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EINSTEIN METRICS

L. ZHIYONG GAO

1. Introduction

One of the natural classes of Riemannian metrics on an ^-manifold is
Einstein metrics. Berger and Ebin [4] were the first people to study the
moduli space of Einstein metrics on an Einstein manifold. They showed
that the moduli space of Einstein metrics is finite dimensional. This leads
to the natural question whether the moduli space is compact. Einstein
metrics have been studied by many mathematicians; there is an excellent
book on Einstein manifolds [6].

One of the main accomplishments of this paper is that we found a
compactness property of moduli spaces of four-dimensional Einstein man-
ifolds. To explain this, let us start with a 4-manifold M, which has an
Einstein metric. We consider the moduli space of all Einstein metrics
on M, and normalize the Einstein metrics such that the Ricci curvature
equal +3 , - 3 , or 0. Let G{M) be the subspace of all normalized Einstein
metrics on M with the injective radius bounded from below by a fixed
constant /0 > 0 and diameter bounded from above by d. We are able to
show that G(M) is compact as a subset of the moduli space of Einstein
metrics in C°°-topology.

Theorem 1.1. The subset of normalized Einstein metrics with Ricci cur-
vature equal to three and with injectivity radius bounded from below on a
4-manifold M is compact in C°°-topology.

Theorem 1.2. The subset of normalized Einstein metrics with Ricci cur-
vature equal to negative three or zero, with injectivity radius bounded from
below and diameter bounded from above on a 4-manifold M is compact
in C°° -topology.

Remark 1.3. It seems that without the lower bound of the injectivity
radius, the results are false.

We briefly describe here the method used in this paper. For a sequence
of Einstein manifolds (Mk) with proper restrictions, by passing to a sub-
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sequence, we show that (Mk) converges to an Einstein manifold Mf al-
most everywhere except a finite number of points; here M' is an Einstein
manifold with a finite number of isolated singular points. We then prove
that the singular points can be removed, which, combined with the Gauss-
Bonnet formula for a 4-maniίbld, will imply the theorem. This idea was
first used by Sacks and Uhlenbeck [24]. We will combine this idea with
Gromov's compactness theorem to prove the convergence of Einstein met-
rics. The technical key step is to prove that each singular point is isolated
and can be removed.

2. The proof

The remainder of this article contains the proofs of the preceding the-
orems, and it is organized in the following way. In §§3 and 4, we use the
equations satisfied by the curvature tensors of Einstein metrics to give the
local estimate, which shows that curvature tensor is bounded on the ball
with small L2-norm of curvature.

Next, we use the Gauss-Bonnet formula for a 4-manifold to show that
the curvature tensor can be only concentrated on finite number of points;
away from these points, the curvatures are uniformly bounded. We then
use the argument of [15] or [23] to prove that the Einstein manifolds
converge to an Einstein manifold M1 away from these points.

Then, by using the diameter estimate of a small geodesic sphere of [12],
we show that M1 is diffeomorphic to M-{m{, , mh}, and that these
{raj are isolated singular points of the metric on M1.

Finally, by means of the Gauss-Bonnet formula and the results of §5
about the removable singularities, we first prove that the curvature tensors
of the Einstein manifolds are uniformly bounded, and then apply Gro-
mov's compactness theorem to finish our proof.

§5 contains the key technical step. At first a study is given of the tan-
gent cone metric of M1 at each of these singular points {ra,} by blowing
up at these points. Then we show that the tangent cone metric is a flat
Euclidean metric, and further that the curvature tensor of M1 is bounded
by integral estimates combined with iteration. These are used to prove
that the singular points of M1 can be removed.

3. Convergence of Einstein metrics and proof of Theorems 1.1 and 1.2

Let us fix the manifold M 4 and σ = + 1 , - 1 , or 0, and define the set
of Riemannian metrics
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G(M) = lg\g a c°°-metric on M such that Rtj(g) = 3σ£.y,

inj(M, g)>io>O, and diam(M, g) < d } ,

where iQ is a positive number. By Berger's isoembolic inequality, we have
Vol(Λf, g) > c(i0). From now on, we assume that the general constant c
will depend on /0 and d.

