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GAUSS MAPS OF SPACELIKE CONSTANT
MEAN CURVATURE HYPERSURFACES

OF MINKOWSKI SPACE

HYEONG IN CHOI & ANDREJS TREIBERGS

Abstract

The Gauss map of a spacelike constant mean curvature hypersurface of
Minkowski space is a harmonic map to hyperbolic space. The properties
of such hypersurfaces are interpreted in terms of the harmonic mapping.
Given an arbitrary closed set in the ideal boundary at infinity of hy-
perbolic space, there exists a complete entire spacelike constant mean
curvature hypersurface whose Gauss map is a diffeomorphism onto the
interior of the hyperbolic space convex hull of the set. Identifying ideal
infinity with the light cone, this set corresponds to the lightlike directions
of the hypersurface. In terms of this extrinsic data we give conditions for
the hyperbolicity or parabolicity of this hypersurface. For example, if the
set of lightlike directions has nonempty interior in the unit sphere, then
this hypersurface can be constructed so as to admit nontrivial bounded
harmonic functions. This gives many new examples of harmonic maps
of the disk and the complex plane to the hyperbolic plane, which are of
full rank.

There are relatively few examples of harmonic maps between noncom-
pact manifolds. A class of such maps arises as the Gauss maps of en-
tire spacelike constant mean curvature hypersurfaces of Minkowski space.
These are harmonic maps into hyperbolic space by a verson of the Ruh-
Vilms theorem. We construct certain constant mean curvature hypersur-
faces and analyse theit geometric and function theoretic properties. Thus,
we are able to answer a question of Eells and Lemaire [17] by construct-
ing many harmonic maps from R to the hyperbolic plane, which have
rank two everywhere. We also construct maps of the hyperbolic plane
into itself. A completely elementary example of family of nonconformal
harmonic diffeomorphisms of the hyperbolic plane to itself has been con-
structed using similar methods [14]. The relation between harmonic maps
and constant mean curvature surfaces has been studied by T. K. Milnor
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[31]. Akutagawa and Nishikawa [1] and O. Kobayashi [25], [26] have used
harmonic maps to construct constant mean curvature surfaces.

Building on the earlier work of Cheng-Yau [11] and Treibergs [38], we
obtain a structure theory of the Gauss map. The entire spacelike hyper-
surfaces u of constant mean curvature are asymptotically null in certain
directions called the lightlike directions, Lu. We prove that after split-
ting off a trivial factor, the Gauss map is a harmonic diffeomorphism onto
the interior of the convex hull of Lu in hyperbolic space. The convex
hull is taken in the following sense: the hyperbolic space is canonically
identified with the hyperboloid consisting of unit future-pointing timelike
vectors and then the lightlike rays are naturally identified with the points
at infinity of hyperbolic space. The convex hull of Lu is thus the usual
convex hull in hyperbolic space with respect to the hyperbolic metric. The
proof is based on the observations that the entire constant mean curvature
hypersurfaces are graphs of convex functions u, and that the Gauss map
into the Klein model of hyperbolic space is the tangential mapping of u.

Conversely, any closed subset of the boundary at infinity is the set of
lightlike directions of some entire spacelike constant mean curvature hy-
persurface. This is a direct interpretation of the solubility of the mean
curvature equation with boundary values at infinity [38]. By sharpening
the existence theory, we construct constant mean curvature hypersurfaces
with given asymptotic behavior along the lightlike directions showing that
there are many different surfaces with the same Lu . We can also construct
solutions which have good asymptotic estimates in interior directions of
Lu . This guarantees that there is an abundant supply of interesting har-
monic maps to hyperbolic space. The existence of entire prescribed mean
curvature hypersurfaces has also been studied in Minkowski space [8], [36]
as well as in more general Lorentzian manifolds (e.g. [6], [7], [16], [18].).

To understand the mappings obtained as Gauss maps of constant mean
curvature hypersurfaces, we are able to determine the function theory of
the hypersurfaces from the lightlike set in some cases. We show that if
the lightlike set contains a ball, then the hypersurface is hyperbolic in the
sense that it admits a nontrivial bounded harmonic function. In this case
the geometry is well controlled in the sector corresponding to the ball. It
is quasi-isometric to a sector of the hyperbolic space, and the sectional
curvature of the sector is pinched between two negative constants. This
implies that there are nonconstant bounded harmonic functions on u. The
proof of these facts depends on using the asymptotic behavior to estimate
the metric and integral Gauss-Kronecker curvature. Then we prove a local
Harnack-like mean value inequality and apply it to the Gauss-Kronecker
curvature to conclude the result.
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In § 1, we set up the notation and state the known intrinsic results about
constant mean curvature hypersurfaces. Theorem 1.2 provides a proof of
a version of the Ruh-Vilms result. In §2 we state and prove the mean
value inequality for the supersolutions we need. In §3, we show a splitting
theorem used to simplify some future matters. It states that the constant
mean curvature cuts decompose as the metric product of strictly convex
cuts by hyperplanes. §4 is devoted to the extrinsic properties of constant
mean curvature cuts and their implications to the Gauss map. In §5 we
construct certain special constant mean curvature hypersurfaces by solving
and estimating an ordinary differential equation. In §6 we use these new
solutions to sharpen the existence theory and construct the cuts whose
function theory will be determined. In §7 we use the special solutions to
estimate the intrinsic properties of cuts. In §8, the existence of nontrivial
bounded harmonic functions is established and in §9 theorems establishing
the existence of certain harmonic mappings are assembled.

The authors thank N. Korevaar, P. Li and R. Schoen for their interest
and suggestions and the referee for an improvement of Theorem 6.2. Part
of this work was completed while the first author was visiting Utah. He
would like to thank the University of Utah for its hospitality.

1. Geometric preliminaries

Minkowski space R"'1 is R" x R1 endowed with the metric ds2 =

Σtι(dχi)2 ~ (dxn+ι)2, where x = (xι, , xn) and xn+ι are the coor-
dinates of Rn and R 1 . Let {eα}α=1 π + 1 be an orthonormal frame, and

let {wa}a=ι n+\ ^ e the dual coframe. Therefore, wα(e^) = δa

β . Let

D be the usual Levi-Civita connection for R" ' x . Then one can define the

connection forms {wj} by

a / v a p

β

We use the convention that all repeated Greek indices are summed from 1
to n + 1, and all repeated Latin indices are summed from 1 to n . Hence

w/ + Wjl = 0 , w"*1 = w n + {

1 f o r /, j = 1 , ••• ,n

which reflects the symmetry of the Maurer-Cartan forms of SO(«, 1).
The torsion free condition of D is equivalent to the first structure equation

dwa = γ^wβ Λwβ

a,
β
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and the flatness of Rn'ι is equivalent to the second structure equation

Now suppose M is a spacelike hypersurface of R " ' ι , which means
that M is a hypersurface whose induced metric is Riemannian. Lo-
cally M is given as a graph of a function xn*1 = u(xι, , xn) sat-
isfying the spacelike condition \Du\ < 1. Throughout the paper we
denote the hypersurface by M or u interchangeably. If the projection
M 3 {xι, , xn , xn+ι) h-> (χι, , χn) is onto R" we say that M is
entire. Suppose now that we have chosen an orthonormal frame adapted
to M. In other words, e{, , en are tangent to M, and en+ι is the fu-
ture pointing unit timelike normal vector. Since wn+ι = 0 when restricted
to M, we have

By Cartan's lemma, there are htj such that w"+ι = Σjh^ and Λ/; =
A .j. for /, jf = 1, , n . This gives the second fundamental form of M.
The mean curvature H is defined by

H = -
n

Local geometry of M can be read off the structure equations. The second
structure equation gives

n+\ j

A: A : ,/

On the other hand,

Λ»/ - Σ w* A wk

k = Ω/ = - I χ ; Λ/w«,* Λ U,1 ,

where Ω/ is the curvature 2-form, and R/kl is the usual component of
the Riemann curvature tensor. We lower the upper index to the second
slot to get

(1.1) *ijki = -Wjι + Wjk

Note that our sign convention is such that Rχ2n is the sectional curvature
of the plane spanned by eY and e 2 . Therefore the Ricci tensor R.j and
the scalar curvature S are given by

(1.2) Ru = -nHhu + Σ hΛhkJ, S = -n2H2 + Σ h-j
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F o l l o w i n g [ 1 2 ] , w e d e f i n e t h e c o v a r i a n t d e r i v a t i v e h i k o f h r b y

k k k

Similarly one defines hijkl by

Σ hιjkiwl = dhijk - Σ hijiwkl - Σ hukw! - Σ
I I I I

Commutation formulas hold [11], [38]:

( L 3 ) hijkl ~ hijlk = ΣKRPJkl + hpjRpikl)
P

Define A = E,-,;*,*" and 5 = E,-,;,**,** τ h e n t h e following Bochner
type formula (Simons identity) holds [38]:

IΔΛ = 5 + n Σ HtJhu + A2-nHΣ huhjkhki.
iJ iJ,k

Therefore, if H is a constant, we have

(1.4) AA > 2A2 - 2nHAV\

Before we proceed, let us list some important earlier results.
Proposition 1.1 [11], [38]. Let M be an entire spacelike hypersurface

of Minkowski space Rn'ι which is closed with respect to the Euclidean
topology of Rn+ι. Suppose the mean curvature H is constant. Then the
following hold:

(1) M can be represented as a graph of a function xn+ι = u(x) =
u(xι, , xn) such that u is defined for all x eRn , and u satisfies the
equation

(2) M is complete with respect to the induced Riemannian metric.
(3) M has nonpositive sectional curvature. If H > 0, all principal

curvatures are nonnegative, and therefore u is a convex function.
(4) nH2 <A< n2H2.

(5) B<36n5HA.
We say M is a constant mean curvature cut if M is an entire spacelike

hypersurface of R π l with constant mean curvature //, and which is
closed with respect to the Euclidean topology. Cheng and Yau [11] proved
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that if M is a cut and H = 0, then M is a hyperplane. For constant
mean curvature cuts M, Proposition 1.1 implies that Ricci curvature R.j

and the scalar curvature S = -n2H2 + A are nonpositive. Therefore
.F = |S| = n2H2 -A is a smooth nonnegative function. Formula (1.4) can
be now rewritten as

(,.5)
nH

We end this section by checking that the Gauss map of a constant mean

curvature spacelike hypersurface is a harmonic map into hyperbolic space.

