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DEFORMATIONS OF CONFORMAL STRUCTURES
ON HYPERBOLIC MANIFOLDS

BORIS N. APANASOV

Abstract

This paper deals with the geometry of group representations, namely with
some geometric approach (from the viewpoint of the (n +1)-dimensional
hyperbolic geometry) to the space of uniformized conformally flat struc-
tures on a hyperbolic «-manifold M of finite volume. In fact three kinds
of deformations are studied: bendings, stampings, and stampings-with-
torsion along totally geodesic submanifolds of M. The constructions
of the last two deformations disprove a conjecture of C. Kourouniotis.
The third kind of deformations yields at first time the existence of quasi-
Fuchsian groups in space with "maximal" round conic domains in the
discontinuous set. Also the problems of nonconnectivity and generation
of the deformation space are discussed—they are related to results on the
geometry of Nielsen hull and on nontrivial hyperbolic homology cobor-
disms in four dimensions.

1. Introduction

We will describe here some geometric approaches to the theory of defor-
mations of conformal structures on a hyperbolic /ί-manifold M, n>3,
of finite volume, i.e., a complete Riemannian manifold M locally mod-
elled on the hyperbolic (Lobachevsky) space Mn of constant sectional cur-
vature - 1 .

The hyperbolic metric in Hπ endows the (n - l)-dimensional sphere
at infinite Sn~ι = dMn with a conformal structure, where the group
IsomHn = O(n, 1) acts as the group of all conformal automorphisms.
Taking the Poincare ball model of the hyperbolic n-space (in the unit ball
Bn(0, 1) c Rn), we have the isomorphism (cf. [3]):

{tf1, 0 H \ O(n, 1)} 3 {Bn(0, l),Sn~{, Mδb(/i - 1)},
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where Mδb(n-l) is the Mόbius group and Sn~ι has the standard confor-
mal structure induced by the Euclidean metric of Rn . The Mόbius group
Mόb(« - 1) is generated by reflections in 1-codimensional subspheres of
QlΠ—l

Given a hyperbolic π-manifold M, by conformal structure on M
(-conformally flat structure) we mean a structure locally modelled on the
standard conformal structure of the w-sphere Sn = MΛU{oo} , i.e., a maxi-
mal atlas on M with all changes of charts in the Mόbius group. Extending
some chart to the universal covering M of M, we obtain the developing
map

(1.1) d:M^Sn

inducing the holonomy homomorphism

(1.2) < : πχ(M) -> Mόb(n) * O(n + 1, 1).

A conformal structure c on M will be called a uniformized structure
(compare [18] and [9]) if its development d is not surjective while the
holonomy group

acts discontinuously in the domain Ωo = d(M) c Sn, i.e., G^ is a
Kleinian group with an invariant connected component Ωo of the dis-
continuity set Ω((7j (see 116]). The manifold ΩQ/G^ with the natu-
ral conformal structure is conformally equivalent to the conformal man-
ifold (M, c). Using the fundamental group πχ(M) for the marking of
the structures, we obtain the basic object of our study, the space W(M)
of uniformized marked conformal structures on a hyperbolic manifold
M = Έf/G (G c IsomH" £ O(n ,1)) of finite volume.

The space &{M) has a natural topology. Namely, let

&n{β) = Hom(G, O(n + 1, 1))

be the space of all representations of the group G into O(n + 1, 1) with
the algebraic convergence topology defined as follows. Representations are
close if they are close on a finite generating set. Inside &n{G) we have
the subspace 3fn{G) of faithful representations with discrete images which
act discontinuously somewhere on the ^-sphere Sn = dHn+ι. The hyper-
bolic isometry group 0(/i + l , 1) acts on the space 3Zn{G) by conjugation
leaving the subspace 3)n(G) invariant. The quotient space

9-n{G) = 3fn(G)/O(n + 1, 1) c Hom(G, O(n + 1, l))/O(/i + 1,1)
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is the space of conjugacy classes and is naturally identified with the space
&(M) via the holonomy representation d^ of (1.2) induced by the devel-
oping map (1.1) (see [20] and [13]). This yields a topology on the space

We note that the space W(M) of uniformized conformal structures can
be considered as a subspace of the compact space of (n + 1)-dimensional
hyperbolic structures on the finitely generated group G = nx(M) (see [21]
and [7]).

For a finite volume hyperbolic ^-manifold M, n > 3, the Mostow
rigidity [22] states that the space of hyperbolic structures on M reduces
to a point. The first results showing nontriviality of the space W(M) of
conformal structures on such an «-manifold M, n > 3, were contained
in [1] (for a finitely generated group G they also answer a question of A.
Borel & H. Wallach [12]) and, for infinitely generated G, in [24] (see also
[1]). The matter was greatly clarified by Thurston's "Mickey Mouse exam-
ple" in [25], which demonstrated that the deformation obtained above in
the two-dimensional case corresponds to bending the Riemannian surface
M2/G along a closed geodesic. This idea of Thurston in n dimensions,
n > 3, corresponds to bending of the manifold M = Έf/G along its
totally geodesic hypersurface (see later [19] and [23]).

