NOTE ON THE PERIODIC POINTS OF THE BILLIARD

LUCHEZAR STOJANOV

Marek Rychlik [2, Theorem 1.1] proves that for any bounded convex domain Ω in a Euclidean plane \mathbf{R}^{2} with smooth boundary $X=\partial \Omega$ the set Fix $_{3}$ of all periodic points of period 3 of the billiard ball map related to Ω has empty interior in its (two-dimensional) phase space M_{Ω}. The last part of the proof of this theorem, considered in [2], involves a symbolic computation system. In this note a short elementary argument is presented which completes the proof in [2] without use of any computer programs. Combining this argument with $\S 3$ in [2], one gets also a direct proof of Theorem 1.2 of [2]: Fix_{3} has Lebesgue measure zero.

We use the notation from [2], and state the results of [2] in a little more general form.

Theorem. Let Ω be a bounded (note necessarily convex) domain in \mathbf{R}^{2} with C^{3}-smooth boundary X. Then Fix $_{3}$ has empty interior and Lebesgue measure zero in M_{Ω}.

Proof. Let y_{1}, \cdots, y_{n} be the successive (transversal) reflection points of a periodic billiard trajectory in Ω. Consider a natural parametrization $h_{i}\left(x_{i}\right), x_{i} \in \mathbf{R}$, of X around y_{i} with $\left\|h_{i}^{\prime}\left(x_{i}\right)\right\| \equiv 1, \cos \varphi_{i}=\left\langle e_{i}, \nu_{i}\right\rangle>0$, where $\nu_{i}=\nu\left(x_{i}\right)$ is the unit normal to X at $h_{i}\left(x_{i}\right)$, pointing into Ω, $\langle\cdot, \cdot\rangle$ is the natural inner product in $\mathbf{R}^{2}, \varphi_{i}$ is the angle between e_{i} and $\nu_{i}, 0<\varphi_{i}<\pi / 2$, and

$$
e_{i}=\frac{h_{i+1}\left(x_{i+1}\right)-h_{i}\left(x_{i}\right)}{\left\|h_{i+1}\left(x_{i+1}\right)-h_{i}\left(x_{i}\right)\right\|} .
$$

One can introduce Φ_{i} and $\widehat{\Phi}_{i}$ simply by setting $\Phi_{i}=\cos \varphi_{i}$ and $\widehat{\Phi}_{i}=$ $\sin \varphi_{i}$. Then, if $h_{i}\left(x_{i}\right)$ are the reflection points of a periodic trajectory, a simple computation gives

$$
\frac{\partial l\left(x_{i}, x_{i+1}\right)}{\partial x_{i}}=-\left\langle e_{i}, h_{i}^{\prime}\right\rangle=-\cos \varphi_{i}=-\Phi_{i}=-\frac{\partial l\left(x_{i-1}, x_{i}\right)}{\partial x_{i}} .
$$

[^0]Set $k_{i}=k_{i}\left(x_{i}\right)=\left\langle h_{i}^{\prime \prime}\left(x_{i}\right), \nu_{i}\right\rangle$; then $h_{i}^{\prime \prime}\left(x_{i}\right)=k_{i} \nu_{i} \quad\left(k_{i}\right.$ is in fact the curvature function along $\left.h_{i}\left(x_{i}\right)\right)$. Now we have

$$
\begin{aligned}
\frac{\partial^{2} l\left(x_{i}, x_{i+1}\right)}{\partial x_{i}^{2}} & =-\left\langle e_{i}, h_{i}^{\prime \prime}\right\rangle+\frac{1}{l\left(x_{i}, x_{i+1}\right)}-\frac{\cos ^{2} \varphi_{i}}{l\left(x_{i}, x_{i+1}\right)} \\
& =\frac{\sin ^{2} \varphi_{i}}{l\left(x_{i}, x_{i+1}\right)}-k_{i} \sin \varphi_{i}
\end{aligned}
$$

In a similar way one finds

$$
\frac{\partial^{2} l\left(x_{i}, x_{i+1}\right)}{\partial x_{i} \partial x_{i+1}}=\frac{\sin \varphi_{i} \sin \varphi_{i+1}}{l\left(x_{i}, x_{i+1}\right)}
$$

which implies that the matrix $d^{2} \mathscr{L}_{n}(x)$ has the form (2.11), with (2.12) of [2]; these formulas are not new; cf., for example, [1] or [3].