This was proved by Ruh-Vilms [34] in Euclidean space, by T. K. Milnor

[31] for surfaces in Minkowski space and by Ishihara [24] in general. First,

recall the harmonic map equation in moving frames [39]. Suppose M is

a Riemannian manifold with local orthonormal coframe {w1} and con-

nection form {w/}, and let N be another Riemannian manifold with

local orthonormal coframe {θa} and connection form {θa

b}. Suppose

/ : M -> N is a map. We define f . by fθa = Σ / Λ w' The covariant

derivative /*,.. is defined by

The map / is harmonic if and only if ]Γ\ f0.. = 0 for all a.
Let M be a spacelike hyperspace, and let {e{, , e π , ert+1} be an

orthonormal frame adapted to M. The Gauss map 9 is a map defined by
9 = en+ι: M —• //Λ , where Z/71 is the set of future pointing unit timelike
vectors. But Hn with induced metric is the usual model of hyperbolic
space of constant curvature - 1 [27]. Let {θa} be an orthonormal coframe
for Hn , and {θa

b} be its connection form. Differentiating en+ι, we have

i V
a=\

Since en+ι is the position vector of Hn , {ea} can be thought as an or-

it e n + 1 . Therefore wethonormal frame for Hn at e n + 1 . Therefore we have

which implies that

(1-6)
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The second structure equation gives

n

ΣWn+l AWb >

which implies that ^θb

a = wb

a . Differentiating both sides of (1.6),

, = Σ ̂  V
b

= dhai = Σ *.X + Σ V / + Σ hi™
b

Therefore we can conclude that &a

 tj = haij. Thus

by the symmetry of hijk . This proves a version of Ruh-Vilms Theorem
in our context:

Theorem 1.2. Let Mn be a spacelike hypersurface ofRn'1. The Gauss
map is a harmonic map into Hn if and only if Mn has constant mean
curvature.

2. A mean value inequality for supersolutions

The purpose of this section is to describe a local mean value inequality
for supersolutions of a linear equation. Applied to the scalar and Gauss-
Kronecker curvature equations of a constant mean curvature hypersurface,
this will give uniform curvature bounds on sectors for some cuts whose
lightlike set has nonempty interior.

Let u be an entire spacelike hypersurface of constant mean curvature
H > 0 of R" ' 1 . For x e u and r > 0 let B(x, r) c u be an intrinsic
geodesic ball about x of radius r. By Proposition 1.1, the Ricci and
sectional curvatures of u satisfy -n2H2/4 < Ric and -n2H2 < K < 0
so there is a lower bound vol B(x, r) >cχ (n)rn as well as an upper bound
vo\B(x, r) < c2(n, Ro, H)rn for all r < RQ. Since there is an estimate
for the first Neumann eigenvalue of compact convex domains in terms of
the lower bound of Ricci curvature, radius of the largest inscribed ball,
and the lower bound of volume [30], [40], we have the Poincare inequality
for r < Ro :

(2.1) / \f-f\2dV<c/ ί \Df\2dV
JB(x,r) JB{x,r)
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for all / e Wu2(B{x, r)), where

fdV.
JB(X , r

There is an estimate of the isoperimetric constant involving the same quan-
tities [15], [29]. Hence there holds for some cs(H, n, r) the Sobolev in-
equality:

(2.2) / fn/{n-l)dV) <cl \Df\dV
\JB(x,r) J JB(x,r)

for all f e W^x{B(x, r)). The mean value inequality for supersolu-
tions is deduced from the mean value inequality for subsolutions using
the well-known argument involving the Moser iteration scheme and the
John-Nirenberg Lemma. For completeness, we present an argument mod-
ifying Schoen [35]. See also [19].

Lemma 2.1. Assume that the Sobolev inequality (2.2) holds with con-
stant cs for functions supported in B(xQ, Ro). Then for all p > 2 and
c > 2 there is a constant c4(c, cs, n, p, RQ) > 0 so that given 0 < u e

Wι'2(B(x,R)) satisfying

(2.3) Au > -cu

for some B(x, R) c B(xQ, Ro), there holds

(2.4) sup u<cΛ l

 n i/Ί
B(x,ΘR) *\(l-θ)R JB(X,R) J

for all 0 6 ( 0 , 1).
Proof For p y σ > 0 such that σ + p < R we let τ/(dist( , x)) be a

cut off function such that η(r) = 1 for r < p, η(r) = (σ + p - r)/σ for
p <r < p + σ 9 and η(r) = 0 otherwise. Let q > 2. By multiplying (2.3)
by η2uq~ι and integrating we have

(q - 1) ί η2uq~2\Du\2 < 2 ί ηuq~l\Du\ \Dη\ + c ί η2uq.

Estimate the second term by

2 η u q ~ { \ D u \ \Dη\ < \ { q - l ) u q - 2 η 2 \ D u \ 2 + J L f *

Hence

(2.5) 2 / η \DuHI I <c I η uH +
q2 J ' ' ' ~ J ' q-\
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But

\Dη2uq\<2ηuq\Dη\ + qη2uq-l\Du\

= 2ηuq\Dη\ + 2η2uq/2\Duq/2\.

Hence using the inequality lab < εa2 + ε~ιb2,

l/^Vl < *&- + auq\Dn\
2 + ση2\Duql2\\

Substituting this in (2.5) and applying the Sobolev inequality we obtain
for K = n/(n - 1),

(f CQ G

Using \Dη\ < l/σ and q>2,

Of gκ\
l/K ^ ( cq2σ 7 \ f

B(x,p) ) ' V 2 ^ " ^ σ)JB(x,P+O)

B(x,p+σ)

where c3 = C,(C/?Q + 4). Now iterate this inequality by setting qt - pκι,

po + σo = R, σι• = (1 - θ)Re~ι~ι, and pt + σ. = /»,._!. Hence POO = ΘR.

Put

Then (2.6) implies / / + 1 < (c3qi2
i+ιγ/qΊr So we obtain (2.4) as a finite

infinite product

(2.7) sup u = lim /,. < I ^ c ^ l ^ Ϋ ' ^ = c4lo.

Lemma 2.2. Let A, β and p be constants such that 0 < p < 2, 0 < A
and 1 < β, and suppose the sequence {/,} c R satisfies

(2.8) log/,. = o(λ~ι) and Jt<A^J-+{ for i = 1, 2, 3, •• ,

λ=l-p/2. Then Jo < A2/pβ4λ/pl.
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Proof. By taking the log of (2.8),

log/,. < logΛ + ilogβ + λlog/ / + 1.

Repeating the application of this inequality gives

A:— 1 k-\

log/0 < λk \ogJk + logΛ Σλ* + lQg^ Σ α ' '
/=0 /=0

where k is any positive integer. Letting k —• oo and making use of
log./, = o(λ~ι), we obtain

The proof is completed by taking the exponential, q.e.d.
These lemmas imply a mean value inequality for subsolutions.
Lemma 2.3. Assume that the Sobolev inequality (2.2) holds with con-

stant cs for functions supported in some B(xQ9 Ro). Let c > 0, p > 0.

Then there is a constant c5(c, cs, n, p, RQ) > 0 such that given any

0<ueW1'2 satisfying

(2.9) Au > -cu

in B(x, R) c B{x0, RQ), and any θ G (0, 1), there holds

(2.10) sup u<cA * f lί) .
B(x,ΘR) \(1-V)K JB{X,R) I

By Lemma 2.1, the result holds for p > 2, so suppose 0 < p < 2
and let A = 1 -p/2 and 0 < p < p + σ < R. From (2.4) with squares we
estimate

/ \ 1/2

sup u < —jr sup M I if I ,
B(x,p) σn/ B{x,p+σ) \JB{x,p+σ) J

where c6 = c4(c, cs, n, 2, Ro). We may suppose that 0 < ||M|| B^X R) or
else both sides are zero. By substituting

(2.11) v = "

we obtain
^ C6 λ

SUP V < —±2 SUp V .
B(x,p) <jn B{x,p+σ)
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Now iterate using pQ = ΘR, oχ, = (1 - θ)R2~ι~ι and pt + σz = /?.+1 so

that p^ = R. By letting J. = s u p 5 , p)v, from (2.11) we obtain the

recursion

On the other hand, by Lemma 2.1,

C2"/'||U||

For i large enough, 11^1^^^.) > \\\u\\PiB{XiR) so log/,. = O ( Ϊ ) . NOW
we may apply Lemma 2.2 to obtain the result.

Lemma 2.4. Let K = n/(n-l), and let α, β > 0 be constants. Suppose
the sequence {/•} c R satisfies

(2.12) / f f

/ * < /

ybr ι = 0 , l , 2 , . . . . 77zeΛ2 there is a constant cΊ(ή) > 0 so that

(2.13) J, < [ c / / 2 / 0

1 / 2

 + c7(l + α ( " - 1 ) / 2 + A 1 / 2 ) ^ .

Substitute Jf. = // / 2 / c ' . Taking 2κ[ roots of both sides of (2.12)
θ θ θand then using the calculus inequality (x + y)θ < xθ + yθ for x , j ; > 0

and 0 < θ < 1 gives for / > 0

Ji+γ < 2 (α /, + 4/7 K: ).

Iterate this inequality to obtain the estimate

(2.14) +4 2j/2κJκJβl/2κ\

Observing Σ™ K~J = n a n d Σo° JK~J = n{n - \), and that the total
powers of a and β are less than \n we conclude (2.13). q.e.d.

There is also a mean value inequality for super solutions.
Lemma 2.5. Let c > 0 and 0 < θ < 1. Assume that the Poincare

and Sobolev inequalities (2.1) and (2.2) hold with constants cp and cs
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for functions supported in some B(xQ9R0). Suppose M satisfies the vol-

ume condition γo\B(x,r) < c2r
n for r < θ~ιR and B(x,θ~ιR) c

B(x0, Ro). Then there are constants po(c, c 2 , cp, cs, n, Ro, θ) > 0 and

c8(c, c 2 , cp, cs, n, p, Ro, θ) > 0 such that given any W1'1 supersolution

u>0 satisfying

(2.15) Au<cu

in B(x,θ~ι,R) and 0<p <p0, there holds

ί 1 r V/P

(2.16) inf u>cs - ^ / ι/ .
B(x,ΘR) yR JB(X,R) J

Proof From (2.15) we obtain

Au~p = -pu~p~lAu + p(p+l)ι/~2\Du\2

> -pcu~p +ρ(p + l)t/~ \Du\ > -pcu~p.

