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RIGIDITY OF SURFACES
WITH NO CONJUGATE POINTS

KEITH BURNS & GERHARD KNIEPER

Abstract

E. Hopf proved that any complete Riemannian metric with no conjugate
points on the torus T2 is flat. We extend Hopfs argument to obtain
sufficient conditions for metrics with no conjugate points on a cylinder
or the plane to be flat.

0. Introduction

A complete Riemannian manifold has no conjugate points if any two
points in its universal cover are joined by a unique geodesic. The no con-
jugate point property is a natural generalization of nonpositive curvature:
any manifold with nonpositive curvature has no conjugate points by the
Cartan-Hadamard theorem. In 1943 E. Hopf proved that a Riemannian
metric with no conjugate points on the torus T must be flat [8]. The
present paper extends Hopfs arguments to obtain sufficient conditions for
metrics on the cylinder Sι x R and the plane R2 to be flat.

In the case of the cylinder, our main result—Theorem 2.2—is that a
cylinder with no conjugate points and curvature bounded from below is
flat if its ends do not open out, in other words if there is L > 0 such that
there is a nontrivial loop of length at most L based at every point. This
answers affirmatively a question raised in [6], where the result is proved
under the stronger assumption that the cylinder has no focal points. Our
method also shows that if the cylinder becomes thin as one approaches both
ends, then there must be conjugate points. As a consequence, a cylinder
with no conjugate points and curvature bounded from below has infinite
area. We do not know whether the lower curvature bound can be removed
in these results.
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In the case of the plane, we consider a version of Euclid's parallel axiom:
we suppose that there is a constant a > 1 such that for every point p and
every geodesic γ in P, there is a geodesic β with β(0) = p and

dist(β(tf) ,γ)<a dist(β(t), y) for all t, *'.

Our result—Theorem 3.1—is that any metric on the plane satisfying this
axiom must be a flat Euclidean metric. An immediate corollary is the result
of Green and Gulliver [7] that a flat metric on the plane cannot be changed
on a compact set without introducing conjugate points. Other generaliza-
tions of Green and Gulliver's result have been obtained by Innami [9],
[10] and Croke [3].

For surfaces with nonpositive curvature or no focal points all of the
above results are simple corollaries of the following result.

0.1. Flat Strip Theorem [4], [12], [5]. Let β and γ be geodesies in
a simply connected manifold with nonpositive curvature or no focal points.
Suppose that β and y have finite Hausdorff distance. Then β and y
are the edges of a flat strip, i.e., an isometrically and totally geodesically
embedded copy of I x R.

The obvious generalization of this theorem to manifolds with no con-
jugate points is false; a compact two dimensional counterexample is con-
structed in [2]. This example does not, however, contradict the following
conjecture.

0.2. Conjecture. Let S be a simply connected surface with a complete
Riemannian metric with no conjugate points. Suppose that S is foliated by
a family of geodesies, any two of which have finite Hausdorff distance. Then
S is flat.

All of the results of the present paper would follow easily if this conjec-
ture were true.

Work on this paper began while both authors were visiting the Univer-
sity of North Carolina as part of a special year in differential geometry
sponsored by the University and the National Science Foundation. We
thank the University and the organizers, Pat Eberlein and Robbie Gard-
ner, for their hospitality. We also thank Chris Croke for the discussion
which led to Theorem 2.8, and the referee for a very careful reading of the
paper.

1. Preliminaries

Throughout this paper S will be a smooth surface with a complete
Riemannian metric. We shall always measure angles so that they take
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values in [0, π]. Let K be the Gaussian curvature and π the projection
from TS to S. If X C S, TιX will denote the set of unit vectors with
footpoint in X and dιX the set of all unit vectors with footpoint in dX.
Unless otherwise mentioned, geodesies have unit speed. If υ e TιS, γv

is the geodesic with yv(0) = v . The geodesic flow g* on Γ 1 ^ is defined
by g\v) = γv(t). Let v be the area defined on S by the Riemannian
metric and μ the Liouville measure on TιS. Also λ will denote the
measure that is the product of Lebesgue measure on the fibers of TιS with
the Riemannian length measure on a rectifiable one-dimensional subset of
S it will always be clear from the context which one-dimensional set is
intended.

We consider the scalar Jacobi equation along the geodesic γυ :

(1.1) /(0 \,

If N(t) is a continuous vector field normal to γv , then y(t) is a solution
to (1.1) if and only if y(t)N(t) is a Jacobi field along γv .

1.1. Definition. Two points γυ{tx) and γυ(t2) are conjugate along γυ

if there is a solution y(t) of (1.1) that has y(t{) — 0 = y(t2) and does
not vanish identically. The surface S has no conjugate points if no pair
of points is conjugate along any geodesic.

It is well known that this definition is equivalent to the characterization
of surfaces with no conjugate points given earlier, that S has no conjugate
points if and only if any two points p and q in the universal cover S are
joined by a unique geodesic ypq with γPtq(0) =p and γpq(dist(p, q)) =

q. In particular, if S has no conjugate points, exp^ : TpS —• S is a

diffeomorphism for every p e S. Thus a simply connected surface with

no conjugate points is diffeomorphic to R2 .
Let z(v , t) be the solution of (1.1) with z(v , t) = 0 and z\v, t) = 1.

Then S has no conjugate points if and only if, for every υ , z(v , t) Φ 0
when ί ^ 0. If there are no conjugate points along γv , there is for each
ί / 0 a well-defined solution y(υ , s, t) of (1.1) with y(v,s,0) = l and
y(υ , s, s) = 0. Moreover

j;_(υ, ί) = limy(ί;, 5, t) and j;+(v, ί) = ^111^(1;, s, t)

are well-defined solutions of (1.1) with y_(0) < y'+(0); see e.g. [8]. A
solution y of (1.1) with y(0) = 1 has y(t) > 0 for all t < 0 if and only if
3>'(0) < 3>+(0), and has y(t) > 0 for all / > 0 if and only if /(0) > y!_(0).
We call y_ and y+ the stable and unstable solutions respectively of (1.1).
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Solving (1.1) by reduction of order shows that if γυ has no conjugate
points, then

(1.2) z{v,t)=y+(υ,t)[t

 2f •
Jo yl(υ, t)

The Riccati equation

(1-3) u{t) + u\t) + K{yυ) = 0

is obtained from (1.1) by the change of variable u = y'/y. The times
tx < t2 are consecutive zeroes of a solution y of (1.1) if and only if
the corresponding solution u of (1.3) is defined throughout (tχ, t2) and
u{t) —• oo as t \ tx and u(t) —• -oo as t / t2. Thus there are no
conjugate points along γv if and only if (1.3) has a solution that is defined
for all t. If γυ has no conjugate points, we set u+(t) = y'+/y+{t) and

w_(0 = y'_/y_{t) It is c l e a r t h a t w+ a n d u- a r e the largest and smallest
solutions respectively of (1.3) that are defined for all t.

