoint from λ may be
isotoped through R - λ into dR. It is clear that every lamination has
a supporting subsurface: begin with M, and cut away neighborhoods of
essential nonperipheral curves disjoint from the lamination a finite num-
ber of times (by an Euler characteristic argument.) Such a subsurface is
also unique up to isotopy: for any supporting subsurface R of λ, find a
neighborhood of λ which is contained in R, and adjoin to it the disks
bounded by any compressible curves in its boundary. The resulting sur-
face N has boundary curves which (by the properties of R) are isotopic
outside N into dR, and is therefore isotopic to R. Since any two sup-
porting subsurfaces R, Rf must have such a neighborhood in common,
they are isotopic to each other.
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It is clear, also, that a measured lamination is minimal if and only if
its supporting subsurface is connected. We can now give the correspon-
dence between minimal sublaminations and subfoliations. Let & denote
a measured foliation, and λ = ^f{^) the corresponding measured lami-
nation. Let Σ denote the union of leaves of & that meet singularities.
The compact leaves in Σ (those which meet singularities at two ends)
form a compact 1-complex, possibly empty. Let Σc denote the union of
noncontractible components of this 1-complex. We have:

Lemma 2.1 (Minimal components of a foliation). The components of
the complement of an open regular neighborhood of Σc are supporting sub-
surfaces for the minimal components of λ.

Proof In Levitt's construction [19], the leaves of λ are obtained as
follows: each nonsingular leaf of & lifts to the universal cover M of
M to a union of leaves that have well-defined geodesic representatives
(geodesies with the same endpoints at infinity). A component of the lift
of Σ is a tree, a regular neighborhood of which has boundaries with well-
defined geodesic representatives. All these leaves project to λ, and the
regular neighborhoods of the trees have projections which are isotopic to
the complement of λ (one must take some care here because Σ may be
dense in M).

Now let γ c M be an essential simple closed curve in the complement
of λ. Then a lift of γ to M may be isotoped to one of the regular
neighborhoods of a component of Σ. This component must have a non-
contractible projection in M, which as an abstract surface can be retracted
into a component of Σc.

In other words γ may be isotoped into a regular neighborhood of Σc,
and it follows immediately that the complement of this neighborhood is
a supporting subsurface for λ, whose components are supporting subsur-
faces for the minimal components of λ.

Modulus and extremal length. For a family of curves (closed curves or
segments) Γ in a Riemann surface M extremal length is defined as

(2.1)

where the supremum is taken over all choices of metric p consistent with
the conformal structure of M, and / (Γ) is the infimum of p-length over
curves in Γ (see [2]). Generally Γ is a free homotopy class or a homotopy
class with a constraint on endpoints.
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In particular, if M is an annulus and Γ is the class of paths connecting
the boundaries of M, then EM(Γ) is the modulus Mod(Af), which is
defined uniquely as the ratio of the height to the circumference of any
Euclidean annulus conformally equivalent to M. Further, if Γ is the free
homotopy class of a circumferential curve (core) of M, then EM(Γ) =
l/Mod(M).

For a general M, for any simple closed curve y c M w e take EM{y)
to be the extremal length of the free homotopy class of γ in M. The fact
analogous to the previous paragraph is that

<2-2) E^^k
where the infimum is taken over all annuli A c M whose core is ho-
motopic to γ . In [17] this is called the geometric definition of extremal
length, and (2.1) is called the analytic definition.

The infimum and supremum problems have the same solution. The
quadratic differential Ψ such that ΨΛ = γ (as measured laminations)
defines a cylinder—the union of leaves of Ψh which do not meet the
singularities—which maximizes modulus among cylinders homotopic to
γ . On the other hand the |Ψ| metric maximizes the ratio of (2.1).

Extremal length can be extended to arbitrary measured foliations. First,
from definition (2.1) it is fairly clear that the right way for extremal length
to behave under scaling of measures is

E(cγ) = c2E(γ).

In [17], Kerckhoff showed that with this property extremal length extends
to all of JE7'(M) continuously, and the extremal metric is always given by
the appropriate quadratic differential. It is also easy to see that EM(Ψh) =
Area(|Ψ|). We note that this is also true for noncompact surfaces of finite
topological type.

Since extremal length scales quadratically with measure and hyperbolic
length scales linearly, the ratio

is the natural comparison between hyperbolic and conformal invariants of
γ on surfaces (S, p) and (S, σ). This ratio is invariant under scaling
and so defines a continuous function on the compact set £PJί&'{S) which
must therefore realize a maximum. (The factor of \ that appears later is
due to the \ in the traditional definition of energy.)
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3. Harmonic maps

3.1 Basic properties. A harmonic map / : M —• N between Rieman-
nian manifolds is a stationary point of the energy functional on C maps

r(/)= / edVi
JM

where e is the pointwise energy, {\df\2, and dVM is the volume form
on M. One may think of e as a multiple of the average squared stretch
of the map at a point: if {εa} are the elements of an orthonormal frame
in M, then

In direct analogy with harmonic functions, a map is harmonic if and
only if it satisfies an Euler-Lagrange equation τf = 0, where τ is a second-
order elliptic partial differential operator (see [7] for a more complete
discussion).

The basic existence result was obtained by Eells and Sampson [8], who
proved the existence of a harmonic map in any homotopy class of maps
in the case where N is compact and has nonpositive sectional curvatures.
Hartman [13] showed that the map is unique if N is negatively curved,
and if the image is not contractible to a point or a geodesic.

In such cases, it also follows that the unique harmonic map varies
smoothly under smooth deformation of either the domain or range metric
(see Sampson [23]).

3.2. Maps of surfaces. We restrict now to the case where M is two-
dimensional. The situation is greatly simplified here by the immediate
observation that energy, and therefore harmonicity, are unaffected by con-
formal changes in the domain metric. This is because multiplying the
metric of M by a positive function divides e and multiplies dV by
the square of the function. The equation τf = 0 is also unaffected by
conformal changes.

The only relevant properties of M in the context of harmonic maps are
therefore its properties as a Riemann surface, or its conformal properties.
Our first example of this is a simple inequality relating energy, length of
curves in the image, and extremal length in the domain. Suppose R is
a conformal rectangle in M with modulus m. If we realize R as the
Euclidean rectangle {0 < x < L} x {0 < y < H) , so that m = H/L, then
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for any map f:M-+N we can bound the average of the lengths in TV
of the images of the horizontal arcs yy = {(x, y): 0 < x < L} :

dxdy

(3-D . Γ" • . \ _ , , i / 2
"2

This argument works as well for a conformal cylinder whose horizontal
arcs are all homotopic to some curve y in M . Since the extremal length
of γ is the infimum of \jm over all such cylinders, we obtain

Proposition 3.1 (Energy lower bound). For any simple closed curve y c

M and any map f:M^N,the energy of f is bounded below by

where EM is extremal length in M, and lN{f{y)) is the infimum of lengths
in N of representatives of f{y)).

By continuity, this inequality extends to arbitrary measured laminations
(or foliations).

Hopf differentials. Let / : M2 —> N be a harmonic map from a Rie-
mann surface. The Hopf differential of / is the quadratic differential

Φ = C/» ,
where p is the metric of N (in other words, it is the dz2 part of the
pullback of the metric tensor p).

One can show (see [16], [24], [23]) that the harmonicity of / implies
that Φ is holomorphic. Thus, Φ defines a singular Euclidean metric |Φ|
on M and measured foliations Φh and Φυ as in §2.

The leaves of Φh are tangent to the maximal stretch directions of the
map. In fact, choose a local holomorphic coordinate z = x + iy such that
the leaves of Φh are parallel to the x-axis (and Φυ to the y-axis). Let
σ(z)\dz\2 be a metric on M, and e the pointwise energy with respect to
this metric. Then

f*(p) = Φdz2 + oedzd~z + Φdz

or, since in these coordinates Φ(z) = |Φ(z)|,

f\p) = (σe + 2\Φ\)dχ2 + (σe - 2\Φ\)dy2.

Two-dimensional ranges. Restrict further, now, to the case where N is
a surface. There is a collection of useful notation, introduced in [23] and
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used in [31]-[33]. Let w be a local complex coordinate on N, and let
p(w)\dw\2 be the local form of the metric of N.

Let f be the Jacobian of / relative to the σ metric, and let v be the
Beltrami differential of / , defined by

w-d'z

wzdz

The Beltrami differential measures the failure of a map to be conformal,
and in particular its norm |i/|, which is a well-defined function on M
(unless df = 0, which can only happen at the zeros of Φ), is 0 if /
is conformal, 1 if df collapses one tangent direction, and oo if / is
anticonformal.

It will be convenient to define 9 = log(l/|i/|). The heart of the ana-
lytical preliminaries to our proof is the fact that high energy maps tend
to have *§ very near zero on most of M, which implies that / nearly
collapses the vertical direction of Φ.

A simple computation shows

away from the zeros of Φ. The behavior of *§ is controlled by the fol-
lowing equation (see [23] or [32]):

(3.2) Δ^ = -2K{p)f = -4K(p)ψ sinhS?,

where K(p) is the Gaussian curvature of the p\dw\2 metric, and Δ is
the Laplacian in the σ\dz\ metric. This equation holds whenever /
is nonsingular, and, as we shall see shortly, it forces 9 to decay to 0
"exponentially fast," relative to the |Φ||rfz|2 metric.

The signs of f and *§ depend on the choice of orientation for the
target. This being fixed they are smooth functions (with singularities for
*§ at the zeros of Φ), and in the case of a degree 1 map are everywhere
positive ([23], [25]).

Let us also introduce the following notation:

dA(σ) = σdx A dy : the area form for σ\dz\2 ,
%(U) = fuedA(σ): the energy of / associated to a subsurface

UcM,

llφllc/ = fudA(\φ\) : t h e |Φ|-mass of U, or its area in the |Φ|

metric. We also write | |Φ| | = \\Φ\\M

In coordinates where Φ = 1 we have
(3.3) f*p = 2(cosh3? + \)dx2 + 2(cosh^ - l)dy2.
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Thus when & is very small, the map tends to squeeze together the hor-
izontal leaves of Φ, and its derivative along the leaves is approximately
2.

With a little algebra one can see that

so that, integrating over any subsurface U c M (see also [31]),

(3.4) 2 | |Φ| |^ < 9{JJ) < 2\\O\\V + Area(/(M)).

3.3. Estimates on &. Assume now that N is a closed hyperbolic
surface, and that / : M —• TV is a harmonic map homotopic to a diffeo-
morphism. From [23], [25] we know that / is itself a diffeomorphism,
and in particular & > 0. Since, by the Gauss-Bonnet theorem, the area
of a hyperbolic surface is given by

inequality (3.4) becomes

(3.5) 2||Φ||^ < *(U) < 2\mv + 2π\χ(M)\.

The formula for Area(/(M)) gives us an easy bound on &:

Lemma 3.2 (Rough bound). Let p e M be a point with a neighborhood
U such that U contains no zeros of Φ, and in the \Φ\-metric is a round
disk of radius r centered on p. Then there is a bound

&(p)<smh-\\χ(M)\/r2).

Proof The simplest consequence of (3.2) is that Δ^7 > 0, and thus *§
is subharmonic in U. It is sufficient, therefore, to bound the average of
9 on U (in the |Φ| metric).

Recall from above that

Using the concavity of sinh"1 on the positive real axis and the formula
for Area(/(M)), we obtain

= |Φ|-Avg(/

<sinh \\χ(M)\/r2). q.e.d.
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This lemma can be used to obtain a preliminary bound in parts of the
surface where the injectivity radius in the |Φ| metric is large enough. In
§ 5 it will become clearer what to do about other parts. Meanwhile, we
utilize the full power of (3.2) and state an estimate from [32].

Lemma 3.3 (Exponential estimate). Let p e M be at a \Φ\-distance
> d > 0 from any zeros of Φ, and let & be bounded above by B in a
neighborhood of \Φ\-radius d around p. Then

&(p)<B/coshd.

Proof If we choose σ = |Φ| in (3.2), we obtain

where Δ is now the Laplacian for the |Φ| metric, and we recall that the
sectional curvature of the image surface is - 1 . This equation holds in
a Euclidean disk of radius d about p, which is the lift to the universal
cover of a d-neighborhood of p in the |Φ| metric (Note: this disk does
not have to be embedded in S it can wrap around many times, since we
are not going to use the area bound on the image. The conditions of the
lemma ensure that the disk contains no zeros of Φ, so it is Euclidean).

If (x9y) are Euclidean coordinates based at p, we define a comparison
function F on the disk by

n

Fix, y) = — — r cosh Vϊx cosh y/ly.
coshα

Then F > B on the boundary, ΔF = 4F everywhere, and F(p) =
Bj cosh d. A maximum principle argument shows that F > & every-
where:

A{F -3?) = ΛF- 4sinh5? < 4(F - 9),

and Δ(F-&) > 0 when F-& achieves its minimum. Thus F -& > 0.
Notation. We will frequently use ε(r) to denote any function of the

form ae~br, where a and b are positive constants depending, unless
otherwise stated, on nothing but the topological type of the surface S.
Thus, the conclusion of the above lemma could have been written &{p) <
Bε(d).

