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EXPLICIT SELF-DUAL METRICS
ON CP2# #CP2

CLAUDE LEBRUN

Abstract

We display explicit half-conformally-flat metrics on the connected sum of
any number of copies of the complex projective plane. These metrics are
obtained from magnetic monopoles in hyperbolic 3-space by an analogue
of the Gibbons-Hawking ansatz, and are conformal compactifications
of asymptotically-flat, scalar-flat Kahler metrics on «-fold blow-ups of
C2 . The corresponding twistor spaces are also displayed explicitly, and
are observed to be Moishezon manifolds— that is, they are bimeromor-
phic to projective varieties.

1. Introduction

Motivated by examples due to Poon [25], Donaldson and Friedman [7]
have proved the existence of self-dual conformal metrics on the connected
sum

nC¥2 := CP2# #CP2

of any number of copies of the complex projective plane. (Here a Rieman-
nian metric on an oriented 4-manifold is called self-dual if its Weyl curva-
ture, considered as a bundle-valued 2-form, is in the +1 eigenspace of the
Hodge star operator; an orientable Riemannian 4-manifold is called half-
conformally-flat if this holds for at least one orientation.) Their method
involves a delicate desingularization of a singular model of the desired
twistor space. An analytic argument for this existence theorem has also
been given by Floer [8].

In this paper, we will obtain stronger results by more elementary meth-
ods. In fact, we will write down such metrics explicitly for each value of n
by looking only for metrics with an S ^symmetry, and observe that, in con-
trast to their generic deformations, the twistor spaces of the constructed
metrics are Moishezon, meaning that they are bimeromorphically equiv-
alent to projective-algebraic varieties, and are thus themselves abstract-
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algebraic. This shows that a recent result of Campana [4], to the effect
that a compact self-dual 4-manifold with Moishezon twistor space must
be homeomorphic to nC¥2, n > 0, is essentially sharp. An elementary
computation also shows that these self-dual conformal classes have rep-
resentatives of positive scalar curvature, as conjectured by Floer. This
dovetails nicely with an elegant argument of Poon [26], which shows that
this positivity is actually a consequence of the fact that the twistor space
is Moishezon.

Our starting point is the study of Kahler surfaces with vanishing scalar
curvature; it has long been noted ([6], cf. [18]) that such scalar-flat com-
plex 2-manifolds have anti-self-dual Weyl curvature (with respect to the
complex orientation). We will begin by giving a reformulation of the
problem of constructing such metrics with the additional hypothesis of
the existence of an isometric circle action. This construction generalizes
the ansatz for hyper-Kahler 4-manifolds found by Gibbons and Hawking
[10] on their quest for a quantum theory of gravity. After examining a
key example (due to Dan Burns) through this new pair of spectacles, we
are then able to exploit a surprising linearity of the construction in or-
der to "superpose" various copies of Burns' metric; in fact, the metrics so
constructed are close cousins of the Ak gravitational instantons, with the
difference that the moment-map role played by Euclidean 3-space in the
Gibbons-Hawking construction is now usurped by hyperbolic 3-space. In
particular, the fact that the Gibbons-Hawking metrics are hyper-Kahler is
echoed by the fact that the metrics we will construct herein are conformally
Kahler for a variety of different complex structures.

2. A generalized Gibbons-Hawking ansatz

Gibbons and Hawking [10] found a way of generating all Ricci-flat
Kahler surfaces with a triholomorphic circle action in terms of solutions
of Laplace's equation on R 3 . We now generalize this construction to deal
with scalar-flat Kahler surfaces.

Proposition 1. Let w > 0 and u be smooth real-valued functions on
an open set 5 ^ c l 3 which satisfy

d) «« + «,„ + ('")„ = 0,

(2) Wχx + wyy + (weu)zz = 0.

Suppose, moreover, that the deRham class of the closed 2-form

2~a = 2~(W c dy Λ dz + wy dz Λ dx + (weu)zdx A dy)
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is integral—that is, contained in the image of H2(T, Z) -• H2(T, R).
Let M —• *V be a circle bundle such that [cx(M)]R = [ ^ α ] , and let ω be
a connection l-form on M whose curvature is a. (Thus, if *V is simply
connected, M and ω are determined up to gauge equivalence.) Then

g = euw(dx2 + dy2) + wdz2 + w~ιω2

is a Kάhler metric on M whose scalar curvature vanishes.
Conversely, every scalar-flat Kάhler surface with Sι-symmetry locally

arises by this construction.
Remarks. (1) If u = 0, this is the Gibbons-Hawking ansatz.
(2) The metric is Ricci-flat iff uz = cw for some constant c (cf. [2]).
(3) Equation (1) occurs in the physics literature [21] under the rubric

of the "SU( oo) Toda-lattice equation," while equation (2) is just its lin-
earization.

Proof of the Proposition. We define an almost complex structure J on
M by the prescription

dz »-• w~~ ω, dx ι-> dy.

Since our connection form ω satisfies

dω = (wχ dy Λdz + wy dz Λ dx + (euw)zdx Λ dy),

it follows that / is integrable; indeed,

d[wdz + iω] = dw Ndz + idω

= wdx Λdz + wvdy Λ dz
Λ y

+ i(wχ dy Adz + wy dz Kdx + (euw)zdx Λ dy)

= (dx + idy) A [(wx - iwy)dz + i(euw)zdy],

so that dx + idy and wdz + iω generate a closed differential ideal.

The metric g is Hermitian with respect to this metric, and its associated
2-form is

Ω = ί/zΛω + euw dxΛdy.

Since

dΩ = -dz Λdω + (euw)zdz ΛdxΛdy

= -dz A [(euw)zdx Λ dy] + (euw)z dz Λ dx Λ dy = 0,

our metric is Kahler.
Equation (1) now becomes the assertion that the scalar curvature van-

ishes. Indeed, let us choose a local trivialization of M with fiber coordi-
nate t, so that ω = dt + θ for θ some l-form on f c E 3 . The volume
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form of M is then given by

±Ω Λ Ω = euw dx Ady Adz Adt.

On the other hand, since

— - iJ (—\ =(l- iw~ιθ ) — iw~ι —
dt \dt) ~ 3 dt dz

is a vector field of type (1,0) whose real part preserves / , it is a holomor-
phic vector field, and so there locally exists a holomorphic (l,0)-form

Ψ = wdz + iω mod dx + idy

whose contraction with it is identically i. Here 03 := d/dz J θ. Thus

^ - Ψ Λ Ψ Λ (dx + idy) A (dx + idy)

= w dx Ady Adz Adt

is the 4-form associated with a holomorphic frame, so that the Ricci form
is given by

i (euw dx Ady Adz Adt\ . Q πlog ^—A , A , A . = -iddu.
V w dx Ady Adz Adt J

The condition that the scalar curvature vanish is Ω Λ P = *(Ω, P) = 0,
so we require that

= ΩAd(Jdu)

dx Ady) Ad(uγdy - udx + uw ω)
Λ y z

= (uχχ + uyy + weu(w~ιuz)z)dx Ady Adz AdtΛ- uzw~ιdθ Adz Adt

= (wXJC + wy); + ?i;^M(tί;~1wz)z + w~ιuz(weu)z)dx Ady Adz Adt

= [Mxx + uyy + (eU)zZ]dχ Ady Adz Adt,

which is equation (1).
Conversely, suppose we are given a Kahler surface M with a Killing

field X. If M has holonomy C/(2), the Killing field automatically pre-
serves the complex structure; if the holonomy is smaller, the induced ac-
tion on the S of complex structures with the fixed orientation has a fixed
point, so there is still an invariant parallel complex structure, although it
may differ from the given one. We may therefore assume that X preserves
the Kahler form, and thus, on any simply connected subset % c M, we
define a function z: ^ -» R as the Hamiltonian generating X i.e., we re-
quire dz = -X J Ω, which defines z up to an additive constant. It then
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follows that JX is orthogonal to the level sets of z. On the other hand,
JX + iX is a holomorphic vector field, so that the leaf space of the folia-
tion tangent to X and JX is locally a complex curve. Letting x + iy be
any holomorphic coordinate on this quotient for a suitable neighborhood
in M, we have produced the coordinates x, y, and z of the construc-
tion. Taking t to be any function with Xt = 1, the complex structure is
of the form described above, and all the previous calculations apply.