1.2. Proposition. Suppose that the surface S has no conjugate points.
Then the following hold.

(i) w±( , ) are measurable functions.

(ii) u±(gιv , s) = u±(v 9 s + t) for all s and t.

(iii) If in addition K(p) > -b2 for all p e S, then \u±(υ, t)\ < b for
all (v , t). In particular, if u(t) is a solution of (1.3) with u(0) > b (resp.
w(0) < -b), ίAefl the corresponding solution y(t) of (1.1) vanishes for
some t < 0 (rasp, some t > 0).

ΛΌO/ See [8] or [1].
We set ί/ = M+( , 0). Our arguments are based on
1.3. Key Lemma. Suppose that Q is a compact subset of S whose

boundary is a piecewise smooth curve. Then

J U2(v)dμ(v) < -2πί K{p)dv(p) + 2 ί \U(v)\dλ.

TιQ dxQ

Proof Integrating the Riccati equation (1.3) shows that for any τ > 0,

ί i Γ u+(gv , 0) + ul(g'v , 0) + K(γv(ή) dtdμ(v) = 0.
J τ Jo

TιQ
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Since the Liouville measure μ is g'-invariant, letting τ —• 0 gives

ί U2{v)dμ(υ) < - ί K(πv)dμ(υ)

TιQ TιQ

(1.4)

+ lim sup
τ—0

T'Q

f - Γu+(g'v,O)dtdμ
J τ JO

Of course

- f K(πv)dμ(v) = -2π f K(p)dv(p).

TιQ U

It follows from the invariance property (Proposition 1.2(ii)) of u+ and

the gr-invariance of μ that

j f u+(gv , 0) dt dμ = I {U(gτv) - U(v)} dμ(v)

TιQ TιQ

= ί U(υ)dμ(v)- ί U(v)dμ(v)

gτ(TιQ) TιQ

= I U(υ)dμ(v).
gτ(TιQ)ATιQ

O b s e r v e t h a t gτ(TιQ)ATιQ c G\dxQ) = f {g(v) : υ e ΘιQ a n d \t\ <

τ } . Define φ:dιQxR-+ TιS by φ(v , t) = gv . T h e n

j fu+(gtv,0)dtdμ <<

<

Gx(dxQ)

D(τ) j

a'

\U(v)\dμ(v)

f Γ \U(g'v)\dtdλ(v),

(2

where

D(τ) = s u p { | delDφ(v , t)\ : (v , 0 £ dlQ x [ - τ , - τ ]

and dQ is smooth at πυ }.

Since #' is a unit speed flow, it is easily shown that limsup τ^ 0D(τ) < 1.
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It follows that

lim sup
τ-> 0 o

r ' β

< /limsup- Γ \U{g)\dtdμ(v)<2 [ \U(υ)\dλ,
J τ-̂ 0 T ./_τ J

dxQ dιQ

since U{gtv) — u+(v , t) is a continuous (actually C°° ) function of t for
each fixed v . q.e.d.

When we have the lower curvature bound K > -b2, we shall often
compare solutions of (1.1) with solutions of the scalar Jacobi equation in
constant curvature -b2 using

1.4. Lemma. Suppose K{(t) > K2(t) for all t and yt{t) is a solution

of
y"(ή + Ki(t)yi(ή = 0, i = 1, 2.

// 0 < yx(0) = y2(0), 0 < ^(0) < y2(0) and yχ{t) > 0 for 0 < ί < ί0,
then y{(t0)<y2(t0).

In particular, if K(γv(ή) > -b2 for all t and there are no conjugate
points along γv , then

(1.5) z{υ, t) < ^ sinh(60, ί > 0.

We also use two fundamental results of Leon Green; they are Theorems
2.1 and 3.1 of [6].

1.5. Lemma. Suppose there are no conjugate points along γv and
^(y v (0) ύ bounded from below. Then z(v , t) -> oo α^ ί —• oo.

1.6. Proposition. Let S be a complete simply connected surface with no
conjugate points and curvature bounded from below. Let γ be a geodesic
in S. Suppose {pn} is a sequence such that dist(/?Λ, y(0)) -> oo and
dist(/?w , γ) is bounded. Then

In particular if β and γ are two geodesies with β(0) = y(0) and β(0) /
y(0), then άis\{β{t), y(t)) -> oo α.s t-^oo.

If 5 is simply connected and has no conjugate points, we can consider
the following notions of parallelism and asymptoticity for two geodesies
β and γ in S:

(i) dist(β(t),γ(ή) is constant;
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(ii) there is b > 1 such that dist{β(t'), y(t')) < b άis\{β{t), γ{t)) for
all t and tr

(iii) sup {άist(β(t), γ(ή) : / G l } < o o ;
(iv) β and γ have finite Hausdorff distance;
(v) β and γ do not intersect;
(vi) β is asymptotic to y,i.e., jϊ(0) = l i m ^ ^ yΛ 0 ) > y ( 0 (0) .
Note that for every geodesic 7 of S, there is exactly one geodesic

asymptotic to γ starting from each point of S [5, Proposition 1]. Our
definition of asymptoticity follows [5] and is not the definition usually used
in the theory of manifolds with nonpositive curvature, namely that β and
γ are asymptotic if sup {dist(/?(ί), γ(ή): t > 0} < 00. The two definitions
are equivalent in the context of manifolds with nonpositive curvature or
with no focal points. For such manifolds, the flat strip theorem shows that
(i) Φ> (ii) & (iii). It is not difficult to see that (iii) ^ (iv) in any simply
connected manifold with no conjugate points, and it is trivial that (i) =>
(ii) => (iii). For surfaces with no conjugate points and curvature bounded
from below, Proposition 1.6 shows that (iii) =*• (iv), (v) and that γ is
asymptotic to β. However neither (ii) nor (iii) implies (i), even if the
curvature is bounded from below [2].

Property (vi) characterizes surfaces with no conjugate points in the fol-
lowing way.

1.7. Proposition. Assume that S is simply connected. Then S has no
conjugate points if and only if, for any geodesic γ and any point p not on
γ, there is a geodesic β with β(0) = p that does not intersect γ.