In §2 we observe how this idea implies a lower bound for the dimen-
sion of the space ^(M). This was done independently and by different
methods in [2], [14], and [17]. Moreover, as Johnson and Millson [14] dis-
covered, in the general case, one cannot make simultaneous bendings of M
along its intersecting totally geodesic hypersurfaces S{ and S2 . Namely,
if cχ, c2 e Hι(G, */#„) are infinitesimal deformations (elements of the
Eilenberg-Mac Lane cohomology group with coefficients in the Lie algebra
Jίn of Mδb(n)) of such bendings, then a composition c e HX(G, ^n)
of cχ and c2 is a nonintegrable infinitesimal deformation. This fact mo-
tivated a conjecture of C. Kourouniotis (Oberwolfach, September 1985)
that spatial deformations of Έf/G are exactly bendings.

§3 disproves this conjecture. The author's study [4] of the geometry of
the Nielsen hull HG in the (n + 1)-dimensional hyperbolic space H"+ 1

yields a three-dimensional construction of a new "stamping deformation"
of a hyperbolic manifold M along an intersection of totally geodesic hy-
persurfaces in M (see also [5], [8]). The fact that bending and stamp-
ing deformations are distinct is due to the existence of conic singular-
ity along a geodesic on the boundary of the Nielsen hull HG for every
group G^ c Mδb(w) obtained by stampings from the Fuchsian group
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G = π{(M). Moreover, §4 contains a construction of another kind of de-
formation of a closed hyperbolic 3-manifold M ("stamping-with-torsion"
along a closed isolated geodesic in M ) , which are distinct form bending
and stamping deformations.

Finally, in §5 we discuss the following questions.
First, is the space ί?(Λ/) of uniformized conformal structures on a

hyperbolic /^-manifold M of finite volume (especially, for n = 3) con-
nected?

Second, do the deformations of a hyperbolic manifold M of finite
volume by bendings, stampings, and stampings-with-torsion generate the
whole space &(M) ?

These questions are closely related to the author's results [4], [8] on
the geometry of the Nielsen hull for the limit set of a geometrically finite
Kleinian group in the n-sphere Sn and on nontrivial four-dimensional
homology cobordism with geometrically finite hyperbolic structures (see
[10], [6], and [7]).

The author would like to thank Andrew Tetenov for useful discussions
on the subject of this work and especially for helpful conversations for the
group construction in §4. Also, the author is grateful to Bill Thurston and
John Morgan for useful comments and to Jozef Dodziuk for help with the
language.

2. Bendings along totally geodesic hypersurfaces

Let Hn c Hn+ι be Poincare models of Lobachevsky (hyperbolic) spaces

in the unit balls or in the half-spaces with the distance function d(*, * ) .

Their isometry groups act on the spheres Sn~ι and Sn at infinity as the

Mόbius groups Mob/J_1 c Mδbw .

Consider a discrete cofinite group G c Mobn_j such that Hn/G con-
tains a totally geodesic hypersurface N covered by a hyperplane S c Hn .
Existence of such a N is equivalent to the existence of a fundamental
polyhedron P = P(G) c Hn having an (n - l)-side s c S which is or-
thogonal to other intersecting sides of P and with the property that, for
g e G, g{S) Π S is either equal to S or is empty. The set of such sides
s is denoted b(G).

Let us denote

a = mf(d(S,g(S)):geG\Gs).

The stabilizer Gs of S is different from G and a > 0 since vol(Hn/G) <
oo. Denote by W an infinite (since Gs Φ G) set of planes g(S), g eG,
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FIGURE 1

and by So c Hn+ι the hyperplane intersecting Hn orthogonally along the
hyperplane S c Hn . We will assume that the origin lies in a component
of Hn\W adjacent to S.

We define a partial order on W. To do this for every plane R e W

we define a hyperplane Ro c Hn+ι (as for S) and let RQ be the half-

space in Hn+ι bounded by Ro and disjoint from 0. Then define, for any

R, Q G fr , i? ^ Q <=Φ RQ C <2Q .
For the Poincare ball model Hn+ι = Bn+ι(0, 1), consider a sequence

of balls 5. = 5" + 1 (0, 1 - 1/z) and a bijection q:N->W such that tf"1

is order-preserving (subsets {R e W : i?0 n Bi Φ 0 } , / > 2, are finite
since (J is discrete). Consider a, ζ € R such that

(2.1) 0 < C < π / 2 , 0 < c * < π - 2 C ,

and define a quasiconformal bending ψ. = <Pj(a, ζ), ψ.\ Hn+ι -• / ί Λ + 1 ,

which bends //"" in Hn+ι with the angle α along the hyperplane R =
q(j) G W, leaving fixed the half-space in Hn\R containing 0 and con-
formal in the ζ-angle neighborhood (in Hn+ι) of the complement Hn\R
(see Figure 1).

