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SPACE OF SOULS IN A COMPLETE OPEN
MANIFOLD OF NONNEGATIVE CURVATURE

JIN-WHAN YIM

0. Introduction

Let M be a complete open Riemannian manifold of nonnegative curva-
ture. The most significant result in the study of the differential structure of
this type of manifold is due to Cheeger and Gromoll. In [3] they produced
a totally geodesic submanifold So , a soul of M, and showed that M is
diffeomorphic to the normal bundle u(SQ) of So. Following this work,
Sharafutdinov and, independently, Croke and Schroeder showed that there
exists a strong deformation retraction f:M^S0 which is distance non-
increasing [4, 8]. Using this retraction one can show that if a soul is not
unique, then they are all isometric and homologous to each other. More-
over, there are infinitely many isometric copies of a soul in M, which are
not necessarily souls. This observation leads us to the following definition.

Definition. A subset S c M is called a pseudo-soul if it is homologous
and isometric to a soul So with respect to the induced metric.

In particular, it is clear that all souls are pseudo-souls, and the definition
is independent of a soul So . If a soul is not unique, then there are infinitely
many pseudo-souls. The purpose of this paper is to investigate the union
%? of all pseudo-souls in M. In fact, we will prove the following theorem.

Theorem. ^ c M is a totally geodesic embedded submanifold which
is isometric to a product manifold SQxN, where N is a complete manifold
of nonnegative curvature diffeomorphic to a Euclidean k-space R^ and k
is the dimension of the space of all parallel normal vector fields along the
soul So . Furthermore any pseudo-soul in M is of the form Sox {p} for
some p e N.

As an immediate corollary of this theorem, if the normal bundle itself
is parallel, we obtain the splitting M = SoxN. This special case has been
independently studied in [6].

There are two trivial examples of M for which one can easily find
pseudo-souls and the space %?. If M is a paraboloid, then every point
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p e M is a pseudo-soul, and hence βf = M. The other case is a flat
cylinder Sι x R, in which Sι x {t} , t e R, is a soul (and hence a pseudo-
soul) and %? = M. Until recently, partially due to insufficient examples,
it was suspected that if %? is not trivial (i.e., %? φ So or M), then M
should be a product Mχx N, where M t has a unique soul So and ^ =
SQxN. However, as pointed out by M. Strake, there does exist an example
which is not a product but has nontrivial %?. It is still unanswered what
is the best metric structure of M one can expect when %? is not trivial.

The definition of a pseudo-soul was first introduced by C. Croke and V.
Schroeder by whom the statement in the theorem was conjectured and has
been studied. Some of the techniques used in this paper are due to them.

The author would like to express his thanks to Professor Croke for his
assistance in the preparation of this paper.

1. Preliminaries

The proof of our main theorem is rather technical and requires a knowl-
edge of the geometry of convex sets, which may not be familiar to some
readers. In the present section, for this reason, we provide a brief outline
of the proof we will establish, and recall some notation and results from
[3], [8].

As might be expected from the statement of the theorem, a parallel sec-
tion in the normal bundle i/(50) of a soul is a key tool in the construction
of the space %?. In fact, it was shown in [8] that the exponential image
exp5 F of any parallel normal vector field F along So is a pseudo-soul.
We aim to prove that in this fashion one can produce all the pseudo-souls
in M, and then use a local argument to accomplish the final goal.

By the construction of the Sharafutdinov retraction / (Theorem A.I),
there exists a homotopy H: M x[0, 1] —• M such that //(•, 0) = id on M
and H( , 1) = / . One can further show that for any pseudo-soul S c M,
{H(S, t)}ίe[Q {] is a family of pseudo-souls continuously parametrized by
/ e [0, 1] such that H(S, 0) = S and H(S, 1) = So is a soul. We first
replace this continuous family by a broken geodesic's worth of pseudo-
souls, and then use a curve shortening process (Lemma 3.2) to prove that
the connection between So and S can be done by a family {yp}peS of
geodesies emanating from So such that γp(t) = expp F{p), where F is a
parallel normal vector field along So .

Although the homotopy H is only continuous, it can be shown in Propo-
sition A.8 that for each p e M the curve / —• φ (t) = H(p, t), t e [0, e),
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has a right tangent vector Vψ(p) = #y(0+). Therefore, Vψ is by defini-
tion a (not necessarily smooth) vector field on M. Along any pseudo-soul
S, since H(S, t), t G [0, ε), is an isometric variation through pseudo-
souls, the variational vector field Vψ is a global normalJacobi field, which
we will show to be parallel. In §2, we will prove one of the most impor-
tant properties of a pseudo-soul. Along a pseudo-soul the mixed curva-
tures vanish (Corollary 2.7), which implies that a global normal Jacobi
field along a pseudo-soul is in fact parallel (Corollary 2.5). For any fixed
pseudo-soul S, once we have this parallel normal vector field along each
pseudo-soul St - H(S, /), t e [0, 1], we can locally approximate the
continuous 1-parameter family of pseudo-souls by the exponential images
expssVψ, 0 < s < ε, which are pseudo-souls as well. We thus obtain a
connection between SQ and S by a parallel family of broken geodesies (a
(P)-connection), which will then be followed by curve shortening.

As we have to apply the curve shortening process to a family of broken
geodesies, we need a local product structure in a neighborhood of every
pseudo-soul. It is shown in §2 as another application of the vanishing
mixed curvatures along pseudo-souls. Let F be a parallel normal vector
field along a pseudo-soul S, and let S{ = exp^ F be a pseudo-soul con-
nected to 5" by F . If F{ is another parallel normal vector field along S,
then exvs(F+sFχ), 0 < s < ε, is an isometric variation of Sx, and hence
there exists a corresponding global Jacobi field along S{, which is again
parallel. Consequently one can see that the dimensions of the spaces of all
parallel normal vector fields along S and S{ are the same (Corollary 2.7),
which implies the dimension is constant in ^ because every pseudo-soul
is connected to a fixed soul by a family of broken geodesies generated by
parallel vector fields as above. This number will be of course the dimen-
sion k of the submanifold N in the main theorem, and the tangent space
of N is the set of vectors which can be extended to parallel normal vector
fields along pseudo-souls. It also proves that for any pseudo-soul , S c / ,
the orthogonal decomposition TpSθTpN into the tangent space of S and
its orthogonal complement in J r is invariant under parallel translation,
which will give us a local product structure (Proposition 2.8).

In the remainder of this section, we will recall the construction of a soul
SQ [3], and formally introduce the concept of a pseudo-soul.

Definition 1.1. A nonempty subset C of M will be called totally con-
vex if for any p, q e C and any geodesic γ: [0, 1] —• M from p to q ,
we have y[0, 1] c C .

For any compact subset D of M let K be the supremum of sectional
curvatures at points of D and let R denote the infimum of injectiv-
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ity radii of points in D. Let εD > 0 be a number such that εD <
\min{π/yfK,R}. Then, by [2, Theorem 5.14, Lemma 5.15], for all
x e D and r € (0, εD] the metric ball Br(x) is strongly convex, i.e.,
for any p, q e ~Br(x) there is a unique minimal geodesic σ between p
and q such that the interior of σpq is contained in Br(x). Moreover,
for any geodesic segment τ: [0, 1] —• Br(x), d(τ(s), p) has at most one
critical point, and such a critical point must be a minimum.

This number εD > 0 has been used for the construction of a soul So

and the deformation retraction / , and will be used again throughout this
paper.

In [3, Proposition 1.3], it was shown that for any p e M there exists a
family of compact t.c.s. (totally convex sets) Ct, t > 0, such that

(1) t2>tι implies Ct D Ct , and

i n p a r t i c u l a r , dCt ={qeCt \d(q, dCt ) = . t2 - tx) .

(2)U,>0ς = ̂
(3) pedC0.
Put C = C o , and let a0 = sup{</(#, 0C) | ί E C}. Then Ca° = {q e

C\d{q,dC) = a0} is totally convex and dimC*0 < dimC [3, Theorem
1.9]. This contraction can be iterated until we obtain a totally convex set
without boundary, and therefore we may construct a flag of t.c.s.

