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SELF-DUAL CONFORMAL STRUCTURES
ON ICP2

ANDREAS FLOER

Abstract

We prove the existence of conformal structures with self-dual Weyl ten-
sor on connected sums of arbitrarily many copies of two-dimensional
complex projective space CP2 . They are constructed from the standard
conformal structures on CP by a gluing procedure.

1. Introduction

A conformal structure c on a smooth finite dimensional manifold M
is an equivalence class c = [g] of Riemannian metrics g on M, where
gχ ~ g2 are (conformally) equivalent if g2 = f' gχ for a smooth function
/ : M —• R + , the set of positive real numbers. We say that (M, [g]) is
conformally flat if there exists a system of charts ψ , M D U —> Rn such
that ψ*g ~ gQ, where Rn is a Euclidean tt-space, and g0 is the Euclidean
metric. The condition for the existence of such a restricted atlas can be
stated as a nonlinear partial differential equation, called the integrability
condition, on the conformal structure itself.

In two dimensions, a conformal structure is precisely specified by as-
signing an orthogonal direction to each direction in the tangent space TχM
of M at x G M. If M is orientable, this yields a 1-1 correspondence
with complex structures on M, so that a diffeomorphism φ of M is con-
formal (i.e., φ*g ~ g) if and only if it is holomorphic. It follows that
every orientable conformal 2-dimensional manifold allows a conformal at-
las, since it allows a holomorphic one. In dimensions higher than two, the
set of conformal diffeomorphisms is much smaller. For the constant con-
formal structure on Rn, n > 2, for example, it is a finite-dimensional
group. Correspondingly, it is less likely to find a conformal atlas of M.
In dimensions higher than three, the integrability condition for conformal
structures is the Weyl tensor W, which is a component of the Riemannian
curvature tensor R, i.e., of the integrability condition for the metric it-
self. (In dimension 3, the integrability condition is a first order differential
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equation in R.) A special feature of the Weyl tensor in dimension four is
that it can be decomposed in an invariant way into two equally large parts
W± (see [1]). Hence it makes sense to require a conformal structure to
satisfy only "half of the integrability condition. We say that c is self-dual
if W_(c) = 0.

One of the interesting facts about the self-duality equation is that its
linearization is elliptic modulo the action of the diffeomorphism group of
M. As a result, the set

(1.1) SPViM) = {c\W_(c) = 0}/3Πff(M)

of equivalence classes of self-dual conformal structures can be expected to
be a smooth manifold whose dimension can be calculated by the Atiyah-
Singer Index Theorem as the index of the corresponding elliptic system.
In fact, this is the case under two additional conditions. The first is the
vanishing of the cokernel of the linearization of W at c e S^W(M).
The second condition is that the group of diffeomorphisms acts freely
on the space of self-dual connections. We can weaken this condition by
including the case where the dimension of the group Gc of conformal
diffeomorphisms of c is constant (locally) at c. Then the Atiyah-Singer
Index Theorem yields

(1.2) dimc&&(M) - dimGc = ^

where τ is the signature of M, and χ is its Euler characteristic (see [3]).
For example, I{S4) = - 1 5 , and the self-dual (in fact, flat) conformal
structure induced by the standard metric has the 15-dimensional confor-
mal equivalence group G = 0(5, 1). Another simple example is CP2 with
the standard (Fubini Study) metric, where /(CP2) = dimG(CP2) = 8. We
will in fact see (see Proposition 3.1 and Lemma 4.1) that DW is surjective
in these cases. Examples where 5? Ή has positive dimension were given
by Poon [17], [18] on the connected sum of two and three copies of CP2,
where the connected sum is performed in such a way that the intersection
form is positive definite. Examples where (1.2) fails due to a nontrivial
cokernel of DW_ are the Kummer surface K3 (see [3]) and the flat 4-tori

T4 with I(T4) = 0, d i m ^ g ? ( Γ 4 ) = 8, and dimGc = 4.
By the above, one is drawn to compare the self-duality equation with the

instanton equation in 4-dimensional manifolds. For example, one might
expect SC(M) to satisfy similar compactness properties as the moduli
space of gauge equivalence classes of self-dual Yang-Mills connections.
Here, the ends correspond to the "splitting" of an instanton family into
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"smaller" instantons (see [23], [24]). Conversely, under appropriate condi-
tions, one can "glue" two or more existing instantons together (see [19]). In
the case of self-dual conformal structures on compact 4-manifolds M and
N, an analogous construction might yield self-dual conformal structures
on the connected sum M#N (see [21]). In fact, Poon's constructions
seem to "split up" in a certain limit into standard conformal structures on
CP2. In this paper, we use Taubes' gluing method to prove

Theorem 1. There exist self dual conformal structures on any positive
definite connected sum of finitely many copies of CP .

Most likely, the conformal structures can be represented by metrics of
positive scalar curvature. Actually, we construct noncompact families of
self-dual conformal structures, which have the dimension predicted by
(1.2) and converge in some sense to the standard structures on CP2 (see
Theorem 2 in the next section).

