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LIE'S THIRD THEOREM
FOR INTRANSITIVE LIE EQUATIONS

JOSE M. M. VELOSO

Introduction

In [4], H. Goldschmidt used the formalism developed by B. Malgrange
[9] to prove Lie's third theorem in the context of transitive Lie algebras:
"If Lk+{ c Jk+ιTR™, where k > 0, is a (k + l)-truncated transitive
Lie algebra such that the symbol of Lk = πkLM is 3-acyclic, then there
exists a formally integrable analytic Lie equation Rk c Jk TRm such that

In this paper, we show that the above Rk can be constructed without
using the Cartan-Kahler theorem; our proof only requires Frobenius' theo-
rem. Consequently, in the intransitive case, we are able to prove a version
of E. Cartan's results [1] without assuming that the structure functions cijk

and aijλ are analytic.
Our main result is the following theorem, which we state here only in

the transitive case for simplicity.
Theorem. Suppose Lk+2 c Jk+2TA™, where k > 0, is a (k + 2)-

truncated transitive Lie algebra. Then there exists a C°° vector sub-bundle
Rk+ι C Jk+ιTRm such that:

(i) Rk = πk(Rk+ι) is a vector sub-bundle of JkTRm

(ϋ) [RM,Rk+ι]cRk;

(ϋi) Λ * + i , o = = L * + i ;
(iv) Rk+ιc(Rk)+ι

If the symbol of Lk = 7ikLk+ι is 3-acyclic, then Lk+ι can be prolonged
to LkJt2. We know that all its prolongations are isomorphic, thus the as-
sumption in Goldschmidt's theorem gives us a (k + 2)-truncated transitive
Lie algebra.

The equation Rk in the Theorem may not be formally integrable (we
only know that πk: {Rk)+ι —• Rk is surjective). However, when the sym-
bol of Lk is 2-acyclic, Theorem 4.1 of Goldschmidt [2] implies that Rk
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is formally integrable. Therefore Goldschmidt's theorem can be obtained
as a consequence of our theorem.

To prove our result, we first consider the flat connection V on Jk+2 TRm,
as in [4], defined by a section

i.e., Vζ = [ώ, fffor ξ e fk+2^VLm . We construct Rk+2 by taking the
parallel transport of Lk+2. Then Rk+lt0 = Lk+ι, and [Rk+ι, -R*+i] c
Rk . Now we twist Rk+{ by a section φ e &k+2, as in [4], so that the
new Rk+ι satisfies our condition (iv). To achieve this, we must solve the
equation

(*) 3fφ = -πk+ιω modΓ* ®Rk+ι.

In [4], the sophisticated Spencer operator is used. However, the first
nonlinear Spencer operator 3 seems to us to be more appropriate for
this problem because the bracket in Lk+2 is defined pointwise.

We associate to (*) the submanifold Sk+2 c β ( 1 k+2). We prove that:

(1) the symbol of Sk*2 is the tensor product of Γ* and a vector bundle,

(2) the mapping πχ: (Sk+2)+ι —• Sk+2 is surjective. Then our equation
may be solved using Frobenius' theorem, as is shown in the Appendix.

To prove statement (2), we consider a section X e J?^+ 2

 9 and lift it to

F e &{2ik+3) w i t h π\ k+iF e ^ M ' where Sk+3 is defined in the same

way as 5r/c+2 , replacing k by k + 1. We show that

where y e J{(T* ®-RΛ+2) and x e keτσ(3{). The sequence

S T ®VQk+3 vT ®T ®Jk+2T >Λ T ®Jk+v

is not exact, but

hence there exists h e S?2^* 0 ^ β ^ + 2

 s u c h t h a t σ\(^\)h = πk+\x

This explains why we must start from a (k + 2)-truncated Lie algebra
Lk+2 instead of one of order k + 1. Then X = π2 k+2F + h is a section

of (5 t / : + 2)+ 1 which proves (2).
The proof in the intransitive case follows the same lines. We only have

to add the hypothesis: Lk+2 is defined on a submanifold N transverse
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to the orbits, and the restriction of the linear Spencer operator D to
sends ^ + 2 into ^f* ®-2£+1.

In a separate paper, we shall define the intransitive Lie algebras, a notion
of isomorphism, and prove realization theorems analogous to those of
Guillemin-Sternberg [6].