Lemma 2.3 implies

—p Cc f —p

sup u < -—^—g / u .
B(x,ΘR) (l-σ)K JB(X,R)

Putt ing c 9 = c~λlP{pc, cs,n,l, R0)(l - θ ) n / p > 0 , w e have

-1/P

inf u >
K JB(x,R)

The result will follow when we show

(2-17) (ί u->)([ /)<c 1 0 J R
2 ".

\JB(X,R) J \JB(X,R) J

For this purpose, consider the function w = β -logu. (2.17) follows if
we can show that for some 0 < p0 and any β,

(2.18) / epW<cnR
n for all 0 <p<pQ.

JB(x,R)
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We have the weak inequality

(2.19) Z*}ί \n£ \

Multiplying (2.19) by η2 , where η is the cutoff defined in the proof of
Lemma 2.1, we obtain

ί η2\Dw\2 < ί cη2 + η2Aw = ί cη2 - 2 ί ηDη • Dw

(2.20) ί η2\Dw\2 < 2c f η2 + 4 ί \Dη\2 < ^2c+ -^Λ volB(x, p + σ).

Letting p = R and p + σ - θ~ιR, by (2.20) and the Poincare inequality
(2.1), we find

= / \β-logu\2<cpR
2 f \Di

JB{x,R) JB(X,R)

<cpR
2 ί η2\Dx

JB(x,θ~ιR)

\w\2

B(x,R)

,2

< cpvo\B(x, θ'lR)R2

where we take β = fB,χ R) log u. Hence, by the Schwarz inequality,

(2-21) (Ljwtfic'^B'x'e~'R)R\2c+τ^w*)-
Choose q > 1. Multiplying (2.19) by η2\w\2q and integrating give

ί η2\w\2q\Dw\2 < ( 2qη2\w\2q~l\Dw\2- ί 2η\w\2qDη Dw + ί cη2\w\2q.

Using Young's inequality ab < εap/p + ε~p /pbp /p , where \/p -f \jp =
1 with a = l^l2^"1, ε = pj2 and p = 2q(2q - I )" 1 , and Schwarz's
inequality, we obtain

2\Dw\ \Dη\η < tf\Dw\2 + 4\Dη\2.

Thus

(2.22) ίη2\w\2q\Dw\2 < ί(4q)2qη2\Dw\2 + j(\6\Dη\2 + 4cη2)\w\2q.
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However,

\D(η2\w\2q)\ < 2η\w\2«\Dη\ + 2q\w\2q~lη2\Dw\

< 2η\w\2q\Dη\ + \w\2q~2η2 (σw2\Dw\2 + ̂  J .

By means of \Dη\ < 1/σ and q2\w\2q~2 < \w\2q + q2q~ι we find

\D(η2\w\2q) < ̂ -\w\2q + ση2\w\2q\Dw\2 + « ΐ l ΐ .

Integrating this inequality, using (2.20), (2.22) and collecting terms yield

Applying the Sobolev inequality (2.2), and setting K = n/(n - 1), and
c\2 = c5(19 + 4CΛQ) , we arrive at

(2.23)

fB(x,p+σ) σ

Now this inequality is iterated. Let qt = κι, po = θ~ιR, σi+ι +Pi+X = P{,

and σt = {θ~ι - l)R2~i. Then poo = R. Denote

.2K1'

'••]?/
^ JB{x,pi

\W\

Pi)

Upon substituting g = gt, p = pi+ι and σ = σ/+1 in (2.23) and using the
volume bound we obtain the recursion

where c1 3 = 2cnθ(\-θ)~ι and c1 4 = 2c2θ
ι~n(l-θ)~ι . Applying Lemma

2.4 gives

where c 1 5 , cι6 > 0 depend on c9c2, cs, n, Ro and θ . To estimate the

exponential, for each j e Z + we take / such that 2κι~ι < j < 2κι. Then

by the Holder inequality we have

R*JB{x,R]

m - ' °2 -WuU + V'o) -cπcιz-> e χ PWV

Thus (2.18) follows: using Stirling's inequality j J < ejj\ and (2.21) we
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obtain

— I
R Jβ{x, R)

where c n , c 1 7 , c 1 8 , c1 9 > 0 depend on c, c 2 , c^, c s , n, i?0 and θ and
provided that

3. A splitting theorem for constant mean curvature cuts

In this section we prove a splitting theorem. It was first observed for
n = 2 by T. K. Milnor [31]. The mean value inequality of §2 for the
scalar curvature and (1.5) may be used to show that if M is a constant
mean curvature spacelike hypersurface of Minkowski space, and if there
is a point p e M where the second fundamental form has rank one, then
M splits as Hι x Rn~ι. Similarly, as in Lemma 7.3, the Gauss-Kronecker
curvature can be used to show the result for full rank. We present the
proof which works for all ranks due to N. Korevaar [28].

Theorem 3.1. Let Mn be an entire spacelike hypersurface of constant
mean curvature H > 0 (< 0) in R" ' 1 . Then, after a R"'1 rigid motion,
RnΛ splits as a product Rk'1 xRn~k such that Mn also splits as a prod-
uct Mk x R""*, where Mk = Mn Π R*'1 is a strictly convex {concave)
hypersurface of R ' with constant mean curvature nH/k. In particular,
if Mn is represented as a graph of an entire function u, the Hessian w..
has constant rank k everywhere.

Proof Suppose that for some unit vector v and at some point x eRn,
uvv{x) = 0. By applying an isometry of R " ' ι , we may arrange that x = 0,

w(0) = 0, v = d/dx1, Du(0) = 0, wu(0) = 0 and u^O) is positive
semidefinite. The constant mean curvature equation can be rewritten as

To analyse this equation, we consider it as

Au = a{\Du\2)uiujuij +

where a and b are analytic functions in |Dw|2. We claim that uu = 0 .
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Differentiating twice with respect to d/dxι, we have

Aun = ta'u^Unti^UiUjUij + 2aumlumluiujuij

+ 2a'UmUmUUiUjUij + *a'UmUmlUilUjUij

( 3 > 1 ) + ^'UmUmlUiUjUijl^2aUillUjUij

+ 2aunujluij + 4aunujuijι

+ fl«l My«O 1 1 + 4 6 \ M | , 1 M w I l w l

+ 2 *' W ml W ml+ 2 f t ' W m W mir

Assuming that w π is not identically zero, since u is analytic, we may take
a power series expansion of w n at 0 , w π = / * + / ? , where the lowest order
term h is a nonzero homogeneous polynomial of degree m > 2 and the
rest of the series is p. We observe that the convexity of u.. implies the
nonnegativity of all 2 x 2 minors so that for any /,

Summing over / gives

Since Au(0) = nH, each term un is of order at least m/2. Hence uijX

is of order at least m/2 - 1. u( is of order at least 1, and since un

is of order m, uιu and uιuj are of order at least m - 1 and m -2
respectively. Using these we can check that the right-hand side of equation
(3.1) is of order at least m . On one hand, Ah is either identically zero,
or of order m - 2 which cannot occur because of order consideration.
Therefore Ah = 0. On the other hand, by convexity, un > 0, which
implies that h > 0. But h(0) = 0, so by the strong maximum principle
h = 0, which contradicts the assumption that the power series expansion
of wu starts at an mth order term. Therefore un = 0 . By analyticity,
un = 0 everywhere, therefore M is ruled by lines in the xι direction.
Since u was arranged to be nonnegative, w(0) = 0, and u is convex,
we conclude that M is ruled by lines parallel to the x^axis. Therefore
Mn = Mn'x x R1 and also R"' ι = R"" 1 ' 1 x R 1 . Repeating this procedure
completes the proof.

4. Extrinsic properties and convexity

In this section we show that the image of an entire constant mean cur-
vature hypersurface under the Gauss map is convex. In fact, the image
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is the convex hull of a set of points of ideal infinity of hyperbolic space,
Hn . By applying known existence theory [38], for any subset L c //(oo),
there is a constant mean curvature cut of R"' ι whose Gauss map image
is the convex hull Conv(L) c Hn . We begin by describing and sharpening
some known [38] extrinsic properties of constant mean curvature cuts of
Minkowski space.

Many of the results of this section are elementary so we often only sketch
the argument. We usually assume H > 0 so u is convex. H < 0 and
u concave is handled similarly. Associated to M is a cone, a positively
homogeneous of degree one function VM , gotten by blowing down.

Lemma 4.1. Let u be a convex spacelike function on R" . Then

(4.1) Vu(x)= lim U{rx)

v ' " v ' r—•oooo
r>0

exists for all x, and Vu is an achronal (nontimelike) positively homoge-
neous function.

Proof Choose p e Rn and let fr(x) = (u(rx) - u(0))/r for r > 0. Be-
cause of convexity, for θ > 1 we have fr(x) < fθr(x) so fr is an increas-
ing sequence. Because fr is spacelike, it is also bounded, \fr{x)\ < \x\,
so the limit converges pointwise. One checks that it is a convex achronal
function with homogeneity of degree one, i.e., if θ > 0 then Vu(θx) =
ΘVu(x). q.e.d.

The constant mean curvature cuts are asymptotically lightlike. We give
a slight improvement of [38, p. 52].

Lemma 4.2. Suppose Mu is an entire spacelike constant mean curvature
hypersurface ofRn'1 which is the graph of u. Then Vu is null in the sense
that for all x e Rn and δ > 0, there is a y e R" so that \x-y\ = δ and
\Vu{x)-Vu(y)\ = δ.

Proof We may assume H > 0 so u is convex. If the conclusion is
false, then there exist a n x e R " and ε > 0 so that for all ξ e dB(x, δ) c
Rn we have

Vu(ξ)<Vu(x) + (l+2e)δ.

Since ur(x) := u(rx)/r —• Vu(x) uniformly on compacta, we may choose
an r0 large so that for all r > r0 and all ξ e dB(x, δ),

u{rξ)/r<Vu(x) + (l-ε)δ.

But the mean curvature of ur satisfies Jίur = rH. By the maximum
principle, ur is less than another mean curvature rH surface with larger
boundary values on dB(x,δ),

ur(y) < Vu(x) + (1 - ε)δ + ψ~2H~2 + \x - y\2 -
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for all y e B(x, δ). In particular this holds at y = x. Letting r -• oo
leads to a contradiction, q.e.d.

Denote the class of all null achronal positively homogeneous degree one
convex functions on Rn by β. It is known [38] that every w e β is the
blowdown w = Vu of some constant mean curvature cut u of R"' . The
class f̂ is in one-to-one correspondence with &, the set of closed subsets
of S"- 1 .