The method of the proof is the one suggested by [19]: First, by means
of cutoff functions, one defines a family cp of conformal structures on the
connected sum which are self-dual outside some "small" subset. Then one
inverts the linearization of W_ at these approximate solutions to obtain
self-dual structures. The problem is to find Banach norms || || on a chart
of the space of conformal structures and || \\w on the target space of W_
so that W_ is continuous and

(1) l i π y ^ 1 1 ^ ) 1 1 ^ = 0;
(2) DW_(cp) has a left inverse which is bounded independently of p.
Hence the problem is essentially reduced to finding the right "surgery"

procedure. To prove (1), the connected sum must be performed on smaller
and smaller balls in CP2, which seems to imply that the curvature of the
metric obtained charges rapidly. It is then difficult to invert the lineariza-
tions in a controlled way. The new idea in the approach presented here
is to consider the conformal structure c of CP2 on a (pointed) neigh-
borhood of a point x as a conformal structure on a half cylinder which
"approaches" the standard flat structure on R x S 3 , where Sm is the
standard unit m-sphere. This is just a matter of choosing an appropri-
ate metric representing c. It turns out that one can choose a "cylindrical
chart" ω : E + x S 3 - ^ CP 2 in a natural way so that the rate of approach
is exponential. Now there is an obvious way to perform the connected
sum, which is carried out in §2. To invert the linear operator, we use the
Fredholm theory on asymptotically cylindrical manifolds recently devel-
oped by Lockhard and McOwen [13] (see §§3 and 4). This theory has been
previously applied to instanton problems in [21].
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The self-dual conformal structure on the cylindrical chart can be con-
sidered as a solution of an ordinary differential equation on the set of
metrics on S3 approaching a "hyperbolic" rest point. In fact, once a ra-
dial coordinate is fixed on a neighborhood Ux of a point x e M, there
exists a unique parametrization of Ux - x by an open subset of R x S
mapping the radial coordinate into the time variable τ and the conformal
structure into one represented by a metric of the form (dτ)2 + gτ. Then
the self-duality equation becomes a "dynamical" equation in the family gτ

of metrics on S3. (In a similar way, the self-dual Yang-Mills equations on
R x S3 can be interpreted as the "flow equation" for a canonical vector field
on the space of connections on S3.) Of course, the dynamical system for
gτ lacks the continuity properties necessary to solve the initial value prob-
lem. However, the solutions that do exist should decay like trajectories of
a finite-dimensional system. In this way, charts as constructed explicitly
here may be found in more general situations. Moreover, it is likely that
the gluing procedure described in §§2-4 can be carried out whenever such
charts can be bound and DW_ is surjective for the self-dual manifolds
involved. If the latter condition fails, one could try to reduce the problem
to finite dimensions as in [22]. However, a more general gluing procedure
based on complex analytic twistor method has meanwhile been established
by Donaldson and Friedman [2]. Most recently, explicit formulas for cer-
tain families of self-dual conformal structures on /CP2 were obtained by
C. LeBrun [12].

The author would like to thank C. Taubes for valuable discussions and
for the material he made available to the author on his previous work
on the subject. Thanks are also due to S. K. Donaldson, N. Hitchin, P.
Kronheimer, C. LeBrun, and Y. S. Poon. The research was carried out in
part at the State University of New York at Stony Brook.

2. The construction of self-dual structures

We consider CP 2 as the quotient of S5 cR6 ^ C3 with respect to the
phase operation of Sι and C 3 . If S5 is defined by means of Hermitian
metric, then Sι operators by isometries, and the quotient inherits a metric
called the Fubini Study metric.

Let x e CP2 be represented by the orbit of the S ̂ action through
( 1 , 0 , 0 ) . Then the map

ω:RxS3 ^S5/Sl = CP2
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is injective. In fact, it is a diffeomorphism onto CP2 - x - x± , where

x1- = S3/Sι and S3 = {(0, y, z)\ \y\2 + \z\2 = 1}. Note that the map

ω is uniquely determined given x and a frame of CP 2 at x. We can

reduce this parameter set to the C/2-bundle of unitary frames on CP2 using

the complex structure of C P 2 . This also defines a complex structure on

R x S 3 .

Lemma 2.1. With γ(τ) = (1 + elτ){\ + e~ 2 τ), we have

the first factor is the complex plane generated by ^ , and the second

factor is its orthogonal in TS3.

The proof of Lemma 2.1 proceeds by direct calculation. Given any

chart ω as in (2.1), we fix a metric gω which is conformally equivalent

to g and satisfies co*gω = γω* g on M+ x S3. For any positive /?, we

also define g^ by

(2.2) ωgp

ω = βpωgω,

where /^(τ) = β{τ-p), and /?: R -• [0, 1] is a smooth function satisfying
β(τ) = 0 for τ < 0 and β(τ) = 1 for τ > 1. Now let M denote the
disjoint union of finitely many copies of CP2. For any pair v = ω± of
charts as in Lemma 2.1 with different centers and for any real number p,
consider the equivalence relation generated by

ω+(p + pθ) ~ω_(-p-τ,θ),

where θ -> θ is some fixed orientation reversing isometry of S 3 . The
metrics gp

ω and gp

ω then give rise to a smooth metric g on M/ —.
This metric depends only on p, centers υ± of ω± , and on the identifi-
cation Tυ M -> TVM defined by the two frames. More precisely, since

the metric of Lemma 2.1 is invariant under rotations of R x S3 around
the "Hopf field" i^ , it only depends on p and an element of the bundle

(2.3) SO3(v_ , υ+) := U(TV_M, Tv+M)/Sl

over M x M - Δ. We may identify SO3(x, y) with the isometries of

the spheres x1 and y± induced by the two cylindrical charts ω± . We

want to apply this procedure to finitely many point pairs simultaneously.
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We denote therefore by V a finite set of unordered pairs v = (v+, v_) €
MxM-A which do not intersect. It defines a graph Γ, whose vertices can
be identified with the pairs in v in V, and whose edges can be identified
with the components of M. We will always assume that Γ is connected.
Then we denote by Ύγ the set of all V defining the same graph Γ.

Definition 2.1. Let R -• Ψγ denote the SO3-bundle over *V defined
by (2.3). Then for every compact subset K c ^ and for pκ large enough,
by the above procedure we define a manifold Mγ and a map

a:R\κx[pκ,oc)-+S2(TMΓ),

χ:=(V,σ, p) ^ gχ

The restriction to large p is necessary to avoid overlaps . For a proof
of Theorem 1, it suffices to consider a "simple" graph Γ ^vhich connects
a given vertex with any number of vertices by a simple edge. However,
the gluing procedure also works for a graph Γ. The reader may, however,
prefer to check the construction first in the simple case.