Proof Suppose that S has no conjugate points. Let v± be the vectors
in TpS such that γυ+ is asymptotic to γ and γυ- is asymptotic to the
geodesic t H-> y(-t). Let v be the unit vector pointing from p towards
y(0). Let A be the connected open arc in the circle 7^5 that contains υ

and is bounded by v~ and v* . If u e Tλ

pS, the ray yJ[0, 00) intersects
γ if and only if u e A. Note that -u £ A if u e A, for otherwise
γu would intersect γ twice. Thus the open arc A lies in the interior of a
semicircle in 7^5, and we can find w eTx

pS with w £ A and -w £ A.
The geodesic β = γw does not intersect γ.

Conversely suppose that S has conjugate points. Choose a point p e S

that lies between a pair of conjugate points along some geodesic. Let p =

inf { r : δ{-r) and δ(r) are conjugate along a geodesic δ with δ(0) = p } .

Note that, for every u e Tx

pS, we have z(u, t) > 0 for 0 < t < p.

Since z is continuous and TpS is compact, there is R > p such that
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z(u, t) > 0 for all (u,t) e T*S x (0, R], Hence expp is nonsingular
and injective on the ball B = {v e TpS : ||v|| < R}. Let g be the
metric on B that is the pullback by exp^ of the metric on S. Choose a
geodesic δQ in S with δQ(0) = p and δo(—p) conjugate to δQ(p) along

δQ. Then δQ(t) = f tδQ(O) is a geodesic of (B 9 g). Since <J0(-/>) and

δo(p) are conjugate along <J0, a geodesic of ( 5 , g) that passes through

δo(—p) and makes a small (but nonzero) angle with δ0 will intersect δ0

near <50(/>) see [11, 2.1.13]. Such a geodesic cannot pass through 0, since

this would contradict injectivity of exp on B. Thus there is a geodesic

segment c in (B, g) that joins δo{-p) to <50(τ) for some τ e (0, R) and

does not pass through 0. Every geodesic in (B, g) that passes through 0

crosses c. Hence every geodesic in S that passes through p must cross

the geodesic segment c = expp oc. The extension γ of c to a complete

ggodesic may contain p . Choose a point p that lies on ($0 between the

endpoints of c and does not lie on γ. We can choose p so close to p

that exp / is nonsingular on B' = {v e 7^/5 : ||ι;|| < R} and c lies in

I?'. Then every geodesic that passes through p intersects γ .

2. Cylinders with bounded cross section

Let C be a cylinder (5 x R) with a complete Riemannian metric.
Let φ be a generator of 7Γj (C) thought of as the group of covering trans-
formations acting as isometries on the Riemannian universal cover C of
C.

2.1. Definition. C has bounded cross section if there is L such that
dist(/?, φp) < L for all p e C .

An equivalent statement is that there be a non-null-homotopic loop with
length < L based at each point of C .

2.2. Theorem. Suppose C has no conjugate points, curvature bounded
from below and bounded cross section. Then C is flat.

Proof. Choose b, L > 0 so that K{p) > -b2 and dist(p, φp) < L
for all p e C. We shall show below that the function U = w+( , 0) is in

Z/^T^C) and satisfies J Γ i c U2(v)dμ{v) = 0. This implies that ί/ van-
ishes almost everywhere. It then follows from the Riccati equation (1.3)
that the curvature K vanishes almost everywhere. Since K is continuous,
C must be flat.

We first construct a geodesic γ0 that has no self-intersections and joins
the two ends of C. To do this, choose an increasing sequence {Kn}
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of compact subsets of C such that C = \J™=\ Kn and each C\Kn has
precisely two components An and Bn . Let gn be the shortest geodesic
segment joining a point in An to a point in Bn. Let γ0 be a geodesic
that is a limit of {gn} . Then γQ is minimal and in particular has no self-
intersections. For any n > m, gn contains points of both the compact
subsets dAm and dBm . Hence γ0 contains points of both dAm and dBm

for every m . Since γ0 is minimal, it follows easily that γQ(s) approaches
one end of C as s —• oo and the other end as s —> — oo.

Choose a lift γχ of y0 to C. Let y2 = p o y t . Since γ0 has no self-
intersections, γχ and y2 do not intersect. They bound a strip Σ that is a
fundamental domain for πx(C).

Let l(s) = d i s t ^ ^ ) , y2(^)). Note that /(s) < L for all s. Let σ5 be
the geodesic of C with σs(0) = ^( j) and σs(l(s)) = y2(s). We shall call
the segment of σs between yχ(s) and γ2(s) the cross section of Σ at s.
Two different cross sections of Σ cannot intersect: if s Φ s , the points
γι{s') and ^Os1') ^ e o n ^ e s a m e si^e of σs, and so the geodesic segment
joining them cannot intersect σs. Let cs be the projection to C of the
cross section of Σ at s and let Tι(s) be the set of all unit vectors based
at points on cs. Note that

(2.1) λ{Tl{s))<2πL for all s.

Let a(s) = <(σs(0),γx(s)) and β(s) = <(-σs(l(s)),γ2(s)). Let ά(s) =

<(σs(0), -^(j)) = π -a(s) and )J(j) = <(-σs(l(s)) ,-γ2(s)) = π- β(s).

Assume that sf < s" and consider the set Q(s , s") c C consisting of

points that lie on or between c^ and cs» . The lift of Q(sf, s") to Σ is a

quadrilateral with geodesic sides, whose interior angles are ά(s"), β(s"),

a(s') and β(s). It follows from the Gauss-Bonnet theorem that

i v ( p ) = {2π - ά ( s ) - β ( s ) - a ( s ) - β ( s ) } ,

Q(s',s")

which together with Lemma 1.3 implies that

U\v) dμ{v) < 2π{2π - ά(s") - β(s") - a(s') - β(s')}

(2.2) Γ ' e ( Λ ί " )

+ 2 / \U(υ)\dλ(υ).

Note that -In < {2π-ά(s")-β(s")-a(s')-β(s')} < 2π and \U{v)\ < b
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for all v by (iii) of Proposition 1.2. It follows from this and (2.1) that

U2(v) dμ(v) <4π + 4πbL whenever s < s".