C 0 = C ( 0 ) D C ( 1 ) C O C ( * ) = S 0 ,

where C(i + 1) = C(/)*', and at = sup{d(q, dC{i))\q e C(i)} . Thus we
have:

Theorem [3, Theorem 1.11]. M contains a compact totally geodesic
submanifold SQ (a soul) without boundary which is totally convex, 0 <
dim So < dim M.

Note that the basic construction of a soul may depend on the starting
point p G dC0 in [3, Proposition 1.3], which means a soul may not be
unique. In any case, if So is a soul of M, we can construct a deformation
retraction / : M —• SQ .

Theorem [8, Theorem 2.3]. For any soul So of M there exists a homo-
topy H:Mx[0, l]-^M such that H( ,0) = id on M and H{ , 1) = / ,
where f:M^S0 is a strong deformation retraction. Further, for each
t e [0, 1], H( , t) is distance nonincreasing.

If a soul is not unique, we may construct a deformation retraction for
each soul in M. Let SQ, S{ be two different souls, and let (f0, Ho),
(/j, H{) be the corresponding retractions. Then it was shown in [8] that
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= so a n d f\(so) = sι> a n d f o r e a c h t e l°> !]> # o ( 5 i > 0 a n d

HX(SQ9 t) are isometric and homologous to So (and also S{). Therefore,
we have the following definition.

Definition 1.2. A subset S c M is called a pseudo-soul if it is homol-
ogous and isometric to a soul with respect to the induced metric.

With this definition we further have:
Proposition 1.3 [8, Proposition 3.1]. Let f:M->S0 be given as above.
(1) For any pseudo-soul S we have f(S) = So, and for any t e [0, 1],

H(S, t) is a pseudo-soul', hence there is a continuous I-parameter family
of pseudo-souls between S and the soul So.

(2) For any pseudo-soul S and p, q e S, the distance between p and
q in S is the same as in M. In particular S is totally geodesic.

Corollary 1.4. If Sχ, S2 are two pseudo-souls such that S{ n S2 Φ 0,
then we have S{ = S2.

Proof Suppose Sγ Φ S2 and q e S{ n S2. Since S{, S2 are complete
totally geodesic submanifolds, we have TqSχ Φ TqS2 (otherwise, Sχ = S2).
However, f:M-+SQ is a distance nonincreasing retraction, and hence
/ : S, -> SO, Ϊ = 1, 2, is an isometry. Thus df: TqSi -> Tf{q)S0 is a
linear isometry. Let vχ e TqS{, v2 G TqS2 be two vectors such that
vχ Φ v2 and df(vχ) = df(v2) = v e T^SQ. Let yx, γ2 be the geodesies
such that y.(0) = q and γ'.(0) = vt:, / = 1, 2. Then it is obvious that
f(γi(ή) = γ(ή for the geodesic γ in So with γ0 = f(q) and /(0) = v .
Since v{ Φ v2, it follows that Z(Vj, —υ2) Φ π, and hence for any τ > 0
we have d(γι(τ), γ2(-τ)) < 2τ. On the other hand, in So, we have for
small τ > 0

d(f(rx(τ)), f(γ2(-τ)) = d(γ(τ), γ(-τ)) = 2τ,

which is a contradiction since / is distance nonincreasing.

2. Properties of pseudo-souls

One of the most important properties of a soul So is that the mixed
curvature terms vanish along So, i.e., the sectional curvature K(u, v) =
0 for any tangent vector u of SQ and any normal vector v of -So [3,
Theorem 3.1]. In this section we will show that this property also holds
for pseudo-souls, and see what this implies about the metric structure of
pseudo-souls. We first require the following lemma which can be proved
by a standard comparison theorem [8].

Lemma 2.1. Let M be a complete Riemannian manifold with sectional
curvature KM bounded above by K > 0, and let γ: [0, 1] —> M be a
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geodesic. If c: [0, 1]-»M is a piecewise smooth curve from γ(0) to y(\)
such that d ( c ( t ) , y [ 0 , 1]) < r, r e ( 0 , £

y [o, i ] ]> ^ ^ Λ ίAe lengths of c and
γ satisfy

L[c]>(cosy/Kr)L[γ].

Proof By [2, Lemma 5.15], for each t e [0, 1], there exists a unique
number st e [0, 1] such that d(c(t)9 γ[0, 1]) = d(c(t), y(st)). Then it is
easy to see that s(t) = st is a piecewise smooth function of / and we can
apply [8, Corollary 2.2] to obtain the above inequality.

Lemma 2.2. Let M be a Riemannian manifold with nonnegative cur-
vature, and let p, q e M be such that d(p, q) = d for a fixed number
d > 0. If γ0 is a minimal geodesic from p to q, then for any geodesic γ
with y(0) = p, / ( 0 ) ± 7 Q ( 0 ) , and | |/(0) | | < D, there are positive numbers
A and s0, which depend only on D, such that d(q, γ(s)) < d + As2 for
all s e[0, sQ].

Proof For each s > 0 let γs be a minimal connection from γ(s) to q .
Consider the geodesic triangle (y, y0, y5) with the angle Z(/(0), 7Q(°))

 =

π/2. By Toponogov's theorem, the length L[γs] is not larger than the
corresponding length of the Euclidean triangle. Therefore it follows that

d(q, γ(s)) = L[γs] < yjL[γ0]
2 + L[γ\[Os]]

2 <

Hence we can find A and sQ depending only on D such that d(q, γ(s)) <

d + As2 for all 5 6 [ 0 , J 0 ] .

Theorem 2.3. Let M be a complete open manifold of nonnegative cur-
vature, and let So and S be a soul and a pseudo-soul of M, respectively.
If 7' [0, 1 ] -> S is a geodesic in S and V is a piecewise smooth vector
field along γ such that V(t) is perpendicular to S and vanishes at the end
points, then the index form I(V, V) is nonnegative.

Proof Suppose there exists a vector field V along γ such that I(V, V)
< 0. Then clearly V is not identically zero since otherwise I(V, V) = 0.
Let c: [-δ 9δ]x[0, 1] —• M be the variation of the geodesic γ such that
for each t e[0, 1] the curve σt defined by σt{s) = c(s, t) is a geodesic
with σ,'(0) = V(t). For each s e [-δ, δ], let cs: [0, 1] -> M be the curve
defined by cs(t) = c(s, t). Then co(t) = y{t) and cs is a piecewise smooth
curve from y(0) to 7(1). Since the index form I(V, V) is negative and
V(i) is peφendicular to γ with V(0) = V(\) = 0, it follows from the
first and second variational formulas that

d_

ds
L[cs} =

*=0 d s s=0

L[cs]<0,
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where L[cs] is the arclength of cs. Hence there are two positive numbers

B and sx such that L[cs] < L[γ] - Bs2 for all s e [0, sχ].
We now consider the deformation retraction f:M-^S0 and the image

f(cs) of the variation under the retraction / . Since f\s: S —• So is
an isometry, the curve / o γ: [0, 1] —• So is a geodesic in So. Denote
V = f ° 7 , c = f o e , a n d c s = f o c s . T h e n c 5 : [ - δ , δ ] x [ 0 , 1]-+ S o

is a continuous variation of the geodesic γ. We first claim that there
are positive numbers A and s0 such that, for each s e [0,s0], cs is
contained in B (y), where B Ay) is a /Mubular neighborhood of γ and

p(s) = As2 . One can verify this claim using the fact that f:M^>S0 is
distance nonincreasing. Put D = sup||K(ί)|| > and let d > 0 be such that
a? < 2 min{ε^, ε s } . It follows from Proposition 1.3(2) that for any p, q e
S with d(p, q) = d the minimal geodesic from p to q is contained in S.
By Lemma 2.2 we can find positive numbers A and s0 such that for any
t e [0, 1] and q eS with d(q, γ(ή) = d we have </(#, σ,(s)) < rf + As2

for all 5 € [0, 50]. In particular, for the fixed number d, we choose sQ > 0
so that Ds0 (and hence ΛSQ ) is smaller than d.