3. The Burns metric

Consider the following Kahler form on C2 - { 0 } :

where m > 0 is a positive constant and where ||z||2 = ZjZ]" + z2zJ. As

was first pointed out by Dan Burns [3] [19] [20], this defines a zero-scalar-
~2 2

curvature Kahler metric on the blow-up C of C at the origin. In this
section we will examine this metric in terms of the ansatz developed in §2.

As our Killing field, we take the generator of clockwise rotation about
the z2-axis:

Ή
Note that the potential

is invariant under X, so that, letting ξ = τχ -j^-, we have ξφ = ξφ, and

X JΩ = -i{ξ-ξ) J(-iddφ)

Thus the Hamiltonian generating X may be taken to be

* ! i ι2
 (Λ

 m \

z ξφ \z\ 1 +

On the other hand, the coordinates, x and y may to be given by z2 =
x + iy, since z2 is a holomorphic coordinate on the leaf space of the
foliation tangent to X and JX.

The volume form of the Burns metric is

-ΩΛ Ω = -- ( 1 + — 5 - ^ ~ ) dτx Adz: Adz2 AdTv

2 4{ |Zl|
2 + |z 2 |V l l 2 2
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On the other hand, the volume form whose contraction with X and JX
yields dx A dy is

2 dz{ A dz[ A dz2 A dz^.
4 l z i l

Hence

meu w dx A dy A dz A dt = - τ 1 +
4V W + W

Λ

while w dx A dy A dz A dt = -jrηi dzχ A dzχ A dz2 A dz2 and

Thus we simply have w = log 2z, which is invariant under translation in
x and y. It is this simple observation which will allow us to construct
our new metrics on H-fold blow-ups of C 2.

We will also need to know the function w for the Burns metric. We
may calculate this by

w~ι :=

Thus, since 2z = |zj 2 ( l + m/dzj2 -f |z2|
2)) , it follows that

2zw = 1 H mz,

Since |zj 2 = ε - r\ + y (β + y) 2 + mr2, where r2 := JC2 + y2 and ε

z - f , we obtain w = £ + Fw , where the function

4z £)2 + mr2
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is defined on the complement of the point (x , y, z) = (0, 0, ίj?), and is
positive for z > 0.

4. The hyperbolic ansatz

Our conclusions concerning the Burns metric are best understood by
recasting them in a geometrical guise. If we consider those metrics arising
in Proposition 1 when u = Iog2z, the key equation (2) becomes

Let us introduce a new variable V = 2zw . Our equation then reads

ΔF= T, \h\-i/2-^\h\l/2hij-^-V = 0,
jjZi d x d x

where Δ is the Laplace-Beltrami operator of the Riemannian metric

, dx2 + dy2 dz2

n = = 1 T
2z 4Z

2

on the upper half-space H3 := {(x,y, z) e M?\z > 0} . However, this
metric really represents that of hyperbolic space %? if we introduce a
new coordinate q = \fΐz, the above metric becomes

, dx2 + dy2 + dq2

" ?—
which is the usual conformal upper half-space model for %fι. Notice that
the formula for the metric of Proposition 1 now reads

g = 2z(Vh + F ~ V ) = q{Vh + F ~ V ) .

However, our model of hyperbolic space singles out a point at infinity in a
purely arbitrary manner; thus any metric of the above form is conformal
to Kahler for an entire 2-sphere's worth of different complex structures,
one for each point at infinity! To summarize:

Proposition 2. Let V be any solution of the Laplace-Beltrami equation
AV — 0 on a region Ψ' c ^ 3 of hyperbolic 3-space, and assume that the
cohomology class of j^*dV is integral, where * is the Hodge star operator
of ^ . Then if ω is a connection form for a circle bundle whose curvature
is *dV, then

V~ιω2]
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is half-conformally-flat. Moreover, if q is any horospherical height function

for %?z, the metric
2 λ 2

is Kάhler, with scalar curvature zero.
Here a horospherical height function means the exponential of a Buse-

mann function—i.e., q is a function on ^ 3 whose restriction to some
directed geodesic is the exponential of the affine parameter, and is constant
on the forward-directed horospheres orthogonal to this geodesic.

Notice that this provides a hyperbolic analog of the fact that the Gib-
bons-Hawking metrics [10] are hyper-Kahler. For other incarnations of
the ansatz Vh + K ~ V , see [15], [22].

We now reexamine the particular function w which arises for the
Burns metric. Recall that the hyperbolic distance from the point (x, y, q)
= (0, 0, q0) is given in the upper half-space model by

Hence

where m = q2,
metric we have

m + ε + y

>(ε + £)2 + mr2'

= 2 - f = £z»L } and r

2 = x2 + y2 . Thus, for the Bums

1
V = 2zw = 1 4- ^(coth p - 1) = 1 +

— 1

But r̂—Γ is precisely the fundamental solution G of the Laplace-Beltrami
operator, with the normalization ΔG = -2πδ relative to the hyperbolic
volume form. The Burns metric may therefore be thought of as corre-
sponding to a single magnetic monopole in hyperbolic 3-space. In the next
section we will consider solutions corresponding to multimonopoles.

5. Construction of the metrics

Let {pj = (aj, bj, Cj)} be an arbitrary collection of points in the upper

half-space H3, and let
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Cy _ —— _ _ _ _ _ _ _ _ _ _ _ —— j I ί Y — /7 . ) —I— \ Λ) — r) . ) 7 —— (* , )
y 2,0 • 1 ΣC: ̂  ^ y ' ^ J J

be the normalized hyperbolic Green's function centered at /? , where

1

Let

(3) V := 1 +
7=1

and let w = j^V, which is a positive solution of the equation

relative to the Euclidean volume form on the upper half-space on H3, so
that the cohomology class

— [ a ] = —[wχdy Adz + wydz Λdx + (2zw)zdx Λdy]

is an integral class, assigning -1 to a small sphere around any p.. Let

M —• H3 - {p.} be the circle bundle whose Chern class is J^[OL]\ by
Chern-Weil theory, M has a connection 1-form ω, unique up to gauge
equivalence, whose curvature is a. Define a Riemannian metric on M
by

g = 2zw(dx +dy) + wdz +w~ ω =2z[Vh + V ω ].