Preliminaries

Throughout this paper, we shall use the notation of Malgrange [9] or of
Goldschmidt-Spencer [5], unless it is stated otherwise.

All the results are local. Let M be an open subset of Rw containing
0, let (xι ,yj) be coordinates on M, and let H, V be sub-bundles
of T = TM such that H (resp. V) is generated by {d/dx1} (resp.

j

We denote by JkV the sub-bundle of JkT of /c-jets of sections of V.
Then

is defined by Dζ = [ψ, ζ] (see [9, Proposition 3.7]), where ψ = ψH + ψv

and
χ ® i > ψv Σdy

The decomposition T = H φ F induces a decomposition D = DH © Z)Γ ,
with Z)^CΛ= 1^) cβ?* (S^T. It is easily verified that £>„£ = [ψH,ξ]
and Z)F^ = [^κ, ξ]. We can extend DH to a mapping

by

(1) DH(a®ξ) = dHa 0 πkξ + (~l) d e g α α Λ ^ ,

where again d = dH + dv . Also, Z)κ extends in a similar way.
We denote by Qk(V) the manifold of /c-jets of diffeomorphisms / of

M, which are equal to the identity mapping in the variables x, i.e., of the
form f(x, y) = (x, g(x, y)). So Qk(V) is a submanifold of Qk , and
we denote by Qki^) the sheaf of invertible sections of Qk(V).

The first nonlinear Spencer operator

acts on 4+2(2Π by

(2)
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(see [9, p. 520]). The formula (6.8) of [9] tells us that

(3) [βF\ = (λιF{x))'1 JΛ

χπk+ιF-jι

χIk+ι,

where Ik+ι is the identity section of Qk+ι(V). We identify Ik+ι with M.

We can interpret this formula in the following way: jχnk+ιF and λιF(x)

define invertible linear maps from TχQk+ι(V) onto Tπ F{x)Qk+ι(V), so

(λιF(x))~ι - jχπk+ιF is an endomoφhism of TχQk+ι(V) which induces
the identity on TχM thus for v e TχM we have

i.e.,

(4) i(v){3fF)χ = (λιF(x)Γι • j \ π k + χ F -υ-v.

The following formulas hold for 91 ([5], [9]):

(5) 2>{GoF) = 2ίF + F-\2)G), F, G e

(6) Dξ = [SfF,ξ] + (πk+ιFyl

(7) Ώ9IF -\\9SF ,

where F( ) denotes the action of F on Λ / * ®fk+x^ • If

is the operator defined by

(8)

ΛV"

for H ε ^ ' ® Λ + i ( ^ " ) ' t h e n i ι follows from (7) that 9/χ9/F = 0, so we
get the first nonlinear Spencer complex

(9) 4 + 2 Λ+i Λ

which is exact ([9], [5]), where

(7* ® Jk+ι

 vf = { « C Γ ' ® - 4 + 1 F : πoM + i d r € Γ * ® τ i s invertible}.

The operator 91 induces a surjective morphism

where Q(i j Λ + 2 ) ( H stands for the 1-jets of elements of ^ + 2 ( ^ ) l t f o 1 "
lows from (3) that

(10) p{β)X = (λ\k+2X)~ι o (π i ),+ IX) - j[(χ)Ik+χ.
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The symbol of 2J is a mapping

σ(3f): T' ® VQk+2(V) - T* ® Jk+χ V.

Lemma 1. Ifa®ξeT*® VγQk+2(V), then

(11) σ{2l){a®ξ) = a®{γ-χ-πk+uξ),

where Y € Qk+2(V), a€T*, ξe VγQk+2(V), and π(Y) = x.
Proof. Let X be an element of β ( 1 k+2)(V) such that π0 ί : + 2X = Y,

and u€T*<8> VγQk=2(V). There exists a curve Xt in Q, k+2(V)x such
that Xo = X,

If

we have

π\,k+ι*u
γ f π x \ γ

As a consequence of this lemma, we see that

σxiβy S2T* ® VQk+2{V) ^T*®T*® Jk+ιV

is determined by

(12) σx(3f){a -β®ξ) = a-β® Y~\πk+Uξ),

where α, β e T*χ , ξ e VγQk+2(V), Y € Qk+2{V), and π(Y) = x. We
associate to ϋ?, the morphism

x . jχ(f ® Jk+ιvf - /\2τ* ®jkv

whose symbol

σ(grι):Jι(T*®Jk+ιV)^/\2r®JkV

is equal to σ(D) and is given by

(13) σ(3ti){a®β®ζ) = aΛβ®πkζ,

where a, β eT* and ζ € 7fc+1 K.
The following lemma is easily verified.
Lemma 2. If X G J{(T* ® Jk=ι V)A and zeT* ®T*® Jk+χ V, then