Note that the unitary group C/(3) acts isometrically on C P 2 , and that
the quotient

G=U(3)/Sl =SU(3)/Z3

acts transitively. Therefore, the true parameter space is an open set in the
quotient R/GE x R ^ . In fact, one verifies that if %?(MΓ) denotes the set
of diffeomorphism classes of smooth conformal structures on Mγ, then
the maps

a: R/GE
 X I J D R/GE\K X [pκ, oof - K^(Λ/Γ)

induced by Definition 2.1 are injective. They define smooth families wher-
ever the dimension of the stabilizer group is locally constant. Here, a
smooth family of conformal equivalence classes is defined as a smooth
tensor field over a product space. In the presence of discrete (hence finite)
stabilizer groups in R, smoothness can be defined locally in terms of a
finite covering. From (1.2) we obtain

(2.4) I(MΓ) = 15|F| - g\E\ = dim{R x RV

Γ) - dimGE.

Hence the parameter space has the same dimension as the expected space
of equivalence classes of self-dual conformal structures, provided that the
dimension of the stabilizer group Gv c GE of V G R is either zero or
that it at least does not jump at χ .
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An example of a nontrivial stabilizer group is given by the graph con-

necting two different copies of C P 2 . Here, R is an SO3-bundle over

CP 2 x CP 2 which is acted upon transitively by (U3/U{)
2 with stabilizer

group T2 = Sι x Sι. Hence dimR/GE = 0, and the image of a is 1-

dimensional. The index formula (1.2) yields /(CP 2 #CP 2 ) = - 1 , which

predicts a 1-dimensional family of self-dual structures if their conformal

equivalence groups are 2-dimensional. This is in fact the case for the

self-dual conformal structures constructed by Poon [17].

One easily verifies that the above example is the only one exhibiting a

symmetry group of constant nonzero dimension. An example for "excep-

tional" symmetry groups is given by the graph with three edges and two

vortices v and w , which produces CP 2 # CP2 # CP2. Here, the symme-

try group contains Sι if v+±w_ , and is discrete otherwise. The methods

used in this paper do not apply to produce self-dual structures out of the

exceptional initial conditions. In the remaining cases, we have the follow-

ing result.

Theorem 2. For R —• ^ as above and for each compact set K c ^

such that Gv is discrete for each V e K, there exist pκ, C e R+, and a

local diffeomorphism

β: RK/GE x [p, oc)Γ -> S? &(MΓ),

for each p>pκ with \\h\\^ + | |VΛ^ < Ce~p/C.
In principle, our methods could be modified to apply to the case of

CP 2 # C P 2 . However, this is omitted for the sake of brevity and in view
of Poon's results. The proof of Theorem 2 is given in §4.

3. Fredholm theory for pointed conformal structures

A conformal structure on a smooth manifold M is usually defined as
a section of the bundle Γ with fibers

Here, S2

+TχM is the cone of positive symmetric bilinear forms on TχP,
and R+ operators by scalar multiplication. One therefore often represents
a conformal structure by a Riemannian metric g. For 4-dimensional man-
ifolds there exists another description of conformal structures, which does
not make any reference to Riemannian geometry. Note that the Hodge
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duality isomorphism
4

*:
induced by a Riemannian metric depends for p = 2 only on the conformal

structure. Since moreover * is symmetric on Ω 2 , it induces a splitting

Ω2M = Ω " θ Ω +

of Ω2 into the positive and negative eigenspace. These are called the self-
dual and anti-self-dual 2-forms, respectively. Note that with respect to
the bilinear form (α, β) = (a U β)[M] on Ω2 , Ω" is negative definite.
In fact, any smooth 3-dimensional subbundle of Ω2 with this property
defines a unique conformal structure for which it coincides with Ω~ .
Infinitesimal deformations of a conformal structure are therefore described
by sections of the bundle Hom(Ω~ , Ω + ) . We use this second description
whenever the invariance under smooth maps is important, and the first
description for more practical calculations.

To describe the Weyl tensor, let so4 denote the Lie algebra of the group
of linear isometries (with respect to the conformal structure) of TχP.
Then there exists a unique splitting so4 = so^ θ so^ of Lie algebras.
In the same way, we have a splitting of the bundle so4(M) of infinites-
imal isometries of TM into so^(M) θ so^(M). Since the Riemannian
curvature tensor with respect to any metric representative g of γ takes
values in Ω2 ®soA{M), we can consider its component in Ω~ <S)SO^(M).
Note that raising one index by the metric g defines an isomorphism
Ω2 ~ so4(M) mapping Ω ± into sof(M). It therefore induces a split-
ting of Ω~ <s>so^(M) into a trace part, an antisymmetric part, and a trace
free symmetric part. We will denote the latter by Ω~ <g>5 so^(M) the cor-
responding component of the curvature is the anti-self-dual Weyl tensor
W_.

Let us denote the linearization of W_ by

(3.1) D: C°°(Hom(Ω~ , Ω+)) -> C°°(Ω" ®5 so~{M).

It is a second order differential operator, which we shall examine more
closely in §5. Moreover, the linearized operation of the diffeomorphism
group on Ή is described by the operator

(3.2) L: C~{TM) - C0°°(Hom(Ω- , Ω+)) (LX)(λ) = π+Lχλ,

where Lχ is the Lie derivative on the set of 2-forms, and π+ is the

projection onto Ω+ . Again, we show in §5 that L is a differential operator

in the vector field X alone. By L + we denote the zΛadjoint of L with
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respect to some fixed metric g. It is well known (see also §4 below) that
(D, L+) is an elliptic system of partial differential equations (of mixed
order). For a compact manifold M , it therefore induces a Fredholm
operator

{D,L+): U -> V®W,

where C/ = L^(Hom(Ω",Ω + )), V = LP(TP), W = LP{Ω~ ^5so~(M))
are Sobolev spaces with respect to some metric on M . In fact, the follow-
ing result is well known:

Lemma 3.1. For M = CP2 with the standard conformal structure, the
operator (D, L+): U —• V ®W is injective.