By Proposition 1, this is a Kahler metric of scalar curvature 0.
We now produce a larger manifold Jf by attaching an R2 at z = 0 and

attaching points at each p.. These are both well-defined operations, since

near z = 0 the map M —• H3 is diffeomorphically conjugate to C2 -
(C x {0}) -• H3: (Zj, z2) -• (|zj2, z2), while near Pj it is diffeomorphi-
cally conjugate to

C!-{0}-R!-{0}

v 1 L' I 0 ^ 1 2.' \ λ \
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This can be done, moreover, in such a way that g extends smoothly to

Let us begin by considering the p. . If we introduce exponential polar

coordinates on ^ 3 near such a point, our formula for the metric becomes

8 = q\V{dp2 + sinh2 p 8&) + V~ιω2],

where V = ^ + F, for F some smooth function on a neighborhood

of the origin in R3. (Here gsi denotes the standard metric on the unit

2-sphere.) For p small, the circle bundle π: M —• %fι - {Pj} may be

identified with

where μ: S 3 —• S2 is the Hopf map. Introduce an orthonormal coframe
{σx, σ2, σ3} on the unit 3-sphere 5 3 such that 4σ{ Λ σ2 is the pullback of
the area form for (S2, gsi). Since dσ3 = 2σt Λ σ2, we may, after a gauge
transformation, take

ω = -cr3 + ρ*θ,

where 0 is a smooth 1-form on a neighborhood of 0 e R3. Our formula
for the metric now reads

4 = (1 + r2F)dr2 + (1 + r2F)r2(σ2 + σ2

2)

where F is a smooth function. If we now identify R+ x S3 with R4 - {0}
via polar coordinates, the map p extends as the smooth map

(z,, z2) ~

so that p^ = 0 at the origin; in particular, ρ*θ is smooth on R4 and
vanishes at the origin, while ρ*F is a smooth function. The above formula
for the metric therefore defines a smooth metric on a neighborhood of
0 G R4, which agrees with the Euclidean metric dr2 + r2(σ2 + σ2

2 + σ2) at
0, since the difference between 4 and the Euclidean metric is expressible

as a sum of products of the smooth 1-forms rdr, r2σ/, and ρ*θ, with
smooth coefficients. Since q is smooth at p , g is smooth there.
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Since the metric is Kahler on the complement of the {p }, we may
extend the complex structure across the {pj} by the following procedure:
take any path γ within M with final endpoint at pj, and parallel transport
J along γ to produce a tensor at p. we define this to be the value of /
at Pj . This is independent of the choice of path; if it were not, since / is
parallel almost everywhere, we would be able to produce one possible value
of J\pj from any other by parallel transport around an arbitrarily small
loop based at p . Since the metric is smooth at {pj}, this would give a
contradiction. There is thus a unique extension of / which is invariant
under parallel transport, and in particular smooth.

We now examine the behavior of the metric near z = 0. Again we have
a standard model to work with, this time the flat metric corresponding to
wo~ Iz Letting Q = >/2z, the metric near q = 0 has the form

1 +4 f
where / is a smooth function of (x, y, q), q ^ 0, and where θ is a
smooth 1-form on this (x, y, q) half-space whose dq component may
be taken to vanish identically by choosing a suitable gauge. If we now
interpret (q, t) as polar coordinates in an xy-plane, this metric becomes
a smooth Riemannian metric on a neighborhood of R 2 c l 4 . We now
introduce an almost complex structure along the xy-plane in R4 by dx \-*
dy, dx »-• dy, and observe that this together with our previous prescrip-
tion, gives us a continuously differentiable complex structure which is par-
allel with respect to the metric connection away from the xy-plane, and
hence everywhere.

We have therefore constructed a scalar-flat Kahler metric on an abstract
complex manifold M. We will now show that M is biholomorphically
equivalent to C2 blown up at the points {(α; + ib., 0)} .

For simplicity, assume for the moment that the complex numbers α +

ibj are distinct. Let MQ c M c Λ7 be the inverse image of H3 -

LζU({(*/ > bj)}χ 10, Cj]). The projection H3 -> C : (x, y, z) •-> x + iy
induces a holomorphic map π : MQ —• C, and the fibers of π are the
orbits of a holomorphic C^-action generated by ^ - iJ(§-t) thus π is a
holomorphic principal line bundle. Since C is Stein, this bundle is trivial.
Thus Mo is biholomorphic to C x (C - {0}).

Now let Mχ D Mo be obtained by adding R2 - {(α ;, bj)} to Mo. Since
the projection yields a holomorphic map Zj : Mχ —• C, and since the con-
structed second coordinate z2 is (CJ-equivariant, the biholomorphism
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Mo -• C x (C - {0}) extends to a continuous map Mχ -• C2 which is
separately complex differentiable, and hence holomorphic. This yields a
biholomorphism M{ -+ C2 - {(α. + /&., 0)} .

We now extend this holomorphic map as a continuous map π : M ->
C 2. Notice that the inverse image of {a + / ^ , 0) is homeomorphic to

Sι x [0, Cj]/(Sι x {0, Cj}) « S 2 , and is also a smooth complex curve. Since
the derivative of π vanishes at this curve, π satisfies the Cauchy-Riemann
equations everywhere, and so is a holomorphic map.

The complex curve n~x{a + ibJ9 0) has self-intersection - 1 , as can
be seen by moving the line segment {(α., bj)} x [0, cj\ to another line

segment joining the xy-plane in Ή to (α ;, b ,cj)\ the inverse image of
this line segment is a 2-sphere in M which intersects the original Riemann
sphere in exactly one point, and one may deduce that the intersection is
transverse, with index - 1 , by remembering that our standard model of
the projection from M to H near {a , b , cj) is essentially1 a cone over

the Hopf map S3 —• S2 . Thus π : M -• C2 exactly replaces the points
{(α; + z'6. ,0)} in C2 with rational curves of self-intersection - 1 , and so

Ή is the blow-up of C2 at these points.
(It is relatively easy to check that, should two or more of the complex

numbers a + ib coincide, one obtains an iterated blow-up of C2, ob-
tained as follows: having blown up a point on the Zj-axis, we may, in
turn, blow up the new surface along the resulting exceptional ¥χ at the
point corresponding to the direction of the z2-axis. The resulting iterated
blow-up may then in turn be blown up at the point corresponding to the
direction of the proper transform of z{ = constant, and the process is then
repeated the requisite number of times. Details are left to the interested
reader.)

Finally, I claim the metric g is asymptotically flat, and in particular is
complete. To be more precise, I claim that there is a compact set K c M
and a diffeomorphism between M - K and the complement of a large
closed ball in R4, such that the induced metric on R4 has the form

& = ^Euclidean "*" I "©2 / '

where R is the Euclidean radius. Indeed, we have

!The radial map is r —• r2/2 rather than being linear.
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where q = Viz, and / falls off like l/(q2 + r2) at infinity. Moreover, the
components of the 1-form θ can be made to fall off like l/{q2 + r 2 ) 3 / 2 by
choosing an appropriate choice of gauge. Thinking of (q, t) as polar co-
ordinates in an xy-plane, the metric is thereby displayed in an asymptotic
coordinate system in the desired form.

We have therefore proved the following :
Theorem 1. The metric of Proposition 1, with u = Iog2z and w given

by (3), represents a zero-scalar-curvature, axisymmetric, asymptotically flat
Kάhler metric on the blow-up of C2 at n-points situated along a straight
complex line.

Corollary (cf.[19]). The conformal class of this metric represents a self-
dual metric on CP2# #CP2 .

n

Proof Reverse the orientation and add a point at infinity.
Exercise. In fact, one may directly write down a global representative

for the constructed conformal metric on CP2# #CP 2 , for instance in
the form

where p is the hyperbolic distance from an arbitrary point in flf7*. With
this choice of conformal factor the scalar curvature becomes R = 1 2 F " 1 ,
which is a nonnegative function on nCP2 . It follows that the metric can
be conformally rescaled so as to make the scalar curvature strictly posi-
tive, q.e.d.