Curvature estimates. The estimates on 9 have two important geometric
consequences. First, as follows immediately from (3.3), vertical arcs of Φh

are very short for small &:

\\df(v)\\ = O(&)

for a unit vector v tangent to Φv . Further, horizontal arcs are nearly
straight: if kh(p) denotes the geodesic curvature in N of the leaf of Φh
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through p and & < ε on a neighborhood of p of size 1 in the |Φ| metric,
then

kh(P) = 0(6).

This follows from standard elliptic estimates which give bounds on the
gradient of & (see [32] for details).

4. The geometry of quadratic differentials

Having seen that estimates on *& depend to a great extent on the geom-
etry of the Hopf differential Φ (in particular, on placement with respect
to the zeros of Φ and injectivity radius in the |Φ| metric), we proceed
to examine this geometry more carefully. Our main goal is to prepare
the ground for Theorem 5.1 (polygonal region). We will also obtain some
estimates of extremal lengths which will be useful in § 8.

4.1. Definitions. The distinguishing characteristics of the |Φ| metric
are the following:

(A) It is Euclidean everywhere except on a set Z of isolated singulari-
ties. A singularity p has concentrated negative curvature — nπ, or a cone
angle of (n + 2)π, where n = deg(p) is a positive integer.

(B) It admits a foliation by straight lines with (« + 2)-prong singularities
at degree n singular points of the metric.

Let d( , ) denote a complete metric on a surface S with properties (A)
and (B). Special cases in which we will be interested will be when S is (i)
the closed surface M, (ii) an open disk Δ (usually the universal cover of
M), and (iii) an open cylinder Γ (usually the cover of M corresponding
to some simple closed curve y c M).

Condition (A) alone is enough to give the metric d many properties
which are analogous to those of smooth metrics of nonpositive curvature.
We discuss them here without rigorous proof (see [2]). A geodesic is de-
fined as a path that is locally shortest, and from this one can conclude
that geodesies consist of Euclidean straight lines away from the singular-
ities, which might meet at a singularity making an angle no less than n
on either side. Between any two points in a complete disk Δ there is a
unique geodesic segment (see, e.g., [27]); the uniqueness follows from an
application of the Gauss-Bonnet theorem.

Similarly, for any nontrivial free homotopy class of simple closed paths
on a surface S there is a geodesic representative. The representative might
not be simple because it may have self-tangencies along subarcs. (Consider,
for example, the complex plane slit along two congruent real intervals, the
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resulting holes then sewn together to make a handle. The curve running
around both slits in the original plane has a geodesic representative with
such a self-tangency.) However it will not have self-crossings by the Gauss-
Bonnet theorem, and its lift in the cylindrical covering corresponding to
the homotopy class will be simple.

The geodesic representative is unique, except for the case where it is
one of a continuous family of closed Euclidean geodesies in a Euclidean
annulus (obtained by gluing a pair of opposite sides of a Euclidean rectan-
gle). These annuli, which we also call flat cylinders, will play an important
role in our analysis. We note here that a maximal flat cylinder & is one
that contains all its geodesic representatives, and that such a cylinder must
necessarily contain singularities on both of its boundaries.

We will regard as annuli some 2-complexes that are not true annuli,
but rather closed regions between two concentric curves that might touch.
In this case we call them "pinched" annuli if the distinction is important
(in particular a single closed curve can be considered an annulus with no
interior).

The curvature of a piecewise-smooth path γ in S is well defined (as
a measure, with atoms at the corners) up to choice of sign if γ does not
meet any singularities. If γ is the boundary of some set C, we choose
the sign to be positive when the acceleration vector points into C (or, at a
corner, when the interior angle is at most π ) . In such a case we say that γ
is curved inwards (or positively) with respect to C. If γ passes through a
singularity, we can use the same definition, but we must keep in mind that
γ might be curved outwards with respect to both C and its complement.
If γ is curved positively (or negatively) with respect to C at every point,
we say it is monotonically curved with respect to C.

Because d admits a foliation by straight lines (property (B)), the cur-
vature of a path γ is just the rate of turning of the foliation leaves rela-
tive to γ. The total curvature κ(γ) of any closed curve y that contains
no singularities is therefore an integral multiple of π (note that this is
just the argument principle in disguise). It is not hard to show, using the
Gauss-Bonnet theorem, that there is also an upper bound 2π\χ(M)\ to the
magnitude of κ(γ) for a separating simple closed curve γ. This is false
for a nonseparating curve. However, if we assume that γ is monotoni-
cally curved, then it and its geodesic representative bound an embedded
(possibly pinched) annulus (see the discussion of convexity), and another
Gauss-Bonnet argument yields a bound of κ(γ) < 4π\χ(M)\.

Controlling neighborhoods. The dimensions of ^-neighborhoods in a
compact surface are controlled with a standard application of the Gauss-
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Bonnet theorem. Let JVR{C) denote the ^-neighborhood of a set C . We
have:

Lemma 4.1 (Size of ^-neighborhood). For any connected 2-complex C
with piecewise smooth boundary in a compact surface M with a quadratic
differential metric,

^ < Area(C) + l(ΘC)R + K2R
2,

where Kχ and K2 depend only on χ(M).
Proof of Lemma 4.1. The piecewise-smooth level curves γr = R

move at unit speed (with respect to r) orthogonally to themselves, so at
all but the finitely many values of r where yr passes through a singularity,

j?W = *ϋv)

By the Gauss-Bonnet theorem,

<2π(l + \χ(M)\)>

where K{X) is the total Gaussian curvature of X, obtained in this case
by summing over the singularities in X.

Integrating, we have

and integrating again gives the bound on area.
4.2. Convexity. As for any smooth negatively curved metric, if S is

simply-connected, then the distance function d( , ) is convex in the sense
that for every pair of geodesies γ, β parametrized at constant speeds,
d(y(t), β{i)) is a convex function of t. (It is easy to construct a proof
of this without appeal to the general machinery by using elementary Eu-
clidean geometry and considering the cases that occur when geodesies pass
through singularities.) We will call a set C in S convex if any path con-
necting two points in C can be deformed to a geodesic lying in C.

We list without proof some standard consequences of convexity:
Lemma 4.2 (Convexity facts). Let d be a complete convex distance

function on an open ball Bm . Then the following hold:

(1) // / : Bm -> R is a convex function, then LR(f) = {xeBm: f(x) <
R} is a convex set.

(2) If C C Bm is convex, then the function x >-• d(x, C) is convex.
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(3) For any convex C c Bm there is a well-defined projection π: Bm -
C -> dC that takes each point of Bm - C to its closest point in C. The
projection is distance-nonincreasing.

An immediate consequence of (1) and (2) is that i?-balls in a complete
disk Δ are convex, as are ^-neighborhoods of geodesies. Similarly, for a
complete cylinder Γ we can see that an ^-neighborhood of a core geodesic
is convex, by lifting to the universal cover.

Nonpositive curvature supplies the following isoperimetric inequality:

(4.1) Area(^) < ^ / 2 ( 9 ^ )

for any topological disk f c Λ with rectifiable boundary. This follows
immediately from the results in [22] by considering smooth nonpositively
curved approximations to our singular metric. Similarly, let si denote
a closed annulus carrying a quadratic differential metric, {si could be a
subannulus of Δ, or of a complete cylinder Γ.) If L is a bound for the
lengths of the boundaries of si , and D is the minimal distance between
them, then

(4.2) Area(j/)< -{D + L)2

71

is obtained by cutting along the shortest curve connecting the boundaries
and applying (4.1).

The convex hull (%%'(U) of a set U c S is the smallest convex subset
of S containing U. It follows from Lemma 4.2 that bounded sets in Δ or
in a complete cylinder Γ have bounded convex hulls (the latter obtained
by lifting to the universal cover and considering neighborhoods of a lift of
a geodesic representative of the core curve) . We can obtain more precise
information:

Lemma 4.3 (Bounds on convex hulls). Let Δ and T be a disk and a
cylinder with complete metrics satisfying property (A). Let U c Δ be a
closed disk, and γ a closed curve isotopic to the core of Γ. Then
is a closed disk, ^ ^ is a closed cylinder retracting to γ, and:

(l)
(2) ( η

(3) /(α) < l(γ) for each component a of dWίf{y).
If in addition, the metric on Γ is foliated (i.e., satisfies property (B)),

then:

(4) « r ( y ) , c ^ ( r t ( y ) f

(5) Area(Kr(y))<i/2(y).
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FIGURE 1. THE DOUBLE OF THIS FIGURE ALONG ITS

UPPER AND LOWER (SOLID) BOUNDARIES HAS A METRIC

WITH PROPERTY (A), BUT DOES NOT ADMIT A SINGULAR

FOLIATION BY STRAIGHT LINES. PARTS ( 4 ) AND ( 5 ) OF

LEMMA 4.3 CAN FAIL ARBITRARILY BADLY HERE

Proof. The boundary of a convex set cannot contain homotopically
trivial components unless the set is a disk, since it is clear that the convex
hull of the boundary of a disk contains the disk. Therefore <S^{U) is a
closed disk, and Wίf{y) is a closed cylinder.

Let a be an arc of dWff(\J) which does not touch U. Then a must
be a geodesic, because otherwise we could replace a small piece of a by a
shortcut into the interior. Thus, if E = d(§^{U) Π U is the set of extreme
points of U, E is closed and every arc of d%^{U) - E (note that E
must be nonempty since there are no closed geodesies in Δ) is shorter than
the corresponding arc of d U, and (1) follows. The same reasoning applies
to (3), except that the boundary of ^ίf{y) has two components, and it is
conceivable that one (or both) of them misses E, if it is a geodesic.

Part (2) follows immediately from part (1) of Lemma 4.2 (convex-
ity facts): because any point in U is contained in a geodesic segment
with endpoints on dU, and geodesies in Δ are unique, U lies in the
(l(d J7)/2)-neighborhood of any point in d U, which is a convex set by the
lemma. Thus W?(IJ) lies in the same set.

Parts (4) and (5) are slightly trickier because they depend strongly on
the foliation. In fact they are false for a metric satisfying only property
(A), as evidenced by the example in Figure 1.

If γ intersects a geodesic core γ* of Γ, then again as a consequence of
Lemma 4.2(1) the convex hull of γ is contained in an (/(^^-neighbor-
hood of γ*. (4) follows immediately, and (5) is a consequence of inequal-
ity (4.2). Assume therefore that γ lies on one side (say the right side)
of γ*, where we now take γ* to be the rightmost geodesic if Γ has a
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flat part. We know then that (%%'(γ) lies to the right of y* (in fact γ*
is the left boundary of K^(y)). Let yr be the right boundary of the r-
neighborhood of 7*. As in the previous section, the integral of curvature
around γr is a positive multiple of π, except for isolated values of r for
which γr contains a singularity of the metric, and where the integral is
not defined. Therefore,

ur Jyr

so l(γr) > πr. Let r0 be the first r such that γr touches γ. Then

l{yr) — l(y) because the closest-point projection to a convex curve (like

γr) is distance-decreasing. This gives us

Since (again because of Lemma 4.2) ί S ^ y ) is contained in the annulus

bounded by γ* and γr +[fγy2 > W follows immediately, and inequality

(4.2) again implies (5).

Boundary-convex hulls. In a closed surface M it is impractical to take
convex hulls, since by our definition the only convex sets are the empty set
and M itself. Instead the useful notion to work with is that of boundary-
convex sets. A set C is boundary-convex if its boundary is everywhere
curved outward with respect to M — C (this is not quite the same as being
curved inward with respect to C see §4.1). It is easy to see that C is
boundary-convex if and only if for every component U of C, its lift to
the cover of M determined by the image of nχ{U) in nχ{M) is convex.
Another way to say this is that any geodesic arc which is deformable rel
endpoints into C in fact lies in C. It is also clear that each component of
a boundary-convex set is incompressible, i.e., the map im \πx{U)-> nχ{M)
is injective.

We say that two components γ{ and γ2 of dC (where possibly γχ =
γ2) are r-separated if every arc a in S with endpoints on γχ and γ2

that cannot be deformed (rel endpoints) into C has length greater than
rmax(/(7j), KViί) - If a ^ °f C's boundaries are r-separated from each
other (and from themselves) we say that C is r-separated. In other words,
disjoint embedded collars of radius rl(y)/2 can be appended to C at each
boundary component γ.

Theorem 4.4 (Boundary-convex hull). Let M be a closed surface car-

rying a quadratic differential metric d{ , ), and let A c M be any closed
2-complex with piecewise-smooth boundary. For any s < 0 there is a set
containing A, which we call & = &g^(A s), such that
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1. 38 is boundary-convex and s-separated,
2. l{β38)<kχl{βA))

3. Area(^) < Area(Λ) + k2l
2(dA), and

4. 38 c Λ^iidA)^) > where kχ, k2, and k3 are constants depending

only on the topological type of M, and on s.
Proof Let U be a component of A, and Mυ the cover of M cor-

responding to the inclusion of πχ(U) in nχ{M). The basic step of the
construction is to lift U to its homeomorphic cover U c Mυ , build the
convex hull Wίfφ) in Mυ, and hope that its projection back down to
M is an embedding.

Assume that U is a subsurface, thickening it very slightly if necessary.
This allows us to assume that d U is a union of simple closed curves. The
added area may be made as small as we like and we shall ignore it.