Theorem A. G(M) is compact in C°° -topology.
We start with a pointwise estimate of the curvature tensor.
Lemma 3.1. For any g e G(M), there exists a κ5 = κs(iQ9 d) > 0,

such that if

I \Rijkl(g)\2dvg<κ5,
JB{xo,p)

and p > 0, then

sup \dlRJg)\ <C(p,η9i0,d), I = 0 , 1, • , 5.
B(xo,(\-η)2lp)

For the proof of this lemma, see Theorem 4.11 in the next section.
Using this lemma, we first prove a result on the weak convergence.
Proposition 3.2. Let {gk} c G(M), k = 1, 2, ••• , be a sequence

in G{M), Mk = (M, gk). Then there exists a subsequence of {gk} (by

renumbering but still using {g }) and a sequence {r(}, rι^Q.

(a) For each I, we have open subsets Fk(r[) c M , and an open subset
D(η)cM.

(b) For each I, we have diffeomorphisms

fk(rl):D{rl)-+Fk{rl) ( *>/) ,-••

such that fk(rι)*gk converges to a C°°-Einstein metric g(r7) on D(η) in

C2-norm.

(d) There is an ε(r /), such that

Bk(x*
i=\

Fk(rι)\j\jBk(x*J,e{rι)) =

and ε(η) -• 0 when η -> 0 with N < c(/0, χ(M)), where χ{M) is the
Euler number of M.

We employ the covering argument of [24], and combine it with the
argument of [23] or [15].
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Proof. Let r < z0/100. Given a sequence {gk} in G{M), let Q{k)
be the maximum number of disjoint geodesic balls of radius r/3. By the
Gromov packing argument, since the diameter d(M, gk) of (M, £^) <
rf, and Ric > - 3 , we have

(3.3) Q(k) < c(r).

By passing to a subsequence if necessary, we assume that Q(k) = Qe Z+

for all k.

We now fix k, and let {Bk(xi, r/3)}, / = 1, •• , β , be a maxi-

mal family of disjoint geodesic balls of radius r/3. Then {^(X;, A*)} ,

i = 1, , β , is a covering of (M, £*) = Λf̂  . Let Λ(/c) be the max-

imal number such that any h(k) + 1 balls of {Bk(xi9 r)} have empty

intersection. Let

{Bk(xia,r)},

be the balls of {Bk(xi, r)} such that

Bk(xi ,r)n
1 h

Then ^''(x,. , r) c Bk(xi , 3r), α = 1, , h. Since {^''(JC,. , r/3)} are

disjoint geodesic balls, by the Bishop-Gromov volume estimate, we have

i* Λ^ uπ K ( i r 3r)) V o l O B ^ , 5r))
(3.4) A(fc) = max τ—* < max τ—

2 < c.
- Vl(Bk(/3))- - Vl(Bk(/3))-

So the h(k) are uniformly bounded by c. We would like to apply the
estimates of Lemma 3.1 to each ball of {Bk(xi, r)}, but the hypothesis
need not be met on all balls. However, we have an upper bound on the
number of balls on which it fails; by the Gauss-Bonnet formula of a 4-
dimensional Einstein manifold [5] we have

Sπ2h(k)χ(M) > h j ^ \Rijkl(gk)\2 dvgk > £ j \Rijkl(gk)\2 dvgk

> Σ j β k { χ r ) \ R u u ( g k ) \ 2 d v g k k

where N(k) is the number of Bk(xi, r) for which
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Thus

(3.5) N(k)<c(io,χ(M),d),

which means that N(k) are uniformly bounded by a constant
c(d, i0, χ{M)). By passing to a subsequence if necessary, we assume
that N(k) and h(k) are constant, i.e., N(k) = N e Z + , h{k) = h e Z +

for all k and r < /0/100.

Remark. We will call a ball Bk(xi, r) a bad ball for Mk if

Otherwise, it is called a good ball.
Let Q' = Q- N, and denote the good balls by

{Bk(Xj,r)}, / = l , 2 , - - ,

and the bad balls by

{ B k ( X i , r ) } , i = Q' + l, -

L e t
Q'

{ k γ \

for small η > 0. By Lemma 3.1, we have

(3.6) sup \d'Rm(gk)\ <c(r), 1 = 0, 1, , 5 .