An interesting 'limit' of our conformal metrics occurs when the chosen
centers p{, . . . , pn e %?^ are allowed to coincide. While this no longer
gives a compact self-dual manifold, it is not hard to see that it still defines
a compact self-dual orbifold with an isolated singular point p of type Zn

deleting this point and making a suitable conformal change should then
give rise to a locally asymptotically Euclidean self-dual manifold. What
is this space? To find out, let us identify %?z - {p} with R+ x S2 via
polar coordinates and the exponential map. The hyperbolic metric then
becomes

h = dp2 + {sinh2p)gS2 ,

where p is the radial coordinate, and ^2 is the standard metric on the
unit 2-sphere. We wish to analyze the conformal class of the metric

g=Vh + V~ιω2 ,

where V = 1 + n/(e2p - 1) and dω = *dV. For Chern-class reasons, our
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circle bundle may be identified with

R+ x (S3/Zn) ^ R + x S 2 ,

where the projection from the Lens space S3/Zn to S2 is induced by the

Hopf map μ: S3 -> C¥χ. If {σ{, σ2, σ3} is a left-invariant orthonormal

coframe for the unit 3-sphere, chosen so that aχ and σ2 vanish on the

fibers of the Hopf map, a suitable connection form is given by ω = -nσ3,

and we have

e2p + n - l Γ , 2 Λ, . U 2 w 2 2 v , , £ 2 / ? - 1 2 2
[dp + 4 ( s m h / ? ) ( ( T + σ ) ] + Λ σ

e + n - l Γ , 2 Λ, . U 2 w 2 2 v , ,
g = — Γ — — [ d p + 4(smh /?)((T1 + σ2)] +

^ ^ — 1

2 2
σ

This is then conformally equivalent to

,
(e2p - \){e2p + n -

Setting

we have

S = ——ΓTT + r2 ]σ~ + a' O^v)
with ^ = n - 2, and 5 = 1 - n. But this is precisely the scalar-flat
Kahler metric on the Chern-class -n line bundle #(-n) -+ CPj found
in [20]. The compact self-dual orbifolds alluded to above are thus just the
one-point compactifications of these locally-asymptotically-flat manifolds.

But in what sense are these orbifolds really limits of our metrics on
nCΨ2 ? If we allow our n points in %f3 to tend to a single point p in
such a way that their angular positions relative to p remain unchanged
while their distances to p are rescaled, then, dilating the entire picture,
our sequence of conformal metrics may equally well be considered as be-
ing given by the generalized Gibbons-Hawking ansatz with fixed centers
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in a 3-dimensional space whose constant curvature, thought of as an aux-
iliary parameter, is allowed to tend to zero. Thus, while our conformal
metrics certainly converge to the above line bundle metrics on the com-
plement of any fixed neighborhood of p, the limiting conformal structure
near p is a Gibbons-Hawking metric.2 Both of these pictures are, of
course, biased by a choice of conformal gauge, and each therefore only
tells half the story; the limit of our sequence of self-dual conformal met-
rics is, correctly conceived, a generalized connected sum of two compact
self-dual orbifolds with complementary singularities, namely the respec-
tive one-point conformal compactifications of the above scalar-flat Kahler
metric on (?(-n) and of a Gibbons-Hawking gravitational instanton. As
will be explained elsewhere, such nonsingular connected sums of comple-
mentary self-dual orbifolds can be constructed in greater generality via
the Donaldson-Friedman machine [7], and the inverse process of "bub-
bling off" may be hoped to provide the key to the study of the ends of
moduli spaces of self-dual metrics.3

6. Twistors, Toda lattices, and complex structures

We now give the twistor-theoretic explanation for the ansatz presented
in §1, and observe as an application that the hyperbolic ansatz of §3 is
related to the problem of producing Kahler metrics in ways that are quite
distinct from those which we have exploited so far.

Associated with any solution u of equation (1)—i.e., of the so-called
"Toda-lattice equation"—there is an associated 3-dimensional Einstein-
Weyl geometry4 in the sense of Hitchin [13], [15], [27]. Namely, given a

For every a e R+ , the conformal metric [Vh + V ιω2] may also be represented as

[{a~ι V)a h + (a~ι V)~ιω2], where, with respect to the constant-curvature metric a2h , we

have dω = *(a~ιV). The appropriately normalized Green's function of a point Pj with

respect to a2h is given by Gj = a~ιGj . Thus V = 1 + Σ,Gj ^s t 0 replaced with V :=

Λ" 1 F = a~ι + 5^ G; in order to produce the same metric. In the limit Λ —• oo , (sectional

curvature) —• 0, V formally becomes just a sum of the Euclidean Green's functions j - ,

and the metric becomes the multi-Eguchi-Hansen metric, rather than the multi-Taub-NUT
metric one might have assumed at first glance.

3 Here the author is much indebted to Alastair King and Peter Kronheimer, who observed
that Poon's metrics on 2CP2 have, as one limit, the generalized connected sum of two
Eguchi-Hansen metrics, and suggested that a similar phenomenon should be expected for
higher signature.

4This sort of geometry was actually first considered by Cartan [5].
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function u on a region Ψ* of R3 such that

we may endow *V with the conformal structure determined by the Rie-
mannian metric

h:=eu(dx2 + dy2) + dz\

and with the torsion-free connection D defined by

v{ξ)η + v{η)ξ - h({, η)v*,

where v := -uzdz, 1/ = -uz£z , and V denotes the Levi-Civita connec-
tion of h . One immediately notices that

Dh = —2v ® h,

so that D preserves the conformal class [h], and is thus a "Weyl connec-
tion" for this conformal metric; moreover, the curves (x,y) = constant
are geodesic with respect to D. A more involved calculation reveals
that the symmetrized Ricci tensor of D satisfies R,ab, = μhab, where

μ = u__ 4- (uz)
2/2. Thus (T, [h], D) satisfies the so-called Einstein-Weyl

zz

equations.
Now assume for simplicity that (2^, D) is geodesically convex, and let

F denote the space of directed geodesies of D, which is then a smooth
4-manifold diffeomorphic to TS2. The tangent space of F at a geodesic
γ is then just the space of solutions of Jacobϊs equation

modulo fields tangent to γ here ξ denotes a tangent field of γ satisfying
jy^ξ = 0, and 31*ι

bcd is the curvature of the torsion-free connection D.
For an Einstein-Weyl 3-manifold, this simplifies to become

ΌξΌξη = -*(ξ.ξ)η-5(ξ.v)(ξxη) mod ξ ,

where R = habRab is the scalar curvature, υa = eabcRbc is the Hodge-
star of the skew part of the Ricci tensor, and inner and cross-products
are with respect to h. The solution space of this equation is then invari-
ant under the 90° rotation η »-• ξ x η/\\ξ\\, and this then gives F the
structure of an almost-complex manifold. Moreover, this almost-complex
structure is automatically integrable; the best way of seeing this in the
real-analytic case is to identify F with the space of totally geodesic null
planes in a small complexification of (2^, [h], D), which is manifestly a
complex surface; more generally, this integrability follows from that of the
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twistor CR structure on the sphere-bundle of a conformal 3-fold [16], [17],
since the latter induces the above almost-complex structure by projection.
The 2-sphere of directed D-geodesics through any point p € 2^ now be-
comes a holomorphic curve ^ c ίΓ of self-intersection 2, while the map
σ: y -• y obtained by reversing the direction of each geodesic becomes
an antiholomorphic involution of ZΓ.