We are now ready to prove our claim. Suppose that d(cs(tι), γ[0, 1]) >
p = ,4s2 for some tx G [0, 1]. Then we have d(cs(t{), y(ίj)) = rt > /?.
If 7j: [0, rχ] -> 5 0 is the minimal geodesic from ^(ίj) to y(tχ), we then
extend yχ on 5 0 and let q e So be such that <? = y^Γj + d). Since
'Ί < ^(^(ί j ) , y(^)) < Ds < d, we see that yJO, rj + ί/] is contained
in the strongly convex set B2d(γχ(rχ)), and it follows that d(q, cs{tx)) =
rχ+d.lfq = f~ι(q)isa preimage of q in S, then d(#, y(^)) = d and
rf(95 ς(^i)) = d{q, σ?j(j)) <d + p. Hence,

d(q,cs(tχ)) = d(f(q),focs(tχ)) < d(q, cs(tχ)) <d + p,

which is a contradiction since d(cs(tχ), y(tχ)) = rχ> p.
For each 5 G [ 0 , ί 0 ] , we choose a partition 0 = t0 < tχ < < tm =

1 such that the broken geodesic ys\ [0, 1] —• So, which is defined to
minimize the distance between ί s ( ί / _ 1 ) and cJ(ί |.) for each / is contained
in B2p(γ). By construction, / is distance nonincreasing, and therefore it
follows that L[γs] < L[cs] for each 5 € [ 0 , 5 0 ] . Set K = sup{Ks } . Since

s^ <2d < εs , by Lemma 2.1 we obtain for all 5 G [ 0 , 5 0 ] :

>{\-2KA2sΛ)L[γ],
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where the last inequality is from cos* > 1 - \x2. Hence, for each s <
min{s0, s{} , we have

L[γ] - 2KA2L[γ]s4 < L[γs] < L[cs] < L[γ] - Bs\

The last inequality implies Bs2 < 2KA2L[γ]s4 , or

1 <2KA2B~lL[γ]s2 = Cs2 f o r C > 0 ,

which is a contradiction.
Corollary 2.4 [3, Lemma 3.3]. With M and S as above, all sectional

curvatures vanish for planes spanned by a tangent vector of S and a normal
vector of S in M. Equivalently,

R(u, v)v =R(υ,

where u is any tangent vector of S, and v is any normal vector of S in
M.

With this corollary, we obtain the following, as was shown in the proof
of [5, Theorem 2].

Corollary 2.5. Let M and S be as above. If J: S -• TM is a global
normal Jacobi field, i.e., if J is a Jacobi field along any geodesic in S,
then J is a parallel vector field along S.

Proof. Suppose VUJ Φ 0 for u e TpS. Consider the geodesic γ:
(-oo, oo) —• S with γ(t) = exp (ίw), and the Jacobi field / along y.
From the Jacobi equation, f'+R(J, γ)γ = 0, and Corollary 2.4, it follows
that

= 2(/, /) - 2(R(J9 y)y, J) = 2||/||2 > 0,

so that | |/(0l | 2 is a convex function from R to R, and

— 2 - 2 V / 2

d t l ,=o

Therefore the function | |/(0l | 2 is unbounded, which is a contradiction
since S is compact.

Let S be a pseudo-soul and let F be a unit parallel normal vector
field along S. In [8, Proposition 3.6], it was shown that for each t e R
the function φt: S -> M, defined by <£,(p) = expptF(p) (F(p) e TpM
will denote the restriction of F at p), is an isometric embedding, and
the union \Jt&ίΦt{S) c M is an immersed totally geodesic submanifold
which is isometric to S x R.
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For any pseudo-soul S let 3?{S) c Γ(i/(5)) denote the subspace of all
parallel sections of v(S), and let Φ(5) c i/(5) be the subbundle with the

fiber Φ^(5) = {F(p) e TpM\F e ^(S)} at p e S. With this observation
we prove the following application of Corollary 2.5.

Proposition 2.6. Let S and Sx be pseudo-souls such that Sχ = exp5 F
for some F e^(S). If d expp \F^ ^ is nonsingular for some poeS, then

preserves parallel sections, i.e.,

where q = expp F(p).
Proof It suffices to show that for any p e S the linear map d expp :

tTF*yΦ(S) —• T M is an injection with its image in Φq(S{) since we can
then interchange the roles of S and S{ to prove that it is an isomorphism.

Let {F{, F2, , Fm) be an orthonormal basis of &>(S) with Fm =
F/\\F\\, i.e., for each / = 1, , m - 1, Ft is a unit parallel normal
vector field along S such that Fi{p)LF{p). For each / consider the
family of vector fields ct{s) e &(S)9 s e {-ε, ε), such that cέ(s) =
F + sFt. Since cf.(0) = F and cJ(O) = F. (when ΓF ( p )Φp(S) is identified
with T0Φp(S) for each /) e S) , we have to show that the set {J. =
rfexp|F(/^)} i s linearly independent and contained in &*(SX). However,
the linear map dexp: TF(Tp M) —• 7^ M is nonsingular, and hence the
set of vectors {/z(^0)} is linearly independent in TqM. Thus {JJ is
linearly independent as vector fields on Sx. Moreover, for each / and
s E (-ε, ε), cf (5) is a parallel normal vector field along S, and hence
exp5c.(s) is a smooth isometric variation of S{ through pseudo-souls.
Therefore, the variational vector field Jt = §]\s=0

QχPsci(s>) ^s a gl°bal
Jacobi field along the pseudo-soul S{ . Since every normal Jacobi field
along a pseudo-soul is parallel by Corollary 2.4, it is sufficient to show
that J{ is perpendicular to S{. In our case, since it is obvious that Jm is
perpendicular to Sx and Jn i < m - 1, we will only consider {«//}/<m_1.

For each p e S define a geodesic γp(t) = expptF{p), and for each
i <m — \ let Ji be the normal Jacobi field along γ defined by

ds exp
5=0

For any i; G Γp5 let t; be extended to the Jacobi field J(t), t e [0, 1],

along ŷ  such that J(0) = υ and /'(0) = 0. Then by the product and

totally geodesic structure U φt(S) = 5 x R, we know that f(t) = 0 for all

t G [0, 1]. We now consider the two Jacobi fields / and J. along γp .
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Since ( / , Ji p) - (J, J[ p) is constant along γp , and (f(0), Ji<p(0)) =

(7(0), y/fP(0)> = 0 when / = 0, we have (/(/), Jip{t)) = (J(t) ^ fιp(ή)
for any ie[0, 1]. Thus

{J,J,J = (f,J,J + (J, f,J = 2{f,JiJ = 0.

In particular, when t = 1, Jt(q) = J. (1) is perpendicular to /(I) e
TqSx, where q = expp F{p) eSY. This is true for an arbitrary vector v e
TpS, and hence J. is perpendicular to Sx, which implies that Jt e^(S{)
for each /.

Corollary 2.7. If S and Sι are two pseudo-souls such that Sλ = exp s F
for some parallel normal vector field F e ^(S)t then dim(«^(5)) =

Proof With the same notation as above, if there is a pair (p, q) such
that q E Sγ is not conjugate to p e S along γp, then the proposition
obviously implies the corollary. If not, choose a number tQ e (0, 1) such
that 7p{t0) is not conjugate to both p and q . Put St = exp s t0F . Then
by the proposition we have dim(^5(5'1)) = dim{^{St )) = dim{^{S)).

For any pseudo-soul S and any p e S, denote by Nr(p) the set
{expp F{p)\F € «^(S), ||F|| < r}. If r > 0 is small enough (e.g., smaller
than InjRad(p)), then the map hp: S x NΓ(p) —• M , ^ C ^ , exp^i 7^)) =
expQF(q), is well defined. We will denote its image by %*r(S) c M. In
fact, we can prove the following proposition.

Proposition 2.8. If r < εs, then for any fixed poe S, hp : SxNr(p0) ->

M w α totally geodesic isometric embedding onto its image ^r{S). In

particular, for any p e S, hp (p, Nr(pQ)) = Nr(p) c M is a totally geodesic

embedded submanifold ofM.
Proof Let Φr{S) be the subset {F{p) e TM\p eS,F e&>(S), | | F | | <

r} c i/(5). By the definition of the number ε s , the map exp: Φr(S) —•
M is an immersion. Furthermore, since r is smaller than the convexity
radius, we see that it is injective. In fact, if expp Fχ (p) = exp^ F2(q) = x ,
then the minimal connection σ between p and q is contained in the
strongly convex ball Br(x). By Proposition 1.3(2), we have σpq c 5 , and
hence /^(p) and F2(^) are both peφendicular to σ^ , which is impossible
in Br(x). Therefore it easily follows that h (= h ) is an embedding.