Assuming (1 - η)14 > 1 - 155 = ̂  , it follows that

{Bk(xj,(l-η)l4r)}, i = l , - , β ,

is a covering of Λffc , so

We take r = min{r/300, /0} = (j/j)r. Letting

^ 1 4

7=1
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we have

Q

(3.7) \jBk{xr{{l-ri)U-rix

7=1

By taking even smaller balls in t/Λ(r) to cover Vk(r), as in [23], for
large, there exist an open set D(r) D Vp^{r), subsets Fk(r), and diffeo-
moφhisms

fk{r):Fk{r)~D(r)

such that

Vk(r) c Fk(r) c Uk(r).

Then we have
Lemma 3.8. There exists a C°°-Einstein metric g(r) on D(r) D Vp,Λr)

such that {(/ )*gk} (by passing to a subsequence if necessary) converges
to g(r) on D[r) in C°°-norm.

Let rx = /0/1000 and r2 = rj/8000. By renumbering if necessary, we

assume that {Bk(xk

 2 , r2)} , / = 1, , Q'(r2), are good balls, and that

{Bk(xk

2, r/2)} , i = Q'(r2) + 1, , Q(r2), are bad balls. Then we have

Ik 2 \R

Ukι\
2dk < K 5 > f o r / = l , 2 ,

I 2 \Rιjkl\
2dk>κ5ιjkl\

2)

and Q(r2)-Q'(r2)<c(io,χ(M)).

W e r e c a l l t h a t { B k ( x i 9 r x ) } 9 i = 1 , 9 Q ' ( r { ) 9 a r e g o o d b a l l s ,

{ B k ( χ . 9 r ι ) } 9 i = Q'(r{) + l,... , Q ( r , ) , a r e b a d b a l l s , a n d

Q{r{)

i=\

Lemma 3.9. Vk{r2)DUk{rχ).
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Proof. We have

Q(r2)

Vk(r2) U U B\x)2, ((1 - η)14 - ηγ)r2) = M,
J=Q'(r2)+\

Q(rx)

J=Q'(r{)+\

By the definition of bad balls, we have

Uk(r{) Π Bk{χk

j2, r2) = 0 , y = β'(r2) + 1, , β#(r2)

otherwise

/(x[2/2)n/(x/5(i-n)/0

for some / = 1, , Q'(rχ), and thus

Bk(Xj92,r2)cBk{xi,rι), i<Q'{rx),

ί k \Rijkl\
2 dvk < ί \Rijkl\

2dvk<κ5,

which means that Bk(xk

2, r2), Q'(r2) + 1 < j < Q(r2), is a good ball.
Therefore, Vk(r2) D Uk{r\), and

Bk(Xjt29r2)cBk(xnrι)9 j>Q?(r2)9

for some / > Qf(rχ) + 1.

By induction on /, we take r/+1 = g^o^/.
By diagonalization (passing to a subsequence if necessary) and summa-

rization we have

ΛΓ

where e(η) —• 0 when rz —• 0. This completes the proof of Proposition
3.2.

Next, we use these Einstein manifolds {/>(*/)} to construct an Einstein
manifold M1 with isolated singularities.

Proposition 3.10. There exists an Einstein manifold M' such that each
D(η) is an embedded submanifold of M' with the induced metric g(η) on
D(η). We identify D(η) with its embedded image, and let g1 be the metric
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on Mf. Then for each I, there are diffeomorphisms fk(rι): Fk(η) -*

D(η) c M1 for k > P(r() such that fk(rι)*glk -+ g'\D{) in C2-norm.

Proof By 3.2 there exist a subsequence of {gk} (by renumbering if

necessary), still called {gk} , and open subsets Fk(η) C Mh , D(η) C M,

such that rz -+ 0, D(r/) and i^ί^) are compact, and Fk(η) c F^r^.

We also have diffeomorphisms fk(rι) = D(η) —• ̂ ( ^ ) for A: > P ^ )
such that

for a C°°-Einstein metric g(r7) on D^).
First we will define an isometric embedding

In fact, by the construction of the Fk{rt) 's we have

Fk(η) c Uk(η) c Vk(rl+ι) C Fk(rM),

k,
where {J-^F^η)) is compact, and d (Fk(r,)), M - Fk{r,+ι) > Ύι.

Since fk(rι)*glc converges to g^) on D(η) in C2-norm for each /,

for any given ε > 0 if A: is sufficiently large, we have for the C°-norms,

\fk(rι+ι)*gk-g(rι+ι)\fk{rιrgk<ε,

which clearly imply

k — 1 * k

\(f (η) ) g(η)-g 1/ < e ,

rM)~l)*g(rι+ι)-s \g

\(fk(rι+.)-i)0g(rι..)-gk\><e.