Proof. We follow a suggestion of C. LeBrun. It relies on the twistor
construction (see [1]) which relates self-dual conformal structures on M
to complex structures on a certain 5ί2-bundle Z over M. In the case
of M = CP2, Z is a flag manifold whose complex structure does not
admit any deformations. In fact, infinitesimal deformations of a complex
structure on Z are described by Hι(Z, @(TZ)), the first cohomology
of the sheave of local holomorphic sections of the tangent bundle of Z ,
which is trivial in the case. We want to show in general that

(3.3) Hι(Z , &{TZ)) = kerDWj ImL.

To relate holomorphic sheaf cohomology on the 4-dimensional complex
manifold Z to differential operators on the base M, we consider the
2-dimensional complex bundle D c Ω ( O s l ) Z of (0, l)-forms vanishing
along the fibers. Consider the sheaves

Ωζ{TZ) = &π{ΩpD 0 Γ ( 1 ' 0 ) Z ) .

Here, (fπ denotes the sheaf of sections which are holomorphic along the
fibers of the twistor fibration. Then we have an exact sequence of sheaves

0 -> Ω°(TZ) — Ω°π(TZ) - ^ Ωl

π(TZ) -2- Ω2

π{TZ) — 0

with Hι(Ω°(TZ)) = H\TZ). The idea of the proof is now that the

zeroth cohomologies of the above sheaves can be identified with spaces of

sections of vector bundles over M, whereas the higher cohomologies tend

to vanish because of the "softness" of the sheaves in the M-direction.

For example, it follows from the LeRay-Singer spectral sequence that

Hι(Ω°π(TZ)) = 0. Hence splitting the above sequence into two short ex-

act sequences with K = ker[Ω^(TZ) - ^ Ω^(ΓZ)], we obtain long exact
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sequences

H°(TZ) -> H°(Ωl

π{TZ)) -» H°(K) — tf'(ΓZ) -+ 0,

From the second sequence we learn that H°(K) = kerd,, so that

H\TZ) = keτ(dι)β0H°(Ω°π(TZ)).

Now let S± denote the spinor bundles over X. Then the zeroth coho-
mologies can be described as extensions

C°°(Ω2_

such that the d-operators induce the identities on C°°{M, Ω2_) and

C°°(5+ 0 ^ ) . Thus we have an induced isomorphism

ker^j =ker(0+ 0 2 : Γ{Ω2_) ®Γ{Ω2_ ®Ω 2 ) ^ Γ ( S ^ ) ) ,

where 0 2 : Γ(Ω2_ ® Ω2

+) = Γ(S^. (g> S 2 ) -+ Γ(S*) is the operator

' ' ABA'B' ' * (C Z) ' AB)A'B' '

i.e., the linearization of W_ . Finally, 50 induces the operator L: Γ(ΓcΛf)

= Γ(5+ 0 S J ^ Γ(5 2 %S?2) given by L: ^ B / ^ ^AB\ ' i*e*' t h e

Lie derivatives of the conformal structure. This completes the proof of

(3.3). q.e.d.
To describe pointed conformal structures, we will need Sobolev norms

o

with special weights at distinguished points. Let us consider M := M —
{x{ xn} as a manifold with cylindrical ends; i.e., there exist cylindrical

., o o o

charts ωt: R+ x S —> M covering M up to a compact set MQ. On M,
let us fix a metric g so that ω*g coincides with the standard metric on

3 °

R+ x S . Let τ: M —> R be a function coinciding with the τ-variable in
the range of ωt. Then consider the exponentially weighted norms

( 3 4 ) Hi l l : * = lle e τ£ll*,p>
o

where ξ is a section of a metric bundle over M, || ||^ is the usual
Sobolev norm, and ε is a positive real number.
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Definition 3.1. For a given conformal structure c on M, consider the
_ , _ _ o

bundles Hom(Ω , Ω ), Ω ® so3 , and TM with metrics induced by
the metric g on M. Then define for p > 2 and ε > 0

c L\ε^ ^ / / * ^ l j ε ^ ' ' c ujε^ 3 ' *

The reason for introducing exponentially weighted norms is the Fred-
holm theory developed in [8], [13], [14] for manifolds with cylindrical
ends. In §5, we will exhibit (D, L+) as an elliptic system of partial dif-
ferential equations, which is asymptotically "constant" at the ends. The
following result is then an application of Theorem 1.3 of [13]:

Proposition 3.1. For every c e &(M) and ε e R we have a continuous
operator

Moreover, there exists a discrete set d ^ c l (containing zero) so that if

ε <£ σ^, then (L+, D) is Fredholm.
The discrete set σ^ is examined in §5. In particular, we will show

that it contains zero. Note that the Fredholm index on (L + , D) may
depend on ε (for example, by Theorem 1.4 of [13] and Proposition 5.2
below, it jumps by In when ε passes through 0). From now on we will
only consider positive values of ε which are smaller than the first positive
element of σ^.

The set of pointed conformal self-dual structures, i.e., of self-dual con-
formal structures on CP2 up to diffeomorphisms which fix xχ -xn , is
a manifold of dimension An - 8 whenever n > 4. If we assume this
to be the case for all components of M, then one can show that for
small positive ε, the kernel of (D, L+) is isomorphic to the tangent space
kevT)/TVQ(M, x) of pointed conformal structures on (M, x). Here, Z),
and L denote the operators D and L o n M , and VQ(M) is the set of
smooth vector fields X such that X(x) = 0 for all x e x. A priori,
however, we will only need

Proposition 3.2. We have an injection

πe+: ker(D, L+) -> keτD/LVQ(M, x).