TιQ(s',s")

Thus UeL2(TιC).
2.3. Lemma. There is θ > 0 such that every cross section of Σ makes

angle at least θ with γ{ and γ2.
Proof. In fact one can take

Q bL
3 sinh bL'

We give the proof for the angle with yχ. For a given s, let θ be the
angle between σs and γ{, and set / = l(s). We have dist(σ5(/), yχ) <
dist(σs(/), ŷ Λ1 -h /)), which in turn is less than the distance between these
points along the circle with radius / centered at σs(0). Comparison with
an arc subtending angle θ at the center of a circle of radius / in constant
curvature -b2 (using (1.5)) shows that

dιst(σs(l), γχ) < ^ smhbl = Iθ < Iθ b L ,

I < L and JC"1 sinhx is an increasin
have
since I < L and JC"1 sinhx is an increasing function. Thus if θ < θ , we

Choose sf so that dist(γ2(s), γx(s')) < 1/3. Projecting from C to C

shows that γQ(s) and γo(s) are joined by a curve of length < / / 3 . Since

γQ is a minimal geodesic, \s - s'\ < 1/3 . Thus

I = dist(γι{s)9γ2{s))<disl{γι(s)9 yx(s)) + d i s t ( y 1 ( / ) ? γ2(s)) < y ,

which is impossible. Hence θ > θ .
2.4. Lemma. There are m, M > 0 swcA ί/zatf, // s' < s" and f :

TxQ(s , s") -> [0, oo) ώ integrable, then

mi ί f(v)dλ{v)ds< ί f(υ)dμ{v)
T\s) TιQ(s-,s+)

<M Γ ί f(v)dλ(υ)ds.
Tι(s)

Proof Set ψ(s, t) = σs(t), and let ^ ( ί ) be the length the projection of
{dψ/ds) {s, ί) onto the direction orthogonal to σs. Then ys is a scalar
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Jacobi field along σs. Since two different cross sections of Σ cannot
intersect, ys(t) > 0 for 0 < t < l(s).

To prove the lemma, it suffices to choose m and M so that m <
ys(t) < M whenever 0 < t < l(s). Since γ{(s) = (dψ/ds) (s, 0) and

()

ys(0) and ys(l(s)) are the components orthogonal to σs of γx(s) and
γ2(s) respectively. It follows from Lemma 2.3 that

(2.3) s inθ < ̂ ( 0 ) , ys(l(s)) < 1 for all s.

Let
sinθ

m =
cosh bL'

Suppose that for some s we have ys(t) < m for t e [0, l(s)]. Since
m < s i n θ , the function yJ[O, l(s)] must attain its infimum at a time
t0 e (0, l(s)) where its derivative vanishes. Comparison with constant
curvature -b2 gives ys(0) < ys(t0) cosh btQ < m cosh bL < s i n θ , which
is impossible. Thus ys(t) > m whenever 0 < t < l(s).

Let us(t) = y's{t)y~l{ή. If us(0) > b, then ys(t) vanishes for some
t < 0 by (iii) of Proposition 1.2. Similarly if us(l(s)) < -b, then ys(t)
vanishes for some t > l(s). But ys(t) vanishes at most once. From this
and (2.3) we see that

(i) y's(0)<bys(0)<b,or
(ϋ) y's(l(s))>-bys(l(s))>-b.

Suppose (i) holds. Comparing with constant curvature -b2 and using

Lemma 1.4 show that ys(t) < eht for t > 0, since ebt is the solution of

the initial value problem y'\t) - b2y{t) = 0, y{0) = 1, /(0) = b. Hence

t.\ ^ bt . bl(s) . bL

ys{t) <e < e < e ,
for 0 < t < l(s). A similar argument leads to that if (ii) holds and
0 < t < l{s), then

/1 / \ \̂ ^ bt ^ bL

ys(l(s) -t)<e <e .
Thus we can take M = ebL . q.e.d.

We are now ready to prove that fτιc U2 dμ(v) = 0. In fact we shall

show that, if sQ > 0 and 0 < ε < lOπ, there are s~ < -s0 and s+ > s0

such that

(2.4) ί U2{v)dμ(v)<ε.

T]Q(s-,s+)
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Choose sx > s0 large enough so that sx > 1,

(2.5) ί U2(υ)dμ(v)> ί U2(v)dμ(v)-
TιQ(-Sι,Sι) TXC

and

(2.6)

It is convenient to say that s is good if

\U(υ)\dλ{υ)<±.

T\s)

We choose s+ e [s{, 2s χ] and s~ e [-2s{, -sχ] so that they are good.
Since sx > 1, the next lemma shows that this is possible.

2.5. Lemma. Both of the sets { s e [s{, 3s{]: s is not good} and
{ s e [-3s{, -Sj] : s is not good} have length at most ^57.

Proof. We consider the first set; the other case is similar.

m - — - length { s e [s{, 3s{]: s is not good }

<m ί l ί \U(v)\dλ{v)ds
Js. J

< I \U(v)\dμ(υ) by Lemma 2.4

( Λ 1/2

I U2(v)dμ(v)\ I I ldμ(v)
KTιQ(slf3Sι)

1/2

>»* \*, f3Sι f i ^ Λ , w J by (2.5) and
Lemma 2.4

M ί ' ί \dλ{v)ds

wε yj4πLMs{ by (2.1)

= mTo
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Since s+ and s~ are good, (2.2) gives

2/
U (υ) dμ(v) < 2π{2π - ά(s+) - β(s+) - a(s ) -

Thus (2.4) will hold if

(2.7) π - ά(s+) - β(s+) < — and π - a(s ) - β{s ) < j - .

Suppose that π - ά(s+) - β(s+) > ε/{5π), or equivalently that

Under this assumption, we shall show that

s>L,/ l\s)ds
Js+

which is impossible, since 0 < / < L. Suppose that s > s+ is good. Since
s+ is also good, (2.2) with s' = s+ and s" = s gives that

0 < 2π{2π - ά(s) - β{s) - a(s+) - β(s+)} + 2 ί \U(v)\dλ(υ)

T'(s+)\JTy(s)

so that

(2.8)
" v " ' ' ^ ' ^ " 5π ' 10π~' f c 10π'

Since ά(s) and β(s) are both nonnegative, (2.8) implies

(2 9) \&(s)-β(s)\<π-J-

It follows from the first variation of arclength formula that

(2.10) l'(s) = cos ά(s) + cos β(s) = 2 cos cos •\ cos

It is clear from (2.8), (2.9) and (2.10) that if s > s+ is good, then

π

since 0 < ε < lOπ, and sinx is convex for 0 < x < π/2. Even if s is
not good, we have l'(s) > -2. From these estimates and Lemma 2.5 we
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see that if 0 < ε < lOπ , then

3sι g2

ΐ{s) ds > j l e n g t h { 5 G [ s + , 3S{] : s is good}
50n

- 2length{s e [s+, 3s x]: s is not good}

by (2.6). Since this is impossible, π - ά{s+) - β{s+) < ε/(5π). A similar
argument shows that π - a(s~) - β{s~) < e/(5π). Thus (2.7) is true,
which completes the proof of the theorem.