(14)
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Main theorem

Theorem. Suppose that Lk+2 is a vector sub-bundle of (Jk+2

V)\N > sat~
isfying:

(a) π (A+ 2 = V\N
(b) Lk+ι = πk+ι(LM) is a vector sub-bundle of (Jk+ιV)\N for I = 0, 1

Then there exists a vector sub-bundle R'k+ι c / Λ + 1 such that:

(i) R'k = nk(R'k+ι) is a vector sub-bundle of JkV \

(ϋ) [R'k+ι,R'k+i]cR'k;

(iϋ) R'k+ι\N = Lk+ι'>
(iv) R'k+ι c ( ^ ) + 1 .

/ We set

and we define the following (partial) flat connection (see [4,§3])

by

(15) V{ = [

for <̂  G Λ + 2 ( ^ ) ' w h e r e t h e bracket

is given by [9, (2.3)]. If £ is a section of fMT such that πΛ + 2(ί) = ί,
then

(16) V{ = Z)K?+[©,?].

We have

V(Vί) = [ώ, [ώ, {]] = P , ώ], {] - [ώ, [ώ, ί]];

since [ώ, ώ] = 0, we see that V is flat. In the same way, we can define
connections Vk+ι on Jk+ιV in terms of (ok+ι+x = πk+ι+ι(ω) for / = 0, 1.

It follows from Jacobi's identity that

(17) VΛ + 1K f i /J^ IV ί^ l + K , ^ ] ,

where ξ, η e Jr

k+$/r. Let ξ., 1 < / < r, be a basis of sections of Lk+2 ,

and let ^ , 1 < / < r, be sections of ^ + 2 ^ s u c h t h a t
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Let Rk+2 be the sub-bundle of Jk+1 V generated by the ξ'.9 1 < / < r, and

set Rk+ι = πk+ι(Rk+2) for / = 0, 1. Then by (b), Rk+ι is a sub-bundle

of Jk+ιv f o r ' = °> 1 ' a l s o > w e h a v e

(18) V ( ^ + 2 ) c ^ *

Furthermore, we obtain from (17)

and from (c),

Lemma 3. Lei u be an element l\^*®/k+2^ satisfying

u\N

w belongs to f\ <%** +

Let ^ , 1 < / < s, be a basis of sections of ^ + 2 ^ > s u c ^
1 < Ϊ < r, is a basis of ^ + 2 , and Vί| = 0 for 1 < / < s. Then

ι=l

with α;. = Σf'β dχβ e Λ^"* > and /j(x, 0) = 0 for r < i < s. Therefore

i=ί

and by hypothesis
dvai = 0, r < i < s.

This implies that

r<i<s.^ 0,
dyJ

Hence fβ(x, y) = fβ{x, 0) = 0, r < i < s, and u e j\#*®3lM . q.e.d.
On account of the equalities [ψH, ψv] = [ψH, ω] = 0 we obtain

ω, ψH], ί,'] - [ v w ,

It follows from hypothesis (d) that (DH^)\N € (<£"* ®<&k+1)\jr, and from
Lemma 3 that D^^,' ε #"* ® ̂ + 1 for 1 < i < r. Thus

(20) DH{Xk+2)c*"
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We have finished the first step of the proof of the theorem, namely

constructing the vector bundle Rk+ι satisfying properties (i), (ii), (iii),

and (20). Now, we are going to twist equation Rk+ι by a section of

SkJrl(^) such that (iv) holds for the twisted equation. If ξ e &k+ι, and

φ e &MW), it follows from (6) that

if and only if

(21) Dξ

If φ is an element of ik+2{^), with φ\N = / + 2 i d , for which (21)

holds for all ξ e <9lk+λ, then Rk+ι = Φ(Rk+ι) is a sub-bundle of Jk+ι{V)

satisfying the condition of the theorem. For ξ e &k+ι, we have

Dξ = Dvξ + DHξ = DHξ + πk(Vk+ιζ) - [ωk+i, ξ]

thus, by (18) and (20), we see that (21) is equivalent to

(22) [3fφ + ωk+ι ,ξ] = 0 m o d T* ®Rk.