We can control the size of Wίfφ) by observing that it is composed
of the union of U with a disk for every boundary component that is
compressible in Mυ - U, and an annulus (probably pinched) for every
other boundary component. If γ is a boundary component of the first
kind, then the added disk has area bounded by ^I2(y), by (4.1). If γ is
of the second kind, then either γ is compressible in Mυ or it is not. If it
is, MJJ is a disk Δ and ^^(U) = Wίf{y), whose area is again bounded
by 4^2(?) > and whose boundary has length at most l(γ) by Lemma 4.3
(bounds on convex hulls). If γ is nontrivial, we can lift to the cylindrical
cover Γ determined by γ . The component of Mυ - U bounded by γ lifts
homeomorphically to Γ, and the added annulus is just the corresponding
component in Γ of Wf?{y) - γ (see Figure 2). Again by Lemma 4.3,
the added area is no more than f/2(y) and the new boundary has length
at most l(γ). Part (4) of Lemma 4.3 implies that Wfφ) lies in the
/(y)-neighborhood of U.

Let W denote the disjoint union UucA

(S^φi) of convexified com-
ponents of A, and p : & -> M the union of the projection maps pz :
(S^?φi) -> M. If p is an embedding and the resulting boundary-convex
set p(^) is s-separated, we are done, by setting 3££%?{A s) = p ( ^ ) .

If p is not an embedding, define A' = p ( ^ ) . If p is an embedding
but p(&) is not ^-separated, define Af = p(^) U a, where a is a (slightly
thickened) arc of length no more than sl(dff) < sl(dA) whose endpoints
are on dp(ff) and which is not deformable into p ( ^ ) . We then have

l(dA')<l(ΘA)(l+2s)9

(note that a counts twice in the boundary length of A!, once for each
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FIGURE 2

side), and

Area(Λ') < Area(^l) + 2l2(dA).

We can now repeat the process of taking components and constructing
boundary-convex hulls. It remains to show that this can only happen a
bounded number of times.

For a subsurface X of M, denote by X the surface obtained by
appending to X any disk components of M - X. We will show that
χ(M-A), which is nonpositive, grows each time we repeat the above pro-
cess, and this will bound the number of steps. (The reason we can ignore
disk components of M - Af is that they will get filled in anyway in the
next step.)

In the case where p is an embedding and an arc a was added, it is
immediate that Af is not retractable into A. If the images of two com-
ponents p{«r(ϋx)) and p(KT(C/2)) intersect, the same is true. Suppose
finally that p fails to be an embedding on a single component g2F(U). If
the projection can be retracted to U, then every boundary component γ
of the projection can be retracted into dΰ, and is therefore either homo-
topically trivial or isotopic to a boundary component of U. In the latter
case γ lifts homeomorphically to Mυ , and therefore must comprise the
image of an entire boundary component of «T((7) . Since the projection
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is injective on fundamental groups, all the boundaries of Wίfφ) must
project this way, and the former case (γ is homotopically trivial) cannot
occur. The projection, being already the restriction of a covering map, is
therefore an embedding.

We conclude that, unless we are at the last step, Af (and therefore A1)
does not retract into A. The rest is an elementary computation. Recall
that we are slightly thickening A' if necessary, so that is a subsurface
rather than a general 2-complex. Let X = M - A, Y = M - λ , and
W = closure (X-Y). Then χ(Y) = χ(X) - χ{W) + χ(W n Y). For any
component of Z of W χ(Y) = χ{X) - χ{W n Y). For any component
Z of W, χ(Z ίlΓ) - χ(Z) is nonnegative, and zero only if Z is a disk
or annulus that retracts to dX. Since W does not retract, there must
be at least one component that makes a positive contribution to the sum.
Therefore, χ(Y) > χ{X), and we are done.

4.3 Modulus and extremal length. In a hyperbolic surface there is a
direct correspondence between the extremal length of a curve and its hy-
perbolic length, when these are small enough. To a curve of small extremal
length E there always corresponds a long thin hyperbolic cylinder whose
core length is approximately 2πE. In a quadratic differential metric a
more complicated, but still quantifiable, relationship exists between the
geometry of cylinders and the extremal length of their cores.

Let A be a closed annulus in M with boundaries d0 and d{. Denote
their (signed) total curvatures by κ(d0) and κ(dx), defined with respect
to A as in §4.1. Suppose that both boundaries are monotonically curved
with respect to A (recall that this means that the curvature vector of a
boundary consistently points into (resp. out of) A at smooth points, and
internal angles are at most (resp. at least) π at corners). Further, suppose
the boundaries are equidistant from each other, and that κ(d0) < 0. We
then call A a regular annulus, and if κ(dQ) < 0 we call A expanding
and say that d0 is the inner boundary and dχ is the outer boundary. If
the interior of A contains no zeros we say A is a primitive annulus, and
write κ(A) - -κ(d0) = κ(d{). When κ(A) = 0, it is aflat annulus and is
foliated by closed Euclidean geodesies homotopic to the boundaries.

The modulus of a flat annulus is clearly Mod(^) = d(d0, dx)/l(d0). The
other well-known example is a round annulus between two concentric cir-
cles in the plane, for which κ(A) = 2π and Mod(Λ) = ±logl(d{)/l{d0).
Therefore we define

J iϊκ(A) =
for a primitive regular annulus A .
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A regular annulus is foliated by level curves yr = {p e A: d(p, d0) =
r} which by Lemma 4.2 (convexity facts) are themselves monotonically
curved. Therefore by cutting along the curves yr which contain singu-
larities we decompose A canonically into a union A = \JAi of most
2\χ(M)\ + 1 primitive annuli, where dA{ - yr U γr . We then define
μ(A) = Σ μ ( ^ ) . We justify this notation with:

Theorem 4.5 (Modulus of regular annulus). For any regular annulus
AcM,

μ(A) < Mod(A) < μ(A) + min (cχμ(A), c2y/μ(A)) ,

where cx and c2 depend only on χ(M).
Proof. Define a scaling function p(r) = l(yo)/l(yr) and let d de-

note the distance function obtained by the conformal change of metric
\Φ(p)dz2\ \-> p2(d(p, dQ))\Φ(p)dz2\ where \Φdz2\ is the original metric
of M. In this metric each γr has length lΛyr) = l{y0) = /(<90) = L.

Let rχ, , rn be the values of r for which yr pass through singular-
ities, set r0 = 0 and rn + 1 = R = d(d0, dx), and let AQ, - , An be the
corresponding primitive annuli. The total curvature of yr (with respect to
the annulus it bounds together with dQ) is κ(γr) = κ(A.) if r. < r < ri+ι

and -fcl(yr) = κ(γr), so we can obtain a lower bound H for the /?-length
of any path from d0 to d{ by computing

ίR

H =
Jo

By a similar computation we can obtain

2

f ) dr = L2μ(A).

Therefore (see §2),

The bound in the other direction is trickier. In particular, the /^-length
of the circumference of A is not bounded below by L. Denote by A the



HARMONIC MAPS IN TEICHMULLER SPACE

3,

177

H

FIGURE 3

Euclidean annulus of circumference L and height H, parametrized as a
rectangle [0, H] x [0, L] with edges [0, H] x {0} and [0, H] x {L} iden-
tified. We will construct a map h: (Λi, d ) —• ^ that is approximately an
isometry, and then use a simple inequality involving the energy of h to
get an estimate of the modulus.

The complement of the singularities in the interior of A is foliated by
arcs orthogonal to the level curves γr, which represent shortest paths from
points in A to d0 (see Figure 3). Let α 0 be one such "radial" arc. We
define h by the requirement that h maps α 0 isometrically to [0, Λ]x{0}
and each level set γr is isometrically to the circle corresponding to {f} x
[0, L], where f{r) = Jo

r p(s) ds is the /^-distance of γr from γ0.
We proceed to estimate the energy of h. Fix another radial arc a,

parametrized with respect to arclength by r, and with respect to /?-arc-
length by f. After choosing one of the two rectangles bounded by a0 and
a, let y(r) denote l(βr), where βr is the segment of yr between α 0 and
a in the rectangle. Let y(f) denote lp(βr(f)) For ri < r < r / + 1, we have
^ = k(At)9 where k(At) € [0, κ(A.)] is the total curvature of βr. We
also have, by the definition of p,

dp_ = Hy^dily^ = 2 κ(A^
dr I2(y) dr L

Since y(f(r)) = ρ(r)y(r) we have

Now applying the chain rule using ψr = p{r), we have

(4.3) L^5
ri<r<ri+v
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By discussion in §4.1, κ(A.) < Noπ for a constant No depending on
χ{M), so

Since h(a) is given by the path (f, y(f)) in Ae , this implies

(4.4) \dh\2<2 + N2π2

in the interiors of the Ai. This alone bounds the energy of h by

(4.5) ?h(A) < i ( 2 + N2

oπ
2)L2μ{A).

We can do a little better, however. In Ai, the solution of (4.3) is

£ e x p ( - ^ ( ? - V
so

i
df

Therefore the energy of h restricted to Ai is bounded by

< i £ ' + 1 [2 + /c2μ,.)exp ( ~ 2 ^

.) + l i

Summing over the (at most N0 + l) cylinders we obtain

(4.6) Zh{A)<\

where Nχ again depends only on χ(M). This energy gives us bounds on
modulus by the following argument. If Ax and A2 are two Euclidean
annuli, then by an argument like that of Proposition 3.1 (energy lower
bound), we can show that the lowest energy for a map from (A{, dA{) to
(A2, ΘA2) is

1
+2 [Mod(A2) ^ Mod(Ax)

M θ d < ^lArea( A ) ,
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(and is in fact realized by a linear map). Since energy depends on the
conformal rather than the metric structure of the domain, this gives a
lower bound for the energy of any map to A2 from an annulus confor-
mally equivalent to Aλ. Applying this to our situation, where Moά(Ae) =
μ(A) = L21 Area(^), we have

1 ΓMod(Λ) μ(A) 1> I ΓModμ)
~ 2 [ (A)Area(^) ~ 2 [ μ(A) Mod(^)J

or, by applying (4.5) and (4.6),

1 ΓMod(Λ) μ(A) 1 . tΛ N. t A r x

2 [ μ{A) Mod{A)\ μ(A)' v

where N2 = 1 + Λ^π 2/2. The statement of the theorem follows easily,
q.e.d.

We note briefly some geometric facts that follow from the above discus-
sion. For an expanding annulus A, l(γr) = l(γ0) + k(r)r, where k(r) is
bounded below by π and above by Noπ . Thus, if r(A) = d(d0, dχ) is the
radius of A, then r(A)/l(d0) is bounded above and below by two expo-
nential functions of μ{A). Integrating, we see that (in the original metric)
the area of A is bounded above and below by I2{do) times exponential
functions of μ(A). For a flat annulus, of course, Area(A) = I (dQ)μ(A).

What we really want in this section is a statement relating arbitrary high
modulus annuli in M to the quadratic differential metric. The following
theorem supplies this, at the expense of the sharpness of the bounds.

Theorem 4.6 (Modulus of any annulus). If Ac M is any homotopically
nontrivial annulus with Mod(Λ) < mQ, then A contains a regular annulus
B such that

μ{B)>c3Mod(A)-c4,

where m0, c3, and c4 depend only on χ(M).
Proof. The technique is essentially that of the previous theorem, except

that we first have to find B .
If the total curvatures of both boundaries of A are positive with respect

to A, then we can find a circumferential curve γ c A, dividing A into
two annuli Ao and Ax, whose total curvature is nonpositive with respect
to both annuli, and such that Mod(,40) + Mod(^j) = Mod(^). Thus there
is a subannulus A1 C A with Mod(^') < \ Mod(Λ) such that at least one
of its boundaries, say <9Q , has nonpositive total curvature with respect to

A!.
Lift Af homeomorphically to the cylindrical cover Γ corresponding to

its core. Let γ0 be the boundary of Wί?{β'^) which lies on the same side of
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ΘQ as A' (see Figure 4). γQ must touch 3Q because otherwise γQ would
be a geodesic core of Γ, and d'Q would have positive total curvature with
respect to A*, by the Gauss-Bonnet Theorem. If γr is the r-equidistant
curve from γ0 on the same side, let R denote the first value of r for which
γr touches d[. Let B be the regular annulus bounded by γ0 and γr (if
R — 0, then B is a single curve, which may not be entirely contained in
A').

The energy argument used to bound the modulus from above in the
previous theorem encounters technical problems here, because we would
need to define the map h on A! - B, whose shape could be very wild.
Rather than involve ourselves in this messy problem, we will use a simpler
estimate and be satisfied with bounds which are not as tight.

Define p{r) as in the previous theorem. Let r: Γ —• R be defined as
signed distance from γ0 so that r < 0 on the side of γ0 containing d'o.
In particular τ(γr) = r. Define a function p : R —> R as follows:

1 if - / ( y o / 2 ) < r < O ,

p(r) ifO<r<R,

p(R) ifR<r<R + l(γR)/2,

0 otherwise ,

and let dp, denote the metric d scaled by (p(τ(p)))2. Let us compute

the circumference Cpl(Af), i.e., the minimal ύf /-length of a curve in A1

isotopic to the boundary.
We first claim the minimal length is achieved by a curve lying entirely

to the right of γ0 (in other words the subannulus of Γ where r > 0). If
γ is a length minimizing curve, it must at least enter the right side of γ0

since γQ touches d'o. Let a be an arc of γ with endpoints on γQ and
interior on the left side of γ0 . If a leaves the (/(y0)/2)-neighborhood of

P(r) =
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y0 then its dp,-length is at least l(γ0). If it does not, then lp,(a) = l(a).
In either case the geodesic segment of γ0 homotopic to a rel endpoints
is shorter than a in the p metric.