Proof. Assume that πe^ζ = 0 for some ξ e ker(Z), L+). This means
that e^ξ = TX for some Ύ e ~VQ. Let X denote the vector field on

M satisfying e^X = X. Then e^(LX) = Le^X = LX = ej, so that
LX = ξ. Hence L+LX = 0. But since { e V, we can integrate by parts

to obtain {LX, LX) = (X, L+LX) = 0.
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4. Proof of theorems

To prove Theorems 1 and 2, we may restrict ourselves to a neighborhood
of a given set V of points pairs v = (v + , v_) in Vγ (see §2). For technical
reasons, we will modify the construction of Definition 2.1 as follows: On
each CP2 , e e E, choose an additional point xe not coinciding with and
not perpendicular to any of the v±, v G V. Correspondingly, we consider

o

MΓ as a closed manifold with \E\ points taken away. We also replace gχ

for χ = (V, σ, p) by a metric on MΓ which for τ large enough coincides
with (2.1) under a cylindrical chart centered aX xe, e e E. Outside

o

a neighborhood of xe, we leave g as in Definition 2.1. On M Γ , we

now consider the Banach spaces U , Vχ , and Ŵ  with the exponentially

weighted norms of (3.4). The aim is to find ζ e Ux such that

Λ Λ

O

on MΓ. Since each such perturbation converges to zero in the end, it
o

results in a continuous conformal structure on the compactification of MΓ

(recall from §3 that Hom(Ω+ , Ω~) has conformal weight zero). This will

prove Theorem 1. A more careful analysis of ζ will also yield a proof of

Theorem 2.

To obtain ξ , we will work with the "practical" description of conformal

geometry in terms of metric representatives. Then U of Definition 3.1 has

to be replaced by the space U = Lp

2.ε{S2

ήTMγ), of tracefree symmetric

tensors on TMT. Since near any conformal structure represented by an

asymptotically constant, the transformation (S2TP)/R -> Hom(Ω" , Ω+)

has uniformly bounded derivatives, Propositions 3.1 and 3.2 remain true.

Moreover, let us identify the target spaces Ω~ ®5 so^ for different con-

formal structures near [g ]. Consider therefore the metric on Ω2 ® so4

induced by gχ . Then the orthogonal projection

7i'. Ω (g) soΛ —> ( Ω <s>c so*, )
4 v 5 3 >y

define a linear isomorphism when restricted to any subspace (Ω~ <S)5so^) ,,

as long as / is close enough to γ . We can therefore define the function

WΪ:UχDUχ^Wχ*Vχ,

where Uχ is a suitable neighborhood of 0 in U consisting of such ζ for

which g + ξ is a metric.
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Lemma 4.1. The map W* is smooth, with DWX(O) =

(DW_([gχ]), L+). Moreover, W*{ζ) = 0 is equivalent to (4.1).
The proof of smoothness uses standard methods of [ 15]. For a treatment

of the special problems arising at the ends, see for example the proof of
Theorem 3 in [5]. The second statement of Lemma 4.1 is obvious if U
is chosen small enough.

Now consider the first order expansion

(4.3) Wχ(ξ) = W_{c) + (Dχ , Lχ)ξ + Nχ(ξ).

The idea is to invert the linear operator (Dχ , L ) and to covert the equa-
tion Wχ{ζ) — 0 into a fixed point problem for a contractive function in
ξ. This method has been previously used in [19]. It can be formalized as
follows:

Lemma 4.2. Assume that a smooth map f:E-*F between Banach
spaces E and F has an expansion

so that Df(0) has a right inverse G, and for ξ, ζ G E

\\GN{ξ) - GN{ζ)\\E < CN(\\ξ\\ + I K U I I ί " C\\E

for some constant CN. If \\Gf(ξ)\\E < {&CN)~ι, then the zero set of f
in Bε = {ξ E E\ \\ξ\\ < ε} with ε = (4C7V)~1 is a smooth manifold of
dimension equal to the dimension of ker df. In fact, if we define Kε =
{ξ G ker£>/(0)| ||{||£ < ε}, then there exists a smooth function

φ\Kε^K± :=GF cE,

with f(ζ + φ(ξ)) = 0 so that all zeros of f in Bε are of the form ξ + φ(ξ).
Moreover, we have the estimate

The proof of Lemma 4.2, like the proof of the implicit function theorem,
is a simple application of the contraction principle. In order to obtain an
inverse which is bounded independently of the parameters pυ , we have to
modify the norms on U . First let us define a function τχ: Mγ —• R which
coincides with the τ-variable defined by the cylindrical charts of §2 except
on a neighborhood of the gluing set, where it is continued smoothly. For
fixed p > 2 and ε e ( 0 , 1), we then define norms || || . k as in (3.4) with
τ replaced by τχ . We denote them by || H ^ = || | | . 2 , || \\va = || || . l9

and 1111^^ = 1111.0' respectively. To find a suitable range for a right
inverse G of D(χ, Lf), we have to factor out the "asymptotic kernels"
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in U. By this we mean families ξ e U - χ for which \\ξy\\π y = 1

but \\(Dχ, L+

χ)ξχ\\v@WiX -> 0, where p(χ) -• oc. Such families can be

constructed, for example, from elements of the kernel of (D, L+) on

the components of M (see Proposition 3.2) by using appropriate cutoff

functions

βε:M-γ^[0, 1], eeEτ,

which are identically equal to 1 on the i th component of M x -

τ~ι[0, p - I], and vanish on a neighborhood of sf = ωv{0 x S3) for

a e VT. Here, ωv[-pυ, p j x S 3 —• MY is the parametrization con-

structed from the cylindrical charts of §2. Additional asymptotic kernels

arise due to these long cylinders in MΓ. Consider the standard metric

on R x 5 3 , and let (D^, L^) denote the corresponding linear operator.