Studying the properties of bending supports and set with the linear di-
latation K(ψj,x) distinct from 1, C. Kourouniotis [17, Theorem 4.7]
proved that in the case when both (2.1) and condition

(2.2) cosh a/2 > 1/sinζ

are satisfied, the iterations of these bendings

n+ι i/ π + I

com-converge to a quasiconformal homeomorphism fa: H

patible with the group G: faGf~ι c MόbΛ . Moreover, the bending de-

formation, i.e., the family of the homomorphisms

(2.3) £ G->G{a) C
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does not depend on ζ and defines on our manifold M new conformal
uniformized structures obtained from the distinguished structure induced
by the hyperbolic metric on Hn/G by bending along the hypersurface
N = S/Gs c Hn /G = M. These new structures are induced by natural
projections π: Ωo —• ΩQ/G(a), where Ωo c Sn is the component of the
discontinuity set of the quasi-Fuchsian group G(a) equal to the quasicon-
formal ball fa(B), B c Sn = dHn+ι, where dB = dHn and fa is the
quasiconformal extension of fa to dHn+ι.

The author [1], [2] independently obtained a different direct approach
to the construction of conjugating quasiconformal homeomorphisms fa

(and homomorphism f* from (2.3)). This approach does not use a lim-
iting process for iterations / but defines the mapping fa directly on

a fundamental polyhedron Pn+ι c Hn+ι, Pn+ι n Hn = P(G), of the
group G, which maps it to another polyhedron Pn+ι(a) c Hn+λ. The
polyhedron P"+ 1(α) has the same combinatorial type and the same an-
gles as Pn+ι. The distinction between these polyhedra is in the fact that
hyperplanes which form the orbit G(SQ), whose intersections s* with
Hn contain sides of the polyhedron P from the set b(G), and turning
isometrically in Hn+ι by the angle a around the planes s*. The map
f a: Pn+ —• Pn+ (a) is obtained as uniform stretchings along the orbits
(= circles) of the rotations mentioned above. The extension process of
f°a to the whole space Hn+ι (compatible with G) defines the sought for
quasiconformal bending homeomorphisms fa .

These constructions by the author [2] and Kourouniotis [17] clearly
show that {fa : a e 1} is a smooth (real-analytic) family for the open
interval / with conditions (2.1) and (2.2). Moreover, these constructions
give a dimension of a ball which embeds into the space &(M). This
dimension is equal to the number of nonintersecting totally geodesic hy-
persurfaces in the hyperbolic manifold M = Hn/G (see [2], [14], and
[17]).

Using A. Weil's approach [27] one can define an infinitesimal deforma-
tion of the quasiconformal deformation (a smooth curve in W(M))

(2.4) β: / -> Hom(G, MobJ/ MόbΛ :a^f*

This infinitesimal deformation c is an element of the Eilenberg-Mac Lane
cohomology group Hι(G, Jtn), where Jίn is the Lie algebra of Mόbn .
Such an element c is determined (for bending see [17], [19]) by an assign-
ment of a vector field c(g) to each element g e G so that

(2.5) c(g)(x)=ξ-g.ξ(x), xeHn+ι.
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Here ξ(x) = -£fa{x)\a=0 and the action of g on a vector field ξ is defined
by the rule

(2.6) g ξ(x) \ \

3. "Pea-pod" groups and stamping deformations

To define a new class of deformations of control structure on a manifold
Hn/G, vόlHn/G < oo, distinct from bending deformations we consider
special manifolds M = Hn/G. They correspond to quasi-Fuchsian groups
on the conformal sphere Sn = dHn+ι called "pea-pod" groups [4]. Their
limit set resembles a pod of a certain plant (see Figure 2).

For a definition of these groups consider balls Dχ, , Dk c Sn whose
intersection

is a Λ -hedral spherical angle with two vertices x and y. Let h e Mόbπ ,

fix(Λ) = {x 9 y} 9 to be a loxodromic transformation, leaving D(x, y) in-

variant. As a fundamental domain Ph of the cyclic group (h) one can take

the exterior of two nonintersecting spheres S and S*, Ph Π {x, y} = 0 ,

which are orthogonal to dD(x, y).

Now suppose that there is a finite family W of (n - l)-spheres decom-

posed into subfamilies Wi and W^ (i, j = 1, , k), where the spheres

S e Wt. are orthogonal to <9ZλndD. and the spheres S e W. are orthog-

onal to dDt. In addition, spheres from different subfamilies W.., Wml

and W^ W do not intersect each other and intersection angles to these

spheres along themselves and with S, S' are equal to π/m, m e Z .