On the other hand, if an arc B of γ exits on the other side, then it can
be deformed to γR by the distance-decreasing projection given in Lemma
4.2 (convexity facts). We conclude that Cp,(A') > Cp*(B). Note that this
holds true even in the case where R = 0 and B is not contained in A!.

The dp, metric restricted to B is exactly the d metric of the previous
theorem, so we can construct a map h: B -> Be where Be is the Euclidean
annulus of circumference L = l(γ0) and height H = Lμ(B). We can again
bound the derivative of h by using (4.4), so

CAB) > k L

We obtain an upper bound on the rf #-area of Af by observing that the

area of Af n r~1[-/(y0)/2, 0] is bounded by N3l
2(γQ), and that the area

of Af Πr~ι[R,R + l(γR)/2] is bounded by N3l
2(γR) where iV3 depends

only on χ(M) (Lemma 4.1 (size of ^-neighborhood)). Thus,

μ') < L2(2N3

By the definitions in §2, this implies

, Area >{A')
Mod(Λ') < ' <N4 + N5μ(B),

Cp'(A)

where N4 and N5 are combinations of the previous constants. Note in
particular that if Mod(^) > 2N4, then B is actually contained in Af.
The theorem follows, with m0 = 2N4, c3 = l/2N5, and c4 = N4/N5.

4.4. Injectivity radius. The injectivity radius in a quadratic differential
metric, unlike in a hyperbolic surface, has no intrinsic conformal meaning
because there is no natural scale at which to view such a metric. We can
expand or contract it by any constant and still have a quadratic differential
metric, and indeed conformally equivalent subsurfaces can have injectivity
radii that are widely different. Taking this into account, we can still pro-
duce a geometric decomposition of the surface analogous to, and bearing
direct correspondence with, the thick-thin decomposition of a hyperbolic
surface.

We start with a rough characterization of injectivity radius in terms of
distance from the set Ξ£ of singularities of the metric.
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Lemma 4.7 (Injectivity away from zeros). The injectivity radius of a
point p e M - JVR(J£) is at least 2R, unless p lies in aflat cylinder of
M. Conversely, let U be a component of &R = 3^^{jrR{Z) 0). // U
is not a disk then the injectivity radius anywhere in U is at most KR,
where K depends only on χ(M).

Recall that &%%?(X 0) denotes the boundary-convex hull of X (with
no separation requirement on the boundaries).

Proof of Lemma 4.7. Let γ be any geodesic path with both endpoints
on p € M'-JfR(3?). If γ passes through a singularity of the metric, then
l(γ) > 2R since d(p, Z) > R. If, on the other hand, γ contains no
singularities, then it is a Euclidean geodesic, and makes a constant angle
with the foliation. Thus in fact the two ends of γ meet at p making an
angle of π, and γ is a closed geodesic core of a flat cylinder. This proves
the first statement.

To prove the converse, let β be a boundary component of U. Since
U is not a disk, β is nontrivial, and its length is at most some KQR
by Lemma 4.1 (size of ^-neighborhood) and Theorem 4.4 (boundary-
convex hull). Thus the injectivity radius anywhere on the boundary is at
most K0R/2. By part (4) of Theorem 4.4, U c JVcR(Z) with cx =
cx(χ(M)), so any point in U can be connected to dU by a path of
length at most cxR. The injectivity radius is therefore bounded above by
(2c{+K0)R. q.e.d.

We can now form something analogous to a thick-thin decomposition.
Choose e « min(eo/2π, l/m 0 ) , where e0 is the Margulis constant, and
m0 is the modulus from Theorem 4.6 (modulus of any annulus). Let
{̂ i > ' " ' yn} be the simple closed curves of M whose extremal lengths,
{E(γi)}, are less than e . These curves must then be disjoint, and we
can find a collection of disjoint annuli {At} with moduli Mod(^4/) >
l/E(γ.) - mx, where mχ is a constant depending only on χ(M) this is
a standard consequence of the thick-thin decomposition—just take the e0

Margulis tubes around the y..
By Theorem 4.6 (modulus of any annulus), each A. contains a regular

annulus B. with μ(B.) > c3 Mod(^) - c4. Let C denote the maximal
union of regular annuli contained in A{. These C will be our "thin" part,
and Mτ = M - uCi will be our "thick" part. Note that because of the
slack in Theorem 4.6, Mτ might actually contain some of the hyperbolic
thin part, but it certainly contains the entire hyperbolic thick part, and on
the other hand the Ci account for a definite fraction of every component
of the thin part.
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5. Building &>R

From here on we assume that M = (S, σ) and N = (S, p) represent
different hyperbolic structures on an underlying closed surface S, and
that f:M->N is the unique harmonic map in the homotopy class of the
identity.

Lemma 3.2 (rough bound) provides a preliminary bound on & wher-
ever the injectivity radius of the |Φ| metric is not too small. Lemma
3.3 (exponential estimate) provides an exponential improvement in this
bound as |Φ|-distance from the zeros increases. Lemma 4.7 (injectivity
away from zeros) shows that distance from zeros implies large injectivity
radius, except on thin flat cylinders. The situation on such cylinders is
not hard to control, either. Let & be a maximal flat cylinder in the |Φ|
metric with circumference W < 1 (recall from §4.1). By Lemma 3.2
(rough bound) and Lemma 3.3 (exponential estimate) we have

ύήiΓι(Λ\χ(M)\/W2)
KP} ~ cosh(r - W/2)

at a point p e &~ which is a distance r > W/2 from d^. Thus, for

r>rw = ^ + logis inh- 1 (4 |^(M) |/^ 2 )

we have &(p) < 1, and the pair of subcylinders ^0 = {p e^: d{p, dF)
< rw] has |Φ|-area bounded by a constant AQ independent of W. In
& - ^ we have &{p) < ε(d(p, «̂ J)) (recall the notation of ε( ) from
§3). If W > 1 we can set rw = 1 and still have the exponential estimate.

Thus in general the "bad" parts of M are neighborhoods of zeros and
the subcylinders ^ of the flat cylinders, and estimates on 9 improve
exponentially with distance from them. Our goal in this section is to
construct a growing family of surfaces &R (R > 0) which include R-
neighborhoods of the "bad" parts and whose shape and dimensions are
well-suited to the train-track arguments of the next section, by which we
will show that the leaves of Φh outside &R are mapped by the harmonic
map to curves that are ε(i?)-nearly tangent to the corresponding leaves of
the geodesic lamination f(Φh)*.

We should think of &R as a generalization of the following two ex-
amples, which were analyzed in [31]-[33]. First, consider a fixed M
and a fixed quadratic differential Φ o , and the ray of hyperbolic surfaces
{Nr: r > 0} leaving every compact set in Teichmuller space for which the
harmonic map fr: M -* Nr has the Hopf differential Φ r = rΦ0. For large
enough r, we can build polygons with alternating horizontal and vertical
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sides around the zeros, which take up only a small percentage of the total
|ΦΓ|-area of M, and which map approximately to ideal polygons in Nr

(see Figure 5).
In the second example we take a fixed surface N and a family of sur-

faces Mr in which a particular curve γ is shrinking. In that case the Hopf
differential Φ r of fr develops a long flat cylinder homotopic to γ, and
the rest of the surface contributes a bounded amount of Φr-area. &R in
this case (for a bounded value of R) is the complement of the flat cylin-
der, and the boundary of &R maps nearly geodesically to the geodesic
representative of γ in N (see Figure 6).

In the general case a boundary component γ of &R will be of one of
the following two types:

1. An alternating sequence of horizontal and vertical arcs of the qua-
dratic differential, meeting at angles of π/2 with respect to &R in this
case we call γ a polygonal boundary component.

2. A geodesic core of a flat cylinder—in which case we call γ a straight
boundary component.

The polygonal type of component is a generalization of the first example,
and we expect its image under the harmonic map to approximate an ideal
polygon whose edges are leaves of the image lamination. The flat type is a
generalization of the second example, and we expect the images of leaves
of Φh in the corresponding cylinder to bunch or spiral around a geodesic
in the image, or to approximate a portion of the image lamination in the
thin part (depending on the angle of the leaves in the cylinder).

We will also require, for our later convenience, that straight boundary
components always occur in pairs bounding flat cylinders. In such a case
&R will always include at least an (rw+^-neighborhood of the boundary



HARMONIC MAPS IN TEICHMULLER SPACE 185

FIGURE 6. PINCHING CYLINDER

of the corresponding maximal cylinder, so that ε(R) estimates on & hold
in the complement of &R, as discussed in the beginning of the section.
As R grows, such a flat cylinder will gradually be engulfed until it is
contained in &R and the straight boundaries disappear. We note that the
number of distinct maximal flat cylinders whose subcylinders can occur
as components of M - £PR as R grows from 0 to oo is bounded by
3\χ(M)\/2, since they represent homotopically distinct, disjoint simple
closed curves in M. Accordingly we will number them «£[, , ̂  (n <
3\χ(M)\/2), in the order in which they occur.

In the following theorem we show how to construct <
dimensions in various senses.

Theorem 5.1 (polygonal region). Let s{ > 0 and c

0 be chosen constants, where M is a closed surface carrying a quadratic
differential metric with singularity set JΓ. For any R > 0 there exists a
boundary-convex set £PR c M with the following properties:

(2) Every component of d£°R is either polygonal or straight (as above),

and the straight components occur in pairs bounding homotopically distinct

flat cylinders.

(3) If S^ is the kth maximal flat cylinder whose subcylinders occur as

components of M - &r for r < R, and i ^ is partially contained in 3°R,

then ^kΓ\&R is a pair of flat cylinders with length at least rw+R+ckR
2/W,

where W = W(^jέ) is the circumference of ^k .

and control its

> Cl\χ(M)\/2 >

(5) A r e a ( ^ ) <AX+ (K2 + 2 Σ ? = i ct)R2, where k is the number of flat

cylinder components of M -9°r that have occurred for r < R.
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(6) Each edge of a polygonal boundary component has length at least
K3R.

(7) The polygonal components of d^R are sχ-separated.
In the above, Aχ, Kχ, K2, and K3 are constants depending only on sχ

and χ{M).
Proof The basic strategy is to form the ^-neighborhood of the sin-

gularities, boundary-convexify it and "square out the corners" to satisfy
property (2). We must take some care to control the size of the resulting
set, and also treat the flat cylinders separately.

Let & denote SSSSίT^^Z) s2), where s2 = 1 + V2sx. l{d£B)
and Area(^) are bounded by kχR and k2R

2, respectively, by virtue of
Lemma 4.1 (size of ^-neighborhood) and Theorem 4.4 (boundary-convex
hull), where k. = kfa , χ{M)).

Any component of d32 which meets a flat cylinder and is isotopic to its
core is automatically a core of that cylinder, by the boundary-convexity of
38 . Let γQ be such a component in a flat cylinder &, and suppose that the
opposite side of & is not bounded by a corresponding curve. Then there
is some core curve γχ of & which touches a component of d3§ different
from γ0. Appending γχ to 3S we obtain a set whose boundary length
is greater by no more than 2l(γχ) < 2l(d£B) < 2kχR, so the boundary-
convex hull of the new set, 3^S^{β u γx s2), still has boundary length
and area bounded proportionally to R and R2, respectively. We repeat
this process as long as necessary. As in Theorem 4.4 (boundary-convex
hull), the process must terminate after a bounded number of steps because
the topological type of the complement of 3S decreases each time. The
resulting set, which we call &, satisfies the part of property (2) relating
to straight boundary components, as well as properties (1), (4), and (5)
(with appropriate constants) and is s2-separated.

To satisfy (3) we simply extend SB1 into each flat cylinder ^ that
it adjoins, until the intersection SB1 Π & is composed of cylinders of the
desired length, rw+R+ckR /W. Note that this can only increase the area
of 33' by some (K2 + 2ck)R2. If the height of ^ is less than the desired
length of the cylinders being added, we just include the whole cylinder in
3B1 and eliminate those boundary components. Call the resulting set ^ .
Note that the polygonal boundaries of g7 are still ^-separated, and that
property (5) is still satisfied.

The next step is to add "corners" to each nonstraight component of g7

so that property (2) will be satisfied. Let γ be such a component. The
horizontal and vertical foliations turn monotonically around γ, and we
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want to add approximately triangular corners with one vertical side, one
horizontal side, and one side on γ, as in Figure 7.

Consider an arc a where the line field turns through 90 degrees, from
being tangent to a at one endpoint to being perpendicular at the other.
The developing image of a into R 2 , and thus of a neighborhood of it,
must be an embedding (Figure 8).

Because the polygonal boundaries of & are s2-separated, there are no
other portions of dW, and in particular no singularities, within 1(3^) of
α, so we can continue the developing image for that distance. It is an easy
fact of Euclidean geometry that a curve which turns through 90° mono-
tonically in the plane is no more than 1/2 away from its corresponding
"corner" (i.e., the path consisting of two orthogonal segments tangent to
a at its endpoints), where / is the length of the curve, so we can adjoin a
corner (Figure 9) to each such arc, and the resulting surface, which is the
desired &R , will still be embedded.