The complex surface !T is called the minitwistor space of the given
Einstein-Weyl geometry (2^, [h], D) knowing this space together with
the antiholomorphic involution σ: 3Γ -> ZΓ allows us to completely re-
construct the original Einstein-Weyl space. Indeed, Ύ is precisely the
space of smooth, embedded, σ-invariant, compact holomorphic curves in
& with self-intersection 2, and the family of such curves passing through
a given point (and hence also passing through its σ-conjugate point) is a
geodesic of the connection D . Each point of such a curve *g may now be

thought of as representing a point in the sphere of directions ( Γ p ^
at the corresponding point p G ^ , and the conformal structure of each
such ^ therefore equips *V with a conformal structure, namely [h].
But indeed, we actually could have started with any complex surface &*
equipped with a fixed-point-free antiholomorphic involution σ and con-
taining a ex-invariant rational curve g7 of self-intersection 2; the above
prescription would then construct the general Einstein-Weyl 3-fold, start-
ing with this essentially holomorphic data.

Over such a complex surface J7", let us suppose we have a holomorphic
line bundle L whose Chern class vanishes. Suppose, moreover, that the
involution σ lifts to an antiholomorphic involution a of the total space
of L. Via the Penrose transform, we may analyze L in three different
ways:

(a) We may view L as the exponential of an element of Hι (SΓ, ff), at
least in a neighborhood of the curve Ψ. Via the Penrose transform, this
gives us a function w (secretly a section of the conformal weight-1 line
bundle) satisfying

d*(d + v)w = 0,

where * denotes the Hodge star operator of h when our Einstein-Weyl
structure arises from a solution u of equation (1), this simplifies to become

and so is precisely equation (2).
(b) We may instead apply the Hitchin-Ward correspondence [14] di-

rectly to L to obtain a solution of the " U(l) Bogomolny equations"

dω = *(rf + i/)w
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on (3^, [h], D). Here dω is the curvature of a complex line bundle
over Ψ*, while the "Higgs field" w is precisely the same section of the
conformal weight-1 line bundle encountered before.

(c) Finally, we may attempt to treat the complex manifold L as a twistor
space, defining M to be the set of σ-invariant rational complex curves
in L with normal bundle #(l) + 0(\). Any such curve projects to a
ex-invariant rational curve in ίΓ of self-intersection 2. Conversely, for
each σ-invariant rational curve £? in & of self-intersection 2, there is
a circle's worth of σ-invariant rational complex curves in L obtained as
holomorphic sections of L\c the normal bundle of such a curve is a priori
an extension

and we may identify the splitting obstruction e Hl(CP{, &(—2)) for this
sequence with the value of w at the corresponding point of Ψ'. If w φ 0
is real-valued, L - 0 is therefore the twistor space of a half-conformally-
flat 4-manifold. Indeed, this manifold is exactly [15] the circle bundle with
curvature dω = *(d + v)w , and the conformal metric is just

[g] = [wh + w~ ω] .

Conversely, every half-conformally-flat 4-manifold with S ̂ action arises
in this way.

When an Einstein-Weyl geometry arises from a solution u of equation
(1), we have a bit of extra structure. First of all, the system of geodesies
(x, y) = constant, equipped with its two possible orientations, becomes
a pair of complex curves 3 and ^ = ( 7 ^ ) in 7 ; moreover, x + iy
becomes a holomorphic coordinate on 2J. Secondly, the divisor class
3!+3ί represents the line bundle K~1^2 on y , where K is the canonical
line bundle, defined by (9{K) = Ω ^ .

In order to see the latter, let us choose some arbitrary solution w of
equation (2), and consider the twistor space Z of the scalar-flat Kahler
surface (M, g, /) associated with w via the ansatz of §1. The built-in
isometric action of Sι on M then lifts holomorphically to Z , which is
therefore an open set in some holomorphic line bundle over 2Γ. Since
[1] the underlying smooth manifold of Z may be identified with the set
of almost-complex structures on M which preserve the metric and the
given orientation, the complex structure of / of M defines a section
of Z —• M, and this section is, moreover, a holomorphic map M —•
Z let us call the image Σ. Similarly, we have a conjugate hypersurface
Σ, obtained by considering - / as a section of Z . Now the projection
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Z -> !Γ is geometrically obtained by applying a given complex structure
to the Killing field, projecting to Ψ*, and then considering the oriented
geodesic in this direction as an element of &. The image of Σ in ίΓ
is therefore just 3, while the image of Σ is just ~3. Now the divisor
[Σ] + [Σ] is just K~l/1 because [24] it is precisely the zero-locus of the
element of H°(Z, K"ι/2), which corresponds to the Kahler form via the
Penrose transform; conversely, a real section of AΓ~1/2 on any twistor space
naturally gives rise to a scalar-flat Kahler metric on the corresponding 4-
manifold. Since the vertical tangent bundle of Z —• &~ is trivial, it follows
that [3] + \3] = K~ι/2 on y \

This gives the following result:
Proposition. (1) Solutions of the " Toda-lattice equation"

uxx + uyy + (eu)zz = 0

are locally in one-to-one correspondence with complex surfaces ZΓ equipped
with a fixed-point-free antiholomorphic involution σ, a nonzero σ-invariant
holomorphic section of K~ιβ, and a complex coordinate on the correspond-
ing divisor, such that ZΓ contains a σ-invariant rational complex curve &
of self-intersection 2.

(2) Holomorphic line bundles L with cx(L) = 0 over such a surface ZΓ
correspond to solutions w of the linearization

of the Toda-lattice equation. The case w Φ 0 exactly corresponds to the
case in which the total space of L-0 is a twistor space, in which case it is
the twistor space of the corresponding scalar-flat Kahler surface.

As an example of an Einstein-Weyl geometry, let us consider hyperbolic
3-space. Its space of directed geodesies is just S2 x S2 minus the diagonal,
since a hyperbolic geodesic is uniquely specified by its two endpoints on
the ideal conformal sphere at infinity; and our prescription of an almost-
complex structure by rotating Jacobi fields through +90° amounts to giv-
ing these two factor 2-spheres the complex structures associated with their
conformal structures and opposite orientations. Thus, as will be explained
in more depth in the next section, the minitwistor space of %?^ is just
CPj x CPj minus the graph of an antiholomorphic map CPj -* CPj, and
the involution or "real structure" σ: CPj x CP1 -• C¥x x CVX interchanges
the factors. But the line bundle K~ι/2 = &{\, 1) on C¥{ x CΨX has many
(7-invariant holomorphic sections; in particular, the divisors of the form
{point} x CPj plus its conjugate all give examples. By the above yoga,
we therefore get a 2-sphere of conformal scalings and associated complex
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structures, with respect to which the metric becomes Kahler. But in addi-
tion to these, there are other σ-invariant elements of Γ(CPj xCPj, K~^2),
of two kinds, depending on whether the corresponding divisor contains σ-
invariant points or not. Let us find the corresponding solutions of the Toda
equation (1).