Lemma 4.3. Let E be a closed subset of Sn 1 . Then the function on
Rn given by

(4.2) VE(x)
ξeε

where the inner product is the. usual one from Rn , is convex, homogeneous
and null. In fact, the mapping SF —• β given by E ι-> VE is a one-to-one
correspondence.

Proof. Convexity and positive homogeneity are immediate. To see that
VE is null, suppose that it is not at some x € R" and δ > 0. Then there
is an ε > 0 so that VE(ξ + x) < VE(x) + (1 - 2e)δ for all \ζ\ = δ. By
definition there is a z e E so that VE(x) < x z + εδ . Now, taking ξ = δz
and combining yields z (JC + δ z) < VE(x + ζ) <x- z + (l-ε)δ , which is
a contradiction.

To show that E \-> VE is injective, suppose that for two sets Eχ φ E2 we
have VE = VE . By switching if necessary, there is a point z e Eχ-E2. By

closedness, there exists an ε > 0 so J5(z, e)ΠE2 = 0 . Hence \ξ-z\2 > ε2

for all ξ e E2 which implies 2-ε2 > 2z ξ, so F £ (z) < 1 - \ε2. However

this leads to a contradiction since VE(z) = \.

To show that the mapping E ι-> J^ is surjective, we construct an inverse
using the tangential map of a convex function. Following Bakelman [4],
for an arbitrary convex function ζ defined on a convex set C c R " , and
xQ € G, the tangential mapping of a point is defined to be the set of
supporting directions

*c(*o) = {P = (P1 > > P") € R": CM > P (x-xo)+ζ(xo) for all x e Rn}.

If w is differentiate at x0, then the tangential map is χu(x0) = Du(x0).
Now, for a set E c G, define

For i; G β let

(4.3)
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This is a closed subset since χv(0) is closed. Now let v = VE . T o show

that this is an inverse it suffices to check v —v on unit vectors. If there is
a \z\ = 1 so that v\z) > v{z), by the definition of v , there is a yeEυ

so that z y > υ(z) which contradicts Eυ are supporting directions of v ,
namely, υ(ξ) > ξ y for all ξ eRn . On the other hand suppose for some
\z\ = 1 we had v'(z) < υ(z). Because v is null, there is a \y\ = 1 so that
υ(z + y) -v(z) = I. Since v is achronal and convex, this is extremal, so
υ(z+ξ)-υ(z) >ξ y for all ξ e Rn , in particular, υ(z) < z y. Replacing
ξ by sξ, dividing by 5, using the homogeneity and letting s —• oo shows
that v(£) > y ξ for all ί G Rn , so that y e ^ is a unit supporting vector
at 0. But this means v\z) > y - z, contradicting the assumption, q.e.d.

If Mu is an entire convex achronal hypersurface of R"' ι which is the
graph of u, we define

(4.4) Lu = χVu(0)nSn-l=EVu

to be the set of lightlike directions of M. In case u is also a constant
mean curvature, it is smooth with null blowdown. Hence there is another
interpretation of the lightlike vectors.

Lemma 4.4. Suppose that u is a constant mean curvature H > 0 cut
ofVLnΛ.Then

Proof. To show that Du{Rn) c χv (Rπ) choose ξ e Du(Rn) and x. e

Rn such that Du{xt) = ξ. -> ξ. The supporting linear functions l.(x) =

ξi (x - x.) + M(JCy) satisfy ^.(y) < w(y) for all y eRn . This relation is

preserved in blowing down, so that x - ξt = Vr(x) < Vu(x). Since both

sides are homogeneous, it suffices to check equality on 5(0, 1). There,

* {,•—•*•{ uniformly.

To show χv(Rn) c χ ^ 0 ) let ξ e χv(Rn) and ξ. e χv {Rn) so that
M M U U

ξj->ξ. Then choose x. e Rn so that ξ. e χv (x.). This means that for

a l l y ,

(4.5) Vu(y)>ξr(y-xi) + Vu(xi).

By replacing y with sy for s > 0, dividing by s, using the homogeneity

and letting s -> oo we get FM(y) > <*f y for all y . Hence ξt e χVu(0)

which is a closed set (e.g. [33, p. 10]) so ξ e χv (0).

Finally, to show that χv(Q) = χv (0) c Du(Rn) we may assume that u
u u

is strictly convex, since by the Splitting Theorem 3.1, if in some isometric
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image when u splits off an R^ then so does Vu . We may also assume,

after a rigid motion of Rn'1, that u has its minimum at 0. Therefore,

zero is an interior point of the convex set χv (0). First suppose that ζ is

an interior point of χv (0). Let c — min{FM(>;) —ξ-y: \y\ = δ}, where

δ > 0 is fixed, c > 0 since ξ is an interior point of χv (0). Because ur

converges uniformly to Vu on 5(0, δ) as r -> oo, for r sufficiently large

we have ur(y)—ξ-y > c/2 whenever \y\ = δ and ur(0) < c/3. Therefore

the function f(x) = ur(x) - ξ x has its minimum at some point x with

\x\ < δ. Hence ξ = Dur{x) — Du{rx). If ξ is in the boundary of

χv (0), then there exists a sequence of interior points {.-—•£. Thus there

are JCZ G Rn so that Du(xt) — ξ. and the proof is completed by letting
i -*• oo. q.e.d.

We are now in the position to relate the lightlike set of a constant mean
curvature cut u to the image of the Gauss map &{u). For this purpose,
we observe that we can interpret the preceding Euclidean convexity con-
siderations in terms of the hyperbolic space.

Lemma 4.5. The projective map p taking the set of future pointing unit

timelike vectors Hn c Rn'ι to the unit disk

( i Ύn \

p:(x , ••• ,x ,x ) ~ -rττ> >-^ϊ\

is an isometry of hyperbolic space taking the hyperboloid model Hn to the
Klein model Kn with metric

The Gauss map &: Mu-+ Hn from the graph coordinates φ: Rn -> Mu to

the Klein model (5(0, 1), ds2

K) takes the form

o φ = Du{x).

Proof In graph coordinates, the induced metric of the hyperboloid is

Let pι = ρ(xι) = xι/xn+ι = xιI\J\ + \x\2 be the coordinate in the disk.

Hence xι = pι/Jl - \p\2 so changing variables gives (4.6). In graph
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coordinates, the Gauss map is

so ρ(&{x)) = Du{x). q.e.d.
The previous lemma can also be seen geometrically. A totally geodesic

hypersurface of Hn is an ambient rotation γ e SO(n, 1) of the intersec-
tion of a vertical hyperplane of Rn'ι with Hn . The projection p maps the
rotated hyperplane to itself, so in particular, the image of a totally geodesic
hyperplane is a Euclidean straight hyperplane of the disk. But the metric
of the disk for which the Euclidean hyperplanes are totally geodesic is the
Klein metric.

We may also identify the compatification or geometric boundary H(oo),
the set of ideal points of hyperbolic space. H(oo) is defined to be the
asymptotic classes of geodesic rays of Hn where we say that two geodesic
rays y{, γ2: [0, oo) —• Hn are asymptotic if distHn(γ{(t), y2(0) remains
bounded as t —• oo. This set is naturally identified to the boundary sphere
of the Klein model of hyperbolic space //(oo) <-+ dB(0, 1). Hence Conv
means both the convex hull in the Euclidean sense or intrinsically in the
hyperbolic sense, since the affine structure of Έ" and 5(0, 1) agree. Then
Conv(L), where L c //(oo), means the hull of ideal points, as usual.

Lemma 4.6. Let u be a constant mean curvature // > 0 cutofR"'1.
Then

Proof. Because χv (0) is a closed convex set we have Conv(LJ c

χv (0). To show the other inclusion we have from Lemma 4.3 that

V(x) =

Now suppose there is a z e χv (0) - Conv(LM) such that \z\ < 1. Because
z is a supporting direction, we have Vu(y) > z y for all y. However, since
every point not in a compact convex set Conv(LJ can be separated from
it by a linear functional, there is |C| = 1 and ε > 0 so that ζ Conv(LJ <
ζ-z-e. Hence Vu(ζ) < ζ z-ε . A contradiction ensues for y = ζ. q.e.d.

We may now combine everything.
Theorem 4.7. Let L c //"(oo) be an arbitrary closed set. Then there

exists a harmonic map & from an entire spacelike constant mean curvature
hypersurface M of Rn'1 to hyperbolic space Hn such that

(4.7) W(M) = Conv(L).
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Proof. L can be realized as a subset of S"" 1 . Let VL be the unique
corresponding homogeneous, achronal, convex, null function defined by
Lemma 4.3. By [38] there is a constant mean curvature cut u of R"'1

where Vu = VL. The Gauss map & is harmonic by Theorem 1.2. By
Lemma 4.5, the image of the Gauss map 3?(u) = Du(Rn). This, in turn,
by Lemma 4.4 is χv (0), which by Lemma 4.6 gives (4.7). q.e.d.

u

Theorem 4.8. Suppose M ofRn'1 is an entire spacelike constant mean
curvature H > 0 hypersurface which is the graph of u. Then the Gauss
map & is a harmonic map to Hn so that

where Lu is the lightlike set of u. If u is strictly convex, then <§ is a
diffeomorphism onto the interior of Conv(LM). More generally, if k is
the largest integer for which Conv(LJ n Ak has nonempty interior in Ak,
for some Ak, a totally geodesic k-plane of Hn = a flat of Rn, then the
cut splits, up to ambient isometry, as M = Mk x R""^ intrinsically and
extrinsically as in the splitting Theorem 3.1, where M is strictly convex in
Rk'1 and the restriction &\ Mk -+ (Conv(LM) ΠAk)° is a diffeomorphism.
In particular, if Lu is affinely full, i.e., is contained in no Ak, k <n, then
u is strictly convex.

Proof. Lemmas 4.4 and 4.5 and Theorem 1.2 work as before. The rest
follows from the Splitting Theorem 3.1.