Therefore, we have
k — 1 * k — 1 *

l(/ (r7) ) g{η)-{f (r/+1) ) g(r / + 1 ) |^ < 2 ε ,

and hence
A: — 1 A: *

\( f (γ \ of (/* ) ) j?"(r ) J^(^*)l ^ ί*β

which shows that

(
k—•oo
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Let

/V7) = fk(rM)'1 ofk(η): D{r,) -> D{rM).

We consider (D(η), g(η)) and (D(rι+ι), g(rι+ι)) as metric spaces with

induced metrics dk(l) and dk(rι+ι) on D(η) and D(rι+ι). For k large,
we have

:2dk(l)(x,y).

Note that dk(Ik(rι)(D(η))9 M-D(rM)) > η implies that Ik(

c D(rM), and that 7/:(r/)(Z)(r/)) is precompact in Z)(r/ + 1). By the Ascoli

theorem [21], / (η) (by passing to a subsequence if necessary) converges
to a continuous map I{ on Z)(r7), and 77 is a Lipschitz map. Since

this implies that

is an isometry of metric spaces on small convex geodesic balls of
g(η)). Thus it follows that

is a C°°-isometry of a Riemannian manifold [20], i.e., I*g(rι+ι) = g(η).
We now can construct the Riemannian manifold (Mf, gf). We define

Mf to be the direct limit of {D{η): 1{: Z)(r7) -• D(rM), / = 1 , 2 , }.
Letting

r = π*1/)(r/),
we identify the point x,y in Y if y = I^x) for some /. The quotient

space is defined to be M1. Then M1 is a 4-manifold, and each D(η) is

an open submanifold of M1 with the embedding / ; = Diη) —> Y —> Λf*.

We define the Riemannian metric g on M1 by g\D(η) = g(η), and g

is well defined since I*gk(rι+χ) = g(η).

Summarizing, for each / there are diffeomorphisms fk(rι): Dfy) —•

Fk(r[) c Mk , such that

fk(rl) gk£g'\D(η) onD^JcM',

which implies that g is a weak c2-limit of gk on M. Hence the proof
of Proposition 3.10 is complete.

Next we will study the topology of M1. First let us recall Theorem 2.30
from [13] (see 4.14 in the next section).
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Theorem 3.11. Let (M, g) be a complete Riemannian manifold with
inj(Λf, g) > i0 > 0 and Ric(g) > -{n - \)g. Then the diameter of the
small geodesic sphere Sr(x) = {y e M\d(x, y) = r} for x e M and
r<io/4 satisfies:

dmm(Sr{x)) < c{n, io)r,

where the constant c(n, i0) depends only on n and i0 .
Remark. In 3.11 we consider Sr(x) as a submanifold of (M, g) with

induced Riemannian metric; the diameter is with respect to the induced
distance of this induced Riemannian metric.

We now have
N

Fk(rι)u\jB(mj,ε(rι)) = M.
j=ι

From 3.11, we note that the injectivity radius of Mk is bounded from
below by i0 > 0 for rι small, and that each B(mj , εiη)) is contained in
a diffeomorphism geodesic ball. These clearly imply the following theorem.

Theorem 3.12. M1 is dijfeomorphic to M - {vχ, v2, , vs+ι} for
a finite number of points {v{, v2, , ^s+1} in M, and each v. is an
isolated singularity of the metric g .

In the next section we will prove
Theorem 3.13. Each singularity v. of g can be removed, and g can

be extended to a C°°-Einstein metric g on M.
Proof of Theorem A. Let gk e G(M). We may assume that {gk}

converges weakly in c2-norm to a C°°-Einstein metric g on M1 = M -
{y\' " " ' vs+\} a s in 3.10. Using Theorem 3.13, g' can be extended to
an Einstein metric g on M. Using formulas

Sπ JM
= ^ 1 ί \R{g')\dg,

8π JM'

= -±S[ \R(gk)\2dgk,
8π2

 JM

we obtain

which implies

(3.14) lim / \R(g)\2dg = 0.
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Recalling from above, we have

[/,(r,)U I ] Bk (χk ,, — r)\ =M,kK ι) ^ I j J 200 ι)
j=Q'(r,)+l

and Fk(η) C Uk(η) c Fk(rM) c Uk(rM). From the proof of Lemma
3.9 it also follows that