We first claim that for any p e S the subset Nr(p) C M is totally
geodesic and the map h\^p N ( } ) : {p} x Nr(p0) —• JVΓ(p), which was shown
to be a diffeomoφhism, is an isometry. First of all, we note that by
Proposition 2.6 for any (p, x) E S x Nr(p0) such that x = exppF(pQ),
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F e &>{S), and y = exp^ F{p) G Nr{p), we have

TyNr(p) = dh\{pχ)TχNr{pQ) = dexpp(TF(p)Φp(S)) = Φ , ^ ) ,

where Sy = Sx = exps FQ . Let v G TχNr(p0) be an arbitrary vector and let

i7, G «^(5), / G (-ε, ε), be a smooth curve such that §-t\ί=0 expp ^(/?0) =

i;. Consider the variation c: S x (-ε, ε) —> M defined by c(p, t) =

expp Ft(p) = h(p, exp^ F((p0)) for all p G 5 . For all / G (-ε, ε) we know

that dcldt = dexp\F(dFJdt) is a parallel normal vector field along the

pseudo-soul exp^F ?. Denote this vector field by V{-, t). When t = 0,

we have

Thus h\^p τv(̂  )) : I/7) x Nr(p0) —> iVr(p) is an isometry. To complete the^p τv(̂  )):

proof of our claim, we will show that B (v, v) = 0, where By is the
second fundamental form of iVΓ(p) at y. Let ĉ  be a curve such that
c (t) = c(p, /) = expp Ft{p), and define for any vector Xy G 7^5 a vector
field X: (-ε, ε) -> ΓΛ/ along the curve cp by ΛΓ(ί) = t/c|(/7 ^ o ί / c " 1 ^ ) .

Since dc'\Xy) e TpS we have [dc~\Xy) , | ] = 0 o n S x ( - f i , e ) , and
so [Λ\ K] = 0 where they are defined. Moreover, for each t e (-ε, ε),
X(t) is a tangent vector of the pseudo-soul exp5 Ft, along which V( , ί)
is parallel and perpendicular. Thus

0=V(V,X) = (X, VVV) + (VVX, V)

Hence VVV is a normal vector field along S . Furthermore, by Corol-
lary 2.4, we have VχVvV - VvVχV = R(X, V)V = 0, which implies
VχVvV = VvVχV = 0. Thus VvV{y) e Ψ(y) = TyNr{p). Since,
for any fixed p e S, cp is a curve in Nr(p) for ε small enough and
V(p, t) = c^(/), we may conclude that B (v, v) = 0. Here v = V(p, 0)
is an arbitrary vector in TyNr(p) and By is a symmetric tensor. There-
fore, B = 0 for all y G Nr(p), and hence Nr(p) is totally geodesic in
M.

For any /? G 5 , x G ΛΓr(p0), and Y G ^ ( / 7, x )(5 x Nr(pQ))9 let v G
TχNr{p0) and ΛΓp G Γp5 be such that Y = v + Xp. Then we have
dh\{px){Y) = dh{v) + rfAί^) = K(p, 0) + Xy G 7 ; ^ ( 5 ) with the same
notation as above. Hence h is clearly an isometry. Let By be the second
fundamental form of β%(S) at y. Then we use the same extension of
V and X to show By = 0. In fact, since any vector in T β%(S) can
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be orthogonally decomposed in the form of V + Xy, we only consider
By{V + X, V + X). Since VχV = 0 from above, we have By{V,X) = 0.
Moreover, Nr(p) and Sy are both totally geodesic, and therefore

2By(V,X)+By(X,X)

Hence β%(S) is totally geodesic in M.

3. Proof of theorem

In this section, we will prove our main theorem combining all of the
previous results. The following facts are crucial for the remaining part of
our argument, but they are somewhat technical to be discussed here. We
have put an appendix at the end to study these facts in detail.

For any compact t.c.s. C, dC Φ 0 , let ψ: C —• R be such that
ψ(q) = d(q, dC). Then ψ is a convex function, and hence for each
b G [0, a0 = sup{^}] the subset Cb = {q G C\ψ(q) > b} is totally convex
as well. With this property of a totally convex set and the flag of t.c.s. in
the construction of a soul, we obtain an exhaustion of M by t.c.s.

If H: Mx [0, 1] —> M is the homotopy of the Sharafutdinov retraction
/ corresponding to a soul SQ, define for each p e M a continuous curve
Ψp [0, 1] -• M by <pp(p) = H{p, t). Let C be the t.c.s. of the totally
convex exhaustion of M such that p G dC. We then reparametrize 9?
so that ψ{φp{ή) = t < aQ for y/ = d{-, dC) and a0 = sup{y/}. In the
appendix we show the following.

(Al) For each t G [0,tf0), φ(t) has a πg/tf tangent vector

^Ψiψpity/W^ψW2 (Proposition A.8), where Vψ is a (generalized) gra-
dient of ψ (Definition A.4).

Note that Vψ is independent of C in the totally convex exhaustion,
and hence is a well-defined (not even continuous in general) vector field
on M.

(A2) If a pseudo-soul S c M is not a unique soul, then it is completely
contained in dC for some t.c.s. C in the totally convex exhaustion of
M (Proposition A.2(4)), and Vψ is a parallel normal vector field along
5 (Corollary A.9).

(A3) (Theorem A.5(3)) For each fixed a e (0, a0), there exists a number

A > 0 such that for any p edC*, ί G [0, a], there is ε > 0 with
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(A4) (Corollary A.6) For any a, b e [0, aQ), <Pp\[a,b] is a rectifiable
curve.

According to our construction of ( / / , / ) , we have in fact defined φ
as an "integral curve" of the vector field Vψ, which is canonically defined
by the totally convex exhaustion. The third claim (A3) is equivalent to
saying that away from the maximal valued set Ca° of ψ, the gradient
||V^|| is bounded below by a positive number; (A4) is a consequence of
(A3). Another interpretation of the vector Vψ{p), p e dCι, is the center
of the tangent cone of C* at p , which implies for any vector v e T M in

the tangent cone (i.e., cxpp tv is an interior point of Cι for small / > 0),
we have Z(Vψ(p), v) < π/2. All of the results above are more precisely
stated in the appendix, which should be referred to for the details.

As mentioned earlier, we want to approximate the continuous family
of pseudo-souls by a broken geodesic, and then apply a curve shortening
process. We first make a definition for this type of connection, and show
how the curve shortening process applies.

Definition 3.1. Two pseudo-souls SO and S{ are called (P)-connected
by a broken geodesic γ: [0, 1] —• M if they satisfy the following proper-
ties:

(1) There is a partition 0 = t0 < t{ < - < tm = I such that for each
/, γ\[t t] is a geodesic.

(2) For each z, y(t() is contained in a pseudo-soul St , and y'(t\) and

y\t~) are both perpendicular to St , where y\if) denotes l i m ^ ± y(t).

In particular, γ{0) e SQ and γ(\) eSχ.

(3) For each /, γL t, can be extended to a parallel connection be-

tween St and St , i.e., y\t*_χ) has a parallel extension F along St

such that St = exρ5 (/. - tt_{)F .
' '/-I

Lemma 3.2. Let Sx and S2 be two pseudo-souls (P)-connected by a

broken geodesic γ: [0, 1] —• M. Then they can be (P)-connected by a

smooth geodesic γ0: [0, 1] —• M with the following property:

(P,) : 7(0) = yo(O) € Sx and γ(l) = γQ{l) e S2.

Proof We will prove the existence of a smooth geodesic (P)-connecting
S{ and S2 by a curve shortening process. Let D c M be a compact set
such that BL(γ(0)) c D, where L = L[γ]. Then clearly the whole curve
shortening process of γ will be contained in D. Let r > 0 be such that
r < εD and let m be an integer such that L/m < r. All curves will be
assumed to be parametrized on [0, 1] proportional to arclength.
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Divide the broken geodesic γ into m equal segments, each of length
L/m, by the division points p0, p{, ,pm. For each / = 1, 2, , m
7lΛ_i J *, ] is a broken geodesic contained in N^p^^ by Proposition 2.8.
Replace each ?[*,•_!, t] by a minimal geodesic in Λf. (/?;__ J which is, by
strong convexity, a minimal geodesic in M. Clearly Sj and S2 are (P)-
connected by this new broken geodesic γ with the property (Pχ), and its
length is strictly smaller than that of γ, except when γ = γ. Now take
the m midpoints of the segments of γ . Each pair of successive midpoints
are at distance < r apart, so it may be connected by a unique minimal
geodesic as above. Denote this new broken geodesic by D(γ) which is
another connection from S{ to S2 with the property (P{). The curve
shortening process can be iterated to yield a sequence of broken geodesies:

γo = γ, γx = D ( γ ) 9 ••• , yi = D{yi_x),...