5. Comparison surfaces

In this section we describe hypersurfaces of revolution which will be
important in the construction of barriers for the boundary value problem
as well as in transferring extrinsic to intrinsic information. Various special
constant mean curvature surfaces in Minkowski space have been studied
([8], [14], [21], [38]). These are the analogs of the Delaunay surfaces of
revolution in higher dimensions. One such surface, called the semitrough,
is asymptotic to the product of the (n - l)-dimensional hyperboloid and
R1 along a ray and asymptotic to the hyperboloid in other directions. We
need to be able to estimate the gap between the semitrough and hyper-
boloid carefully for our purpose. In R"' ι the spacelike surfaces invariant
under the SO(AI - 1 , 1 ) action are described by a single function f(xx).
Denoting x = χ{ and x = (x2, , xn), the hypersurface is thus

u{x{ ,x2,' ' , x n ) =
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Substituting this into the mean curvature equation

= nH

we find, taking H = 1,

(5.1) I , ' _ \ + » l = n .
/V1 " iff

A solution of this equation is given by the hyperboloid

h{x) = \l\+x2.

Another is the hyperboloid of one lower dimension crossed with a line,

Corresponding to the classical Delaunay surfaces [14], [22] there is a family
interpolating these two. There is another complete surface, the semitrough,
characterized by f > 0, which was first observed by Calabi [10] and which
has the property that / —• h as x —• oo and /' —• / as x —• —oc.

Lemma 5.1. There is a solution f(x) of (5Λ) defined for all x with
the following properties:

(a) 0 < / < 1 and f" >0 for all x.

(c) max(/, JC) < f(x) < h(x) for all x .
(d) There is a constant c > 0 depending only on n so that \f(x) -

h(x)\ < cx~n~ι whenever x > 3.
Proof First consider the initial value problem (5.1) for a function y =

f{x) such that /(0) = y0 and /(0) = 0 for some / < y0 < 1. Thus,
by (5.1) we have /"(0) > 0 so / and f are increasing functions near
x > 0. We find a first integral for (5.1) to solve the initial value problem.
Differentiating out the first term of (5.1), changing variables u(y) = f{x),
where y = f(x) is the new independent variable, multiplying by yn~x and
integrating we find that

(5.2)

with initial condition w(y0) = 0. Since y0 > I, (5.2) shows that 0 < u < 1
and M is an increasing function which exists for all y > y0 . Hence / is
convex and because 0 < f < 1, f(x) exists for all x > 0.
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Since the solutions of (5.1) are invariant under translation along the
x-axis, we can construct a sequence of functions approximating the one
desired in the lemma by translating solutions of the initial value problem.
Choose a decreasing sequence / < y. < 1 such that y. —• /. Let f[a t]

denote the solution of the initial value problem for (5.1) with f[a z](α) = y.
and ftaϊx{μ) = 0 defined on (α, oo). Because f < 1 we have L ^(x) <
h(x) for all 1 < x. Thus we may define

α = inf{α < 1: h(x) > f[aJ](x) Vx > a}.

Let {f.} be the sequence of solutions f.(x) = f^a ^(x).

We claim that ai —• -oo. To see this, observe that f.(l) > 1 and that
if ai < 0 then f.(0) < 1. Estimating (5.2) on the left and right, we find

(5.3) \ + \u< l+az + ± β z 2 f o r y . <y<l,

where

y v

Taking 0 < cj < 1 defined by ^(c () = 1, using (5.3) we compute bt[y) =

f-\y) for yt <y<l by

•' dy ^ r ^ dz

(5.4) ' 2

-Vi)

Now at = 6f.(y.). Note that as y. -* /, a -• 0 and β -* 2n2/{n-\).
Hence c{ - ai —• oo. By the maximum principle, f. and h do not make
interior contact, and are therefore asymptotic. Since both are asymptoti-
cally lightlike, h -+ |JC| and f, h1 —• 1 as x -* oo. Since 0 < / ' < 1 we
also have f^x) > max{/, x} . In fact, for any fixed y, using (5.2) we see
that fl(f~{{y)) is an increasing sequence so that by the maximum prin-
ciple, f. is a decreasing sequence of functions. But for fixed y by (5.4),
ci~bj(y) has a uniform lower bound as / —• oo, which increases as y —> I.
Therefore, for any compact interval [b, d] c R there is a uniform bound
0 < kχ(b) < fj < k2(d) < oo, and by (5.4) there is a bound of f away
from 0 and 1. Thus a subsequence converges to a solution / required in
the lemma satisfying properties (a, b, c).
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Finally we will compare / to the hyperbola. When y0 = 1 we get the

hyperbola solution h(x), with corresponding υ(y) = ti(x) such that

(5.5)
1 - t Γ

Since / satisfies (5.2) with y0 = /, we now estimate, using (5.5),

d (U~\ r-\ 1 1 1 1
-γ-(n (y) - f (y)) = <
d y v " "

where ε = ln~ι(l - l)yx~n. By putting the expression over a common
denominator we find when y > 2,
(5.6)

lyε + ε2

- y~2 + yjl - (y + ε)-2)y2(y + ε)_ y-2y/l-(y

for some c = c(n). Because l im^^(h~ ι (y) - f~\y)) = 0, we conclude
from (5.6),

0<h(z)-f(z)<Γ\y)-h-ι(y)

(z-l)
n+ι

where z = h ι(y), and so (d) follows.

6. Existence of constant mean curvature cuts

In this section we sharpen known results [38, Theorem 2] for prescrib-
ing constant mean curvature hypersurfaces in Rn'ι by their asymptotic
behavior. It was unknown how large the classes of solutions determined
by their projective boundary values were [38]. In fact, by Theorem 6.2
we show a much finer structure and construct many different solutions
within each projective class. The existence of these hypersurfaces reduces
to construction of global barriers.

Proposition 6.1 [8] [38]. Suppose there exist functions v(x) < w(x) E

CO}1(RW) which are {weak) sub- and super-solutions to the prescribed
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mean curvature equation

(6.1) divf Du =) =nH,
\yJl-\Du\2J

\Du(x)\< 1 forallxeR",

for H = const > 0. Then there exists a smooth solution u(x) of (6.1)
whose graph is an entire spacelike constant mean curvature hypersurface of
R"'1 which is complete in the induced metric. Moreover, u{x) satisfies

v(x) <u(x) <w(x) forallxeRn.

By using Lemma 5.1 we are able to construct barriers which sharpen the
existence result to

Theorem 6.2. Let L c S""1 be a closed subset containing more than
one point. Let fQ(θ) be any C°(L) function. Then there exists an entire
spacelike constant mean curvature hypersurface u(x) with the property that
the lightlike set Lu = L and

(6.2) lim (u{rθ) - r) = fo{θ) for allθeL,

where we have identified Sn~{ with the set of unit vectors of R" .
With the notation and method used previously [38], the idea is to replace

the hyperboloid by the semitrough in the barrier construction. The three
constant mean curvature H = 1 hypersurfaces we use are the hyperboloid
h , trough τ, and semitrough σ along the Xj-axis defined by

h(x) = yfl + \x\2, τ(x) = J?-— + \x\2, σ(x) = ψ\xj+\x\

where x = (xχ, Jc) and / is defined in Lemma 5.1. The theorem, we
believe, can be proved for a wider class of /0 's.

Proof By scaling R " ' ι , without loss of generality we may assume H =

1. First assume that fQ = f e C2(G) for some open G D L. Choose

an open Gf c S""1 such that I c G ' c G ' c G , a n d extend f\G, to a

C2-function on S""1 and then to R" - {0} by /(JC) = /(JC/|JC|) in such a

way that for all X J G S " " 1 ,

( 6 . 3 ) \f(x) - f ( y ) - Df(y)(x - y)\ < M \ x - y \ 2 = - 2 M y . { x - y ) 9

where M depends only on L and / . To construct the supersolution,
define p(y) = -Df(y) + ky for y € S""1, where k is a large constant to
be chosen later. Now define

z2(x;y9f) = f{y) + k + y/ί + \x -p{y)\2.
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Let θ e Sn~ι be arbitrary. Define the limit operator Λ on convex
achronal hypersurfaces w by

A[w]{θ)= lim(w{rθ)-r)
r—> o o

so that y Df(y) = 0 implies

Λ[z2(. y, f)](θ) = f(y) + k-θ p(y), Λ[z2(- y, f)](y) = f(y).

We compute angular and radial derivatives using the Schwarz inequality
to show

( 6 4 ) &,
ψ ψ=y

j-(z2(rθ',y,f)-r)<0.

Hence it follows by choosing k = 2M that for all fixed y e Sn~ι,

z2{z \y,f)>\x\ + f(x) for all x e Rn.

For any closed set F c S"" 1 , a supersolution [38] which has F as its
lightlike set can be defined by

g2(x;F,f)= infn(VF(y) + \Jl + \x-y\2) + sup \f(θ)\,

where VF(x) = sup{x y: y G F} is the homogeneous function of degree
one whose lightlike set is F . We can now define the supersolution

w(x\L,f) = minU2(.x;L, / ) , inf z2{x; θ,

We have w > VL(x) + f(x) and A[w](θ) = f(θ) for all θ in L.

Let ~B{Θ, p) C Sn~ι be a closed ball about θ of radius p in the sphere.
Since the set of lightlike directions, Lσ, corresponding to σ(x) is the
half ball B+ = Sn~ι n {x: ^ > 0} , we can find an isometry β of R"' ι

that takes a into a hypersurface whose lightlike directions are exactly
~B(Θ, p). Denote the corresponding function by σ̂  ^(.x). For constructing

the subsolution, for y e S " " 1 let

ζ(x'9y,p,f) = f{y) -k + σyp{x+p(y)).

Let z{ be defined like ζ, but with h in place of σ. Then ζ < zχ < z2

follows from the fact that a < h. Arguing similarly to (6.4), using the
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f a c t t h a t σ(rθ) - h{rθ) - + 0 a s r - > o o , f o r a l l θ = ( θ l 9 > - , θ n ) € S n ~ ι

such that θ{ > 0, we have

Λ[C( ;y,/>,/)]ϋ>) =

(6.5) 77- (/Cv) - fc 4- ψ

By compactness, we can fix an η > 0 such that 5(0 , η) c G; for all
θ G L. Now take a sequence 0 < Pj < η such that />.—•(), and let Ly =

{0 E S"" 1 : dist(0, L) < p } be the p parallel set to L. Take increasing

and decreasing f~<f*e C2(Sn~{) approximating the boundary values

f~ < fQ < ff~ on L and U - f~ < Pj on L.. Define the sequences

V;(*) = supζ(z 0, />,., / ; ~ ) , ^-(x) = w(x

Vj is a subsolution and ii^ is a supersolution by construction, and both
have L as lightlike set. To check that v. < w. it suffices to check
(6.6)

+ ζ{x',ζ, Pj

for all X E R " , ( G I , μ e LJ . By isometry, we may assume without

loss of generality that L^ = B+. The first inequality of (6.6) holds by

construction, since q2 > h(x) for xχ > 0 and also q2 > τ(x) for xχ < 0.