We now show that the above theorem can be viewed as a special case
of Conjecture 0.2.

2.6. Lemma. Suppose C has no conjugate points, curvature bounded
from below and bounded cross section. Then every point of C lies on a
geodesic whose Hausdorff distance from yλ is bounded.

Proof It is enough to show that every point of Σ lies on a geodesic
that does not leave Σ. Since C has bounded cross section, yχ and γ2

have finite Hausdorff distance. It is obvious from this and Proposition 1.6
that a geodesic that starts at a point in Σ stays in Σ for all time if and
only if it does not cross γ{. Proposition 1.7 implies that every point of Σ
lies on a geodesic that does not intersect γχ.

2.7. Definition. The cylinder C is constricted if there are sequences
pn and qn such that pn diverges to one end of C, qn diverges to the
other end of C and l i m ^ ^ l(pn) = 0 = H m ^ ^ l{qn).

2.8. Theorem. Let C be a cylinder with curvature bounded from below
that is constricted. Then C has conjugate points.

Proof Assume that C has no conjugate points. We use the same nota-

tion as in the proof of Theorem 2.2. Since C is constricted, l iminf^^ l(s)

= 0. Either there is s0 such that lf(s) < 0 for all s > s0 or there is not.

In the first case, l i m ^ ^ l(s) = limsups_^ool
/(s) = 0. In the latter case,

we can choose s* —• oo such that / has a local minimum at each s* and

l(s*) —• 0 as n -> oo . In either case we obtain a sequence s* —• oo such

that l(s*) —• 0 and l'(s*) -> 0. In a similar way we can choose a sequence

s~ -> -oo such that l(s~) -> 0 and ί(s~) -• 0. It is clear from (2.10)

that ά(s*) + β(s*) -+ π and a(s~) + β(s~) -• π as n -> oo . By (2.2), we
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have

U2(v) dμ(υ) < 2π{2π - ά(s+) - β(s+) - a(s~) - β(s~)}

as n -> oo. Hence Jτιc U2(v)dμ(v) = 0. It follows as in the proof of
Theorem 2.2 that C is flat. But then l(s) is constant, which is impossible
if C is constricted.

2.9. Corollary. Let C be a cylinder with curvature bounded from below
and finite area. Then C has conjugate points.

3. Planes with "parallel" geodesies

This section contains the proof of
3.1. Theorem. Let P be the plane R2 with a Riemannian metric.

Suppose that there is a constant a > 1 such that for every point p and
every geodesic γ in P, there is a geodesic β with β(O)=p and

(3.1) dist(β(t), γ)<a dist(β(t), γ) for all t j .

Then g is flat.
We shall say that the geodesic β of P is "weakly parallel" to γ if

(3.1) holds. Note that if β is "weakly parallel" to γ, then either β is a
reparametrization of γ or β does not intersect γ.

3.2. Lemma. Let P be as in Theorem 3.1. Then the following hold:

(i) P has no conjugate points;

(ϋ) y_ = y+ along every geodesic;

(iii) y_(υ , t) < ay_(v , t') for all v and all t and t'. In particular P

has the bounded asymptote property of [5].
Proof, (i) follows easily from Proposition 1.7.
We now show that (iii) holds whenever t' < t. If not, there are t3 > t2 >

t{ > 0 and an orthogonal Jacobi field along a geodesic γ with || 7(^)11 >
α 117(̂ )11 and Y(t3) = 0. Thus there is a geodesic δ with δ(t3) = γ(t3)
and dist(δ(t2), y) > fldist(ί(ίj), γ). But this is impossible, because one
of the geodesies "weakly parallel" to γ would have to cross δ twice.

Next we show that z(v , /) —• oo as / —• oo for every v e TXP. Since
y+{υ , t) = y_(-v , -t), it follows from the above that

(3.2) y + { υ , t) > a ~ l y + { v , t ) w h e n e v e r t > t .
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In particular, y+(υ, /) > a~ι whenever t > 0. It is clear from this and

(1.2) that z(v, t) -+ oo as t -> oo if /0°°(y+(^5 ί ) Γ 2 ^ ' diverges. If this
integral converges, there is a sequence tn-+ oo such that y+(v , ίΛ) —• oo .
Then it is clear from (3.2) that y+(υ, t) —> oo as ί -> oo, and it follows
easily from (1.2) that z(v, t) —• oo.

Now suppose that (ii) is false. Then we can find v and a solution
of the scalar Jacobi equation (1.1) such that y(0) = 1 and y'_(v, 0) <
/(O) < y+(v, 0). It is clear that y(t) > 0 for all t and y(ή ^ oo as
t —• ±oo. Thus we can choose t_ < 0 < t+ and a geodesic ί such that
δ(t_), δ(0) and ί ( ί + ) are all on the same side of γυ and dist(ί(ί±), yw) >
a dist(ί (0), γυ). But this means that one of the geodesies "weakly parallel"
to γυ crosses δ twice, which is impossible. Thus (ii) holds.

It follows easily from (ii) and the fact that (iii) holds when t1 < t that
(iii) holds for all t and t'.

3.3. Lemma.

(i) a~ι < y_(v, t) < a for all v and t

(ii) a~3t < z{v, t) < a3t for all υ and t;
(iii) there is B > 1 such that, if y is a Jacobi field along a geodesic γ

of P and y(t) > 0 for tx < t < t2, then

^ ) , y(t2)} < y(ή < B max{y(^), y(t2)},

for tχ<t<t2\
(iv) if γ and δ are unit speed geodesies with the same initial point and

<(y(O),<J(O)) = ψ, then

^L<dist(γ(t),δ(t))<a3ψt,

for all t>0.
Proof (i) This is immediate from Lemma 3.2.
(ii) This follows from (i) and (1.2).

(iii) Let zz be the scalar Jacobi field along γ with z^/.) = 0 and

z'.(t.) = ( - I ) ' " 1 . The sign of z\{t^) is chosen so that z.(t) > 0 for

tx < t < t2. Let j denote the element of {1, 2} that is not /. Then

y * - ^ , ) to <-i. 2,
where y_ is the stable scalar Jacobi field along γ. We can choose i so
that the coefficient of zέ(t) is nonnegative. Then we have, for tχ < t < t2,

y{t) > jj^vΛt) > a~2 min{y(tχ),y(t2)},
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b y ( i ) . A l so (i) a n d (ii) i m p l y t h a t f o r tx <t <t2,

<2a6max{y(t{),y(t2)}.