For each /, S{ and S2 are (P^-connectedby γi, and the length of γ. is
strictly less than that of γi_ι unless yt_x is already a smooth geodesic. The
existence of some subsequence of {)>•} converging to a smooth geodesic
(P)-connecting S{ and 5 2 is guaranteed by Birkhoff (cf., [1]).

Theorem 3.3. Let C be a compact totally convex set and let So be the
soul of C. Then there is a number JV > 0 such that every pseudo-soul in
C can be (P)-connected to So by a geodesic of length bounded above by
Jί.

Proof Since there is a flag, C D C(l) D D C(k) = So, for each
i < k we assume, by induction, that there is a number yK > 0 such that
every pseudo-soul in C{i) can be (P)-connected to SQ by a geodesic of
length < yK, and then show that there exists J/'i_[ for C(i - 1). Since
we will use the same argument for each i, we only consider the case when
/ = 1 (i.e., C(i- 1) = C) .

Put C(l) = Ca°. For each te(0, a0) let pt be a point in dCι such
that d(pn C(l)) = sup{ύf(p, C(l))\p e dC1}. If d(pt,C{)) does not
converge to zero as t —• a0, we have a subsequence of {/?,} converging
to /?0 G C'° for some ί0 < a0, which is an obvious contradiction since it
implies d{pt, pQ) > t - t0 for all t > t0. Therefore d{pt, C(l)) -• 0 as
t -+ a0, and one find a number α e ( 0 , a0) such that rf(p, C(l)) < r < εc

for any p e Ca .
Let S be any pseudo-soul in C. We assume that S is not contained

in Ca and claim that S can be (P)-connected to a pseudo-soul in <9Cα

be a geodesic of length at most aA~x, where 4̂ > 0 is the number in
(A3) corresponding to a e (0, <z0) chosen above. By (A2) one can find
b0 e [0, a0) such that S c dCb°. Since V^ is a parallel normal vector
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field along S, exps ίV^/||V^|| is a family of pseudo-souls (P)-connected

to S by the geodesic γ(t) = expp A7^/||V^||, p eS. Moreover, by (A3),

we can find ε > 0 such that ψ o y(ε) > ψ(p) + Aε. Therefore, S can be

(P)-connected to a pseudo-soul Sb c dCb by the geodesic y whose length

is at most (b - bo)A~ι < bA~ι. Let b e {b0, a] be the least upper bound

of b > 0 such that S can be connected to Sb c dCb be a geodesic of

length at most bA~x. By taking a limit of Sb as & —• b, one can see the 6

has the same property. If b is strictly smaller than a, we use the parallel

field Vψ to (P)-connect the pseudo-soul Sb to a pseudo-soul 5ft , b > b,

by a geodesic of length at most (b - b)A~ι . Then, by curve shortening,
one can (P)-connect S to Sb to obtain a contradiction.

We now (P)-connect Sa to a pseudo-soul in C ( l ) . For each p e Sa

let g(p) e C(l) be such that d(p, g(p)) = d(p9 C(l)) . Then by the
choice of the number a, d(p, g(p)) < r. Let cp: [0, 1] —> C be the

p

minimal geodesic from /? to g(p). Since c'(0) is in the tangent cone

of Ca at p, we have Z(Vψ(p), c'p(0)) < π/2, and hence d(g(p), y{t))p

is strictly decreasing for small t > 0, where y(ί) = exp
Thus there exists ε > 0 such that y(c) e dCb, b > a, and y[0, ε]
is contained in the strongly convex ball Br(g(p)). We connect Sa to
Sb along y. Let b e (a, a0] be the least upper bound of b with this
property. It is clear by a limiting argument that b has the property too.
If b < aQ, let yχ: [0, ε] —> Br(g(p)) be the geodesic which (P)-connects
5α to S j , and let c be the minimal geodesic from p t = γ{(ε{) to ̂ (p).
Then, for the same reason as above, we have Z(Vψ(p{), c'(0)) < π/2, and
hence d(g(p), γ2(ή) is strictly decreasing for small t > 0, where y2(ί) =
expp ίV^. Thus there exists ε2 > 0 such that y2[0, ε2] c Br(g(p)). We
then apply the curve shortening process for yJO, ε j U y2[0, ε 2 ] , which
clearly takes place in Br(g(p)) and we get a contradiction. Therefore Sa

is now (P)-connected to a pseudo-soul in C(l) by a geodesic which is
minimal since it is contained in the strongly convex set Br{g(p)).

By assumption, every pseudo-soul in C(l) is (P)-connected to 5 0 by
a geodesic of length at most JVχ . Put J^ = JVχ + α ^ " 1 + 2r. Then the
theorem follows by a final application of curve shortening.

Since every pseudo-soul is (P)-connected to the soul, by Corollary 2.7,
we have the following immediate consequence.

Corollary 3.4. dim(^(5)) is constant for any pseudo-soul S.
Let So be a soul of M. For each q e So denote by N(q) the set

N^iq) - {expqF(q)\F e &>(S0)} c u(S0), and define a map h: So x
- M by h(p,expF(q)) = exppF(p) for all p G 5 0 (a global
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version of h in Proposition 2.8). Our final goal is to prove that h is
a totally geodesic isometric embedding with its image βf c M, which
is by definition the set exp5 Φ(S0) = {expqF(q)\q e So, F e ^(So)}.
As a result of the previous lemmas, along with the fact that all souls are
pseudo-souls to each other, we know every pseudo-soul is contained in %f
and %* is a union of pseudo-souls. We first prove the following:

Lemma 3.5. βf c M is embedded.
Proof For any ] ? G / let S be the pseudo-soul containing p, and

let r > 0 be such that hp\ Sp -» Nr(p) -> Jζ(Sp) C M is an isometric
embedding. Then it will suffice to show that there exists a metric ball
Br(p)9 0 < rx < r, such that

Suppose not. Then there exists a sequence {qk} of points in %? such that
qk £ ^r{Sp) and qk —• p as k —• oc. For each k let Sk = exp5 i^ , F^ G
^ ( 5 0 ) , be the pseudo-soul containing qk . Since all Sk 's are contained
in some compact t.c.s., by Theorem 3.3 we may assume that \\Fk\\ < JV
for some yΓ > 0, and hence {Fk} is uniformly convergent for some
subsequence. Assume that Fk —• F G «^(50) as k -> oc. Since ^ G 5Λ

and 5^ —• exp5 F as A: —»• oo, it is easy to see by Corollary 1.4 that
exp£ F = S . We are going to show that if k is large enough, then
Sk c £?r{Sp), which is a contradiction and the lemma will follow.

If p = expqv for q G SQ and v = F(q) G Φ^(S0), let vk G Φq(S0)
be such that Fk(q) = vk. Then clearly vk -^ v as /: —> oc. If /? is not
conjugate to q along the geodesic exp^ tv , then by Proposition 2.6 we can

find a ball 5 r (υ) c Γ Λf such that exp^: 5 r (v) -> Af is an embedding

and exp^(5r (υ) Π Φ (50)) c Nr(p). Therefore, if \\υk - v\\ < rχ, then

5^ c Wr{Sp). If p is conjugate to q along exp^ tv, pick w = t{v such

that Pj = exp^tt; is not conjugate to q and px G iVΓ(p). Let rχ > 0 be

such that TV. (pt) c TVr(p). Since vk —>• i;, it is clear that wk = t{vk -^ w .