The polygonal boundary components of &R are in fact still separated
by arcs of length at least (s2 - \)l(d&). Again as a simple consequence
of Euclidean geometry, a corner attached to an arc a as above has length
at most >/2/(α), so l{d3°R) < y/2l(d&) and the polygonal boundaries of
&R are s{-separated by our choice of s2. This gives us property (7), as
well as (4) and (5) with revised constants.
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Property (6) follows from the fact that the boundary of *% has curva-
ture at most l/R at any point—this is true for thς convex parts of the
boundary of Λ"R{3'), and the boundary of the convex hull can only have
less curvature.

6. Building train-tracks

Let a be a (not necessarily continuous) path in a hyperbolic surface.
We say that a is (/, e)-nearly-straight if it is piecewise C 2 with each C 2

piece having length at least /, its curvature is at most e where defined,
and it makes jumps of at most e at its discontinuities (measured in the lift
to the unit tangent bundle—so the turning angle is bounded too). Standard
hyperbolic geometry shows that, if e is sufficiently small, a is in a ce-
neighborhood of its geodesic representative a* (rel endpoints, if it is not a
closed path), where c = c(l). Further, the closest-point projection π: a —•
a* is a diffeomorphism on each C 2 piece, with 1 - ce < \dπ\ < 1.

This fact together with the estimates from the previous sections on the
curvatures (in N) of leaves of Φh outside &R are, sadly, not sufficient
to allow us to conclude that Φh is near its geodesic representative in N.
The trouble is that we have no control over the leaves of Φh inside &R ,
and in general even one very sharp corner is enough to leave an otherwise
straight curve far from its geodesic representative.

The saving grace in our situation is that Φh in M - £PR forms a train-
track (see [12] for a detailed treatment) in the N metric, which greatly
limits the amount of damage caused by the lack of control inside &>R .

We extend the standard definition of train-track to an (/, e)-nearly
straight train-track, which is composed of branches that are (/, e)-nearly
straight paths, meeting in switches where jumps of at most e in the unit
tangent bundle can occur between incoming and outgoing branches. It
is then clear that any lamination carried on such a track is in a ce-
neighborhood of its geodesic representative.

One can also realize the branches of a track as long thin rectangles,
foliated in one direction by long nearly straight arcs, and in the other by
very short arcs, called "ties." Our construction will actually be a hybrid of
these two types of train-tracks.

Note. By reparametrizing N we may assume the harmonic map / : M
—• N is precisely the identity on S. Where confusion is unlikely we will
make this assumption implicitly.

6.1. The train-track structure of M — &R . Denote by To the union of
components of M — £PR which are not flat cylinders (we will return to the
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FIGURE 10. A VERTICAL ARC IN dTQ PROJECTS TO A

SWITCH OF XQ . Φh ARCS ARE DRAWN SOLID, AND Φ^

ARCS DOTTED

flat cylinders later). Our first attempt at a train-track will be the 1-complex
Xo obtained by identifying points in To which are connected (in To) by
a vertical arc of Φ . Vertices of XQ are images of vertical boundary arcs
of To, and inherit a switch structure in the obvious way; the edges of Xo

coming from one side of a vertical arc in d TQ are considered to come
from one side of the switch, as in Figure 10.

The preimage of a branch of Xo is either a Euclidean rectangle in the
|Φ| metric whose boundary lies along horizontal and vertical arcs of Φ,
or it is a portion of a flat cylinder, as shown in Figure 11 (next page) (note
that although To has no components which are flat cylinders it may well
contain portions of flat cylinders in its interior). In case (b) of the figure,
the interior of the branch has a rectangular preimage, and the branch forms
a closed loop.

The |Φ| metric on TQ projects to a metric on Xo which gives each
branch the same length as any of the horizontal arcs in the preimage.
Recall from (3.3) that this length closely reflects the length in N of the
image leaves. We want ultimately to obtain a (/, e)-nearly straight train-
track in TV, so we need to ensure that the branches of XQ have lengths at
least 1. This will be done with to operations on TQ:

1. Splitting (compare [12],[3]), which consists of enlarging &>R by mov-
ing forward a vertical boundary, thus moving the corresponding switch in
Xo. This is illustrated in Figure 12. Note that there needs to be enough
room in M - &R for this operation to be possible. The next proposition
shows that only a bounded amount of splitting is necessary.
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FIGURE 12. SPLITTING ONE SWITCH PAST ANOTHER, IN

TQ AND IN XQ

2. Slicing some of the flat cylinders in TQ along horizonal leaves (Figure
13). Such slices can be long, but they do not affect the area of To . Instead,
they produce switches which have only one incoming and one outgoing
edge.

Proposition 6.1 (Adjust train-track). There is a choice of Ro> 0 and a
separation constant sx for the construction of £PR such that for R> RQf we
can split through a bounded distance and slice through some flat cylinders
to obtain a new set T{ whose train-track Xχ has branches of length at least
1 with interiors that have rectangular preimages in Tλ.
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slice

FIGURE 13

Proof. Call a branch of Xo short if its length is at most 3. Let a c Xo

be a short branch whose preimage in To is a rectangle A . We say that a
has an incoming switch if some vertical arc of d To is properly contained
in dA . We can split through a in such a case, by pushing all its incoming
switches forward by the length of a, as in Figure 12. The result is to break
a into several pieces, some of which may merge with adjacent branches
and some of which remain short. All of these short branches no longer
have incoming switches, but new incoming switches may have been added
to adjacent branches.

Consider now the operation of simultaneously splitting through all the
short branches which have incoming switches. After such an operation, if
there is still a short branch with incoming switches, then those switches
must have been produced by splitting through an adjacent short branch.

Since there is a bounded number of branches (depending on χ(M))
and not all of them are short (provided Ro is large enough), after some
bounded number of repetitions of this operation one of the following two
situations must hold: Either all short branches have no incoming switches,
or there is a cycle of short branches such that starting at one of them and
making successive splits we arrive back at the original branch.

Such a cycle must correspond to a flat cylinder which we can slice, be-
cause this splitting is done by pushing a vertical boundary to To across a
sequence of rectangles only to meet the first one again, which must there-
fore wrap around some cylinder (Figure 14, next page). The core of this
cylinder is represented by a curve consisting of a segment of vertical bound-
ary of the original rectangle and a horizontal segment that runs along the
new portion of d9°R added during the splitting. Two such cylinders must
therefore have disjoint cores, so there is a bounded number of them that
can occur.
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FIGURE 14. A CYCLE OF SHORT BRANCHES ARISING FROM

A FLAT CYLINDER. SLICING THROUGH THIS CYLINDER

WILL PRODUCE A LONG BRANCH SPIRALING AROUND THE

FORMER CYCLE

If we now alter our previous procedure by first slicing through all such
cylinders (including cylinders whose cores are vertical leaves) we know
that the result of the bounded splitting procedure must be that no short
branches have incoming switches.

Let a be a branch of length at most 1 after the above procedure is done.
a can have no incoming switches, so it must have an endpoint at which
the switches to either side of a are incoming to an adjacent branch, β .
Thus /(/?) > 3. Split all of β 's incoming switches a distance 1 into β.
This leaves /(/?) > 1, and now all the branches adjacent to it have length
at least 1 also. No new incoming switches have been generated, so we can
repeat this step until all branches have length at least 1.

Since we have shown that the total distance through which we need
to split is bounded, this is easily made possible by a suitable choice of
constant s{ in Theorem 5.1 (polygonal region).

Note. We will assume from now on that the splitting adjustments of the
previous proposition are done as part of the construction of &R . Thus
Γj differs from M - £PR only by the slicing adjustments.
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We can now construct a (1, ε(i?))-nearly straight train-track in TV cor-
responding to the image of Tχ. For each branch of Tχ choose one hor-
izontal leaf and let its image in TV be a branch of the train-track, which
we will call τχ. We already know from §3.3 that these branches are of
length at least 2 - ε(R), and have curvature bounded above by ε(R).
The next lemma insures that all the horizontal arcs from a given branch
are ε(i?)-nearly tangent. This implies immediately that τχ is a (I, ε(R))-
nearly straight track, and that our choice of leaves for branches was not
important.

Lemma 6.2 (narrow rectangles). Let β c Tχ be a vertical arc which
projects to a point in Xχ. Then lN(f(β)) < e(R).

Proof. By (3.3), the length of /(/?)) can be computed by

lN(f(β)) = f y/2{ca8h&- 1) ds9

where ds is arclength along β in the |Φ| metric. By our estimates on &
this is

lN(f(β))< ί εx(R + d(p,^R))ds(p),
Jβ

where εχ is an inversely exponential function.
Let An = ^n{^R) - ^ _ I ( ^ R ) , where n = 1, 2, 3, . . . , and J^r de-

notes an r-neighborhood in the |Φ| metric. Lemma 4.1 and Theorem 5.1
(4) give

where the C depend, as usual, only on χ{M). Lemma 4.1 applied to

^ - i W ) also yields

C3

or

If we also define AQ = ^Rfl^Ί(d^R), we easily obtain the same inequality
for n = 0 (provided R is not too small).

Since β projects to a point in a branch of X{ of length at least 1, β
must be contained in a band B of width 1, which is embedded in M.
For every point x e β Π An (n > 1) it is immediate from the definitions
that jrχ(x) c An+ι ϋAnU An_χ. Thus,

Lm{β ΠAn) < Area(J? Π (Λπ+1 \JAnuAn_x))

<3C5(R + n).
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We may therefore write

oo .

lN(f(β))<Σ ex{R

n)ει (R + n-l< e2(R),

OO

n=\

where ε2 is another inversely exponential function.
6.2. Enlarging the train-track. Although τχ is a perfectly good train-

track, Φh itself is not in general carried on it. Missing are, first of all,
branches to carry the leaves inside £PR . These account for a small pro-
portion of the total mass of Φ, but they are still not to be ignored in view
of the discussion at the beginning of the section. They will be dealt with
in the next lemma. The real problem, however, is with the flat cylinder
components of M-£PR which we have ignored so far. These may contain
much or most of the mass of Φ. Indeed, there are cases where M - έPR

consists entirely of flat cylinders, and in those cases we have done nothing
so far.

These may contain much or most of the mass of Φ. Indeed, there are
cases where M - £PR consists entirely of flat cylinders, and in those cases
we have done nothing so far.

The leaves of Φh in these cylinders are already (1, ε(i?))-nearly straight,
but they are disconnected from τχ. Our task will be to join them to τχ

with geodesic arcs that are homotopic to leaves of Φh and meet the cylin-
der arcs and τx with ε(i?)-small angles at their endpoints.

In preparation, we first take care of the easiest part, the leaves of Φh

that enter and exit &R through a vertical arc of one of the polygonal
boundaries.

Lemma 6.3 (Straighten by convexity). // a is an arc of Φh contained
in £PR with endpoints on vertical segments of polygonal boundaries of &R,
then the geodesic representative /(α)* of f(a) in N meets f(a) at its
endpoints at angles bounded by ε(R).

Proof Let & be the component of &R containing α . Lift EΓ home-
omorphically to the cover N^- of N corresponding to nχ(ΣΓ) c πx(N),
and let ίΓ* denote the embedded subsurface of N^ obtained by "straight-
ening" !Γ as follows: replace each straight cylindrical boundary compo-
nent by its geodesic representative (in TV's hyperbolic metric), and for
each polygonal boundary component replace each horizontal and vertical
arc by a geodesic (very short ones, for the vertical arcs), adjusting the
corners a small (ε(R)) amount if necessary, so that the resulting polygon
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is embedded. The resulting surface is convex, and each end of f(a) is
within ε(R) of a short vertical boundary arc. This arc adjoins two long
horizontal boundary arcs that are, therefore, ε(i?)-nearly tangent. The end
of f(ά), being ε(i?)-nearly straight and contained in ZΓ, is ε(i?)-nearly
tangent to these arcs, and therefore to the corresponding geodesic arcs of

Since y * is convex, f{a)* is contained within it. Thus, each end of
/(α)* is trapped between the two geodesies of d^ incident to the same
vertical arc, and by elementary hyperbolic geometry, must be ε(iί)-nearly
tangent to them and therefore to the corresponding end of f(a).

Adding cylinder branches. The next lemma allows us to attach leaves
from the flat cylinders as new branches of the train-track.

Lemma 6.4 (Guide wires for flat cylinders). There is a choice of Ro> 0
and of constants in Theorem 5.1 (polygonal region) which depends only on
χ(M) such that the following holds: If R > Ro, the train-track τγ can
be enlarged to a train-track τn which contains a branch (possibly closed)
for every flat cylinder y of M - £PR, which is isotopic (mod endpoints)
to a leaf of Φh passing through & -τn is realized in N as a (1, ε(i?))-
nearly straight broken train-track, and images of the leaves of Φh in SF
are ε(R)-near to the corresponding branch of τn .

Proof This lemma is the most technical step in the proof of Theorem
7.1, and we begin therefore with an outline of the strategy of the proof.

Each flat cylinder & contains leaves whose images in N are already
ε(i?)-nearly straight, spiraling tightly around a geodesic in N or cutting
through a long thin part. We will join each end of such a leaf to the rest of
the train-track with a leaf segment of Φh which passes through &R . The
trouble, of course, is that such a leaf is not nearly straight, and when we
replace it with its geodesic representative we may get a branch that does
not meet the existing train-track in small angles, or in which the portion
in & has been "unwound."