If the balls intS, S eW, cover the surface PΛ Π <9D(;c, y), then the

group G = (Go, h), where Go is the group generated by reflections in

spheres of the family W. The group G is a geometrically finite quasi-

FIGURE 2
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FIGURE 3

Fuchsian subgroup in M6bn (a "pea-pod" group); its limit set is shaped
like a finely breaking /c-hedral pod with given vertices x and y .

Let us give a construction of a one-parameter family of such groups
in three-dimensions, pointing out the corresponding "stamping" deforma-
tion at the same time. Assume that x = 0, y = oo and let D{t) =
Dt(0, oo) be a regular trihedral angle in R3 with unit edge vectors vχ(t) =
( 1 , 0 , 0 ) , υ2(t), υ3(t) such that the scalar product {υ^ή, Vj(ή) = cost
for iφ j (t is the value of the side angle at vertex 0). For t = 2π/3 the
boundary of D(2π/3) is the plane {x e M3: x3 = 0} .

For the definition of the "pea-pod" group G{t) c Mόb3 take eight
spheres bounding a spherical polyhedron P(t). Their intersection with
the angle D{t) is indicated in Figure 3.

Let i, j , k be a permutation of numbers 1 , 2 , 3 . Define spheres

= S2(0,Rt), = S2(0,R't),

Sk(t) = S\bt{v[ + vJ

t)/(2 + 2cos/) 1 / 2, rt).

Here we denote by S {x, r) the two-sphere with center x and radius
r > 0, and the numbers R(t), R'(t), bt, and rt are determined (modulo
a positive factor) by the equalities

(3.2)
2bt sin(ί/4) - yftrt, R, = (-r, + ^b) - 3rή β,

R't = {b2

t-r2

t)IRt.
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FIGURE 4

Taking a normalization bt = Λ/3 we obtain:

rt = sin(ί/4),

Rf

- sin(ί/4),

A direct calculation proves that all dihedral angles of the polyhedron

p(t) = p|(eχts;7(0 n eχts .(θ) n in\s\t) n eχtS(t)

do not depend on t, t0 < t < 2π/3, and are equal to π/3, where the
l t < /2 ds to th tanen f th h S^) d

, 0 / , q /
value t0 < π/2 corresponds to the tangency of the spheres and

Thus we can apply to the family (3.1) our "pea-pod" group construction

and get as a result the family G(t) of quasi-Fuchsian groups on S which

is generated by reflections in spheres in (3.1) and depends smoothly (real-

analytically, due to (3.3)) on the parameter t. Moreover, the group G,

G = G(2π/3) c Mόb3, acts isometrically in the Poincare model of the

hyperbolic space in D(2π/3) = R3

+ = {x e M3 : x3 > 0} as a cofinite

group: volE^/G < oo. Figure 4 shows the intersection of dR3

+ with

the spheres (= planes in H3) which bound the fundamental polyhedron

P = P{2π/3).

Consider polyhedra P4 and P4(t) in the hyperbolic space H4 (Poin-

care model in R* ) bounded by three-planes spanned on two-spheres (3.1).
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They are fundamental polyhedra in H4 for G and G(t) respectively. De-
fine a #(ί)-quasiconformal mapping ft: c\P -> clP (t), lim/_+2π^3 q(t) =
1, which gives a correspondence between their sides and, for some
Kχ{t), K2{t) > 0, ]imK.(t) = 1 (here ί tends to 2π/3), we have

ft \s:x~ Kχ (t).χ; ft \sr.x» K2(t) x.

This mapping ft extends to a #(ί)-quasiconformal mapping Ft: H4 ^ H
by the rule

f /,(*) i f x e c l P 4 ,(3'4) w - { « )
Here /,: G -• G(ί) is the natural isomorphism of the reflection groups,

and g is an element of G for which x e g(clP4). This extension is

compatible with the action of G.
The mapping Ft extends to the sphere at infinity dH4 = S3 and gives

a #(ί)-quasiconformal automorphism of it. Therefore we obtain a smooth
curve in the space of quasi-Fuchsian presentations of the group G:

σ: (ί 0, 2π/3] -> Hom(G, Mόb 3)/Mόb 3,
( 3 5 )

If (?i, 02 > ^3 a r e planes in H3 = R3

+ , whose lines at infinity <9β are

closures of {x : x0 = 0}, {x : Xj = \/3x2}, {x : jCj = -\/3Λ:2} , respec-

tively, then for them one defines (as in §2) the bending deformations β.

of H3/G (along QJGQ) with infinitesimal elements c. e Hι(G,^3).