By the same argument as above we can find a number r2 > 0 such that

if Hi^ - w\\ < r2, then exp^ wk G 7Vr (p{) c A^(p), for which we clearly

have exp^ vk = expq(wk/t{) e Nr{p) and Sk c ^ ( 5 ^ ) .
Lemma 3.6. For any / ? G / there exists r > 0 swc/z ί/zαί Nr(p) c N(q)

for some q G 5 0 .
Proo/ Since there is a pseudo-soul S containing p, we can find q e

So and F G ^ ( 5 O ) such that expqF(q) = p , and exp s F = S. Let

r > 0 be such that ^ ( 5 ) C ¥ is isometric to 5 x Λrr°(p). For any
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pχ = expp v e Nr(p) let υ be extended to the parallel normal vector field
V along S. Then the pseudo-soul exp 5 V is (P)-connected to *S0 by the
broken geodesic (exp^ tF)u(expp tV), and hence pχ is contained in N(q)
by curve shortening.

Proposition 3.7. // / : M -> S o <wirf //: M x [0, 1] -> M αre ίAe
canonical retraction and its homotopy, then for any q e So and any t e
[0, 1] we have H(N(q), t) c ΛΓ(tf). /« particular, when t=l, f(N(q)) =

Q

Proof. For any p e M find q e So and F e ^(So) such that p =
expg F(q), and let φp[0, 1] —> Af be the curve such that fl? (/) = //(/?, ί ) .
It then suffices to show that φp[09 1] C N(q). Let C be a compact t.c.s.
such that p e dC. By induction over the flag of C, for each / > 0 we
assume that φp[09 tt_x] c N(q), and then show that φ^t^γ, t(] C N(q),
where ti = sup{t e [0, l ] | ^ ( ί ) φ C(i)}. We may also assume that
/ = 1 since the argument will be the same for any compact t.c.s. Let
φp be reparametrized so that ψ o φ (t) — t for the distance function
ψ = d(.,ΘC).

Let S = exp s F c dC be the pseudo-soul such that p e S. By Lemma

3.5, there exists°r > 0 such that Br(p) Π^F = Br{p) Γ\^r{S), where ^ ( 5 )

is isometric to S x Nr(p). Let 5 > 0 be such that ^ [ 0 , ί ] c ί r ( i ? ) 5 and
first try to prove that φp[0, δ] c N(#). Since H(S, ί) is a pseudo-soul
for each ί e [0, 1], we have ^ [ 0 , 1] c &, and hence ^ [ 0 , 5] c i/ r(S).
Therefore, by lemma 3.6, it suffices to show φp[0, δ] c Nr(p). We now
consider φ as a curve in the product space S x Nr(p), in which p can
be expressed in the following form:

ΦPW = hpl° ΨpW = W 0 ' ^(0) e S x iVr(P).

For any τ > 0 let γτ: [0, τ] -* C be the minimal geodesic from pp(0) to
^ ( τ ) . By (Al), we have

l i m γ(0) =

For any ε > 0 there is τ > 0 such that Z(}/(0), Vψ{p)) < ε. How-

ever, since Vψ is parallel along S, the geodesic cxpptVψ is contained

in NΓ(p) for small ί > 0. If we have chosen τ small enough, the

map rf(yT(τ),exp ^V^) attains its minimum when t = t1 such that

exp t'Vψ e Nr(p), and then by Toponogov we have

d(γτ(τ), exppt'Vψ) < d(γτ(τ), p)sinε < L[φp\[Oτ]]sinε.
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Since d{c(τ), p) = d(γτ{τ), Nr(p)) < d(γτ{τ), expp t'Vψ), it follows that
d(c(τ),p) < L[φp\[0 τ ] ]sinε. Let τ < δ be the least upper bound of
τ G [0, δ] with this property. By a limiting argument we know τ has that
property. If τ < δ, by the same argument as above, we can find τ > 0
such that d(c(τ + τ), c(τ)) < L[φ \^ -+τ]] sine . Then

</(c(τ + τ), p) < d(c(τ + τ), c(τ)) + rf(c(τ), p)

which is a contradiction. Therefore, we may conclude that for any ε >

0 and any t e [0, δ] we have d(c(t), p) < εL[φ l0 δ]], which implies

c(t) = p for all t e [0, δ], and hence ^ [ 0 , ί ] is contained in N(q).

Let δ e [0, ί j , tγ = sup{t\φp(ή <£ C(l)} , be the least upper bound of

δ such that φp[0, δ] c N(q). If δ < t{, consider a sequence ^ such

that sk -• ί as /c -• oo and ^ ( \ ) € iV(ήr). Let FΛ e ^{SQ) be such

that txppFk{q) - φp{sk). By Theorem 3.3, | |FJ | is bounded by some

number, and hence {Fk} has a subsequence converging to F e ^{So).

Clearly expqF{q) = φp(δ), and it follows that φp(δ) G JV(«). By the

same argument as above, we can extend δ to be a larger number to obtain

a contradiction.

Corollary 3.8. For any q e So the subset N(q) c M is a totally

geodesic embedded submanifold of M, which is diffeomorphic to R , k =

Proof. Let p e N(q) be such that p = cxpqF(q), F e ^ ( 5 0 ) , and
let S = exp5 F. Choose a metric ball Br{p) c M such that Br(p) Γ)
& = Br{p) Π°^(5), where ^ ( S ) = Ap(5 x ^ Γ (p)) . For any p{ e S,
p{ = exp^ F(q{), we have hp(p{ x iVΓ(p)) = Nr(pχ). Thus, by Lemma
3.6 and Proposition 3.7, we have Nr(px) c ^ ( ^ Ί ) and f(Nr(pγ)) = q{ .
Since / is a well-defined function, we have N(q) Π<%ζ(p) = Nr(p). Then
Nr(p) c JV(tf) and Br(p)nJT = Br(p)nJ^(S) implies that Br(p)nN(q) =
Br{p) r\^r{S) Π JV(tf) = ΛΓΓ(p). Therefore ΛΓ(ήf) is embedded in M.
Furthermore, since each iVr(/?) c M is totally geodesic, so is N(q).

By Proposition 3.7, for each q e So and any ί e [0,1] we have
H(N(q),t) C tf(9), which means H\N{q): N(q) x [0, 1] - N(q) is a
homotopy such that J/( , 0) = id on iV(ί) and H{N(q), \) = q. Thus
iV(^) is contractible. In fact, since N(q) Γ\S0 = {q} and N(q) is totally
geodesic, it is easy to see that N(q) has a point soul q, and hence is
diffeomorphic to R .



SOULS IN A COMPLETE OPEN MANIFOLD 447

We now obtain the proof of our main theorem by combining all of our
previous results.

Theorem 3.9. For any q0 e So the map h: Sox N(q0) —• M is a totally
geodesic isometric embedding with its image %?.

Proof. We first show that h is a well-defined injective map. Suppose

there are two points ql9 q2 e So and two parallel vector fields Fχ, F2 e
^(SQ) such that exp^ Fχ(qχ) = exp^ F2(q2). By Corollary 1.4, we have

exp5 Fχ = exp5 F2 = S. For any p e S, if pχ, p2 e So are such

that expp Fχ(pχ) = cxpp F2(p2) = p, then by Proposition 3.7, pχ =

/(exp/?i Fχ) = /(exp^ F2) = p2, which implies that qχ = q2 and exp^ Fχ (q)

= expqF2(q) for any q e So. Thus h is injective. In particular, when

qχ - q2 = q0, we see that h is well defined.

For any p = exp^ F(q0), F e <^{S0), the pseudo-soul S - exp5 F

has a neighborhood °JTr(S) = hp{S x Nr(p)) such that 7Vr(p) c N{q°0).

Then, for any /?j e Nr(p) we have Λ(50 x {px}) = hp(S x {px}) by curve

shortening. Therefore it follows that h\s χN (p) = /^ when 5 is identified

to So . By Lemma 3.5 and Proposition 2.8, A is a totally geodesic isometric

embedding.

If the holonomy group of the normal bundle of a soul is trivial, i.e., if
every vector υ ev(S0) has a parallel extension over SQ, then we have the
following immediate consequence of the theorem.

Corollary 3.10. If the normal bundle v{S0) of a soul is a parallel i.e.,
u(S0) = Φ(S 0), then M is isometric to So x N, where N is a totally

geodesic embedded submanifold of M, which is diffeomorphic to Rk , k =
codim(5'0).

In [7, Corollary 5] it was shown that if c o d i m ^ ) = 2 and ^(*S0) is
flat, then M —• So is locally isometrically a product. Using the corollary
above, one can easily generalize the argument to obtain the following.