The strategy will be to control the construction in such a way that the
added arc in &R is short compared to the nearly straight arcs in 9". The
length of the arcs in y is bounded from below by a judicious choice of
the constants ck in the construction of &R. The length of the arc in
3°R is bounded from above via an estimate of the total energy of / in
&R. Lemma 6.5 provides the hyperbolic geometry that translates these
estimates into control of the geodesic representatives of the chosen leaves.

For any flat cylinder & of M -3?R, let W{9) denote its circumfer-
ence. The leaves of Φh spiral around F making some angle ζ with any
geodesic core of the cylinder (if ζ = 0 the leaves are closed, and this is the
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FIGURE 15

simplest case to deal with). The vertical distance between successive turns
of any leaf is V{^) = W ύnζ, which gives the total transverse measure
of the leaves of Φh entering &" (Figure 15).

We now order the cylinders according to decreasing values of V and
successively adjoin each one to the track-train. Let τ. be the train-track
constructed at the / th stage, and let ^ be the next cylinder to be adjoined.
For each boundary component b of & we will find an arc a of Φh in
&R that connects b to the rest of M - &R , and whose image is ε ( l i -
nearly tangent to its geodesic representative at the endpoints. These arcs,
together with the image of a leaf of Φh in &, will form a (1, e(R))-
nearly straight broken path which we add to τ to make a new train-track

Let us get an easy special case out of the way first. If ζ(^) = 0 then,
by the estimates of §3.3 and the construction of &R, the images of closed
trajectories of Φh in & are ε(i?)-nearly straight and ε(i?)-near to each
other. Thus any of them will do as the added (closed) branch to τi. The
ε(i?)-nearby geodesic curve in this homotopy class will be the added leaf
to λ..

If C(^) Φ 0 there is more work to do. Each end of each leaf of Φh

exits through d^ into &R . We claim that all but finitely many of these
ends must also eventually leave &R . Call a leaf of Φh in &R critical if
it meets a critical point of Φh before exiting &R. Then there are only
finitely many such leaves, and therefore only finitely many intersecting
d&~. If a leaf a exiting & is not critical, it must be in some band of
width δ > 0 of noncritical leaves, which must be embedded in &R . Since
&R has finite |Φ|-area, this band, and therefore a, must have finite length.

Fix a boundary component b of & and let ^ denote the maximal
flat cylinder containing & (with index k determined as in Theorem 5.1).
The portion of ^ —& adjacent to b has length at least rw+R+ckR

2/W,
so we let ^ denote the subcylinder of length ckR

2/JV adjacent to b. For
any arc a of ΦΛ exiting & through b, let aχ denote its intersection with
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FIGURE 16

β j . If the opposite end of a is in another as yet unadjoined cylinder SF' c
9^ , let ^ denote the corresponding cylinder of length ck>R2'jWi^1)
and a2 the intersection of a with ^ (conceivably &£ = 9k but then
by index considerations a is not deformable rel endpoints into &, so in
some cover the cylinders are different). If a does not terminate in such
a cylinder let α 2 denote just the far endpoint of a. Let am denote the
closure of a - aχ - a2 (see Figure 16). We note that f(ά) is ε(i?)-nearly
straight at f(a{) and / ( α 2 ) .

Let ^ denote ^ minus the portions of flat cylinders bounded by

straight components of d&R . Then | |Φ| |^/ < (K2 -f Σj<kJc,2Cj)R2 . The

set of leaves a exiting b has |Φ|-height V(^). By the averaging argu-

ment of Proposition 3.1 (energy lower bound), the average length of the
images in TV of the middle arcs am is bounded by

by inequality (3.5). (Note that we are abbreviating lN(f(a)) to lN(a),
and so on.) If we choose i?0 large enough and ί?(Aί) is sufficiently large,
this gives

( α ) <

N\am) - y

We conclude that there must be at least one arc, which we continue to label
α, for which lN(am) is no more than this average. On the other hand,
liφi((*ι) is 1/ sinζ times the length of ^ . By the estimates on 9 in ^ j ,
we obtain

/ > , ) > (2- ε ( J R))/ | φ | (α 1 ) > ( 2 - ^ 2

Choosing ck large enough relative to K2 +Σj<kjc,2cj, we can have

lN(<*ι)/lN{<xm)<Q\ for any constant Qx which we will determine shortly.
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FIGURE 17. GOOD TRIANGLE

If a2 is also in an unadjoined cylinder &1, we can repeat the above
computation to obtain

\(2ε(R))cR2(2-ε(R))ck,R\(2-ε(R))ck,R

since, by the ordering of the construction, V{^') < V(βF). Thus we can
again have a ratio lN{^2)I^N^arn> - Q\ Additionally, since V < W <
KχR, we can choose ck (or ck>) so that lN{μ^) > Q2R for any constant

With these estimates on the lengths of /(α z) and f(am), we proceed to
show that the geodesic representative /(α*) meets /(α) with ε(i?)-small
angles at the endpoints.

Consider first the case where a2 is a single point, i.e., the far end of
a exits &>R either at a polygonal boundary or through a cylinder that has
already been adjoined to the train-track.

We have a configuration as in Figure 17 in the universal cover. If we
choose the ratio Qχ between lN(aχ) and lN(ocm) large enough (ahead of
time), hyperbolic trigonometry assures us that /(α)* and f(a) are ε(R)
nearly tangent at the aχ endpoint.

To prove this for the other endpoint, we can easily adapt the argument
of Lemma 6.3 (straighten by convexity). Take first the case where a exits
&R through a vertical component of &R . Construct ^ * as in that lemma,
and note that the aχ endpoint of f(a) is either contained in J7~* or, if it
is not then f(a) enters ^7~* through the geodesic boundary corresponding
to &, and thus has intersection number 1 with it. In either case, the a2

end of f(a)* must be contained in ^* and by the arguments of the
lemma, must be ε(R) -nearly tangent to f(a) at f(a2).

Finally, there is the case where a exits through a cylinder &" that has
already been adjoined. The same argument works, but first we have to
cut &R along the arc β which was added to the train-track and contains
one of the leaves of Φh through the cylinder ^" . A convex surface can
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FIGURE 18

be constructed again with two copies of the geodesic representative of β
in its boundary, and again f(a)* is trapped between these two curves.
The distance between them is bounded by ε(R), because in &" there are
vertical arcs with both endpoints on a horizontal leaf, whose |Φ|-length is
bounded by KχR and which are therefore contracted in the N metric to
arcs of length ε{R). Thus again /(α)* is constrained to be ε(i?)-nearly
tangent to f(a) at f(a2)

It remains to deal with the case where both aχ and a2 lie in unadjoined
cylinders. We first require some observations about curves in hyperbolic
space and their geodesic representatives.

Let Lχ and L2 be geodesies in H 2 (or H 3 for that matter), and fix
s0 > 0. Define the juncture (or s0- juncture) of Lχ and L2 to be / =
Jχ U J2, where

= {xe Lt: d(x,
0 , d(Lχ, L2))}

for (/, j) = (1, 2) or (2,1) , so that J. is a line segment or a ray when
d(L{, L2) < sQ, and a single point when d(L{, L2) > s0 .

Let i?j and R2 denote rays on Lχ and L2 with basepoints pχ and
p2, respectively. Let θt denote the angle made by the ray R. and the
geodesic p ^ as in Figure 18. Suppose that Rχ, say, contains Jx. Then

Let qx be the endpoint
qχ. If, now,

elementary hyperbolic trigonometry shows that

(6.1) θx < ε(d(px, Jx)),

where the function ε depends on the choice of s0

of Jχ closest to px, and q2 the endpoint of J2 closest to
q2 G R2 then it is also easy to see that

(6.2) Θ2<ε(d(p2,q2)).

Now let β be a path in H 2 which is composed of a sequence of three
segments βx, βm, and β2 such that βχ and β2 are geodesies. Let L.,
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for / = 1, 2, be the infinite geodesic containing βt. Denote by bt the
endpoint common to β. and βm , and by p. the other endpoint of β.. Let
Rt be the ray of Lt based at p. and containing β.. Then θ. as defined
above is also the angle at p. between β and its geodesic representative
β*. We have:

Lemma 6.5 (Straighten corners). There is an inversely exponential func-
tion ε and a constant A, depending only on s^, such that the following
hold:

(a) // l(βt) > l(βm) + 1{J.) + A, (i = 1, 2), then

(b) // l(β2) > l(βj + A and JχcRχ-βx, then

θχ<ε(l(βχ)), Θ2<ε(l(β2)-I(βm)-A).

Proof (Sketch). We first observe that there is a constant A > 0 such
that

This follows from the fact that l(βm) > d(bi9 L3_ ) 9 and from either
elementary hyperbolic trigonometry or a compactness argument on the
space of configurations.

Condition (a) on l(β.) insures, therefore, that Rt contains J., and the
d{pt, Jt) > l(β ) - l(βm) - /(/,-) -A. An application of (6.1) concludes the
proof of case (a).

If the conditions of case (b) hold, then Rχ already contains J{ and
d{p{, J{) > l(β{). Define qχ and q2 as before. If d(Lχ, L2) > s0, then,
again, d(b2, q2) < l(βm) +A.If d(Lχ, L2) < s0 and q2 $ R2 - β2 , then

it is easy to see that d(b2, q2) < d(b2, qx) + d(qχ, q2) < d{b2, bx) + s0<

l(βjk + s0. Thus in any case q2 e R2 and d(p2, q2) < l(β2) - l(βm) - A.

The bounds on θ follow from (6.1) and (6.2). q.e.d.
We return now to the proof of Lemma 6.4. We wish to apply Lemma

6.5 to the path β obtained from f(a) by replacing f(aχ) and /(α 2 ) with
their nearby geodesic representatives. In order to do this we require, in
addition to the estimates on lN(<Xi)/lN(cίm), some bounds on the junctures
/. . Here we need to make strong use of properties of finite-area hyperbolic
surfaces.

Let & denote & U gj o r F ' u ? 2 . A vertical arc in <g with both
endpoints on a given leaf of Φh has |Φ|-length V < W < KχR and
therefore its image has TV-length v < ε(R). The |Φ|-length of the segment
of Φh between the endpoints of the vertical arc is W cos η, so its N-length
is l<2Wcosζ by (3.3).
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Let e > 0 be small enough to give a thick-thin decomposition for hy-
perbolic surfaces. Further, assume e is small enough so that any simple
geodesic in N which enters a 1-neighborhood of the e-thin part is either
a core of some component of the thin part or intersects the core of some
component. (This choice of e does not depend on TV.) We separate the
situation into two possibilities:

(a) I < e/2. Then assuming R is large enough depending only on e
so that υ < e/2, the image of the entire cylinder lies in the e-thin part of
N corresponding to its core curve.

(b) I > e/2. Then the horizontal segment makes an (e/2, ε(i?))-nearly
straight broken circuit. We conclude that for large enough R, again de-
pending only one , the leaves of ΦΛ in g7 are ε(i?)-near to the geodesic
γ in N corresponding to the core curve of W.

Note that in case (b), lN(γ) < 2W{\ + e(R)) < K4R, an estimate we
can easily obtain from (3.3).

Lift a, g j , and ^ 2 to a = άχ U άm U ά2 , f j , and W2 in N = H 2 (so
that ά. c #;). If both ψχ and g"2 fall under case (b), let L. = γ. be the lift
of yt corresponding to ^ , and let β be obtained from a by projecting άt

to L. (recall from the above that this projection moves points a distance
ε(R) and distorts lengths by a factor of 1 - e(R)). Defining J. as in
Lemma 6.5, we observe that there is a universal choice of s0 such that
/(/.) < min(/ΛΓ(y1), lN(γ2)) this follows directly from the fact that all the
translates of γ2, say, by the translation of lN(yx) along yλ are disjoint.
Hence /(/.) < KAR. Since IN(a.) > Q2R and also lN(a.) > QχlN{am), we
can choose, say, Qχ = 2, Q2 = 4K4, and R > RQ = 2A/K4 and apply
Lemma 6.5 to conclude that

0. < ε(K4R -A) = ε(R),

where θt are the angles between β and β*. The same estimate then
holds for α and a*.

Consider next the case that ^ (say) is in case (a) and ff2 is in case (b).
Let Tχ be the lift of the corresponding thin part which contains i^j, and let
Lχ denote the infinite geodesic containing the endpoints of ά{. Define β
as above, and recall the rest of the notation of Lemma 6.5. If Jχ c R{-βλ,
given a choice of constants as in the previous paragraph we can use part
(a) of that lemma to conclude that θt < e(R). If J{ is not contained
in Rx-βl9 since d(bχ, Jχ) < lN{βm) + A and lN(βx) > QχlN(βm) we

conclude that Jx must meet βχ provided we choose Qx > 1. By the
choice of e , γ2 must be outside a 1-neighborhood of Tχ. Thus, provided
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s0 < 1, we must have l(Jχ) = 0. In this case we can use part (b) of Lemma
6.5.

The last possibility, that both gj are in case (b), is handled in much the
same way. If J. c Rt - β{ for either / = 1 or 2, we may apply Lemma
6.5(b). If not, then we can again argue that the junctures meet βχ and
β2, so that l(J.) = 0 and Lemma 6.5(a) applies, q.e.d.