By comparing (6.4) to (6.5) we see that Λ[z2(- y, //")](#) > ff(θ) for all

y , θ e Sn~{. But A[C( y,pj9 f~W) < f~(θ) for all y e L and θ e

Sn~ι so that asymptotically, the two unit mean curvature hypersurfaces
satisfy

Hm (z2(rθ; y2, fj) - ζ{rθ\yλ, p9 f~)) > 0.

Hence, by the maximum principle, we obtain the second inequality of
(6.6).

Using Proposition 6.1, we conclude that there is a sequence of solutions
Uj which satisfy \A[Uj](θ) - fo(θ)\ < pj for θ e L but have Lu =

Lj. By construction #2(JC; LJ, ff) is a decreasing sequence in j . The

second term is bounded by infθeLz2(x, θ 9 ff) so there is a uniform

supersolution independent of j . Similarly there is a global subsolution

[38] which has lightlike set L defined by

ψ:ΘΪψ, θ, ψ e L} - sup{|/-(0)|: θ e S""1},
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where Ύθψ is the isometric image of Ύ(x{, x) = \jn 2 + x\ whose light-
like set is {θ, ψ} . Hence, exactly as in the proof of [38, Theorem 1] we
have uniform a priori C3 bounds on compact subsets of R", and thus
a subsequence converges to a hypersurface (see also [8]). Moreover, the
functions v., w. provide local barriers at L as in [19, p. 105]. Hence the
limiting surface also satisfies (6.2). q.e.d.

A simpler procedure yields the existence of Z invariant constant mean
curvature hypersurface.

Theorem 6.3. Let γ be an isometry ofR2'1 which induces a hyperbolic
motion of the Poincare plane realized as the hyperboloid h with induced
motion. Let {E, W} denote the source and sink on H(oo) = S 1, and
{N, S} be two points in each of the arcs of S1 separated by E and W.
Let

L=\Jγi{N,S}.

Then there is a γ invariant entire spacelike constant mean curvature sur-
face, m(x), whose light like set Lm—L.

Proof By Theorem 6.2 we know that a surface m(x) exists whose
Lm — L and f{θ) = const for θ e L. To show the invariance, we will
construct invariant barriers and prove that the hypersurface between them
is uniquely determined—hence invariant itself. Let σ(x) > τ(x) be a
semitrough and trough gotten by the same isometric image of f(x) > l(x)
in such a way that Lχ = {N, γN} and Lσ = [N, γN] = {θ: N < θ <
γN}, the interval of S1 containing S. For all γN < θ < N (viewed as
angles on S1) we have limr_^oo(σ(rθ) - τ(rθ)) - 0. Let σ > τ be the
corresponding construction (with possible addition of a constant) corre-
sponding to the interval [γS, S]. Thus there are barriers

v(x) - supmax(/τ, / τ ) , w(x) = infmin(/σ, γισ).
iez iez

By construction, υ < w are invariant barriers with the property that
lim^^iσirθ) - τ(rθ)) = 0 for all θ e Sι. By Proposition 6.1, there
is a solution m(x) between these two barriers. By the maximum princi-
ple, the solution is unique, q.e.d.

In constructing harmonic maps, we need a hypersurface whose asymp-
totic behavior is better understood. As in Theorem 6.3, the barrier con-
struction is simpler than in Theorem 6.2.

Theorem 6.4. Let L cSn~ι be any closed subset. Then there exists an
entire spacelike constant mean curvature hypersurface u(x) ofR"'1 whose
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lightlike set Lu = L and such that

(6.7) lim (u(rθ) - r) = 0 for all θ e L.
r—> o o

Moreover, for any ball B c S " " 1 such that ϊ c l ,

σΊ(x) < u{x) < h(x) forallxeRn,

where σj(x) is the rotation of the semitrough solution whose lightlike di-
rections are exactly B.

Proof The existence of such a surface again follows from Theorem
6.2. To obtain the asymptotics, we shall reconstruct the barriers in this
special case. Let {0J c Sn~ι - L be a countable sequence and pt > 0 be
chosen so that

For each / we construct a subsolution of (6.1) by taking an isometric
image of the semitrough of Lemma 5.1, but restrict the isometries β. to
boosts that fix {x: xχ = xn+ι = 0} and rotation about the xn+ι-axis. This

time let ci = β(σ such that the lightlike set of σ. is S""1 - B(θ , pt).
Let v(x) = sup/=1 o o ^ M By construction, this barrier satisfies (6.7).
The supersolution, similar to q2(x), is

w(x)=inf(vL(y)

Now we see that v < w and (6.7) holds for both. The resulting solution
obtained from applying Proposition 6.1 has the desired properties.

7. Intrinsic estimates from extrinsic data

In this section we demonstrate how the existence of very sharp up-
per and lower barriers enable transferring information from the lightlike
structure of the hypersurface to the intrinsic geometry. We will compare
the constant mean curvature hypersurface with a nearby hyperboloid at
corresponding values of x. The hyperboloid has the induced metric of
hyperbolic space with sectional curvature — 1.

Lemma 7.1. Let u be an entire spacelike hypersurface of constant mean

curvature H = 1. Suppose the lightlike set Lu contains a ball 3&{β, p) for

some θ G Lu c S""1 and p > 0. Suppose that u is sandwiched between

the semitrough and the hyperboloid

σθp{x)<u{x)<h(x) forallxeR",
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where σθ is as in Theorem 6.2. Then h contains an intrinsic sector

: R < r, \θ -υ\ < a}

for some P eh, v e Sn

p

 { c Tph, R(p) < oo , a(p) > 0 such that on Σ,
u is quasi-isometric to hyperbolic space. That is, the metrics g of u and
g of h are uniformly equivalent,

g"ix)sg"{x)-(x+m)S 'M fora"xeτ

where \x\ is the distance in R" .
Proof The idea of the proof is to show that the sharp bounds ob-

tained from Lemma 5.1 comparing the hyperboloid and semitrough solu-
tions yield information about u. We abuse notation and denote by x or
y any of the corresponding points of R" , σ, u or h .

By applying an isometry of R"' * we may assume without loss of gener-

ality that the lightlike set Lu D &{eι, 3π/4), where e{ = (1, 0, , 0),

is the unit ved

by the vectors

is the unit vector along the x^axis. The tangent space of u is spanned

9 , d

E; — 7 + M.

so that the metric is

The hyperboloid h(x) =

xιxJ

The gradient estimate is based on the observation that the tangent

plane Tχu c R"+1 is a supporting hyperplane to the convex hull

Conv(h U {{x, u(x))}). In order to estimate Du at a point x in the cone

{(jtj, X) e R x R n l : |Jc| < xx} we rotate RnA about the xn+ι axis so the

x direction moves to y = rex, where r = \x\, and so σe 3 π / 4 (^) > σ{y).

We write σ(y) = σe π/2(y) Call the rotated function u also. We estimate

separately ux= Deu and uγ = Deu, where γ > 1. Let ε = h(y) - σ(y).

The line in R"'1 passing through (y, u(y)) and (y + aeγ, h(y + aeγ))

becomes tangent to h if it satisfies

h{y -h aeγ) - hγ(y + aeγ)a = h(y) - ε.
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Substituting \Jh{y)2 + a2 for h(y + aeγ) gives expressions for h(y)2 + a2

and fl2 which are in terms of ε and h(y) and whose quotient is the slope.
Using Lemma 5.1, for r large enough we obtain

To estimate u{{r, 0, , 0), we consider Γ
supporting line has slope m = h'(s) where

SO that the steepest

Inserting the hyperbola h(r),

Substituting

m = h\r) + a =

and solving for a yield

2ε

'-7Ϊ-1 —
(l + r2)3 / 2 ( 1 + r 2 ) 2

By absorbing the lower order terms and using Lemma 5.1, we find for r
large enough that there is a c > 0 so that

(7.2) u { ( r , 0 , . , 0 ) -
rn/2+2'

To show the uniform equivalence of the metrics, in these coordinates we
have

Therefore, for some constant ζ Φ 0,

When n > 2 the matrix is ξg^ plus terms of order O(r~5^2) or less, so
for sufficiently large r, it is dominated by ξg.j. For n = 2,

det((l +O(/ ~3) > 0,
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and so is again positive or negative depending on the sign of ξ. In either
case, there is a c so that when ξ2 > c/r the matrix is positive or negative
depending on the sign of ξ, and the quasi-isometry follows.

Lemma 7.2. Let u be an entire spacelike constant mean curvature hy-
persurface of Tϋn Λ satisfying the hypotheses of Lemma 7.1. Then for some
c{, c2 > 0 there is a sector Σ(P, υ R, a) c h for some P eh, υ e Sn

p~
ι,

R > 0 and a > 0, so that for all y e Σ, the integral Gauss-Kronecker
curvature over B(y, cx) c u satisfies

L κd\o\>c2,
B(y,c{)

where the Gauss-Kronecker curvature of u has the expression

κ(z) =
det(n f/z))

Proof The idea of the proof is to estimate the integral curvature forced
on a surface molded between two convex surfaces. Let B(y, r) denote a
metric ball in u and ~B{y, r) a metric ball in h .

Denote the projection π: (xι, , xn+ι) *-> (JC1 , , xn). Let Σx c h
be the sector on which the metrics of u and h are uniformly equivalent.
Fix the radius cχ > 0 appropriately small, as to be described. By quasi-
isometry take Σ 2 c A to be a smaller sector such that πB(y9 c{) c πΣ 2 .
For any y e Σ 2 we may rotate R n l , as in Lemma 7.1, so that y =
(r, 0, ,0) and σ(x) < u(x) < h(x) for all x eRn . By quasi-isometry,
we may choose / > 0 so that πB(x, /) c πB(x, c{) for all x eΣ2. The
integral Gauss curvature can be estimated as follows:

(7.3) ί κdwo\>

First we describe π~B(y, /) . Let U(y, p) designate the Euclidean ball
with center y and radius /? in R" . Then by computing in the metric of
h we see that π~B(0,1) = (7(0, sh/). By applying the boost rotation of
Minkowski angle v so that r = sh v ,

/chz/ 0 ... 0 shz/^
0 1 .. . 0 0

0 0 . . . 1 0
0 ... 0
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to the equation of the ball B(0,1) = {{xι, , xn+ι) e u: xn+ι < ch/}
we get

(7.4)

if (x 1 , , x") e B(y, /) and y = (sh v, 0, , 0, ch v). Thus we see
that

We have A^(0) = y» a n d ^^(y, /) is an ellipsoid whose Euclidean center
is (sh v ch /, 0, , 0), whose major axis is in the xx-direction with ma-
jor radius chi/sh/ and whose n-\ minor radii are sh/. Hence, by taking
c{ small enough that sh/ < 1/2 and a smaller Σ 3 so that chz/ < 2shi/,
we have

< x < 3 r c h / ;

|χ α | < sh/, a = 2, 3, ••• , «}.