It follows from (19) that (22) holds for all ξ e 3?k+ι if

(23) 3φ — -cok+ι mod T* 0 Rk+ι.

Thus it suffices to solve (23) for an element φ of ^ + 2 ( ^ ) » w ^ Φ\N =

Set

(24) Ak+l = (-ωk+ι + T*®Rk+ι) Π (Γ* ®Jk+ιV)A , / = 1, 2.

We have - π o ω + id = Σ dxι <8>d/dxι, and by hypothesis (a), πo(Rk+ι) =

V and Ak+ι φ 0 for every x e M. Furthermore, since (T* ® Jk+!V)A

is open in Γ* (8) Jk+!V, we see that 4̂ + is open in —o)k+ι + Γ* ® i?^+ /.

This implies that F ^ + = T <g> Rk+ι.
Define

(25) Sk+ι+ι={XeQ{ι k+M)V\p(3)XeAk+ι}, / = 1 , 2 .

Then ί'̂ 4^2 is the partial differential equation associated with the relation
(23). We will show the following:

(e) Sk+l+ι -> Qk+ι+ι{V) is surjective, for / = 1, 2

(f) πj k+2: S + —• S + is surjective;

(g) ( ^ + 2 ) + 1 - ^ + 2 is surjective;
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(h) If gx

χ is the symbol of Sk+1 at the point X e Sk+2 , with π(X) = x ,
then

From (g) and (h) and by the theorem of the Appendix, there is a φ e
ik+2(T-) such that φ\N = jk+2id\N, and jιφ e S*k+2. Then Rf

k+ι =
φ(Rk+χ) satisfies the conditions of the theorem.

In the proof of (e)-(h), the following diagram will be useful; the dotted
vertical arrows represent affine actions:

T*®T*®Jk+ιV

sk+2

Λ p{βx)

Proof of'(e). The moφhism

is surjective and has constant rank, and Ak+I is a submanifold of

Λ + ί t + i ) Λ Hence

(26) S

is a submanifold of Q(X k+l+l)(V). From (5), we see that

p{2l){H o X) = p{2)X + {λι X)-χ (p{2ί)H).

If p(β)X = A = p(^)(H o X), then p(^)/f = 0, so

(27) \

where ff: β A + / + 2 (^) ~* ^ i s t h e "target" projection. When

we have Qk+ι+2(V)β(X) o ί c Sk+l+ι which implies (e).

Proof of {ϊ). \ϊ X e Sk+2, then A = p{3)X € Ak+ι . Let A be an

element of Ak+2 such that πk+ι (A) = A . Then there is an ^ e S"^3 such

that p ( ^ ) l = A , so that p{3f)~\h) = Qk+4(V)β{X) o X. Hence we have

πuk+2(Qk+4(V)β(X)oX) = π,k+2{p{2ί)-χh)=p{2)-χh = Qk+3(V)β(X)oX

which implies (f).
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Proof of (g). Take X e S^k+1. We must show there exists X e

(^k+2)+l with πιk+2(X) = X. It follows from (f) that there is an ele-

ment F of S*k+3 such that πιk+2F = X, hence p{β)F = -ωk+2 + θ,

with ί G J * ® ^ . Choose ^ Ξ ̂ (2,fc+3)(^) satisfying πιJc+3F = F.
Then

( ( # ) / ) ( # ) F = -ωk θ
k+2 + θ.

If z=Pι{gf)F-jι{-πk+2ω + θ),then z eF* ®^* ® fk+2T and

*+2 l M ^ + 2 K+2 ' «]) + \[θ , β] ,

by (14). By the choice of ω , we have

It follows from (16), (18), and (20) that

Dθ + [ωk+2, β] = DHΘ + π,+1(VΘ) G

and from (19) that

Thus

By (13) we see that σ{βλ): 3Γ*®3Γ*®3lk+2 -• /\2,7"*®«^+1 is surjective,
and so there exists y G £?~* <8> ^"* ® ^ + 2 s u c ' 1

σ ^ j ) ^ = σ ^ J z or σ{βx){y - z) = 0 .