Then asymptotic kernels can be constructed from τ-independent kernel

elements of (D^, L ^ ) , by using appropriate cutoff functions again. In

Proposition 5.2 below we show that there exists a 7-dimensional space

(4.4) κcW°°{Sh3

such that for {(τ, θ) = ξo(θ) with ξQ e κ9 we have {D^.L^ξ = 0.
These considerations motivate the definition

£//• = {ξe Uχ\(l) ζ\S3

a± for a e VΓ,

(2) βeζ±kπκ(D, L+) on Me for e e EΓ}.

Lemma 4.3. For each compact set K as in Definition 2.1 there exist
positive constants pQ and C, and continuous linear operators

for ρ{χ) > p0 with Gχ o (Dχ , Lχ) = id and

Proof. We first show that there exists a constant C such that for p
large enough and ξ e Uχ ,

(4.6) IKII^<C{||L;{||κ > J f+ 112)^1^^}.

Since by (2.4) and Proposition 3.2, the codimension of Uχ is less than
or equal to the index of D predicted by (1.2), it follows that (Dv, L)
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is surjective on iH" . To prove (4.6) we proceed indirectly. For χn =

) F
(ΓΛ ,σn,pn)e Kx[pn , oo) F with p(χn) -• oc, let cn denote the confor-
mal class of g . If (4.6) is wrong, then there exist such a sequence and

a sequence ξ e U^ such that with (Dy , Ly) = (Dn, L)

(4.8) UnWu,χ = L

To derive a contradiction, consider for each v e V the parametrization
ωv and the sequence ζvn on R x 5 3 defined by

ζ = ί ™V(εpvnω*υξn on (-pvn, pvn) x S3,
vn \ 0 otherwise.

On R x S 3 , define the weight w(τ, θ) = έ Γ e | τ | . Then it follows from (4.8)
that Ik^XjIp is bounded independently of n . Passing to a subsequence
(which we still denote by ζυn), we can assume that ζvn —• ζvoo weakly
in the Banach space U_ε defined by this norm. We want to show that
ζvQG = 0. Therefore note that for each positive constant R, the restriction
C . D of <Γ to \-R,R]xS3 satisfies

independently of n . Thus ζυn R —• ζυoo weakly with respect to this norm.
In particular, by (1) of (4.5),

(4-10) C

Moreover, it follows from (4.7) that for each fixed R,

Since both seminorms in (4.11) are continuous with respect to the norm in
(4.9), they are also weakly lower semicontinuous, so that (L+, D)ζvoo = 0.
But this together with (4.10) implies that ζvoo = 0 by Proposition 5.3.

Now consider βeξn±kετ(D, L+) on M - e (see (2) of (4.5)). Since

eεpvn \\ξn || j —• 0 on any bounded neighborhood of si c Mn by the above,

we have

Hence βeξn —• 0 in U{Me) by Proposition 3.2. Combining these two

facts, we obtain a contradiction to (4.8). This proves that (D, L+) satisfies

(4.6) on Uχ for p(χ) large enough, q.e.d.
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The hypotheses of Lemma 4.2 are now satisfied for p large enough due
to the following two estimates.

Lemma 4.4. There exists a constant C such that for all χ

and

\\Nχ(ξ) - Nχ(ξ)\\Wa < C(\\ξ\\u>x + \\C\\u,x)K ~ ξ\\u,x

Proof. The first estimate is obvious from the construction of g . To

prove the second estimate, note that the Riemannian curvature tensor of

a metric g is of the form

(4.12) Rg = L(g-ιVVg) + Q(g-ιVg),

where L is linear and Q is quadratic. The linear part of g~ι VVg is

D(g-lVVg)h = g~lhg~lVVg + g~lVVh ,

from which it follows that the remainder of the first order expansion of
ι is

:= (g + h)~ιVV(g + h) - g~l(VVg + VVΛ - hg~ιVVg)

= {(8 + h)~l - g~l}W(g + h) -

h)~ι - g~ι + g~ιhg~ι}VV(g + h) - g~xhg

Hence we have the pointwise estimate

\Nγ{h){x)\ < Cι\h(x)\2\VV(g + h){x) + I + |A(*)| |VVA(Λ:)|.

Standard Sobolev embeddings now yield

IWA)II, < CyWhfjivvig + h)\\p + \\h(x)\\j\vvh\\p

< C2\\h\\2

u.

This gives the desired estimate for the first term in (4.12). The second
term is treated in a similar way.

5. The elliptic complex

The aim of this section is to determine the linearization of the self-
duality equation at the standard solution on the cylinder M x S 3 . We will
frequently work in local coordinates, where the index zero corresponds to
the R-direction and italic indices /, j , k, . . . run from 1 to 3. We can
describe a conformal structure by its unique representative g satisfying
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g0Q = 1 or, equivalently, by the induced metric g3 on S3 and a one-form

at = gOi measuring the angles between the τ-direction and TS3. We will

therefore make the identification

Hom(Ω", Ω+) - Ω 3 θ Ω 6 ,

where Ω3 = Ω1 (S3), and Ω6 is the symmetric tensor product. We will also
use the isomorphisms Γ(R x S3) = Ωι θ Ω3 and Ω~ ®5 so^ = Ω 5 , where
Ω5 is the traceless symmetric component of Ω3 ® Ω 3 . The irreducible
decompositions