By taking larger i? 4 , thus even smaller Σ 4 , and using (7.1) and (7.2) from

Lemma 7.1, we can estimate for all y e Σ 4 and x e ~B(y, /)

for some c3 > 0. Hence for all y e Σ 4 and x G B{y, /),

/« ^ 1 . rt+i

where c4 > 0 depends on n and /.
From (7.4) and Lemma 5.1 it follows that

+ x 1 tanhί/ - - ^ < κ(jc) for all x e dΉ(y, I),

\x\2 for all x e B(y, /).u(x) <

Thus w(y) <chι/ .
To estimate the integral of the Hessian determinant, we interpret it as

the area of the tangential mapping (§4). The set function

ω(ζ9E)=&nχζ(E)
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on E c G is nonnegative completely additive on the Borel sets of G
where S? is Lebesgue measure and ζ is a convex function. An important
property of this set function is that

ω(ζ9G)>ω(K9G)9

where K is the function whose graph is the convex cone with vertex at
(xQ9 ζ(x0)) and base dG x {c} such that

Applying to the present situation, take ζ = u - xι tanhi/, x0 = y and
G = Έ(y9 I), where v is fixed such that shz/ = \y\. By (7.6), the fact
that xι = shι/ch/ at y, ζ(y) < sechi/ and, possibly choosing a smaller
Σ5 3 y , for x e d~B(y, /), we obtain

r / . 1 +ch/

Thus

ί det(w ) rfx1... rfjc11 = / det(C ) dχι...

where K' is the shallower conic function with the same vertex constructed
using the cube Q. The estimates on ζ show that the height of Kf over
Q is at least c6{l)/r. Hence, for some cΊ(n), cs(n, /) > 0,

Combining this inequality with (7.5) yields for some c9(n, /) > 0,

ί κdvol> jnf \ , . n / , / dcί(uij)dxι...dxn

JB{y,cχ) πB{y,l) (1 - \ D u \ y ] l JπB(yJ)

Lemma 7.3. Let u be an entire spacelike constant mean curvature hy-

persurface ofRn'1 satisfying the hypotheses of Lemma 7.1. Then there is

a sector Σ(P, υ;R,a)ch for some Peh, v e Sn

p~
ι, R > 0 and a > 0

and a constant cι0 > 0 so that the sectional curvature Ku of u is pinched:

-\n2H2 < Ku(x) <-clQ < 0 forallxeΣ.

Proof F r o m §1 t h e s e c t i o n a l c u r v a t u r e i n t h e e{9 e^ d i r e c t i o n s i s

K i * * ) * J h h h
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and if iφ j , the lower bound follows from the inequality

By the Splitting Theorem 3.1, we have htj > 0. Let hιj denote the inverse
matrix. The upper bound follows from a uniform positive bound on the
principal curvatures, which in turn follows from a uniform bound on the
Gauss-Kronecker curvature. Take the sector Σ the same as in Lemma 7.2.
By diagonalizing h{. — diag(κ:1, , κn), we have

Ψn-χ y<EΣ

where ψk is the k th elementary symmetric function of {κχ, , κn} ,

and we have used Newton's inequalities ψk+x < ψ1^1. On the other hand,

computing with φ = κx^n gives

n2Aφ = φhιJhijph
sthstp - nφtishstph

tJhijp + nφhιJhijpp.

Diagonalizing at a point and using the Schwarz inequality we obtain

(*%/ = fΣ % ) ί - Σ If = »*
Combining this with the commutation formula for hi and using facts
from § 1 yield

Aφ <

So by the mean value inequality for supersolutions, Lemma 2.5, for ap-
propriate 0 < p < n , we find

φ(y) > βwf φ > cnH
{p~n)lp^sup κ

{n-p)l{np) U φp\
1 \ \ •' ' 11 /

>cl3H
{p n)lP[jB{y cΛ

The last quantity is uniformly positive by Lemmas 7.1 and 7.2.

8. Existence of harmonic functions on some cuts

In this section we consider the function theory of constant mean cur-
vature hypersurfaces. A noncompact manifold which admits nonconstant
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bounded harmonic functions is called hyperbolic, one that does not is called
parabolic, A complete manifold whose sectional curvature is pinched,
-b2 < KM < -a2 < 0, is hyperbolic since one can find harmonic functions
taking arbitrary boundary values at infinity [2], [3], [13], [37]. However RΛ

is parabolic. The entire spacelike constant mean curvature hypersurfaces
lie somewhere between R" and the space form with constant curvature
-\n2H2. By §7, certain constant mean curvature hypersurfaces whose
lightlike sets have nonempty interior contain large subsets with nonnega-
tively pinched sectional curvature; these are shown hyperbolic. Global sub-
and super-solutions are found by combining our knowledge of the intrin-
sic geometry of cuts and the availability of extrinsically defined functions
with estimates.

Theorem 8.1. Let u be an entire constant mean curvature hypersurface
of Rπ' * with mean curvature H = 1. Suppose that the set of lightlike
directions Lu of u contains a ball 3${β, p) c Lu c S""1 for some p > 0.
Suppose that u is sandwiched between the semitrough and the hyperboloid

σθp(x)<u{x)<h(x) forallxeR",

where σθ is the solution constructed in Lemma 5.1 such that the lightlike

set L = &(θ,p). Then u is hyperbolic.
θ ,p

Proof Let π denote the identification of points of the hyperboloid
h to u with the same x coordinate. By Lemmas 7.1 and 7.2, there is
a sector Σ c h which is quasi-isometric to Σ = πΣ and such that the
sectional curvature satisfies

(8.1) -b2 < Ku(x) < -a < 0

for all x eΣ with constants a, b > 0 depending on n, H and p. By
taking a further ambient isometry of Rn'ι, we may assume that u(x) —> oo
as |JC| —> oo on Σ and that the sector contains an intrinsic cone C =
πC = πexp^{(/>, ϋ): p > 0, ϋ e 3§{p^, α)} whose vertex is x = 0 and a
neighborhood {y eu: distM(C, y) < 2} satisfies (8.1).

Our construction involves a mollified extrinsically defined function φ e
Lip(Λ) (cf. [3]). Let 0 < ζ < 1 in C°°(R) be a cutoff function such that
ζ(r) = 1 for r < 1, ζ(r) = 0 for r > 2 and \Dζ\ + \D2ζ\ < c3. Define
the smoothing operator on u by

/.{(distfr, z))dz
where distM(x, y) is distance taken in u. By the Hessian comparison the-
orem [20], in view of (8.1), it follows that the function r(x) = distM(x, y)
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satisfies

lriri + 2flrcoth(flr)(^. - ηr.) < (r\x))u

Hence one obtains the estimate for xoeC,

\S^(φ — Φ(XQ))\ + \D(<9*φ)\ + \D (S^φ)\ < c4 sup I
B(xQ, 2)

< c4 _ sup

where c4 depends on a, b, c3 and n. Suppose now that φ(p, #) =

R(p)θ(ϋ) where # e SQ~1A and p > 0. Suppose that Λ(/>) is chosen

to be an increasing smooth function which is zero in B(0, cΊ) and 1 off

ΰ(0, 2c7) s\

for xoe C,

, 2c7) such that /?(/?)' < 2/c7, and Θ is chosen in Lip(S" ι). Then

4cx

for all x, y e B(x0, 2cx)9 where 1^ is the characteristic function for E .
But for x, y e B(x0, 2cλ) the law of cosines in h gives

ch(distΛ(x, y)) = ch(distΛ(x, 0)) ch(distΛ(y, 0))

- cos(ZΛx#y) sh(distΛ(x, 0)) sh(distΛ(y, 0)),

where distΛ(x, y) is taken in h . Hence

c9
Δx#y <cse <j

where t = distΛ(0, x0) = sh|jc| because distΛ(x, y) < 2cx and distA(#, x),
disth(#,y)>t-cι.

To construct the barriers, consider now two functions globally defined
on M,

where P is the position vector of the hypersurface u, and T = (0, ,
O j l j e R " ' 1 is a fixed unit timelike vector. From § 1 we see that these
functions satisfy

|Z)/ι|2 = - l + i / 2 ,
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On the other hand, the functions are comparable. On C, by Lemma 7.1
we find that

i . f~—2
v =

I - \Du\2

For δ, cχ j > 0 consider

A(v + cn)~δ

>cιoyi + \x\ >c{Oμ.

Since all the principal curvatures have a lower bound by Lemma 7.3, the

eigenvalues of hij{x) exceed y/cι2A(x) > 0 for all x e C so A^ > cι2A.

By a rotation of axes, we may pick e, orthogonal to T. Thus in C,

By choosing ί sufficiently small so that (1 + <$)(1 - c12) < 1 and large

constants cn , c{3 we have shown

(8.2)

Choose an open G c &{ϋ0, a) c SQ" 1 . Then choose a smooth function

θ on SQ" 1 which is nonconstant on G, and such that φ = Rθ has

support in C so that S?φ is zero off C. Let oo > c1 4 > s u p | θ | . Now
choose smooth functions θ{ < θ < θ 2 so that θ{ = θ = θ 2 on G
but θ{ < - c 1 4 and θ 2 > c1 4 off ^ ( d 0 , a). Let ^.(/?, ϋ) = R(p)θi(ϋ),

/ = 1, 2, be the extensions to C. As in (8.2) we may choose constants so

that

φ_ = max(-c 1 4, S^φ - c13(i/ + cu)'δ)

< min(c1 4, S?φ + cl3(v -h cn)~δ) = φ+

are sub- and super-harmonic functions on C. By taking cn larger, if
necessary, φ± extend as constants beyond C, and are, in fact, globally
defined barriers on u. Finally, consider a harmonic function / which is
pinched between φ± found, for example, by the Perron process. It is a
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bounded and nontrivial harmonic function of u since it takes nontrivial

boundary values on G.