It is clear from the stamping construction (3.5) that it defines simultane-

ous bendings (at equal angles t2 = t2 = t3 = a(ή) along totally geodesic

surfaces QJGQ c H3/G. However the stamping deformation does not

reduce to bendings βi due to the presence of stretching along closed

geodesies in H3/G covered by the axis {x : x{ = x2 = 0} c H3 of the

hyperbolic element h e G. This shows that the infinitesimal deformation

cσ of stamping a is such that the crossed-homomorphism c

σ~
c\—c2 — c$

determines a nonzero element of Hι(G, ^# 3 ) .
Theorem 3.1. For the stamping deformation a from (3.5) and for every

t, t0 < t < 2π/3, the representation σ{t) = F* has an open neighborhood
in Hom(G, Mό#3) without bending representations of the group G.

Proof If the representation p: G -> MόbΛ is defined by a bending
deformation of a certain group G c Mόb/2_1 (along a family of nonin-
tersecting totally geodesic hypersurfaces in Hn/G), then it follows from
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the bending construction in §2 that the limit set L{pG) of the quasi-

Fuchsian group pG c Mόbrt is the image of the sphere Sn~ι = L(G) by a

1-quasi-conformal mapping, i.e., has the following property (see [4]). Let

Hp c Hn+ι be the convex Nielsen hull of the limit set L(pG) of the group

pG. Then the boundary dH c Hn+ι is isometrically developable in the

plane Hn .

At the same time the boundary H* of the Nielsen hull HG,t) for any

"pea-pod" group G{t) = σ(t)G = F(GF~ι, tQ < t < 2π/3, has a singular

geodesic l(t) c H* which is the axis of the hyperbolic translation FthF~ι.

Namely, as shown in Lemmas 4.1 and 4.4 in [4], a certain neighborhood

of this axis l{t) in H* can be developed in the hyperbolic three-plane

H3 c H4 only be means of a quasi-isometry of H4 stretching its dihedral

three-dimensional angles of value t to 2π/3 . This shows that the quasi-

isometry coefficient of any such mapping F: H4 —• H4, conjugating the

groups G(t) and G, is no less than 2π/3t > 1. This completes the proof.

The proof of the existence of singularity of the Nielsen hull HG^ men-

tioned above has the following outline.

Let p: H —• HG^ be the natural retraction mapping a point x e

H4\HG{t) to the nearest point p(x) e dHG{t). Denote by Bi, i = 1, 2, 3,

half-spaces in R3 complementary to the half-spaces clDi from the def-
inition of D(t). Every B. c Ω(G(0) is a (strictly) maximal ball of the
group G(t) in the sense of [4], i.e., its boundary has limit points which are
not contained in any circle or a line. Let V. c Bt be dihedral angles with
edges orthogonal to dB( and containing 0. The angles V. are products
of the sides of D(t) and half-lines. The restriction of the retraction p
to Vi outside of a certain neighborhood U(D(t)) is a conformal homeo-
morphism and, moreover, the domain p(c\(Vx U V2 U V3)\U(D(t))) forms
a full neighborhood of the geodesic ray on dHG(t) lying on the axis l(t)

of hyperbolic translation FthF~ι in the space H4 .
In other words, a full neighborhood of geodesic l(t) on the three-

dimensional surface dHG,t) has a conic singularity and consists of the
union of three dihedral angles of magnitude t, t0 < t < 2π/3. This
completes the proof.

Remark 3.2. The stamping deformation of H3/G, \olH /G < oo,
along a closed geodesic constructed above can also be carried out in the
case of a closed manifold as well as for four-dimensional manifolds. The
question of the existence of similar stamping deformations along subman-
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if olds of codimension 2 in the manifold Hn/G of dimension n > 4 re-
mains open.

4. Stamping-with-torsion along an isolated geodesic

In this section we prove the existence of another kind of deformation
of conformal structures on a closed hyperbolic three-manifold, i.e., of de-
formations of H3/G which are distinct from bendings and stampings de-
scribed in §§2 and 3. To define this class of deformations we consider
manifolds H3/G of a special kind, associated with certain quasi-Fuchsian
groups on S3 which are similar, in a sense, to the Jorgensen group Gj.
The manifold H3/Gj is the first example of a closed hyperbolic mani-
fold fibered over the circle (see [15]). Namely, the Jorgensen group and
our groups have a form of a semidirect product of geometrically infi-
nite normal subgroups and subgroups of similarities with co-presentation
(a, b : a -bm = 1), where k and m are certain integers. The construction
of such groups was given by A. V. Tetenov and the author.