We begin with the case corresponding to a divisor with real points.
Rather than choosing a point at infinity of hyperbolic 3-space, this corre-
sponds instead to choosing a conformal circle at infinity. Any such circle
determines coordinates on %?* in which the hyperbolic metric is given by

& = {(x,y,z)\y>0,

where

= l x R + x ] -

dz1

( 1 - z V (1-z 2) 2

(Indeed, if we set (a, β, γ) = (x,yz, yy/l - z 2 ) , this becomes h =

(da2 + dβ2 + dγ2)/γ2 .) The equation Δ F = 0 becomes

so that, setting w = F/(l - z2) and u = log((l - z2)/y2), we have

and

Moreover, the metric

+dy ) + w dz +w~ ωeuw(dx +dy ) + w dz +w~ ω

can now be written as

V/(l-z2) (1-zYy J
= (l-z 2)[FΛ + F- 1 ω 2 ] ,

where

dω = lί^rfy Adz + wydz Λdx + (euw)zdx Λdy = *dV,

* being the Hodge star of h . Thus the conformal metric [Vh + V~ιω2]
can also be represented by the Kahler metric (1 - z2)(Vh + V~ιω2).



EXPLICIT SELF-DUAL METRICS ON CP2# #CP2 243

These complex structures are quite different from the ones discussed in
§3. For example, if we take V = 1, the metric of §3 is flat, while the
one under discussion here is that of S2 x %?2 with the product metric.
Similarly, V = 1 + Σ y L i ^ g i y e s rise to a metric on an «-fold blow-up
of CPj x D, where D is the 2-disk, which is asymptotic to the product
metric S2 x %?2 at infinity.

Yet another class of complex structures is determined by a σ-invariant
section of K~1^2 which defines a curve avoiding the fixed-point set of
σ. Any such curve is precisely the set of geodesies through some point
p e %fι, and this time our solution of the Toda equation will model
flf7* - {/?} by CPj x l + ; x + iy becomes a complex coordinate on CPj,
and z parametrizes the radial direction. Indeed, consider the solution5

4z(l + z)
u=log—^—j-j

( l + x 2 + y 2 ) 2

of (1) on the half-space z > 0. Setting V = z(z + \)w , (2) then becomes

V +V i 4z(l + z)

" 1If we set p = coth"1 (2z + 1), this can be rewritten as

1
yy sinh p

4sinh p

d+χ2+y2)2 '
= o ,

so that

where

4sΐnh 2 , 2 N , 2 / . , 2 V

+dy) = dp +(smhp)gS2

is the metric on <^3 written in terms of the exponential map and polar
coordinates, combined with stereographic coordinates on the unit 2-sphere
(S2, gsi). Moreover, the scalar-flat Kahler metric associated by our ansatz

5The author would like to thank Henrik Pedersen for drawing his attention to this.
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with any solution w of (2) is just

weu(dx +dy )A + wdz +w~ ω

4V j(dx2 + dy2) + -7-^-rτrfz2 + z(z + l)V-ιω2

= z(z + l)[V(dp2 + (sinh2p)gs2) + F ' 1 ]

4sinh p

where dω = ti^dj; Λ dz + tϋ^rfz Λdx + (euw)zdx Λdy = *dV as desired.
Thus we see yet another way that hyperbolic monopoles give rise to scalar-
flat Kahler surfaces. In addition, this last calculation provides the correct
explanation for the complex structures occurring in connection with the
self-dual orbifolds discussed at the end of §5.

It is now a straightforward exercise to construct locally-asymptotically-
flat scalar-flat Kahler metrics on rt-fold blow-ups of the Chern-class —m
line bundle *?(-m) -> CPj, where the blow-ups may be taken to occur
at any n points of the zero section. This is done by taking the potential
to be given by V = 1 + mG0 + ]j£"=1 Gj, where the Gj are the Green's

functions of n + 1 distinct points p0, . . . , pn e <%**, and then using the
complex structure determined in the above manner by the point pQ. The
blown-up points of the zero section CPj will then be given by the points
of the 2-sphere at infinity of %fι which are the ideal endpoints of the
geodesic rays from p0 to pJ., j = 1, . . . , n . In the case m = 1, this

allows us to find such metrics on some iterated blow-ups of C which are
not covered by Theorem 1.

7. The twistor space is Moishezon

In this section, we will give an explicit description of the twistor spaces
of the self-dual 4-manifolds constructed in §5, and see that they are bimero-
morphically equivalent to algebraic varieties—that is, they are Moishezon.
While this might seem surprising in light of Hitchin's theorem [12] to the
effect that a self-dual 4-manifold with projective algebraic twistor space is
symmetric (i.e., S4 or CP 2 ), this phenomenon has been seen before in
Poon's work [25] on 2CP 2. It is worth remarking that the construction
presented in this section, inspired by Hitchin's work on the twistor spaces
of gravitational instantons [11], also stands in contrast to a result of Don-
aldson and Friedman [7] to the effect that the twistor space of a generic
self-dual metric on nCΨ2 , n > 5, must have algebraic dimension 0.
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Let σ: C¥x x CVχ -• C¥x x C¥x denote the antiholomorphic involution

and let S c CPX x CPX denote the fixed-point set of σ. Then [13], [15]
there is a twistor-like correspondence relating CPj x CPj - S and hyper-
bolic 3-space; more precisely, the set of σ-invariant, compact holomor-
phic curves in the generating homology class of H2(CΨ{ x'C¥x — S9 Z) = Z
gives a natural model for <%*3. Indeed, every holomorphic curve β7 in
CΨ{ x CPj homologous to the diagonal CPj c CΨχ x CPj is the zero lo-
cus of some P e Γ(CPj x C¥χ, 0{\, 1)) = C 4 , uniquely determined up
to a multiplicative constant; here #(k, /) denotes the holomorphic line
bundle on CΨ{ x CΨ{ of Chern-class ( £ , / ) € H2(C¥ι x CPj, Z) ^ Z θ Z .
The requirement that C be σ-invariant means that we may take P to
be real with respect to the induced conjugate-linear involution ^ ( 1 , 1) -+
0{\, 1). Now, up to a constant factor, Γ(CPj x C¥x, 0{\, 1)) s C4

carries a natural nondegenerate quadratic form, specified by the require-
ment that the image of CPj x CPj under the Kodaira embedding map
C¥x x C¥x -• P[Γ(CP! x CPj, <9{\, 1))]* be its set of null projective
covectors; the corresponding real quadratic form on the real subspace
Γ(CPj x CPj, ff{\, l)) σ = R4 thus has the 2-sphere S as its projective
null cone, and so (for topological reasons) must be of Minkowski signa-
ture (H ). A σ-invariant section P of (9{\ , 1) now defines a curve

^ disjoint from S iff it has positive Minkowski squarenorm. As such a
section may always be multiplied by a nonzero constant without altering
the corresponding curve g7 c C¥{ x C¥{, we conclude that the set of σ-
invariant, compact holomorphic curves in the generating homology class
1 G H2(C¥χ x C¥χ - S, Z) ^ Z are faithfully parametrized by future point-
ing time-like unit vectors in Minkowski space. But the latter hyperboloid
is, of course, isometric to %?*.

All of the hyperbolic geometry of ^ 3 is completely encoded by this
"minitwistor" model. For example, a hyperbolic geodesic, being a 2-plane
section of the above hyperboloid, is exactly the set of curves through a
σ-conjugate pair of points in CPj x CPj - S, namely those hyperplane sec-
tions of CPj x CPj C CP3 for which the hyperplane contains the fixed real
2-plane. Concretely, the resulting pair of points {([ζ], [z]), ([z], [£])} c
CPj x CPj is given by the two endpoints [ζ], [z] e S2 of the geodesic at
hyperbolic infinity S, which we identify with CPj in the obvious man-
ner. We can therefore identify CPj x CPj - S with the space of oriented
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geodesies in ^ 3 by thinking of the first and second factors as respec-
tively representing the initial and final endpoints at infinity of hyperbolic
geodesies. This has the following consequence, which has a critical role in
the discussion that follows: If ^ and ^ are any two σ-invariant curves
in CPj x CPj - S which lie in the discussed homology class, their two inter-
section points may be systematically labelled so that one "points from Wχ

to g^," while the other "points from ^2 to Ψχ."