Thus we can choose B = 2a .
(iv) The upper bound follows from (ii). For the lower bound, let r

and θ be polar coordinates about y(0), so that d/dr is the unit vector
field pointing away from γ(0) and, along each ray starting from γ(0),
d/dθ is the perpendicular Jacobi field with \\d/dθ\\ = z. By (ii), we
have ||d/<90|| > a~3t/2 outside the circle about y(0) with radius t/2.
Thus any curve from γ(t) to δ(t) that lies outside this circle has length
at least aΓ*ψtl2. But any curve from γ(t) to δ(t) that goes inside this
circle has length at least t. Since ψ/π < 1, we see that dist(y(ί), δ(ή) >
ψt/(2a3π).

3.4. Lemma. Suppose that β is "weakly parallel" to γ. Then there is
a unique ε e {— 1, 1} such that

(3.3) dist(β(t), γ(et')) < la dist(A(O, γ(et)) for all t, t'.

The proof is based on
3.5. Lemma. Suppose that β is "weakly parallel" to γ. Then there is

a unique έ e {-1, 1} such that dist(/?(s), γ(εs)) is uniformly bounded.
Furthermore

dist{β{s), γ(έs)) < 3a dist(j?(O), y(0)) for all s .

Proof Lemma 3.2(i) tells us that every geodesic in P is minimiz-
ing. It follows that dist(/?(s), γ(s)) and dist(β(s), γ(~s)) cannot both be
uniformly bounded, for then we would have dist(y(s), y{-s)) uniformly
bounded, which is impossible for a minimizing geodesic.

Since β is "weakly parallel" to γ, there is a function τ : R -> R with
τ(0) = 0 such that for all s,

(3.4) dist(β(s), y (φ))) < a dist(ifif(O), γ) < a dist(^(O), y(0)).
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For any sχ and s2 , we have

\τ(sx) - τ(s2)\ = dis

and similarly

I*! - s2\ < \τ(sx) - τ(s2)\ + 2adist(jfif(O),

It follows easily that there are έ e {-1, 1} and c e R such that

(3.5) |& + c - ψ ) | < fldist(/?(O), y(0)) for all s.

Setting s = 0 gives

(3.6) |c| <αdist(/f(O), y(0)).

Combining (3.4), (3.5) and (3.6) shows that for all s,

dist(β(s), γ{*s)) < dist(β(s),γ(τ(s)))

+ dist(γ(τ(s)), γ(έs + c)) + dist(7(e^ + c),

<3fldist(i»(0),7(0)).

Proof of Lemma 3.4. By Lemma 3.5, there is a unique β e {-1, 1}
such that

(3.7) dist(jί(0, γ{εή) < 3a dist(jϊ(O), y(0)) for all t.

Now consider the geodesies βt and γt defined by βt(s) = β(t + s) and
γt(s) = γ(εt + εs). The geodesic βt is "weakly parallel" to yt and it is
clear from (3.7) that, for each t, dist(/?,(s), γt(s)) is uniformly bounded
for all s. It follows from Lemma 3.5 that for all s and /,

dist(βt(s), γt(s)) < 3^dist(^(0), j>,(0)) = dist(iί(O, v(εt)).

Setting s = t' -t gives us (3.3).
3.6. Definition. The geodesies a and β are "parallel" if

dist(α(ί ;), β(t')) < 3αdist(α(0, β(ή) for all t, t'

and "antiparallel" if a is "parallel" to t^ β{-t).
It follows from Lemma 3.4 that for every point p and every geodesic γ

of P there is a geodesic β with β(0) = p that is "parallel" to y. Lemma
3.3(iv) shows that this uniquely determines β. Moreover β is (up to
reparametrization) the unique geodesic through p that does not cross γ
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transversally. We see that "weak parallelism" is an equivalence relation
(in particular symmetric) and two geodesies are "weakly parallel" if and
only if they are "parallel" or "antiparallel". We also see that "parallelism"
is a continuous relation in the following sense: if vn -> v in TιP and
each γυ is "parallel" to a given geodesic γ, then γv is "parallel" to γ .

We use this to introduce coordinates on P. Choose a point p0 to be the
origin. Choose geodesies γχ and γ2 with ^(0) = pQ = y2(0). Let Γ2(r, •)
be the geodesic "parallel" to γ2 with Γ2(r, 0) = yχ(r). Let Γχ(s, •) be the
geodesic "parallel" to ^ with Γχ(s, 0) = y2(s) and Tx(s9 0) on the same
side of γ2 as ^ ( 0 ) . Define the coordinates xι and x2 so that Γ2(r, •)
and Γx(s, •) meet at the point with coordinates {r, s).

These coordinates are C . To see this, note that geodesies asymptotic

(in the sense defined in §1) to γ2 do not intersect γ2 transversally. It

follows easily that Γ2(r, •) is the geodesic through γχ (r) that is asymptotic

to γ2. Since P has bounded asymptote by Lemma 3.2(iii), Proposition 5

and Theorem 1 of [5] imply that f 2 (r , 0) is a C 1 function of r similarly

f χ(s, 0) is a C 1 function of s . It follows easily that the coordinates are

c1.
3.7. Lemma. There is η such that 0 < η < π/2 and

η < <{d/dχl, d/dx2) <π-η

everywhere in P.
Proof. Let ψ(p) be the angle between d/dxι(p) and d/dx2(p). For

/ = 1, 2 and t > 0, let qt(p, t) be the point obtained by moving distance
t in the xz-direction from p. Note that ψ(p0) = π/2 and ίf (p 0, t) =
?,.(*). Let

rfo(ί) = dis t i l ( ί ) , y2(0) and rfp(0 = dist(qx(p, ί), q2(p, ί))

It follows from Lemma 3.3(iv) that

rfo(O ̂  ~T a n d rf

P(0 ^ flV(p)* f o r a11 ^ > °

On the other hand, \do(t) - dp(t)\ is uniformly bounded for all t, since

' 0) + dist(?2(0 , Q2{P, 0)

and y.( ) and ?.(/?, •) are "parallel" geodesies. Thus aψ{p) > l/(4α 3),

and therefore ψ(p) > l/(4α 6). A similar argument can be applied to the

angle between d/dx 1 and -d/dx2 to show that π - ψ{p) > l/(4α 6).
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3.8. Lemma. Let A = a/sinη, and y. be the length of the projection

of d/dxι onto the direction orthogonal to the curves xι = const. Then the

following hold for all p e P and i = 1, 2.