We summarize the results of this section in
Lemma 6.6 (Final train-track). The original train-track τχ may be en-

larged to a (1, ε(R))-nearly straight train-track τ which carries / (Φ Λ ) , and
which contains branches ε(R)-nearly tangent to all the images of leaves in
M-&R.

Proof. In Lemma 6.3 we showed how leaves in &R with both end-
points on a vertical boundary may be added to τ{. In Lemma 6.4 we
added branches that are nearly tangent to the flat cylinder leaves and con-
tain segments homotopic to segments of leaves in &R .

The only branches left to add to the train-track are those that carry
leaves contained in &R with one or both of its endpoints on a straight
cylinder boundary, and branches to carry leaves that never leave &R at
all. We note that, as was shown in the course of proving Lemma 6.4, a
nonsingular leaf segment contained in &R must either be doubly infinite,
or compact.

Now that we have added the cylinders to the train-track, the first type
of branch can be added using the same sort of argument as in Lemma 6.3
(straighten by convexity)—the role of the nearly-convex surface F is now
played by the complement of τn .

Finally, the leaves of Φh that are entirely contained in &R form a
subfoliation μR . The corresponding sublamination may be approximated
in N by a nearly straight train-track which lies in a supporting subsurface
for the sublamination. Again by the near-convexity of the complement of
τn , this train-track may be made to be disjoint from τn and can therefore
be adjoined as a separate component; we note that this part of the train-
track is inessential to the rest of our arguments, since it anyway only carries
leaves in &R , which have bounded total length and therefore have no effect
on the estimates that follow.

7. The main theorems

Using the train-track constructed in Lemma 6.6 we can give a final
geometric statement, and prove the length-energy inequality. Let /(ΦΛ)*
denote the geodesic representative of /(ΦΛ) in N.
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Theorem 7.1 (Map foliation near lamination). Let f:M-+N be a
diffeomorphic harmonic map between closed hyperbolic surfaces. There are
choices of constants s{> 0 and c{, , c 3 ) / ( M ) | / 2 > 0 for the construction
of £PR and an Ro > 0, all depending only on χ(M), such that in the com-
plement of £PR there is a map π from the leaves of Φh to the lamination
f(Φh)* that factors through f, and is a local diffeomorphism on each leaf
of Φh, mapping it to the corresponding geodesic representative of its image.
For any point p on a leaf in M - &S

R ,

and the derivative of π along leaves, with respect to the |Φ| metric, satisfies

\\dπ\-2\<ε(dw(p,^Ro)),

where the factor of 2 comes from the derivative off, which is approximately
2 along the horizontal leaves. The constants determining the inversely ex-
ponential function ε also depend only on χ(M).

Note that the theorem is trivial for maps of energy less than K2R^
because then ^ = M.

Proof. The idea is to lift each leaf to the universal cover and take the
nearest-point projection to its geodesic representative.

Choose constants as prescribed by the proofs in the previous sections.
Let μ be a leaf of Φh , which is not entirely contained in &R , and let
p be a point on μ, which is outside &R for R > RQ. By the results
of the previous section we can employ the train-track τ corresponding to
M - &R to alter f(μ) only at the images of μ Π 3*R so that the resulting
broken path f(μ)f is (1, ε(i?))-straight. Lifting to the universal cover,
we conclude that the closest-point projection from f(μ)' to the geodesic
/(//)* moves points by at most e(R) 9 has derivative within e(R) of 1,
and is diffeomorphic at the interior points of segments (and in particular
at/(/>)).

This projection is equivariant with respect to nx(M), so we can project
it back to N and compose with / to get π .

Theorem 7.2 (Energy is length-ratio). There is a constant C depending
only on χ{M) such that in the situation described by the previous theorem,

Note that we abbreviate lN(f(Φh)*) to lN(Φh).
In view of Lemma 3.1 (energy lower bound), this theorem implies that

Φh comes within C of maximizing the ratio l\j2EM over all of
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Proof. We use Theorem 7.1 (map foliation near lamination) to obtain

a lower bound on lN{f{Φh)*) . First we restrict to the complement of

R '

ΐ
By the bounds on \dπ\ and recalling that transverse measure on Φh is
just vertical length in the |Φ| metric, we have

lN(f(Φhΐ) > ί 2- β(rf(., &• )) dA(\Φ\)
JM-&R °

Ro

We recall (Lemma 4.1 (size of ^-neighborhood)) that l^idJ^i^ )) <

KχR0 + Nχr where N{ depends on χ(M). Also, | | Φ | | ^ is bounded as
Ro

in Theorem 5.1 (polygonal region), so that

_̂  - Γ
Ro Jo

>2\\Φ\\M-Cl9

where Cχ depends on the other constants. Since EM(Φh) = HΦH^, we
have

5 > ] Ύ ^ ϊ 2"φl' - C' + Ϊ M * «™ " C< ~
by (3.5), and hence the proof is complete.

8. Limits and compactifications

Consider now the situation where N = (S, p) is fixed and the confor-
mal structure σ of M = (S, σ) is allowed to vary. There is a map

which associates to each choice of M the measured horizontal foliation
of the Hopf differential of the harmonic map f:M-*N9 homotopic to
the identity. This map is continuous by general considerations; see §3 .

It is also proper. We first show that the energy ί?(/) is a proper func-
tion of σ. This was shown in [26] in a broader context, but we give
here a short proof using our terminology. Let Mέ = (S, σz) be a se-
quence of Riemann surfaces leaving every compact set of Teichmuller
space. The quasiconformal distortion between M{ and TV then goes to
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infinity, and therefore the maximal ratio E (γ)/Eσ (γ) over all foliations

γ G JSFiβ) goes to infinity as well. Since (see (8.1) later in this section)

I2(γ)iΈ (y)) is bounded above and below by positive constants, it follows

that maxγ(l2

p(γ)/Eσi(γ)) -> oo. By (3.1) g(Q -> oo, so the energy is

a proper function. Now by Theorem 7.2 (energy is length-ratio) and in-

equality (3.5) we have / (J2^(Φ^)) —• oo, and in particular Φ^ must leave

every compact set in
J&Ίβ) is naturally compactified by the sphere PJEFiS), and <Γ{S)

can be compactified by £PJ^{S) in several different ways, so it is natural
to ask if and how the map Φh extends to these compactifications.

We note here that a related problem—in which M is fixed and N
varies—has been analyzed quite carefully by Wolf ([31],[32]). In that
case there is a proper diffeomorphism Φ: &~(S) —• QD(M) where we
recall QD(M) = JEF^S)), which extends at infinity to give the Thurston
compactification of Ϊ7~{S).

Such a pleasant eventuality is less likely in our situation, for the follow-
ing general reason. Thurston's compactification is naturally related to the
asymptotic behavior of hyperbolic invariants of a surface, namely lengths
of curves, and indeed, the harmonic map "detects" these properties in the
range N. On the other hand, the important invariants for the domain of
a harmonic map are conformaU namely extremal lengths of curves, as we
have seen in the previous sections. The following example illustrates the
difference between the two at infinity.

Consider a base (hyperbolic) surface MQ on which two distinct dis-
joint simple closed geodesies yλ and γ2 have been fixed, and suppose
their hyperbolic lengths are 1. Let {Mn} denote a sequence of hyperbolic
structures on S which are obtained from the hyperbolic metric on Mo

by (a) shrinking the length of γχ to en, and (b) Dehn-twisting n times
around γ2 (see Figure 19).

We note a few facts without much proof, since they are only intended
to give a plausibility argument. For a fixed homotopy class a in S, it is
not hard to see that

lM(a) »Cj +c 2 | logc Λ | /(α, y1) + c3w'(α, γ2).

(Recall that i(a, γ) is the minimal intersection number of curves homo-
topic to a and γ .) The second term counts the number of times that a
must cross the collar around γ{, and the third term counts the number of
times α must wind around γ2 , n for each intersection with γ2 . Choose
e = l/n2. The third term eventually dominates, so in Thurston's com-
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FIGURE 19. IN THE HYPERBOLIC STRUCTURE ON Mn,

n DEHN TWISTS HAVE BEEN PERFORMED AROUND γ2

WHILE γ{ HAS BEEN SHRUNK TO LENGTH 8n

pactification, which is based on modeling of projective length structure by
intersection number, the limit of the sequence is the curve γ2. On the
other hand, the extremal lengths of yχ and y2 are

e 1 cA

EM (γ,) w ^r- = τ and EM (γ0) > —,

so in view of Theorem 7.2 (energy is length-ratio) we expect the limiting
foliation Φh to be γχ rather than γ2.

We will fare a little better if we consider instead the Teichmuller com-
pactification, which is obtained from the ray structure imposed on ^(S)
by the Teichmuller rays {Mκ ψ} (see §2). We will examine next the
asymptotic behavior of harmonic maps as M goes to infinity along such
a ray, but we emphasize that we do not obtain a proof that Φh extends
continuously to the Teichmuller boundary, because it is not clear if the
convergence is uniforfn over the set of rays.

Limits of Teichmuller rays. Fix a holomorphic quadratic differential Ψ
on M, and for K > 1 let Mκ = Mκ ψ . Let fκ: Mκ —• TV be the

harmonic map in the homotopy class of the identity, and Φ* e QD(MK)
its Hopf differential. Recall also the natural identification Jϊ?: J^{S) -»
JZS?(N) (§2). We will prove:

Theorem 8.1 (Teichmuller ray limit). If [λ] e ^CS^TV) is a limit
point of the projective classes [ ^ ( Φ * ) ] , then the underlying laminations of

and [λ] are identical.
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Note. We do not prove that the transverse measures on -S*(ΨΛ) and
λ are projectively equivalent; in fact is this most likely false. At the very
least, we must contend with the fact that the Teichmuller compactifica-
tion is not independent of choice of basepoint—in particular, the same
sequence of surfaces can be "viewed" from different base surfaces as end-
points of Teichmuller rays along foliations whose limiting projective mea-
sure classes are different (see [17]). Since we have not specified M, we
must expect this to be a problem.

However, even if we make the natural choice of M = N, we cannot
expect to obtain the right projective measure class in the limit, since ΨΛ

optimizes ratios of extremal lengths and Φh optimizes ratios of hyperbolic
to extremal lengths. Thus, if -2*(ΨΛ) has several components, the theorem
tells us that λ will have the same components, but the choice of relative
weights on the components which maximizes the extremal length ratio is
likely to be different than the choice which maximizes the hyperbolic-to-
extremal ratio.

For a, β e Jί^[S) define

I(a, β) = ' ,

where lN{a) is understood to mean lN(Jϊ?(a)). This clearly only depends
on the projective classes of a and β , and therefore determines a pairing
on ^J^(S). We then have the following easy corollary of Theorem 7.2
(energy is length-ratio):

Lemma 8.2 (Intersections vanish). For Mκ, Ψ, and Φ as above we
have

/(ψΛ, Φf) < I

for K > c2, where c{ and c2 depend only on the choice of M and N.
Proof We note first that there are constants c3, c4 > 0 depending

strongly on M and N such that

(8.1) yl2

N(y)<EM{y)<cfN{y)
C

for any measured foliation γ £ JEFiS). A simple proof is as follows:

The functions l\ and EM are continuous and positive on Jί&~(S) - {0} ,



208 YAIR N. MINSKY

and because they both scale quadratically (see §2), 12

N/EM is a continu-

ous positive function on the compact set 3°^?'(S). Thus it takes on a
maximum and a minimum, and (8.1) follows.

Fix a large K, and denote by Ψ* e QD(MK) the image of the dif-
ferential Ψ in Mκ , obtained by contracting the |Ψ| metric by K in the
horizontal direction. Thus | |Ψ* | | = ||Ψ||/A\ and ψf and Ψh represent
the same element of Jί^[S). In particular,

By the analytic characterization of extremal length, for any simple closed
curve γ c S,

d I )
By the continuity of /(•, •) and EM over J&Ίβ), we conclude

Thus,

Applying (8.1) to ΨΛ and Theorem 7.2 (energy is length-ratio) yields

and, since

2fφf Ψ ) < —

we have

7
i

Hence the lemma follows for, say, K > 4Ccr q.e.d.

Now consider a subsequence {K(} for which [^(Φ^)] —• [λ] in
&>jr&{N). Lemma 8.2 tells us that i(λ,&(Ψh)) = 0, but not yet that
the two laminations are the same. We proceed with the proof.

Proof of Theorem 8.1. Two minimal geodesic measured laminations
with zero intersection number are either identical as sets of geodesies, or
are disjoint—any nontransverse intersection is a sublamination (see §2
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for a discussion of minimal laminations). Therefore it suffices to show
that each minimal component of λ is contained in J ? (ΨΛ) (forgetting
the measures), and vice versa.

Let v be a minimal component of λ, and suppose first that v is not
a simple closed curve. If Sv is a supporting subsurface for v (see §2)
in N, then Sv must contain a simple closed curve y not isotopic into
dSv, since v is a limit of such curves in Sv and is not itself isotopic
to dSv (in other words, Sv cannot be an annulus or a pair of pants).
Thus, i(γ, v) > 0 by the definition of Su , but i(γ, i/) = 0 for any other
minimal component v of λ or of «^(ΨΛ).

The conclusion that the underlying lamination of v is a component
of <^(ΨΛ) now follows from the following two assertions for any simple
closed curve γ c S :

1. If ι(y, λ) > 0, then l i m . ^ E((y) = oo .
2. If /(y, ΨΛ) = 0, then Et(y) remains bounded,
(Here Et denotes extremal length in Mκ .)