Let px, . . . , pn be arbitrary, distinct points in ^ 3 , and, for simplic-
ity's sake, assume for the moment that no three of these n points are
collinear.6 Let P{, . . . , Pn e ΓίCPj x CPX, 0(1 , 1)) be the correspond-
ing polynomials, and let &l9 ... ,Φn c CVι x CPt - S be the n curves
which they define. We then define an algebraic variety

Z c F(0(n - 1, 1) Θ0(1, n -

by the equation

7=1

where x e 0(n - 1, 1), y e 0(1, n - 1), and t e 0 := 0(0, 0). Our
assumption on the px, . . . , pn exactly amounts to requiring that no three
of the curves defined by the P. have a common intersection, so that the
locus in CPj x CPj defined by Π Λ therefore has only normal crossing
singularities. These intersection points in

^ ( 1 n-

are easily seen to be the the only singular points of the hypersurface Z .
There is a canonical antiholomorphic identification of σ*(?(k, /)

with <f(l, k), and this induces an antiholomorphic involution of
Ψ{@{n - 1, 1) θ <9{\ , n - 1) θ 0), and hence of Z . Let us denote the
latter involution by σ: Z —> Z .

We will now construct a complex 3-manifold Z bimeromorphic to Z .
First of all, notice that the two surfaces x = t = 0 and y = t = 0 are
contained in Z , and that, identifying them with the base CPj xCPj via the
canonical projection, their normal bundles relative to Z are respectively
0(-l, 1 - n) and 0(1 - n, - 1 ) . Each can therefore be blown down to
yield a rational curve CPj with normal bundle 0(1 - n) (B0(l — n). This
blowing down constitutes the first step in the construction of Z from Z .

6I.e., on a common hyperbolic geodesic.
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We complete the construction by making "small resolutions" of the sin-
gular points of Z . To do this, notice that the singular points of Z occur
in pairs, which are "conjugate" via σ. Each such singularity may be put
in the canonical form xy = zw by choosing local coordinates z and w
on CPj x CPj centered at the given crossing point of &. and Φk , and a
"small resolution" of this singularity can therefore be obtained by using
the map

(w, v)|[Co>cij •-> (x, y, z, w) := (uζ°, vζι, uζι, vζ°)

as a local model; here ^ ( - 1 ) denotes the "tautological" line bundle over
CPj. (The singular point is thus replaced with a rational curve C¥χ.)
Inspection of this resolution reveals that it just amounts to blowing up the
4-fold at a point at which the hypersurface Z has a quadratic singularity,
taking the proper transform of the hypersurface, and then collapsing a
chosen factor of the resulting exceptional 2-quadric Q 2 = CΨχ x CPj so
as to produce a rational curve. As this depends on the choice of a factor
at each singularity, we will insist on the following rule: at the intersection
point of a pair of real curves &. and Φk which "points from &. to &k ,"
the resolutions should be obtained from the above prescription by letting z
define &. and letting w define &k , while x and y are again coordinates
on (9{rt— 1, 1) and (9{\, n — 1), respectively. Notice that, with this choice
of conventions, the involution a lifts to an involution σ: Z —• Z of the
constructed complex 3-fold.

Theorem 2. The complex 3-fold Z constructed above is the twistor space
of the self dual metric with centers pχ, . . . , pn e %*1 constructed in §5.
Moreover, even if the general position hypothesis on pλ, . . . , pn e %?* is
dropped, the corresponding twistor space is still bimeromorphically equiv-
alent to the variety Z constructed by the given prescription, starting with
this system of centers.

Proof There is a 4-parameter family of σ-invariant rational curves in
Z constructed as follows: for each real curve ^ c CPX x CPj - S in the
appropriate homology class, ^ Φ ^ , . . . , 8^ , let lχ, . . . , ln be the inter-
section points which "point from Φ to g j , . . . , %?n ," and let rχ, . . . , rn

denote the intersection points which "point from &l9 ... 9&n to Φ " The
restrictions of (9{n - 1 , 1 ) and ff{\, n - 1) to Φ are both isomorphic
to <f{n), and we may choose the isomorphisms so that σ just acts by
the usual involution of &{ri) covering the antipodal map CPj -• CPj.
Let / G Γ(C 9&{n)) be a polynomial of degree n with zeros lx, . . . , ln ,
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and notice that there is then a circle's worth of complex constants λ such
that \λ\2f σ*(/) = Upj\€

 τ h e n * = ΛΛ y = σ\λf) i s a cr-invariant
smooth rational curve in Z, and therefore certainly lifts as such to Z
provided that Ψ avoids the intersection points of the &l9 ... ,%?n. In
the exceptional case that ^ does meet some of the &. n ^k , our recipe
for resolving the singularities has the effect that we still have unique lift-
ings, and these are, by virtue of our construction, limits of the previously
described curves. We will now see that these curves are all twistor lines of
a self-dual metric.

The constructed manifold Z comes equipped with a (C - 0)-action,
given on Z by

[x,y,t]~[ζx,Cιy9t].

While this does not quite make (JC , y) φ 0, t Φ 0 into a holomor-
phic principal line bundle—after all, the inverse image of each point in
8j U U ̂  c CPj x CPj consists of two orbits, not one—we can still
analyze Z via the techniques of §6 by using the following trick. Choose
any σ-invariant curve *& Φ ̂  , ... ,8^ in the fixed homology class, and
let p denote the corresponding point of ^ 3 . Let *V be a geodesically
convex neighborhood of p in ^ 3 - {pχ, ... , pn}, and let y c CΨ{ x CΨ{

denote the set of directed geodesies meeting *V. Then . f i l ^ . consists
of two connected components 23 and 5 , where D. contains / and
T) • contains r . Let J^ denote the line bundle given by the ideal sheaf
of \J"=ι[Dj], and let L = <J <g> <9{n - 1, 1). Let s denote the canonical

section of J ^ . There is then a canonical open embedding (L - 0) c-^ Z
given by

P - - P
sa, i asa

Because the restriction of L to W is trivial, L can be analyzed by the
Hitchin-Ward correspondence discussed in §6. Since L can be rewritten
as (1 - Λ)<?(-1 , 1) + ΣJ = 1 WO, 1) - [£>,]), where sums in the Picard
group are used to represent tensor products of line bundles, the linearity
of the Penrose transform on Hλ{£Γ, 0) allows us to find the harmonic
function F on ^ by separately analyzing the bundles <^(-l, 1) and
(9(0, 1) - [Dj] = [ΣΓ]-(?( 1, 0). We claim that these correspond to V = 1
and V = 1 + G}., respectively.
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When V = 1, the metric Vh + V~ιω2 becomes the product metric
on %f* x Sι, and so is conformally equivalent7 to the standard metric on
S4 - S2 and so has an open set in CP3 as its twistor space. In fact, this
open set is just the complement of the union of the real twistor-lines joining
the skew pair of projective lines obtained by taking the two holomorphic
lifts of S2 c S4 . But the complement of two skew lines in CP3 is exactly
@(-\, 1) —• CPj x CPj minus the zero section, proving that (f(-l, 1)
does indeed correspond to V = 1.