-ι(i) A-ι<y.{p)<a;
ι ^~ι(ii) a~ι < Wd/d^ip^ < A;

(Hi) a~ι < Hgrad̂ Jc'H <A.

Proof Let j be the element of {1,2} that is not /. Observe that if
βj is a geodesic "parallel" to γ., then y. o β. is a scalar Jacobi field along
βj that never vanishes. Since y+ = y_ along β., yi o β. is a multiple
of the stable solution y_ . It follows from Lemma 3.2(ii) that if t0 is the
time when β. crosses γt, then

(3.8) a'lyt o β.(t0) < y, o β.{t) < ayt o β.(tQ) for all t.

Thus by Lemma 3.7 we have

(3.9) s inι j | |a/ay(p) | |<y I . (p)<| |a/βx / (p) | | for all p e P .

Since we chose xι so that ||<9/<9JC'|| = 1 along γn part (i) of the lemma

follows from (3.8) and (3.9). Part (ii) follows from (i) and (3.9). Part (iii)

follows from (i), since ||grad JC'|| = y^p)'1.

3.9. Definition. Let S?{r) = {p : -r < xι{p),x2{p) < r} be the
"square" defined by the coordinates.

3.10. Lemma. For any r > 0, the "square" S"(r) satisfies

)< \6πAr.

IfO<r'< r" and φ : Tι&(r") -• [0, oo) is integrable, then

j ί ί φ{υ)dλ{v)dr< ί φ(υ)dμ{v)

<A( ί φ(v)dλ(v)dr.

Proof This follows easily from the previous lemma.

3.11. Proposition. U 6 L2(P).

Proof Let f{r) = fd\^{r) U2{v)dλ(v). Then by Lemma 3.10 and

Lemma 1.3 applied to &>{R) we see that
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ί f(r)dr< ί U2(υ)dμ(v)
TιS*(R)

<-2π ί K(p)dv(p) + 2 ί \U(v)\dλ(υ).

Since <¥{R) has geodesic sides and four interior angles between 0 and π,

K(p)dv(p)<2π,

by the Gauss-Bonnet theorem. On the other hand, Holder's inequality and
Lemma 3.10 imply that

{
Λ 1/2 / ^ 1/2

I \dλ{v)\ I ί U2(v)dλ(v)
d r \ 1 C/p i T%\ I I Q 1 ζ~&( T%\

< \/l6πAR^f(R).

Hence
/ f(r) dr < 4π2A + SAVπA\/Rf(R).

Jo v

Lemma 3.12 below now shows that / e Lι([0, oo)). It follows from
Lemma 3.10 that

ί U2{υ) dμ{v) < A ( f(r) dr < oo.

TιP

3.12. Lemma. Let f : [0, oo) —• [0, oo). Suppose there are Cχ, C2>

0 such that

ΓR ,
/ f(r) dr<Cχ + C2JRf(R) for all R>0.

Jo

Then
fR
/ f{r)dr<C{ forallR>0.
Jo

fR

Proof. Let F(R) = / f(r) dr-Cχ. Suppose that F{R0) > 0. Then
./o

F2{R) < C2

2RF\R) and F(R) > 0 for all R>R0,
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and hence

which is impossible.
3.13. Lemma. |x 2(Γ 2(r, s))\ > A~ι\s\ for all r and s.

Proof. This follows from Lemma 3.8(ii), since Γ2(r, •) is parametrized

by arclength and is always tangent to d/dx2 .
3.14. Lemma. Suppose r < r" . Then for all s,

dist(Γ2(r' ,s), Γ2(r", s)) < 3a(r" - r).

Proof T2{r , ) is "parallel" to T2{r", •) and dist(Γ2(/, 0), Γ 2 ( Λ 0))
= r — r .

3.15. Lemma. There is θ > 0 such that for any r , r" and s with
r < r", the geodesic through Γ2(r', s) and Γ2(r", s) crosses Y2(r , •) and
T2{r", •) with angle at least θ .

Proof Let σ be the geodesic segment from Γ 2(r ;, s) to Γ2(r", s).
Then length(σ) < 3a(r" - r) by the previous lemma. Suppose that σ
makes angle less than I/(6a4A) with Γ 2(r\ •) or Γ 2(r", •). Then by
Lemma 3.3(iv), there are points p on Γ 2 (/ , •) and p" on Γ 2(r", •) with
dist(^', p") < (l/2A)(r" - r). From this and Lemma 3.8(iii) it follows
that

i 2 / n\ 2 , /x, ^ Λ 1 / // /x 1 / ft /λ

\x {p ) - x {p ) | < A — ( r - r ) = ^ { r - r ) ,

which is impossible, since x2{p") = r" and x2{p) = r .

3.16. Proposition. Given rQ > 0 <z«d ε € (0, 10π), ίΛ r̂̂  w a set &

such that β D c5^(r0) α«ί/ / Γ ,^ U2(υ) dμ(υ) < ε.

Proof The set £f will be the convex hull of four points, Γ 2 (r + , s + ) ,

Γ2(r~ , 5+), T2{r~ , 5") and Γ2(r+ , s~), with r" < - r 0 , r+ > r0 , ^+ >

4̂rQ and .s " < — ̂ 4r0 . It is obvious from the first two inequalities that (§

will contain <9"(rQ) if neither the side joining Γ2(r+, s+) to Γ2(r+,s~)
nor the side joining T2(r~ , s+) to Γ2(r~ , 5~) intersects ^ ( r 0 ) . But this

is clear, because the coordinate x2 is a monotone function along these

edges (in fact along any geodesic), and it follows from Lemma 3.13 that

\x2\ > rQ at all four corners of β.

Choose p > 1 large enough so that

(3.10) J
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Choose rχ > r0 large enough so that

/

ί 2

U2(v)dμ(v)> / U2(v)dμ(v)~ J
TιS^(rJ2) TιP

and

2 2k

(3.12) / U2(v)dμ(v)> ί U2(v)dμ(v)- * S 1 * ®
J J 1600-24B aπp

TιS*{rJ2) TιP

where the constants A, B and θ are defined in Lemma 3.8, Lemma
3.3(iii) and Lemma 3.15 respectively.