Ω3 ® Ω3 -> Ωj θ Ω3 θ Ω 5,

Ω5 ® Ω3 -+ Ω3 e Ω5 e Ω7

define symbols of the following operators:

div = -d* = -d*: Ω3 -• Ωχ: divA = Viλi,

rf,:Ω3-Ω6; ^ ^ ^

div = - < : Ω6 - Ω3(divΛ). = V^..,

ί: Ω5 - Ω5 (ίA).;. = eimn+Vmhnj + ejmnVmhni,

The explicit formulas refer to a normal chart for g, and D* = *d* and

D* are the i Λ

are formally sel

component and

D* are the iΛadjoints of J and ds. It is easy to see that *d and $

are formally self-adjoint in L2. Of course, ds splits into its traceless

tr ds = div = -d*.ds

Other relations are

#ds = ds

(5.1) ύ ί*^ = i *

The first statement follows from

2(d sdsX)j= - V

= (-V2X)J-RlJiaXa

= (-V2X)j-RicjaXa
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and the "Weizenbόck-formula"

-{{dd -d d)X)j = VjViXi + Vi(ViX.-VjXi)

= (V2X) ; + RjiiaXa = (V2X). - Ric j a Xa.

To prove the second relation, note that we can ignore the curvature terms,
since the curvature of S3 has no component in Hom(Ω3, Ω 5 ) . We are
now ready to calculate L and D in the following special case.

Proposition 5.1. Let the derivative in the zero direction be denoted by
a dot. Then the complex (L, D) for the standard conformal structure on
R x 5 3 has the form

L: C°°(Ωι Θ Ω3) -> C°°(Ω3 Θ Ω 6 ),

L(f ,X) = (df + X, 2(dsX -fg))9

and

Here, E is the linearization of the traceless Ricci tensor around the standard
metric on S3.

Proof Let φt be a smooth family of diffeomorphisms on R x S with
(£tφt)t = X. Then we have with X0 = f:

t=o

Similarly,

/ T i x d

((Φ*g)oo ΦUυ = (Lχ8)ij - (Lχg)oo8u

-V.X,-2V0̂ i,. = 2(^-M,..

The operator D is calculated first for a = 0 its full form follows then
from D°L = 0. Let g be a metric on R x R 3 satisfying # 0 0 = 1 and
So/ = 0. Then the Christoffel symbols Tijk = \(Vigij + V.gilc - Vkgij)

coincide with those of the induced metric on R 3, whereas Γo .. = -j
and Γo /0 = 0. We only have to consider the highest order part of the
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curvature tensor:

Rijkl = ^i,jk\l ~ ^i,jl\k = Rijkl^ ) '

ROjkl = *O,jk\l - *O,jl\k = 2^jl\k ~ &jk\d >

n ^ _ P __ P — iir
*0j0l — L 0J0\l l 0,jl\0 ~ 2%jΓ

By means of the isomorphism

Ω 3 θ Ω 3 ^ Ω 2 ( R x 5 3 ) ,

(5.2) ω = dtAπ*E + π*(*B),

Ek = ωok> Bi = Ίεukωjk>

we can write RL as a bilinear form, ({E, 5), Λ 1 ^ , ΰ')) = a^.E.Ej +

β / ^ . + ̂ 5 y ) + ̂ ^ . ^ on Ω3 θ Ω3 with

aji = Rθjθi = τ8ji>

@ij ~ 2εjklR0ikl = ^ejkl^u\k ~ &ik\l) = 2£jkl&il\k '

Vij = -4εikiεjmnRklmn = " ( R i c / i " H , " t Γ R ί c ) ' = ~ EinU '

the Einstein tensor of the 3-dimensional metric g. Since, by (5.2), the
(anti) self-dual forms in Ω2(R x S3) correspond to the (anti) diagonal in
Ω3 0 Ω3, W_ is up to nonlinear terms the traceless component of

{W_)tj = \gu - k*jklkim - Einy , = {\g- \4g - Ein),...

We conclude that modulo trace,

D{0,h)= x

Ίh-\$h-Eh.

To determine D in general, note that for each a = C^°(Ω3) there exists
an X e ^°°(Ω3) such that X = a . Then by the modulus trace

D(a, 0) = D((a, 0) - L(0, X)) = D((a, 0) - (X, 2 dsX))

= -2D{0,dsX) = -2{\dsX -\$dsX-EdsX)

= — dsά + $.dsa = ds(* da — ά).

This completes the proof of Proposition 5.1. q.e.d.
The L2-adjoint of L is

(5.3) L+(α, h) = (d*a + 2trh, 2d*h - ά).

Hence (L+ , D): C°°(Ω6 θ Ω3) -^ Coo(Ωι θ Ω3 θ Ω5) is elliptic. To ap-
ply the Fredholm theory of [13], we have to consider the asymptotics of
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(D, L+) at the cylindrical ends, i.e., the translationally invariant system
(D, L+) on R x S3 with respect to the standard product metric. It turns
out that the space of solutions of the equation (D, L+)ξ = 0 decomposes
naturally into solutions of the form <*(τ, θ) = eτλξλ(θ). Here, ζ is a so-
lution of (Dλ, L

+

λ)ξ = 0, and (Dλ, L+) is obtained from (D, L+) by
replacing the time derivative by multiplication with λ. With Proposition
5.1 and (5.3), this reads

0 = 2λ tr h + d* a, 0 = λa-2d*h,

0 = {\λ2h - \λih -Eh + ds(* da - λa))y

Now define the asymptotic spectrum of (D, L+) as

(Our definition of the spectrum differs from the one in [13] by a factor
i.) It follows from the above that purely imaginary λ e σ^ gives rise to
bounded elements in the kernel of (D^, L ^ ) , and thereby destroys the
Fredholm property of the operator (D, L+) of Proposition 3.1 for the
usual (unweighted) Sobolev norms. In general, by Theorem 1.3 of [13],
the operator of Proposition 3.1 is Fredholm if and only if ε is not the real
part of any λ e σ^. Note that directly from the ellipticity of (Dλ, L%)
we see that the set Reσ^ = {ReA|A e θ^} is a discrete set in R (see e.g.
[13]). Now Proposition 3.1 follows from