As in §3 we define a group G c Mόb2 and its deformation G(t) c Mόb3

by means of certain families of spheres in R . Namely, for any number
λ > 1 consider three circles st = 5 r l(z /, r.) in the complex plane C = R2

with centers z and radii ri satisfying the following conditions:

(1) r1 = l , r2 = λ, r3 = λ3;
(2) Arcs of the circles si bound a triangle whose angles are equal to

π/4.
For the chosen circles, we denote by z0 the points of the intersection

of two circles:

{z e C : \z2 - z|/|z1 - z| = 1}, {z e C : |z3 - z\/\zχ -z\= λ3},

farther from zχ.
Denote by a > 0 and by b > 0 respectively the angles between vectors

(z2 - z0) and (z3 - z0) with a vector (z{ - z0) (see Figure 5).
Applying the translation of the plane C one may assume that z0 co-

incides with the origin, and (z. - z0) are the radius-vectors of the points
z z, i = 1,2, 3 . Now define loxodromic transformations

(4.1) T{ (z) = λ eia z, T2(z) = λ3 e~ib - z.

For them we have that Tχ(sx) = s2 and T2(sχ) = s3. In addition, from
the definition of the angles a = a(λ) and b = b(λ) we see that

μ)
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FIGURE 5

and for sufficiently large values of λ their sum a(λ) + b(λ) becomes larger
than π/2. This shows that there exist an integer m and a corresponding
value λ = λ(m) > 1 such that the following conditions are satisfied:

(3) 3a(λ) + b{λ) = 2π/m;
(4) The transformations Tχ and T2 generate an elementary group H

such that

(4.2) \m= (Tl9 T2\T\m T2

m = 1).

The numbers m e N, λ = λ(m), a = a{λ(m)), and \zx\ (for z0 = 0)

obtained as a result of our constructions satisfy the system of equations

- 2λcos(a)+λ2) = λ2 λy/ϊ

(4.3) | Z l |
2 ( l - 2λ3cos(2π/m - 3a) +λ6) = λ6 +λ3VΪ + 1,

\z{\\λ2 - 2λ4cos{2π/m - 2a) + λ6) =

due to the law of cosines.
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Now consider the circle

(4.4) Tx(s3) = T2{s2)9

and denote by s4 the circle orthogonal to it and to the circles s2 and £3.
Similarly denote by s5 the circle disjoint from the circle s4 and orthogonal
to the circles sl9s2, s3.

For the circles st, / = 1, , 5, consider the two-spheres S( c R3

which intersect the plane C orthogonally along these circles s(. Let ^

be a family of spheres in R3 forming the H-oτbii (see (4.2)) of the spheres

Sx, S4, S5. These spheres define planes in the hyperbolic space H and

bound a conical (infinite-sided) spherical polyhedron P c S whose dihe-

dral angles are equal to either π/2 or π/4:

(4.5) P = f){extS:S = h(Si), heH; z = l , 4 , 5 } .

The connected component of P in the half-space R+ = H is a hyperbol-
ically convex polyhedron.

Now let a discrete group F o c Mόb3 be generated by reflections in
the sides of the polyhedron P, i.e., in spheres of the family 8^ . P is a
fundamental polyhedron for Fo (see [3, 4.2]). Since elements of the group
H transpose the sides of P, they preserve the group FQ , i.e., hFoh~ι = FQ

for all h e H. This fact shows that the semidirect product

(4.6) G = HκFQ

is a discrete subgroup of Mόb3 acting discontinuously in S3\R (isometri-

cally in the space H3 = R3

+). Moreover, the group (4.6) is a geometrically

finite group with compact quotient H3/G = (H3 n cl P)/G and is gener-

ated by five elements: Tχ9T29 and three reflections in the spheres S{,

S4 , and S5.
To construct the required quasiconformal deformation of the group G

we define (as in §3) a family of quasi-Fuchsian groups G(t) c Mόb3 de-
pending smoothly on parameter t in a certain ε-neighborhood of zero (ε
to be defined below), G(0) = G.

Namely, just as for G, consider for any t e {-ε, e) and for any number

λ > 1 three spheres S.(ί) = S2(xι

t, ή), / = 1 , 2 , 3 , with the centers

x\ e C x R = R3 and radii r\ such that:

(1,) r] = 1, r) = λ , r3 = λ3 x] = (zj, 0 , x] = (xf, λt),

(2t) Each sphere S^ή intersects two other spheres at the angles π/4.
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In the exterior of the spheres S^i) consider an analogue of the point

zQ, i.e., the point x® = (z°, 0) farther from the intersection point x] of

the plane C x {0} with the circle of intersection of two spheres:

{x e R3: λ 3 = \x3 - x\/\xι

t -χ\], {xeR3:λ = \x2 - x\l\x) - x\}.

The point x°t depends smoothly on parameter t and l i m , ^ jcf° = zQ .

Denote by at = a(t, λ) > 0 and bt = b(t, λ) > 0 angles between the or-

thogonal projection of the vectors (x2 - x°), (JC,1 - Λ;,0) and

{x3 - x}), [x] - x®), respectively, onto the plane C x {0} . Applying a

translation x ^ {x-x°t) we can assume that the point x} is at the origin.