Corollary 3.11. If the normal bundle v(SQ) of a soul SQ is flat, i.e., if
the normal holonomy group is locally trivial, then there is a Riemannian
submersion M —• So which splits locally isometrically.

Appendix

In this section, we will first review the construction of the Sharafutdi-
nov retraction / , and investigate the geometry of t.c.s. (totally convex
set) in nonnegatively curved manifolds. Some of the results discussed in
this appendix may also be found in [4] or [5]. However, our approach
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here will be more geometric and sometimes simpler than Sharafutdinov's
arguments. Since we have to use some results from §§1 and 2, the logical
place where the content of this appendix could be inserted is between §§2
and 3.

As was shown in the construction of a soul, there exists a filtration Ct

of M by t.c.s., and a flag of t.c.s. such that

Co = C(O) D C(l) D o C(k) = SQ.

Furthermore, for any compact t.c.s C, dC φ 0 , one can define a func-
tion y/: C —• R by ψ(q) — d(q, <9C). Then y/ is a convex function [3,
Theorem 1.10], i.e., for any normal geodesic segment c contained in C,
we have

ψ o c{atι + 0ί2) > α y o c(ίj) + βψ o c(ί 2),

where α, /? > 0, α + /? = 1.
Put α0 = sup{^(#)|# G C} . Then, for each b G [0, aQ], the subset

C = {q G C |^( ί ) > &} is totally convex. Therefore, in fact, there exists
an exhaustion of M by t.c.s., which means for any p G M one can find a
t.c.s. C (C,, or C{i)b ) such that pedC.

Because of this totally convex exhaustion of M, to construct a defor-
mation retraction from M to So, it suffices to show that for any compact
totally convex set C and any two numbers α, b, 0 < < 2 < & < α 0 , there
exists a retraction fb: Ca ^ Cb such that / j 7 | c * = id [8, Theorem 2.3].

For any a, b, 0 < α < fe < a0, let P^ = {a = tQ < tχ < < ί2* = &}

be the partition of [a, b] into 2^ equal segments. Define fk: Ca -+ Cb

by .4 = g2k o g2fc_j o o gj, where g : C^-1 -• C/; is a projection, i.e.,

for each q e C' ', rf(^, gt{q)) = d(q, C''). Then, by Ascoli's theorem, a

subsequence of {/̂ } converges to a continuous function fb:Ca^ Cb as

/: —• oo. For any p G dCa and any partition Pk let 7p Λ be the broken

geodesic which minimizes distance from g._ι o og{(p) to gio- -ogι(p)

for each i. Each yp k is assumed to be parametrized so that yp k{tt) =

g. o o gχ(p). Then, as {fk} converges to fb , {yp^k} converges to a

continuous curve. Put Hb{p, t) = l im^^^ γp k(t). For any q G Ca , if

q = Ha(p, tQ) for some /? G 9C α and *0 G [α, b], we define /*£(#, t) as
follows:

//fl (q, /) = J ~ °'
I H*(p, t) otherwise.
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Thus it is clear Hb : Ca x[0, 1] -> Ca is ahomotopy such that Hb(-,0) =

id and //*(•, l) = / j \

We now use the totally convex exhaustion of M to extend this partial
construction to a deformation retraction f.M^S and its homotopy
i / : ¥ x [ 0 , 1] -• M. In fact, for any /? e M let C be the t.c.s. (C,, ί >
0, or C(/)*, / > 0, 6 e [0, a.]) such that peC. Then define H{p, t)
as a composition of the Hb 's constructed above for C with a suitable
change of parametrization. According to our construction, the choice of a
homotopy H (and hence / ) may not be unique. We will, however, make
a choice and call it canonical. Then the following was shown in [8].

Theorem A.I. H: M x [0, 1] —• M is a continuous map such that

H{ , 1) = id on M and H(-, 1) = / , where f:M-+S0 is a strong de-

formation retraction. Furthermore, for each t e[0, I], H(-, t) is distance

nonincreasing.

For any compact t.c.s. C and p e dC the tangent cone C at p is

defined in [3]. For any p e C let be[0, a0] be such that p edCb . We

then use the same notation Cp to denote the tangent cone of Cb at p,

which is by definition the set

O I

{v e TpM\ expp ίu/IMI £ C for some positive t < r(p)} (J{0},

where C , is the interior points of C , and r(p) is the convexity radius
of C at p [2, Theorem 5.14]. Let Cp c TpM be the subspace spanned
by Cp . Then we have the following known facts.

Proposition A.2 [8, §1]. (I) If a is a number such that 0 < a < a0 =
sup{^}, then there exists an angle θ > 0 such that for any t e [0, a] and
any p edC* the tangent cone Cp contains a circular cone,

for some υp Φ 0.

(2) For any b e (0, a0) and any p edC we have

C; Φ{υ e Cp\(v,w) < for all w e Cp - {0}}

= {ve Cp\d{expp tv/\\v\\, dCb) = t for small t > 0}

= the convex hull of^v^ ,

where {vj = {v e C \ exρp tυ/\\υ\\ e dCb~ι for small t > 0}.
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(3) If a geodesic γ is contained in dCb, 0 < b < a0, then {v.}p (and

also C*) is orthogonal to γ\i) and invariant under parallel translation

along γ.

(4) Any compact totally geodesic submanifold in C is completely con-

tained in dCb for some b e[0, a0].

Theorem A.3. Let C be a compact t.c.s., dC Φ 0 , and let ψ(q) =

d(q, dC). For any peC and any X e Cp (X e Cp if p e dC), ψ has

a right derivative X+(ψ), i.e., for any smooth curve γ: (-c, e) —• M with

γ(0) = p, /(0) = Xf the right limit

/o t

exists independently of γ. Furthermore, the following hold.

(1) If p e C and X e Cp, then X+(ψ) = - | |JΓ| |cosα, where a =
Ίnϊ{Δ(X, v)\v e {v, }p}, and {v^ is defined in Proposition A.2(2).

(2) If p e C and X e Cp9 then X+{ψ) = ||AΓ|| sin/7, where β =

mϊ{Δ{X,v)\vedCp}, and dCp = Cp-Cp (Cp= the closure of Cp).

Proof We first observe that for any interior point p and any X e C'

the two expressions for X+(ψ) above are consistent by Proposition A.2(2).

On the unit sphere 5(1) c Cp , if a set ({v.} Π5(l)) is strictly contained

in the upper hemisphere, then the distances from the south pole

to the set and to its convex hull are same. In our case, since X e Cp

implies α > π/2, and C* is the convex hull of {v^ , we see that

α= inf{/.(X9υ)\ve{υi}p}

and hence -cosα = -cos(^? -h π/2) = sin/?. If the right limit X+(ψ)
exists for any smooth curve, then it will be the same for all curves with
the same initial conditions because ψ is a Lipschitz function. We assume
that γ is a geodesic.

For any p e C and X e Cp let b > 0 be such that p e dCb . By the
convexity of the function ψ [3, Theorem 1.10] we have for any v e {v^
that

Ψ ° y(t) = d(γ(t) 9dC)<b- t\\X\\ c o s ( Z ( X , v)).

Thus
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To show the opposite direction of the inequality, we suppose that there
exist a strictly decreasing sequence {tk} converging to zero such that

<
k^oc tk

Let a G (0, b) be such that b - a = δ < r/2, where r < ε c . Consider
the sequence {pk = y{tk)} which clearly converges to p as k —> oo.
For each k let qke dCa be such that d(pk, qk) = d(pk, dCa). Since
dCa is compact, there exists a convergent subsequence of {qk}, and we
assume (by abuse of notation) that qk —> q G dCa . Then it is clear that
d(p, q) = δ and there is a normal minimal geodesic c: [0, δ] —> C from
p to q such that tu = c'(0) G {vj^ . Put o;0 = Δ(X, ti;). Then a < a0 , so
there exist / G Z and ε > 0 such that ψoγ(tk) < 6-^| |^Γ| |cos(α0-β) for
any k > JV . We now pick k>Jf large enough that pΛ = y(ίΛ) G Br(qk)
and /(^(O), 4(0)) < ε/2, where c^ is the minimal geodesic from p
to qk. Then Z(X, c[(0)) > α 0 - ε/2. Therefore, for any ί > 0 with
exp tX e Br(qk) ,we have by strong convexity

rf(9Λ , exP/7 ίΛΓ) > rfί^ , p) - t\\X\\ cos(α0 - ε/2)

><ϊ- ί | |AΊ |cos(α 0 -e/2) ,

which is a contradiction since

d(qk , e x p p tkX) = rf(ίik, pk) = ψ o y(tk) -a<δ- tk\\X\\ c o s ( α 0 - ε ) .