Proposition 5.2. // λ e σ^ with Re λ = 0, then λ = 0. Moreover, we
have a seven-dimensional space

K := ker(Z>0, L*) ~ R Θ soy

For the Fredholm theory of (D^ , L^), Proposition 5.2 has the follow-

ing consequence: Define [7°° , Vε°°, and W™ as in Definition 3.1 with

P = R x S3 and weighted norms

IKII*^. = ll' f 'fll*.,.
where p is a smooth function satisfying p(τ, θ) = |τ| for |τ| > 1. Then
a Fourier transformation in τ yields the corollary (see [13]):

Proposition 5.3. For small ε > 0, {D, L+): C/ε°° -> Vε°° θ Wg°° is

surjective, and there is an isomorphism K —> ker(Z>, L+) ζ •-> <*(τ, ^) =

Proof of Proposition 5.2. We first calculate the kernel of

(Lo

+, JD0)Co o(Ω3 θ Ω6) - C°°(Ω, φ Ω3 φ Ω 5),

(α, h) ̂  {d* a - 2d*sh, ds* da - Eh).
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Since, on S3, *d is an isomorphism on kerd*, and no nonisometric
conformal vector field can be divergence-free, the Ω3-component of the
kernel is

ker(ύf5 * d) Π ker d* ~ {*dξ\ds(* dξ) = 0}

~ {φ e Ω3 | d5φ = 0 and d*φ = 0} ~ JΌ 3 .

The Ω6-component ker 2? n ker d* = R is the tangent space to the space

of diffeomorphism classes of traceless Einstein metrics on S , which is

parametrized by the volume.
It remains to prove (L^ , D^) has no purely imaginary spectrum. For

μ e R and λ = /μ, assume that (α, A) = 0 in C°°(Ω3 Θ Ω5) solves
(L% 9 Dλ)(a, A) = 0. We have to distinguish the case where (α, h) is
"pure gauge", i.e., (α, A) = L^(/, X) for (/, X) e Coo(Ωι θ Ω 3 ) . In this
case, Z)λ(α, h) = 0 holds trivially since DχoL-λ = (DoL)λ = 0. Hence
the only condition on (/, X) is

Note that in the case λ = iμ, μ e R, L | = (L A ) + , so that ( L + i ) A =

(LA)+LA is nonnegative. Since moreover Lλ itself is injective for λ φ 0,

we conclude that L^Lλ is an isomorphism. Hence the "pure gauge" part

of the spectrum cannot have purely imaginary nonzero elements.

To examine the general spectrum of (D^, L^) we can now use this

fact to replace the condition L^(α, A) = 0 by a more convenient gauge.

First, we can eliminate the angular component a by adding Lλ(0, ja).

Hence there exists a nonzero A e Ω6 satisfying the tracefree part of

(5.4) λ2h-λφh-2Eh = Q.

Note that the same is true for

A' = A + \Lλ(-λf9 df) = h + dsdf + λ2fg,

for any smooth function / . We want to use this remaining gauge freedom
to find A' which also satisfies an extension of (5.4) to the trace component.
To define an appropriate extension, we first calculate E:

Lemma 5.1.

E = -\φ + \{d5 d* + d5d tr+π5).

Proof. Note that E = a/tf+β dsd*s+y(dsd\r+gd* ds)+δgd* d\r+Z
as a self-adjoint second order operator. The coefficients above are obtained
by checking certain known identities for E. First, since E is invariant
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under diffeomorphisms, we know that EdsX vanishes for each vector

field l o n S 3 . With (5.1), this yields

= ds{a * d * d + β(\ *d*d + d*d*- R i c ) -γφ*d * + Z }

= έ/5{(α + ^ ) * rf * d + (/? + 7) rf * rf * -A Ric +Z}

hence β = y = -2a and Z = -2αRic. The value a = -\ is obtained
by calculating E(gf) explicitly for some function / , and Lemma 5.1 is
proved, q.e.d.

We choose the extension

(5.5) E = -tf + \{dsd* + dsd\τ+gd*d* + gd*d\τ + l}

which is in addition a self-adjoint operator. Then the additional operator
acting on A is

Dxτ

λ = trA2 - λ$- IE = λ2 tr-rf* rf* - d* rftr-i.

Here, we have used tr φ = 0 and tr ds = -rf*. Now the equation
D®(h + (dsd + λ2g)) = 0 can be solved uniquely for / , since the op-
erator

D°λ(dsd + λ2g) = ((λ2-l)tτ-d*d*s-d*dtr)(λ2g + dsd)

= 3(λ2 - i μ 2 + (λ2 - 1) tr dsd - λ2(d* d*g + d* dlrg)

-d*d*dsd-d*dtτdsd

= 3(λ2 - i μ 2 - (λ2 -l)d*d- λ2{d*{-d) + 3rf* d)

- rf* ( ^ rf* rf + rf rf* - 1) rf + rf* rf rf* rf

with Δ = rfrf*-hrf*rf is positive for λ = iμ. Thus if there exists a
nonzero (α, A) satisfying (Dι, L*)(a, h) = 0 for O ^ A G / R , then there
also exists a nonzero h satisfying the full equation (5.4) with E replaced
by E. This would imply that (μ2 + 2E)h = 0 and #A = 0, since E and
Φ are self-adjoint and real. But inserting the second condition in (5.5) we
see that E is a positive semidefinite operator on ker tf. Hence the proof
of Proposition 5.2 is complete.
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