Analogously to (4.1), define orthogonal matrices

( cosα, sinα, Oλ fcosbt

- sin at cosat 0 , Bt = sin bt

o o \) V o
and loxodromic transformations
(4.7) Tu(x) =λ Arx, T2t(x) = λ3Btx.
As before, we have Tu(S{(t)) = S2(t) and T2t{S{(t)) = S3(t). Moreover,
for the integer m, determined while defining the group H (condition (3)),
one can find a number λt = λ{m,t)>\ such that:

(3,) 3a(t, λ(m, ή) + b(t, λ(m, ή) = 2π/m
(4t) the transformations Tu and T2t generate an elementary group

H* with co-presentation
(A Q\ TT IT1 T rriJill rrt Tfl ^^ * \

I ^ . O ) / 7 ~~ ί J^ J. /+ , J. i ' A r* *~~ 1 / .

The numbers λt = λ(m, t), at = a{t, λ(m, ή), and \z)\ (here x°t = 0)
are solutions of the system of equations obtained (as in (4.3)) from our
geometric construction by applying the law of cosines:

(4-9)

λ2

t+λtVΪ+ 1 = \z)\{\ - 2λtcos(at) + λ]) + t\λt - 1) ,

λ« + λ3

ty/2+ 1 = |zj | 2(l - 2^3cos ί ^ - 3at) + λ]) + f{λ) - 1) ,

λ* + λ*V2 + λ2

t = \z)\2{λ] - 2^cos (^ - 2a) +λ6

t) + t\λ) - λf.

It should be noted that due to the smoothness of this system with re-
spect to t the above parameters of the family (S^ή) and of the group
Ht depend smoothly on t and they tend to the parameters from (4.3)
determining the group H = HQ when t approaches zero.
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Define two nonintersecting spheres S4(t) and S5(t) which are, first, or-
thogonal to the triples of spheres S2{t), S3{t), Tu(S3{t)) = T2t{S2{ή) and
S2(t), S3(t), Sx(t), respectively, and, second, disjoint from other spheres
of the //,-orbit of spheres S.(t)> / = 1 , 2 , 3 . The second condition de-
termines the number ε > 0 bounding the parameter t.

Consider a family %?t = H^S^t) : / = 1,4,5} whose spheres bound

conic infinitely-sided spherical polyhedron P(t) c S3 with dihedral angles

π/2 and π/4 (as for P = P(0)). As demonstrated above, a discrete

group Ft c Mόb3 generated by reflections in sides of P(t) is preserved

by elements of the group H( (i.e., by automorphisms of the boundary of

P(ή): hFth~x = Ft, h e Ht, and therefore their semidirect product

(4.10) G(t) = HtκFt

is a discrete (quasi-Fuchsian) group isomorphic to the group G.

Moreover, by extending spheres of the families ^ and ^ to three-

planes of the hyperbolic space H4 = R^ which bound polyhedra P4 and

P (t) in H , we can construct in a similar way a quasiconformal home-

omorphism ft: H —> // compatible with (? and inducing the isomor-
1

Thus, in the space of quasi-Fuchsian representations of the group G
we have a smooth curve defining another (third) kind of (quasi-Fuchsian)
deformation of conformal structure on H3/G. This deformation is said
to be stamping-with-torsion along a closed geodesic I c H3/G covered by
the axis {x e R3+ : xχ = x2 = 0} of the loxodromic elementary subgroup
H c G. The choice of this name is motivated by the following facts. First,
the vector field defined by (2.5) and (2.6) determining an infinitesimal
deformation c* eHι(G,^3) for stamping-with-torsion σι along /,

σι: (-ε, ε) -> Hom((7, Mδb3)/ Mόb3,

leaves the geodesic / invariant. Second, for the quasi-Fuchsian group
there exists a maximal circular cone C(0, CXD) , ("maximal conic domain"
in the sense of [4]) in the discontinuity set Ω(G(ί)) on whose boundary
limit points <9C(0, oo)ΠL(G(ή) form an irrationally twisted spiral. This is
impossible in the case of the simple stamping from §3. The last fact is due
to the presence of an isometrically undevelopable singularity of the circular
cone type at the boundary of the Nielsen hull for the quasi-Fuchsian group
G{t), tφQ (see also [8]).
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5. General properties of the space of uniformized

conformal structures on hyperbolic manifolds

It is a natural question to ask the following:

Do all deformations of the conformal structure of a hyperbolic manifold
M = Hn/G, vol M < oo, (even if n = 3) become exhausted by the defor-
mations constructed above, i.e., by bendings, stampings, and stampings-
with-torsion?

Note that the space &(H2/G) in the case of a closed surface H2/G
of the genus g > 1 is well known to be a connected space of dimension
6g - 6. The bending deformations yield a (3g - 3)-dimensional subman-
ifold. Here (3g — 3) is the number of closed nonintersecting geodesies
on the surface H2/G. The remaining deformations are determinated by
the Dehn twists along these geodesies. However, in contrast to the closed
geodesic on H2/G, a number of conformal homeomorphisms of a totally
geodesic surface in a manifold H jG is finite. Therefore the number of
conformal structures on H3/G corresponding to distinct conformal glu-
ings along a bending surface in H3/G can be at most finite.