Proof of (1). Denoting Φ' = Φ^' , by the analytic definition of extremal
length we have:

J\2 Ί 2

Ml

where the last inequality (and the constant C) comes from Theorem 7.2
(energy is length-ratio). Since I(γ, Φ^) —• I(γ, λ) > 0 and ^(ft) —• oo as
/ -• oo, it follows that E.(γ) -> oo as well.

Proof of (2). We will in fact prove a little more. Let Σ denote the
set of critical leaves of ΨΛ , and Σ c c Σ the noncontractible components
of the subset of compact leaves, as in §2. Then the neighborhood in the
|Ψ| metric Jf = ^ ( Σ c ) (for e small enough that the neighborhood is a
thickening of Σ J supports any curve γ with i(γ9 Ψh) = 0, by Lemma
2.1. We show

Lemma 8.3 (Psi complement bounded). For any y c / , EM (γ) is

bounded as K —• oo, and, for y c dJIί, EM (γ) —• 0.

Proof The K2\ΨK\ metric on Mκ is obtained by stretching the |Ψ|
metric in the vertical direction by a factor of K, so there is an isometric
copy of o/y in Mκ for every K. Thus

by the geometric definition of extremal length.
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FIGURE 20

If γ is a component of eλ/f, we will construct regular annuli in Mκ

representing γ whose moduli will grow without bound. If γ is a horizontal
trajectory of Ψ, then this is easy—the flat annulus bounded by γ and Σc

has modulus eK/l^(γ) in Mκ. More likely, however, γ will intersect
some noncompact leaves of Σ emanating from a singularity in Σc. In
this case, choose a (large) L > 0 and append to Jf an initial segment of
length L from each such leaf, along with a ^-neighborhood of it, where
δ(L) is small enough that this neighborhood is embedded (see Figure 20).
The boundary curve representing γ in this new surface bounds (together
with Σc) an annulus which, for K > L/δ(L), has radius at least L in
the K2\ΨK\ metric. Thus its modulus is logarithmically related to L (see
§4.3) which was arbitrarily large, q.e.d.

Note that the dependence of δ on L is hard to control, so we do not
know how fast EM (γ) approaches zero.

This concludes the proof that any minimal component of λ, which is
not a simple closed curve, appears in o2*(ΨΛ). Consider now the case
where v c λ is a simple closed curve. Let ϋ - mv denote the multiple
of v which has the counting measure. We shall show:

3. E^v) < cjKi, where c is independent of K(.
4. This implies that v is isotopic to the core of a flat annulus of |Ψ| .

Since i{v , Ψh) = 0, it follows that the geodesic cores of the flat annulus
are leaves of Ψh , and thus v is a component of - ^ ( Ψ A ) .

Proof of (3). Let γ denote any simple closed curve on N. The com-
putation in the proof of assertion (1) above yields:
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As in Lemma 8.2, gj > cχK. for some cx > 0. Further,

limi(γ,Φi

h)/lN(Φi

h) = i(γ,

Finally, i(γ, λ) > i(γ, ύ) = i(y, P)/m , so there is some c2 > 0 depending
on everything but Kt such that

On the other hand, the following is an easy consequence of the thick-thin
decomposition for hyperbolic surfaces: there exist e0 , c3 > 0 such that for
any simple closed curve a on any closed Riemann surface M of bounded
genus, if EM(a) < eQ then there is a curve β c M with i(a, β) = 2 and

(β is obtained from two strands that cross through the thin part of a,
together with arcs of bounded hyperbolic length in the thick part.)

Setting a = v and γ = β , we obtain

Proof of (4). Given (3), for large enough i there exists an annulus A c

M. with core v such that Mod(^4) > KJc. By Theorem 4.6, A contains

an annulus B which is regular in the |Ψ '| metric with μ(B) > KJcA.

Let Lκ be the minimal IΨ^I-length of a curve representing ύ . Then (see

§ 4.3) the |Ψ*'|-area of B is bounded below by

\\ψK%>L2

κG(μ(B)),

where G(μ) = μ if B is flat, and is bounded between two fixed expo-
nential functions if B is expanding. Since IΨ^I is obtained from |Ψ|
by contracting the horizontal leaves by K, we have Lκ > LJK and

1 - G(KJcA) '

For large enough K. this produces a contradiction if B is expanding, and
thus eventually B must be flat. This of course means that there must be a
flat annulus isotopic to B in the original |Ψ| metric, and the intersection
number argument, as above, implies that the cores of this annulus are
leaves of Ψu.
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It remains to show that the underlying lamination of any minimal com-
ponent of «5^(ΨΛ) is contained in λ. Let v be such a component, and let
Sv be a supporting subsurface. Again, assume first that v is not a simple
closed curve. We will show that λ must have a component in Su . Since
v is the only component of -Sί?(ΨΛ) in Sv , this fact and the half of the
theorem already proven will imply v c λ.

The strategy is to show that, for large enough K, the approximating
train-track in N for -S^(Φ^) has a sub-train-track in Su, whose total
length contribution (the sum of the lengths of the branches times the mea-
sure on the arcs carried by them) is at least some fixed proportion of the
length of Jΐ?(Φ*). This implies that the limiting lamination has nontrivial
intersection with 5^.

Every component of dSv is isotopic to a component of dJ^(Σc), again
by Lemma 2.1. By Lemma 8.3 (Psi complement bounded) we conclude
that the extremal length of any boundary component Su approaches 0 as
K —> oo. Therefore, given m0 > 0, using the thick-thin decomposition
and Theorem 4.6 (modulus of any annulus), we can find (for large enough
K) a surface S* isotopic to Su such that (1) for every boundary compo-
nent γ of Su the corresponding component of dS* bounds an annulus
Bf in Sf, regular in the | Φ * | metric, such that Mod(B*) > μ(Bf) >

m0, and (2) the modulus of any annulus in S^ which is homotopic to
the boundary is at most mχ, for some fixed mχ> mQ. We next need the
following technical lemma:

Lemma 8.4 (Extremal length on subsurface). Let X be α closed Rie-
mαnn surface and Y c X an incompressible subsurface such that each
component of dY bounds an annulus in Y of modulus at least m > mQ

where m0 depends on χ(X). Then for any simple closed curve a c Y,
which cannot be deformed into d Y,

Eγ(a)>Eχ(a)>CEγ(a),

where C = C(m, χ(X)).
Proof The left-hand inequality follows immediately from the geomet-

ric definition of extremal length. We proceed to obtain the right-hand
inequality.

If ψ is the quadratic differential representing a in Y, then any compo-
nent γ of dY is geodesic in the \ψ\ metric; it is composed of horizontal
arcs of ψ, meeting at singular points with internal angle of at least π.
Since Eγ(γ) < 1/m by assumption, if the lower bound m0 is chosen as
in Theorem 4.6 (modulus of any annulus), then by using the argument of
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that theorem there is a regular annulus A c Y bounded by γ on one
side, such that μ(Aγ) >cλm - c2 for constants depending only on χ(X)
(actually the proof and constants must be altered a little bit to ensure
that γ is exactly a boundary component of the annulus). In particular
if ry is the radius of Ay and Lγ = /^(y), then by definition of μ,

L( ((X)))
Define a metric p on all of X to be \ψ\ in Y and 0 outside Y. Let

Y' = Y - \JγAγ. Let Xγ be the cover of X corresponding to nχ{Y),

and let Ϋ, Ϋ', Ay be the homoemorphic lifts of Y, Yf, and Aγ in

XY . If α' is a curve in X homotopic to a, and ά' is its homeomorphic

lift to Xγ, then (since a cannot be deformed out of Y) a component of

a Π (X)Y - Yf) is an arc β with both endpoints on the inner boundary

of some A , which can be deformed rel endpoints to a simple arc in Aγ.

If β exits Aγ then lp(β) < 2ry, whereas the deformed simple arc can

be made to have length at most 2rγ + Lγ < c4lp(β). In this way we can

deform all of a into Ϋ, concluding that

Since /,2 ,(α)/Area(|^|) = EY(a) and Area(p) = Area(|^|), we have

mΐ,l2(a) 2Eχ(*ϊ> A" P,\ >c]Eγ(a). q.e.d.χx ' ~ Area(p) 5 Y

Using this lemma, for appropriate choice of the B* we obtain

(8.2) Esκ(u)<c6EMκ(u)

for c6 = c6(u, M). We claim also that EM (v) < cΊ/K, as follows. Let

S® c M be the subsurface (bounded by critical leaves of ΨΛ) consisting
of the leaves of ΨΛ belonging to v . Denote by Ψ17 the restriction of Ψ to
S^ . The differential Ψ1"'^ obtained by contracting the metric of Ψ by a
factor of K in the horizontal direction is then the holomorphic quadratic
differential in 5° with the conformal structure of Mκ which represents
the measured foliation v . Thus, as in [17] and using the easy half of the
above lemma, we obtain

Combining with (8.2) yields
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Now, by Proposition 3.1 (energy lower bound), we have

and, by inequality (3.4),

(8.3) l l * * H s i > * i o *

for large enough K.
The next step is to show that the large |Φ |-area of Sv implies that a

train-track approximation can be built with a component of definite length
supported by S

γκFor a boundary component γ of Su let γκ denote a geodesic repre-

sentative in the | Φ * | metric on Mκ . Let Lκ = maxγedSu(ίφκ>(γκ)). We

claim:

(8.4) lim L2

K/K = 0.
K—•oo

We can assume, possibly by restricting to a subsequence, that there is

some fixed γ e dSv , which is longest in the | Φ * | metric. Since Eκ(γ) -»

0, we can find for each K a regular annulus in the | Φ * | metric represent-

ing γ whose modulus m(K) approaches infinity; its IΦ^I-area is at leastg

LκG(m(K)), where G is a function at least linear in its argument, again

from §4.3 . Since | | Φ * | | < cK, it follows that L2

K/K < c/G(m(K)) -> 0.

Let T* be the 2-complex homotopic to Su which is bounded by the

IΦ* I -geodesies {γκ} (we say 2-complex rather than surface because some

γκ might not be embedded, but in that case T* is still isotopic to a

deformation-retract of sfi). If B* is expanding "into" S*, and the

boundary it shares with S* is outwardly curved with respect to sf , then

yκ is outside the interior of S*. If ϋf is expanding "out" of S*,
K K K

then γ is contained in Su , but the annulus between γ and the outer

boundary of B* has |Φ*|-area at most cnl?κ , since by our construction

the modulus of this annulus is bounded by mχ. In any case, the |Φ* | -

mass of the set S* — T* is a shrinking proportion of K, so by (8.4) and

(8.3), we have
(8.5) \\ΦK\\τκ>cnK.

Choose e > 0 small enough that a (1, e)-nearly straight train-track
gives a ce-approximation to any lamination it carries (see §6), and choose
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i?0 large enough that the train-track construction of the previous section

on M-&R for any M yields a (1, e)-straight train-track for any R> RQ.

If we now choose Rκ = max(i?0, Lκ/2), then &R in Mκ separates Γ*

from the rest of Mκ . By (8.4) the mass of the components of Mκ - £PR

in if is at least cnK.
The corresponding portion of the train-track thus lies in a subsurface

isotopic to Sv, and its total length is a definite proportion of the total
length of £?(Φ*). The limiting lamination must therefore meet this sub-
surface.

It remains to consider the case where v is a simple closed curve. In
this case Sv is just the geodesic representative of v, and S® is the flat
cylinder consisting of closed ΨΛ trajectories homotopic to v . As before
(but easier), Eκ(v) < cl5/K. We deduce from this that v is represented
by a long flat cylinder in the | Φ * | metric, using a similar argument to
that used in the first half of the proof. Let L = lφκλvκ), where vκ is a

|Φ I-geodesic representing v . If A is any regular annulus representing v
in Mκ, then | | Φ ^ | | ^ = L2G{μ{A)), where G(μ) = μ if A is flat, and is
bounded between two exponential functions of μ if A is expanding.

A lower bound on L can now be obtained. By Theorem 4.6 (modulus of
any annulus) there is a regular annulus A such that μ(A) > cl6K, and we
can assume that one of its boundaries is vκ . Take a subannulus B c A,
also regular and bounded by vκ , for which μ(B) = 1 + 4π\χ(M)\/l^(i/).
By (3.5) and Proposition 3.1 (energy lower bound), we obtain

or, since l/EB(u) = Mod(B) > μ(B), and using the above formula,

l2

N{v)μ{B) < 4π\χ{M)\ + 4L2G(μ(B)),

which implies

L2>L2

0 = l2

N{v)/4G{μ{B)).

Now we can use the fact that HΦ*!^ < | | Φ * | | < cXΊK to argue that

L2

0G(μ{A))<cl7K,

or, since μ(A) > cl6K and G is increasing,

°-G(cl6κy
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If A is expanding, this immediately produces a contradiction for large
enough K, so in fact the regular annulus of modulus proportional to K
must be flat.

Finally, using the estimates of §3.3, we can see that for large enough K
the images of the horizontal trajectories of Φ* in A spiral closely around
the geodesic representative of v in N, and their length contribution (using
the train-track construction) is proportional to HΦ^H^ > cιβL^K. There-
fore, the geodesic v must be contained in the limiting lamination λ.
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