Now suppose that Fix_{3} contains a nonempty open subset of the phase space M_{Ω}. We may assume that $y=\left(y_{1}, y_{2}, y_{3}\right) \in U \subset \mathrm{Fix}_{3}$ for some open connected subset U of M_{Ω}. Since U consists of critical points of \mathscr{L}_{3}, we have

$$
\begin{equation*}
\mathscr{L}_{3}(x)=l_{1}+l_{2}+l_{3}=c=\mathrm{const} \tag{1}
\end{equation*}
$$

for all $x=\left(x_{1}, x_{2}, x_{3}\right)$ with $\left(h_{1}\left(x_{1}\right), h_{2}\left(x_{2}\right), h_{3}\left(x_{3}\right)\right) \in U$. As in Proposition 2.1 of [2] one gets

$$
\begin{equation*}
k_{1}=\frac{\left(l_{2}+l_{3}-l_{1}\right) \sin \varphi_{1}}{2 l_{2} l_{3}}=\frac{\left(c-2 l_{1}\right) \sin \varphi_{1}}{2 l_{2} l_{3}} \tag{2}
\end{equation*}
$$

By the Cosyne theorem (cf. Lemma 2.4 in [2]), $\sin \varphi_{1}=\frac{1}{2} \sqrt{c\left(c-2 l_{1}\right) /\left(l_{2} l_{3}\right)}$. Combining the latter with (2) we find

$$
\begin{equation*}
4 k_{1}^{2}=g\left(x_{1}, x_{2}, x_{3}\right)=\frac{c\left(c-2 l_{1}\right)^{3}}{l_{2}^{3} l_{3}^{3}} \tag{3}
\end{equation*}
$$

which is (2.20) of [2] for $i=1$. Applying Proposition 2.2 of [2] and differentiating (3) in direction $\left(0,-\widehat{\Phi}_{3}, \widehat{\Phi}_{2}\right)=\left(0,-\sin \varphi_{3}, \sin \varphi_{2}\right)$, one obtains

$$
\begin{equation*}
0=\frac{\partial g}{\partial x_{2}}\left(x_{1}, x_{2}, x_{3}\right)\left(-\sin \varphi_{3}\right)+\frac{\partial g}{\partial x_{3}}\left(x_{1}, x_{2}, x_{3}\right)\left(\sin \varphi_{2}\right) \tag{4}
\end{equation*}
$$

On the other hand, (3) implies

$$
\begin{aligned}
\frac{\partial g}{\partial x_{2}} & =\frac{3 c\left(c-2 l_{1}\right)^{2}}{l_{2}^{3} l_{3}^{3}}\left(-2 \frac{\partial l_{1}}{\partial x_{2}}\right)-\frac{3 c\left(c-2 l_{1}\right)^{3}}{l_{2}^{3} l_{3}^{4}}\left(\frac{\partial l_{3}}{\partial x_{2}}\right) \\
& =\frac{3 c\left(c-2 l_{1}\right)^{2} \sin \varphi_{2}}{l_{2}^{3} l_{3}^{4}}\left[2 l_{3}-\left(c-2 l_{1}\right)\right] \\
& =\frac{3 c\left(c-2 l_{1}\right)^{2}\left(c-2 l_{2}\right) \sin \varphi_{2}}{l_{2}^{3} l_{3}^{4}}>0, \\
\frac{\partial g}{\partial x_{3}} & =\frac{3 c\left(c-2 l_{1}\right)^{2}}{l_{2}^{3} l_{3}^{3}}\left(-2 \frac{\partial l_{1}}{\partial x_{3}}\right)-\frac{3 c\left(c-2 l_{1}\right)^{3}}{l_{2}^{4} l_{3}^{3}}\left(\frac{\partial l_{2}}{\partial x_{3}}\right) \\
& =-\frac{3 c\left(c-2 l_{1}\right)^{2} \sin \varphi_{3}}{l_{2}^{4} l_{3}^{3}}\left[2 l_{2}-\left(c-2 l_{1}\right)\right] \\
& =-\frac{3 c\left(c-2 l_{1}\right)^{2}\left(c-2 l_{3}\right) \sin \varphi_{3}}{l_{2}^{4} l_{3}^{3}}<0 .
\end{aligned}
$$

Therefore, the right-hand side of (4) is strictly negative, which is a contradiction. This proves the first part of the theorem.

For the second part, suppose that Fix_{3} has positive Lebesgue measure in M_{Ω}. Then (1) might be not true; however, assuming that y is a Lebesgue density point of Fix_{3}, we have $\mathscr{L}_{3}(x)=c+\mathscr{O}\left(\|x\|^{2}\right), c=$ const, for $\left(h_{1}\left(x_{1}\right), h_{2}\left(x_{2}\right), h_{3}\left(x_{3}\right)\right) \in \mathrm{Fix}_{3}$ close to y. Now using the argument from $\S 3$ of [2] and a modification of the above argument, one gets that (4) again holds.

References

[1] A. Katok \& J.-M. Strelcyn, In collaboration with F. Ledrappier and F. Przyticki, Smooth maps with singularities: Invariant manifolds, entropy and billiards, Lecture Notes in Math., Vol. 1222, Springer, Berlin, 1986.
[2] M. Rychlik, Periodic points of the billiard ball map in a convex domain, J. Differential Geometry 30 (1989) 191-205.
[3] L. Stojanov, An estimate from above of the number of periodic orbits for semi-dispersed billiards, Comm. Math. Phys. 124 (1989) 217-227.

[^0]: Received December 7, 1990. This note was written while the author was a fellow of the Alexander von Humboldt Foundation at T H Darmstadt, Germany.