We now choose r+ . For r < r" , let

> r") = {P r < x\p) < r" and - prχ < χ2(p) <prγ},

and let 3^(r) be the set of all unit vectors with footpoint on the geodesic
segment 3l(r,r) which joins Γ2(r,-pr{) to Γ2(r,pr1). We see from
Lemma 3.8 that

) < 4πpAr for all r ,

and, if r < r" and φ : Tλ3l(r , r") -> [0, oc) is integrable, then

2 ί ί φ(v)dλ{v)dr< ί φ(v)dμ(v)<A ί ί φ(v)dλ{v)dr.

Tι&(r',r")

Choose r+ e [rχ, 2r{] so that / \U(υ)\dλ(v) is as small as possible.

Since
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we obtain

/ \U(υ)\dλ(v)<- ί X ί \U{v)\dλ{v)dr
r\ Jr. J

r+) T{r)

T I \U(v)\dμ(v)
l J

<y\ j U2(v)dμ(v)\ I I
1 \&{rχt2rx) J ψ{rλ,

2
y/A rr 4πpAr{ by (3.11)

ε

40"

In a similar way, we choose r e [-2r{, -rχ] so that

\U(v)\dλ(υ)<^.

Now we prepare to choose s+ and s~ . Let y_ = Γ2(r~ , •) and y+ =
Γ 2 (r + , •). Let l(s) = dist{γ_(s), γ+(s)) and let cs be the geodesic segment
from γ_(s) to γ+(s), parametrized by arclength so that cs(0) = y_(s) and
cs(l(s)) = y+(s). Let ̂ {s) be the set of all unit vectors with footpoint on
cs. Observe that, by Lemma 3.14 we have

(3.13) l(s)<3a (r+ -r~)< \2arχ and λ{^\s)) < 24πar{.

We shall say that s is good if

\U(v)\dλ(v)<±.
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3.17. Definition. If s' < s", let &(s , s") be the closed set bounded
by y_, y+, cs, and cs,,.

3.18. Lemma. If s < s" and φ : Tx(S{s , s") —• [ 0 , oo) is integrable,
then

B~lsinθ Γ ί φ(υ)dλ(v)ds< ί φ(υ)dμ(v)

^\s) Tι&(s',s")

<B ί ί φ{v)dλ{v)ds,

where B is the constant defined in Lemma 3.3(iii), and θ is the angle
defined in Lemma 3.15.

Proof. Set ψ(s, t) = cs{t) and let ys(t) be the length of the projection
of (dψ/ds)(s, t) onto the direction orthogonal to cs. Then ys is a scalar
Jacobi field along cs that does not vanish for 0 < t < l(s). It suffices to
show that for every s, we have B~λ s inθ < ys(t) < B for 0 < t < l(s).

Since γ_{s) = (dψ/ds){s, 0) and

y5(0) and y5(/(5)) are the components orthogonal to c5 of the unit vectors
y_(^) and γ+(s). It follows from Lemma 3.15 that

s inθ < ys(0) < 1 and s inθ < ys(l{s)) < 1.

Thus by Lemma 3.3(iii), B~ι s inθ < ys(t) < B for 0 < t < l(s). q.e.d.
Choose sχ so that

(3.14) s{ >Arv

It is clear from Lemma 3.13 that (S(-sχ 9sx)D S^(rχ). Hence &(sx, ps{),
@{-psχ, -Sj) and ^(rjl) are pairwise disjoint.

3.19. Lemma. Both of the sets {s e [sx, ps{] : s is not good} and
{ s e [-ps{, -s{]: s is not good} have length less than sx.
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Proof. We consider the first set. Since @(sχ, psχ) r\5^{rχj2) = 0,

ε
40

— l β

B sin θ — length{ s e [s{, ps{ ] : s is not good }
-1 fpsι ί

< B s inθ / / \U(v)\ dλ(v) ds by Lemma 3.

\U(v)\dμ(v)

u
e£-'si

U2{v)dμ(v)

en sino r~ — oy [JΛZ, [JΛ
40y/24πpaBv * ι and Lemma 3.

= i Γ 1 sinθ A . 5 i .

This completes the proof for the first set; the other case is similar.
The previous lemma shows that we can choose s+ e [s{, 2s J and s~ e

[-2sj, -s{] so that they are good; our desired set & is β(s~ , s+).
Let a(s) = <(cs(0),γ_(s)) and ά(j) = <(ς(0), -?_(^)) = π - a(s).

Let j»(j) = <(-cs(l(s)), γ+(s)) and j»(ί) = <(-cs(l(s)),-γ+(s)) = π-
a(s). Since S(s , s") is a geodesic quadrilateral with interior angles
OL{S") , ^(.s"), a[s) and jff(/), it follows from the Gauss-Bonnet the-
orem that

I K(p) dv{p) = {2π - ά(s") - β(s") - a(s) - β(s)}.

Note that dι£(s,s") c f ^ U ^ O u ^ ^ U / 1 ^ ) . We see from
our choice of r~ and r+ , that if sf and 51'' are both good, then

\U(v)\dλ(v)<^9

which together with Lemma 1.3 implies that if sf and s" are both good,
then

(3.15) / U2(v)dμ{v) < 2π{2π-ά(s")- β{s")-a(s)- β{s)} + ^.
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In particular, we will have / U (v)dμ(v) <ε if

(3.16) π - ά(s+) - β{s+) < -^ and π - a(s~) - β(s~) < -^.

Suppose that π - ά(s+) - β(s*) > ε/(5π), or equivalently that

Under this assumption, we shall show that

ΐ(s)ds> I2ar{,/
Js+

which contradicts (3.13). Suppose that s e [s+ , psχ] is good. Since s+ is

also good, (3.15) with s' = s+ and s" = s shows that

0 < 2π{2π - ά(s) - β(s) - a{s+) -

and hence

(3.17)
5π lOπ lOπ"

As in §2, we have l'(s) = cosά(s) + cosβ(s) and it follows from this
and (3.17) that if s e [s*, ps{], then ΐ(s) > ε2/(50π4) if s is good and
lf(s) > -2 even if s is not good. We see from these estimates and Lemma
3.19 that, if 0 < ε < lOπ,

l'(s) ds > ^ length{s e [s+, psx]: s is good}
5O7Γ

- 2length{s e [s+ , ps{]: s is not good}
2

> 125j by (3.10)

> l2Ar{ by (3.14)

\2ary

Since this contradicts (3.13), we must have π - ά(s+) - β{s*) < ε/(5π).
A similar argument shows that π - a(s~) - β(s~) < ε/(5π). Thus (3.15)
is true, which completes the proof of the proposition.
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Proposition 3.13 implies that U vanishes almost everywhere. It now
follows in the same way as in the proof of Theorem 2.2 that the curvature
vanishes everywhere.
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