9. Examples of harmonic maps and the conformal structure of cuts

We now summarize the relation between the harmonic Gauss maps of
entire spacelike constant mean curvature hypersurfaces of Rn'ι and the
conformal structure of these hypersurfaces.

Theorem 9.1. Let L c S 1 be a finite set with cardinality #L. Then
there is a harmonic map φ from the complex plane C into the hyperbolic
plane H2 such that

φ(C) = Conv(L).

If #L > 3, then φ is a diffeomorphism from C to Conv(L)°.
Proof By Theorem 4.7 or 6.2 there exists a constant mean curvature

H > 0 cut u whose Gauss map satisfies &(u) - Conv(L)°. The Gauss
map is a diffeomorphism for #L > 3 by strict convexity. The total curva-
ture of u is the area of the Gauss image so

κdA = -Aτea(^(w)) = π(2 - #L),

which is finite. By the Blanc-Fiala-Huber Theorem ([9], [23]), M is con-
formal to C. Hence there is a conformal diffeomorphism ζ: C —• u, and
the desired harmonic map is φ = *§ o ζ.

Theorem 9.2. Suppose L c S " " 1 is a closed set with nonempty interior.
Then there is a harmonic map φ: M —• Hn from a hyperbolic spacelike
entire constant mean curvature hypersurface M to hyperbolic space which
satisfies

~φ{M) = Conv(L)

and which is a diffeomorphism from M to Conv(L)°.
Proof By Theorem 6.4 there is an entire spacelike constant mean cur-

vature hypersurface u whose lightlike set is L, so its Gauss map & has
the desired harmonic mapping properties, as in §4. Moreover, the solu-
tion u is pinched between a semitrough and hyperboloid. By Theorem
8.1, such u is hyperbolic.

Corollary 9.3. Let L c S 1 be a closed set containing an interval. Then
there is a harmonic map φ from the Poincare disk D into the hyperbolic
plane H2 such that

~φ(D) = Conv(L)

so that φ is a diffeomorphism from D to Conv(L)° .
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Proof. By Theorem 9.2 there is a constant mean curvature H > 0 cut
u of R 2 ' ι satisfying the mapping conditions and hyperbolicity. Hence u
is conformally diffeomorphic to the disk.

Theorem 9.4. Let y be an isometry ofR2'1, which induces a hyperbolic
motion of the Poincarέ plane realized as the hyperboloid h with induced
motion. Let {E, W) denote the source and sink on H(oo) = S 1 , and
{N, S} be two points in each of the arcs of S1 separated by E and W.
Let

L=\Jγ'{N9S}.
iez

Then there is an entire spacelike constant mean curvature H > 0 surface
u such that its Gauss map

W{uj = Conv(L),

so it has infinite total curvature, but is parabolic.
Proof. By Theorem 6.3, there is a γ invariant entire spacelike constant

mean curvature surface, u(x), whose lightlike set Lu = L. The Gauss
map satisfies the desired properties. Since u is invariant, we let q be
the quotient of u by the infinite cyclic group of isometries generated by
γ. q is a cylinder with finite total curvature, since the Gauss image of
the fundamental domain is contained in an ideal geodesic polygon with
finite area. By uniformization, q is conformally diffeomorphic to the flat
cylinder and by lifting, u is conformally C. q.e.d.

We end with some questions. For surfaces, we have shown that if the
lightlike set is finite, then there exists a parabolic constant mean curvature
surface, and if the lightlike set has nonempty interior, there exists a hy-
perbolic surface which has a harmonic diffeomorphism to the convex hull
in the hyperbolic plane. Theorem 9.4 gives another example not covered
by these cases. Does the lightlike set of a constant mean curvature sur-
face determine its conformal type? Which sets correspond to each type?
For arbitrary dimension we have shown that given the lightlike set there is
a constant mean curvature cut whose Gauss map establishes a harmonic
map to the convex hull of the set and for which the conformal properties
may be deduced. By Theorem 6.2, however, there are many cuts having
the same lightlike directions. Can one deduce the conformal properties for
these as well? More generally, does the structure of the extreme points of
the harmonic maps image restrict the domain? For example, must every
harmonic map to the convex hull of ideal points factor through a constant
mean curvature cut as in the case, locally, for surfaces [1], [25], [26]?



816 HYEONG IN CHOI & ANDREJS TREIBERGS

References

[1] K. Akutagawa & S. Nishakawa, The Gauss map and spacelike surfaces with prescribed
mean curvature in Minkowski 3-space, Tόhoku Math. J., to appear.

[2] M. Anderson, The Dirichlet problem at infinity for manifolds of negative curvature, J.
Differential Geometry 18 (1983) 701-721.

[3] M. Anderson & R. Schoen, Positive harmonic functions on complete manifolds of negative
curvature, Ann. of Math. (2) 121 (1985) 429-461.

[4] I. Bakelman, Applications of the Monge Ampere operators to the Dirichlet problem for
quasilinear elliptic equations, Seminar on Differential Geometry (S.-T. Yau, ed.),
Annals of Math. Studies, No. 102, Princeton University Press, Princeton, NJ. 1982,
239-258.

[5] W. Ballmann, M. Gromov & V. Schroeder, Manifolds of nonpositive curvature,
Birkhauser, Boston, 1982.

[6] R. Bartnik, Existence of maximal surfaces in asymptotically flat spacetimes, Comm.
Math. Phys. 94 (1984) 155-175.

[7] , Regularity of variational maximal surfaces, Acta Math., to appear.
[8] R. Bartnik & L. Simon, Spacelike hypersurfaces with prescribed boundary values and

mean curvature, Comm. Math. Phys. 87 (1982) 131-152.
[9] C. Blanc & F. Fiala, Le type d'une surface et sa courbure totale, Comment. Math. Helv.

14(1941-42) 230-233.
[10] E. Calabi, private communication, 1979.
[11] S. Y. Cheng & S. T. Yau, Maximal spacelike hypersurfaces in the Lorentz-Minkowski

spaces, Ann. of Math. (2) 104 (1976) 407-419.
[12] S. S. Chern, Minimal submanifolds in a Riemannian manifold, University of Kansas

lecture notes, 1968.
[13] H. I. Choi, Asymptotic Dirichlet problems for harmonic functions on Riemannian mani-

folds, Trans. Amer. Math. Soc. 281 (1984) 691-716.
[14] H. I. Choi & A. Treibergs, New examples of harmonic diffeomorphisms of the hyperbolic

plane to itself, Manuscripta Math. 62 (1988) 249-256.
[15] C. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. Ecole

Norm. Sup. (4) 13 (1980) 419-435.
[16] K. Ecker, Area maximizing hypersurfaces in Minkowski space having an isolated singu-

larity, Manuscripta Math. 56 (1986) 375-397.
[17] J. Eells & L. Lemaire, Selected topics in harmonic maps, CBMS, No. 50, Amer. Math.

Soc, Providence, RI, 1983, 76.
[18] C. Gerhardt, H-surfaces in Lorentzian manifolds, Comm. Math. Phys. 89 (1983) 523-

553.
[19] D. Gilbarg & N. Trudinger, Elliptic partial differential equations of second order, Grund-

lehren, Bd. 224, Springer, Berlin, 1983.
[20] R. Greene & H. Wu, Function theory on manifolds which possess a pole, Lecture Notes

in Math., Vol. 699, Springer, Berlin, 1979.
[21] J. Hano & K. Nomizu, Surfaces of revolution with constant mean curvature in Lorentz-

Minkowski space, Tόhoku Math. J. 36 (1984) 427-437.
[22] W.-Y. Hsiang & W.-C. Yu, A generalization of Delaunay theorem on the construction of

rotational symmetric hypersurfaces of constant mean curvature and harmonic maps,
J. Differential Geometry 17 (1982) 337-56.

[23] A. Huber, On subharmonic functions and differential geometry in the large, Comment.
Math. Helv. 32 (1957-58) 13-72.

[24] T. Ishihara, The harmonic Gauss maps in a generalized sense, J. London Math. Soc. 26
(1982) 104-112.



GAUSS MAPS 817

[25] O. Kobayashi, Maximal surfaces in the ^-dimensional Minkowski space I? , Tokyo J.
Math. 6(1983)297-309.

[26] , Maximal surfaces with conelike singularities, J. Math. Soc. Japan 36 (1984) 609-
617.

[27] S. Kobayashi & K. Nomizu, Foundations of differential geometry. Interscience, New
York, 1963.

[28] N. Korevaar & J. Lewis, Convex solutions to certain elliptic equations have constant rank
Hessians, Arch. Rational Mech. Anal. 97 (1987) 19-32.

[29] P. Li, On the Sobolev constant and the p-spectrum of a compact Riemannian manifold,
Ann. Sci. Ecole Norm Sup. (4) 13 (1980) 451-469.

[30] P. Li & R. Schoen, Lp and mean value properties of subharmonic functions on Rieman-
nian manifolds, Acta Math. 153 (1984) 279-301.

[31] T. K. Milnor, Harmonic maps and classical surface theory in Minkowski space, Trans.
Amer. Math. Soc. 280 (1983) 161-185.

[32] B. Palmer, Spacelike constant mean curvature surfaces in Pseudo-Riemannian space
forms, preprint, 1988.

[33] A. Pogorelov, The Minkowski multidimensional problem, "Nauka", Moscow, 1975; En-
glish transl., Wiley, New York, 1978.

[34] E. Ruh & J. Vilms, The tension field of the Gauss map, Trans. Amer. Math. Soc. 149
(1970) 569-537.

[35] R. Schoen, Lecture notes in differential geometry, Berkeley mimeograph, 1982.
[36] S. M. Stumbles, Hypersurfaces of constant mean extrinsic curvature, Ann. of Phys. 133

(1981) 28-56.
[37] D. Sullivan, The Dirichlet problem at infinity for a negatively curved manifold, J. Differ-

ential Geometry 18 (1983) 723-732.
[38] A. Treibergs, Entire spacelike hypersurfaces of constant mean curvature in Minkowski

space, Invent. Math. 66 (1982) 39-56.
[39] , Lecture on the Eells-Sampson theorem on parabolic deformation of maps to har-

monic maps, University of Utah notes, 1987.
[40] S.-T. Yau, Isoperimetric constants and the first eigenvalue of a compact Riemannian

manifold, Ann. Sci. Ecole Norm. Sup. (4) 8 (1975) 487-507.

UNIVERSITY OF IOWA

UNIVERSITY OF UTAH