The sequence

(28) S2T* 0 KβΛ + 3(F) ^ ^ f β f β Jk+2V ^ ± /\2T* 0

is not exact. From (13), it follows that

so that

Using (12) we obtain that
2* ® VQM) = S2T* ® /

hence there exists h € S?1^* ® Ψ~SkJr2{Ψ~), with
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for all x e M, such that σ{2>x)h = πk+ι{y - z). Set X € π2Jc+2F + h.

Then πχk+2{X) = πiJc+2(F) = X, and

πk+2(y - z)

k+ι+jπk+iθ+y;= -Jlωk+ι+jlπk+iθ+y;

hence

and X e (<5*k+2)+ι, which proves (g).
Proof of (h). Denote the canonical projection by

Then

and therefore
g = ker poσ(S)

(cf. [3]), i.e., if X € 5^+2 , then

gl
x = {h € Γ; β Fπo t + 2 ( χ

From (11) it thus follows that

Corollary. In the hypothesis of the theorem, suppose furthermore that
hk = {ξ e Lk\πk_χξ = 0} is 2-acyclic at every point x e N. Then R'k is
formally integrable.

Proof We must show that gk = {ξ e Rf

k\πk_{ξ = 0} is 2-acyclic.
We know gk\N = hk . Applying an argument of [4] (cf. Remarque after
Proposition 5.3), adapted to the intransitive case, we get

Hence gk is 2-acyclic. Now, from Theorem 4.1 of [2], it follows that Rk

is formally integrable.

Appendix

We prove here a generalization of Theorem 5.1 of [8] which we state in
a simplified form.
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Let π: E —> M be a fibered manifold, where dim M = m and dim E =
m + n. The manifold JχE of 1-jets of sections of (E, M, π) has dimen-
sion m + n + m« . If (JC1, y7) is a fibered chart of E, then (x z, yj, /?/)
is a chart for JχE, where

and / = (/',••• , / " ) is a section of (E, M,π). We denote Λ: =
( x ι , , x m ) , y = ( y ' , - . - , / ) , a n d y = (p{, , pj

m).
If we denote f^/^ = keτ(πo)Λ, then it is well known ([8]) that

VϋJχE ^ T*®VE,

Theorem. Suppose R{ c JχE is a system of partial differential equa-
tions such that

(1) ( Λ 1 ) + 1 - ^ i ? 1 is surjective;

(2) no(R{) = E;
(3) the symbol gx = (V0JχE) n TRχ of Rχ is equal to T* <g> E, where

F is a vector sub-bundle of VE.
Then, for every X e Rχ a, ae M, there exists a solution f of Rχ such

that jι

af = X, and this solution depends arbitrarily on r functions, where
r is the dimension of F.

Proof Choose a chart on E such that Fa is generated by

d / N
 d , Λ

Choose {φσ\σ eΣ, φσ: JχE —• R} , with dφσ linearly independent, such
that

Rι = {XeJιE\φσ(X) = O,σeΣ}.

Clearly, Σ has m(n - r) elements. Let

έίέί dp,
be an element of V0JχE . Then υ e VQRχ if and only if the linear system
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7=1 /=1

j —has only the trivial solution a\ — 0 thus

σ e Σ, 1 < / < m, 1 < j < n - r, is an invertible matrix. The implicit
function theorem allows us to replace {φσ, σ e Σ} by

For every X e R{ a , we choose r functions fn~r+ι{x), , fn(x) such

that / ( * ) = / ( α ) and pk.{X) = {df/dx^ia) for 1 < / < m, Λ - r <
fc < « . Set

I <i <m, I <j <n-r.

This is a Frobenius system and its integrability conditions are a con-
sequence of hypothesis (1) (cf. the proof of Theorem 5.1 of [8]). If
(fι{x), ••• , fn~r(x)) is a solution of # ' = 0, such that /'(AT) = / ( α )
and p\(X) = (df/dx^a), then (/,••• , fn) is a solution of R{. The
same proof works when the initial data is well posed on a submanifold of
M .
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