When V = 1 + G , we saw in §4 that the resulting metric is just the

Burns metric on the blow-up of the origin in C 2 . Since the Burns metric
is conformally diffeomorphic (in an orientation reversing manner) to CP2

minus a point equipped with the Fubini-Study metric [19], the twistor
space corresponding to V = 1 + Gj is therefore [1] an open subset of the
flag manifold

pr ._ J fry0 γx Ύ2Λ \w W WWe-VΨ x ΓF IΫ^ 7kW — o l

I A:=0 J
One may also observe that any (conformally) isometric circle-action on
CP2 which fixes a 2-surface must be rotation around a projective line, and
so the corresponding action on the twistor space may be taken to be

([Z\Z1, Z 2 ] , [WQ, Wχ, W2\) -+ ([Z°,Zl, ζ~lZ2], [Wo, Wχ, ζW2])

the fixed center Pj, corresponding as it does to the unique fixed point of
the relevant circle-action, must therefore correspond by symmetry to the
curve P = 0, which we may thus identify with the previously considered
curve P = 0. We may now define a C^-equivariant open embedding by

α l ([z 0 ,z 1 ],κ 0 ,c 1 ]) *~

where Sj is the canonical section of the divisor line bundle [Zλ]. Under
this embedding, the curves in *?(0, 1) - [Dj] obtained as sections of the
bundle over minitwistor lines are sent to embedded rational curves on
which cχ(Fχ 2 3) = 4, and so have bidegree (1,1) in CP2 x CP2 but

7The Riemannian product Sn x %*m is a hypersurface of the light-cone in Minkowski

(n + m + 2)-space Rn+m+ι'ι , and so is conformally mapped to an open set of the (n + m)-

sphere by the central projection; inspection shows that this set is precisely Sn+m -Sm~ι . A

more pedestrian proof is to identify Rn+m-Rm~ι with SnxHm via cylindrical coordinates,

and then observe that the Euclidean metric divided by r2 is just the product of the spherical

metric and the hyperbolic metric on the upper half-space Hm .
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the only such curves in Fx 2 3 are the twistor lines. We conclude that
^ ( 0 , 1) - [Dj] corresponds to the potential V = 1 + Gj,.

Covering &3-{pι, ... , pn} with geodesically convex sets, we conclude
that Z contains an open dense subset which is the twistor space of Vh +
V~ιω2, where

7=1 7=1

We now will show that the compactification of this subset exactly corre-
sponds to the process used to conformally compactify this self-dual man-
ifold in §5.

Indeed, an additional set of real curves is provided by the inverse images
of the points of S c CPX x CPX and while these inverse images of course
have trivial normal bundle in Z , our blowing-down of x = t = 0 and
y = t = 0 alters this to yield a normal bundle of &(\) Θ ̂ (1) in Z .
In addition, there is a finite collection of real curves given by the strict
transforms of the curves %?. , and the normal bundle of these curves in Z
is again ff{\) ®ff( 1) as a direct consequence of our procedure for resolving
the singularities. Together with the previously described real twistor lines,
these yield a connected compact family of real twistor lines filling all of
Z , from whence it follows that Z is the twistor space of a compact self-
dual 4-manifold M. Moreover, M is obtained from a monopole metric
over ^ 3 - {pj} with potential V = l + Σ&j by adding a single point
for each p. and for each point of the 2-sphere S. It follows that M is
exactly the self-dual manifold described in §5.

While the Hitchin-Ward correspondence part of the above argument
goes through even if the points p{, . . . , pn are not in general position, the
detailed procedure we have described for resolving the singularities of Z is
no longer adequate. Nonetheless, we have a natural identification of open
dense sets of Z and the twistor space Z of the coresponding compact
self-dual 4-manifold, and this identification still induces a bimeromorphic
map between the two spaces because, after blowing-down of x = t = 0
and y = t = 0, this identification is a biholomorphism on the complement
of sets of complex codimension two.8

Example. Consider the self-dual metric on CP2 # CP2 produced by the

monopole ansatz, starting with a pair of points pl9p2€ ^ separated by

In fact, it is even not hard to see that Z is obtained from Z by using the Λk resolutions
discussed in [9] as local models.
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hyperbolic distance p. Let us realize CPj x £Ψχ as the quadric x% - x\ -

x2 - x3 = 0 in CP3 we may take our two points to be given by the points

(coshf, ± s i n h £ , 0, 0) 6 ^ 3 c R 1 ) 3 , s o that the corresponding sections

of <f(l, 1) are just the pullbacks of the sections of (9(1) —• CP3 given by

Px = (cosh I ) x0 - (sinh | ) xχ,

P2= (cosh^j xo+ {sinh^j x{ .

By Theorem 2, a bimeromorphic model for the twistor space is given by
xy = t2PχP - 2 in P(^( l , 1) θ 0{\, 1) 0 ^ ) , or equivalently by the

χ

intersection of the hypersurfaces

xy -t1 (cosh2 £)4 + t2 (sinh2 f)xf = O,

2 _ 2 _ _ 2 _ _ 2 _

in P ( ^ ( l ) ® ^ ( l ) e ^ ) - * C P 3 . Since V(ffi(l) ®0(\) ®&) -+ CP3 is just
the blow-up of CP5 along CPj, as is seen by setting x = tx4, y = tx5, it
follows that the twistor space must be bimeromorphic to the intersection
of the two quadrics

x4x5- 5(1 + coshp)x0

in CP5. Introducing new coordinates by

i(x4 + x5)
4 \J2( 1 + cosh p)'

puts this locus in the standard form

2 2 2

2z0 + lτχ + λz2 +

[25]

fz 2

 +

1+coΛp]

sech p)/2

x4-

Λ/2(1 +

2 1 2 _

iJcf = 0 ,

-Λ:5

cosh p)

0 ,

where the value of Poon's parameter λ e ] \ , 2[ is given by

λ=l + ^sech p.

We thus obtain every positive-scalar-curvature self-dual metric on
CP2 # CP2 by varying the distance between our two points in %?z. A
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clear picture of the two ends of this 1-dimensional moduli space of self-
dual metrics now emerges: λ -+ \ corresponds to p -• oo, and therefore
to degeneration into two copies of the Fubini-Study conformal structure;
λ -* 2 corresponds to p -> 0, and thus to degeneration into two copies of
the Eguchi-Hansen conformal structure (cf. §5). q.e.d.

Since the vector bundles &(k, k) Θ \0{n - 1, 1) ®&(1, n - 1) ®0\ are
very ample for k large, the total space of the bundle

supports ample line bundles, namely those given by negative powers of the
tautological line bundle twisted by pullbacks of <?(k, k) all these complex
4-manifolds, and hence their hypersurfaces Z , are therefore projective
algebraic. Theorem 2 thus has the following immediate consequence:

Corollary. All of the constructed self-dual metrics on «CP2 have Moishe-
zon twistor spaces.

On the other hand, Campana [4] has recently proved that a compact
self-dual 4-manifold with Moishezon twistor space must be homeomorphic
to nCV2 for some n > 0 our construction shows that this is essentially
sharp.9 The above corollary also allows the reader uninterested in solving
the (pure thought) scalar curvature exercise of §5 to instead prove the
positivity of the Yamabe constant by citing a result of Poon [26], which
asserts that this holds whenever the twistor space is Moishezon.
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