On the other hand, the study of the limit set L(Gf) of a quasi-Fuchsian
group G' C Mόb3 (compare [4, Theorem 3.3] and [8, Theorem 3.2]) shows
that the discontinuity set Ω,(G') = 5 \L(G') is covered by a family con-
sisting of (strictly) maximal balls, and maximal conic domains which is
finite modulo Gf. In other words, all the possible singularities of the limit
set L(G') (or, equivalently, of the boundary of its Nielsen hull) can be
obtained by applying the three kinds of deformations of a Fuchsian group
G c Mόb3 constructed above in §§2-4.

On this basis we conjecture the positive answer to the question above,
i.e., bendings, stampings, and stampings-with-torsion exhaust all possibil-
ities.

The second question deals with connectedness of the space &(M) of
uniformized marked conformal structures on a hyperbolic three-manifold
M = H3/G of finite volume. In contrast to the two-dimensional case, the
three-dimensional conformal structure arising in the following theorem is
likely to give a negative answer to this question.

Theorem 5.1. On a closed hyperbolic 3-manifold with a sufficiently large
number of nonintersecting totally geodesic surfaces there exists a nonstan-
dard conformal structure uniformized by a non-quasi-Fuchsian Kleinian
group G without parabolic elements acting on a contractible component
of the discontinuity set Ω(G) as the holonomy group d^{
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Proof. To prove the theorem it is sufficient to use our construction [10]
of the hyperbolic four-manifolds with the following homotopy pathology.

These manifolds H4/G are geometrically finite and after the compactifi-
cation by two boundary components (dH \L{G))/G = Ω(G)/G, Ω(G) c
dH4 , they become compact cobordisms (M4 NQ9 Nχ), dM = NQ\JNX.
These cobordisms are homologically trivial, i.e., they have trivial relative
homology groups

Still these cobordisms are not products. Moreover, they are not /z-cobord-
isms. This is because of the fact that although the embedding iV0 c M4

of the first component No of the boundary dM4 induces a homotopy
equivalence, π^(M4, No) = 0, for the second boundary component Nχ

we have π 2 ( M 4 , N{) Φ 0. Moreover, it is proved in [10] that there ex-
ists a cocompact group Γ c Isomi/3 acting on the ball B3 = H3 as a
hyperbolic isometry group and a quasiconformal embedding / : B3 <-> R3

compatible with Γ which defines on the hyperbolic manifold B3/Γ the
natural conformal structure of the manifold No = Ωo/G, i.e., /j,(Γ) = G.
This representation Γ —» G is non-quasi-Fuchsian due to homotopical
nontriviality of the cobordism.

Remark 5.2. The natural conformal structure on No induced by the
natural projection Ωo —• ΩQ/G = No of the component ΩQ of the discon-
tinuity set Ω(G) (Ωo is the quasiconformal ball) determines a point of the
space W(H3/Γ) which presumably cannot be joined with the distinguished
point corresponding natural (hyperbolic) structure on H /Γ by a curve in
this space. It is likely that this follows from the fact that the quasiconfor-
mal ball Ω o c 5 which universally covers No has as its boundary a wildly
knotted on a dense subset two-sphere in S 3 . (Added in proof.) Recently
the author constructed (see [5], [6]) nonstandard conformal structures on a
closed hyperbolic three-manifold M (topologically similar to the structure
of Theorem 5.1) which are uniformized but cannot be approximated by
quasi-Fuchsian structures on M obtained from the hyperbolic structure
by any of the presently known deformations, i.e., by bending, stampings,
or stampings-with-torsion along totally geodesic submanifolds. This con-
struction uses a modification of nontrivial four-dimensional cobordisms
in [10] to obtain certain additional geometric properties of the holonomy
group G (more precisely, of the convex Nielsen hull HG in the four-
dimensional hyperbolic space H4).
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Remark 5.3. It is seen from the construction [10] that the manifold
used above is obtained as a result of the bending deformations of the
closed hyperbolic manifold H3/Γ along a large number β, β > 70, of
its disjoint totally geodesic surfaces. The curve [Γ, G] corresponding to
these deformations is a lift of a curve in representations variety lying in
the image of the following embedding

Sι x .xS1 = T^ ^ Hom(Γ, Mόb3)/ M6b3 .

This curve [Γ, G] joins the conformal structure of NQ = Ωo/G and H3T

but it is not wholly contained in the space &(H3/Γ) of uniformized con-

formal structures since many of its points have holonomies d%: Γ —• Mob3

whose images d^ (Γ) act nondiscretely on the sphere S3.
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