We may now conclude that

and hence the right limit X+(ψ) exists and (1) is satisfied.
The only remaining case is when p e dC and X G Cp. By the same

convexity of ψ, we obtain the following:

Assume again that there exists a sequence {tk} for which we have a
strict inequality. Let qk G dC be defined such that d(pk = γ(tk), qk) =
d{pk ,dC). Then qk -> p as fc -> oc. For each fc let ck: [0, 1] -* M be
the minimal geodesic from p to qk , and set ^ = ||4(0)||~1c^(0) G C p .
We assume (after taking a subsequence if necessary) that as k —> oc, {^}
converges to a unit vector w e Cp. Since qk -> P as fc —• oo, it is easy to
see that w φ C' and hence w e dCp. We then use a similar argument
for w as in the first case to obtain a contradiction.
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Definition A.4. For any p e C (p $ Ca°) a unit vector vp e Cp will

be called a (generalized) gradient direction if

vp(ψ) = sup{υ+(ψ)\υeCp, \\υ\\ = 1},

and denote Vψ = vp(ψ)vp .

If p e Ca°, then we will define a gradient direction at p as a point
in the totally convex set Ca°. Since v+(ψ) is positive only if v e Cp,
it is obvious that v e C , and hence the definition still makes sense for
pedC.

By Proposition A.2 we know several properties of Cp {{v^ , or Cp).
We will use these facts to examine the properties of Vψ.

Theorem A.5. With C and ψ as above, we have the following.
(1) For each p € C, Vψ(p) e Cp is unique.

(2) For any be(0,aQ) and any geodesic γ contained in dC , Vψ is

perpendicular to /(/) and parallel along γ.

(3) For any a e [0, a0) there is an angle θ > 0 such that for any

te[0,a] and any p edC* we have \\Vψ(p)\\>sinθ.

Proof As C* is convex, it is easy to see that there exists a unique

minimal circular cone containing C* with its center —v G C*. Then

clearly the function inf{Z( , υ)\υ e C*} attains its maximum at vpeCp,

and by definition we have Vψ = vp(ψ)vp , where we assumed ||υ || = 1.

Therefore Vψ(p) is unique for each p e C. By Proposition A.2(3), C*

is parallel normal to any geodesic in dCb , b e (0, a0). Thus the minimal
cone is parallel along the geodesic, and so is the gradient Vψ . Moreover,
since -vp e C*, Vψ(p) is perpendicular to the geodesic. By Proposition
A.2(l) and Theorem A.3, the last claim (3) easily follows.

Let So be a soul and let H be the canonical homotopy corresponding to
SQ . For any p e M put φp(t) = H(p, t). If C is the t.c.s. of the totally
convex exhaustion of M such that p e dC, we then reparametrize the
continuous curve φp so that ψ{φp(ή) = t for t < a0 = sup{^(x)|;c e C} .
By the definition of H, for any a, b, 0 < a < b < a0 , the curve φp[a, b]
can be obtained as a limit of the broken geodesic γ k with the partition
Pk = {a = t0 < - < t2k = b} (note that the set of dyadic numbers is dense
in [0, 1]). For this continuous curve we have the following corollary.

Corollary A.6. For any a, b, 0 < a < b < aQ, φp: [a, b] —• C is a

rectifiable curve and

L[φΛ <{b-a) sup{\\V ψ(p)fl\p edC*, a<t<b).
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Proof. By construction, φp is a uniform limit of the broken geodesic
γp k : [a, b] —• C, which is defined to be such that

for the partition Pk = {a = ί0 < < t2k = b} . Hence it suffices to prove
that for any k the length L[γp k] is bounded by the above number, and
then it is enough to show for each /

For any ti_ι, t{ e [a, b], to simplify notation put t - ti__x = δ and

let γ: [0, δ] -+ C be such that γ(s) = yPik{ti - s). Then we have

q = γ(0) e dCli and d(γ(s), dCli) = L[γ\[ids]], and hence by Propo-

sition A.2(2) it follows that /(0) € C*. Let θ > 0 be the angle such that

| |V^(ί) | | = sin0, which means the circular cone C (Vψ(q)9 θ) is con-

tained in C . Then, by Proposition A.2(2), we see that C* is contained

in Cq(-Vψ(q),π/2 - 0), and therefore inf{Z(/(0), v)|v € {vf.}tf} <
π/2 - 0. We now apply Theorem A.3 to obtain

cos(π/2- θ) = - | | / (0) | | s inθ = -\\Vψ(q)\\L[γ]/δ.

Then by the convexity of ψoγ and the fact ψoγ(δ)-ψoγ(0) = ti_l -ti =

-<* we have (/(0))+(^) > - 1 . Since L\yp%k\h^ = L[γ],

Thus the corollary is proved.

Lemma A.7. With C and ψ as above, for any b e[0, a0) and p e

dCb let γτ: [0, τ] —• C be the minimal connection from p to C + τ ,

τ > 0, i.e., d{p, γτ(τ)) = d(p,ΘCb+τ). Then

Proof Put

By the definition of
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Thus ψoσ{ή = b + t(\\Vψ\\(p) + O(t)). If σ(ή e dCb+τ for small t > 0,

then ψ o σ(ή = b + τ : Since γτ is the minimal connection from p to

ΘCb+τ, we have τ\\γ'τ(0)\\ = L[γτ] < L[σ\0 t]] = t. Therefore,

On the other hand, since ψ o γτ is a convex function and ψ o γτ(τ) - ψ o
γτ(0) = τ , we have

s—+0

fι\\γ'{O)\fι{Put -α(t) = '\\Vψ\fι\\γ'τ{O)\fι{γ'{O)f{ψ), Since Vψ is the gradient di-
rection, we know that α(τ) < 1 for any τ > 0. Combining the two
inequalities above gives

Hence as t —̂  0 (or τ —• 0) we shall have a(τ) —̂  1 and ^

IIV^H" 1 ^), which imply the lemma by the uniqueness of the gradient

direction.

We defined φp as a limit of the broken geodesies whose segments con-
sist of minimal geodesies γτ as above. Therefore, the preceding lemma
suggests that φp might be regarded as an integral curve of the vector field

V^/||V^||2 which is unfortunately not differentiate (not even continu-
ous). Actually, a more careful observation will show an even stronger
result. (The proof of the next proposition is somewhat technical and we
shall omit it. The proof may be found, e.g., in [4].)

Proposition A.8. For any p e ΘC let φ : [0, a0] -> C be as above.
For any t e [0, a0) and any τ > 0 let γτ: [0, τ] -+ C be the minimal
geodesic from φp{t)edCι to φp(t + τ) e dCt+τ. Then

lim y'(0) = ϊ(φM)).

In Theorem A.5, we have shown that Vψ is parallel normal along any

geodesic contained in dCb , b e (0, a0), and we know every pseudo-soul

is completely contained in d Cb for some b . Therefore we conclude that

almost every pseudo-soul has a parallel normal vector field, namely Vψ.

In fact, we can prove this fact without the restriction on b e [0, a0]. In
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[5] it was shown that if a soul is not unique, then every soul has a parallel
normal vector field along it. The only nontrivial fact which the author
used in the proof is that the mixed curvature terms vanish along a soul.
Since we now know every pseudo-soul also has this property, we can prove
the following corollary. Moreover, using the concept of a pseudo-soul and
its properties, we obtain a proof simpler than Sharafutdinov's argument.

Corollary A.9. [5, Theorem 2]. If a pseudo-soul S is not a unique soul,
then Vψ is a parallel normal vector field along S.

Proof. For any pseudo-soul S, H(S, t) is a continuous isometric vari-
ation of S through pseudo-souls. However, according to the proposition,
for each p e S we may regard Vψ{p) as a tangent vector of the curve
φ (t) = H(p, t) at p . Therefore Vψ is a variational vector field of
pseudo-souls, and is therefore a global normal Jacobi field. Hence, by
Corollary 2.5, Vψ is a parallel normal along S.
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