(3.15)

Taking /0 large, such that if / > /0, we have

(3.16) / \R{g)\2dg<\κy

On the other hand, since fk{rι)*{gk) converges to g\D,r) in C2-norm for
each /, there is a large k0 > 0, such that if k > k0, then

(3.17) \R(g)\2dg- ί fk{rΛ\\R(gk)\2dgk)
(r, ) JD(r, )
v in' v in'

(3.16) and (3.17) imply

f \R(gk)\2 dgk = Sπ2χ(M) - f \R(gk)\2 dgk

JM-Fk(rlo) JFk(rl())

= %π2χ{M)-( fk{rι)\\R{gk)\2dgk)

<Sπ2χ(M)- f 2 \
J*%

[
M-DInΌ>

Combining this with (3.15) yields

\R(gk)\2dgk<κ5,

where /[ = /0 + 1. This clearly implies that for η , there are no bad balls
and Uk(rt ) — M for k > k0 3.1 gives us

sup \dpR(gk)\ < C(r, , /0, χ(M)), p = 0, 1, , 5.
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We then obtain

s a p \ d p R { g k ) \ < C { r , 9 d , i Q 9 χ { M ) ) > P = 0 , l , - , 5 .
A/

Using the Gromov convergence theorem [15] we may assume that {Gk}
(passing to a subsequence if necessary) converges to an Einstein metric
g G G(M) in C2-norm. The standard elliptic theory then implies that the
convergence is in C°°-norm. As a consequence of the proof, we have the
following.

Corollary 3.18. There exists a constant c(i0, χ(M), d) > 0 such that
for all g e G{M),

suv\R(g)\<C(io,χ(M),d).
M

4. The equation of an Einstein metric and local estimates of curvature

We will use the old-fashioned index notation for tensors as in [17]. We
consider an Einstein metric g.j on a compact 4-manifold M, i.e.,

, σ = -hi, - 1 , or 0.

We define

ARtJ = SPQdpdqRijkl.

We need a formula for ΔRijkl. To this end, we consider the tensors

jy pr qs p p
ΰijkl = 8 8 KpiqjKrksl

as in [17].
We have the following.

Lemma 4.1 [16, Lemma 7.2]. For any metric gtj, the curvature tensor

Rijkl satisfies the identity

= t>ARj, - WRJk ~ dΛR,ι + dARik + spq(Rpjkl

R

qι + RiPk,
R

qJ)

If g(j is an Einstein metric, we have dkRiJ = 3σdkgu = 0. This gives
the following.

Lemma 4.2. For an Einstein metric g.j , the curvature tensor Rijk/ sat-
isfies the equation

i ~ Buik ~ Bujk + Bikji) = 6Rijkr
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As a corollary we have
Corollary 4,3. There is a constant c > 0 such that

-c\Rijkl\
3 + 6\Rijkl\

2 < <ΔΛ y w, RIJU) < c\Rιjkl\
3 + 6\Rijkl\

2.

By differentiating the equation in 3.2, and using Ricci identity, we easily
obtain the following lemma.

Lemma 4.4. There is a constant c > 0 such that

\Δ{drRijkl)\ < C\drRijkl\ \Rijkl\ + 6\drRiJkl\.

In this section, following [28], we will derive the local curvature esti-
mate. Let V(M) be the volume of the Riemannian (M, g), and d(M) be
the diameter of (M, g). Throughout this section c will denote a general
constant depending only on the lower bound V of V(M) and the upper
bound d of d(M), and c(x, y) the general constant which depends only
on V, d, and x, y, etc.

Theorem 4.5. If the Ricci curvature Ric(g) > - 3 for a Riemannian

metric g on the 4-manifold M4, then for any feH^(M)f

l )
Theorem 4.6. If the Ricci curvature Ric(g) > - 3 for a Riemannian

metric g on the 4-manifold M4, then for any f e Hq

χ(M), 1 < q < 4,
we have the Sobolev inequality

11/11, < c 2 ( | | v / | | , + ii/ii,),

where l/p = l/q - \/4.
Let dμ be the volume element of g then V{M) = JM dμ. Since M

is a 4-manifold with Einstein metric g, i.e., Rr - 3σg{r., we have the
following formula for the Euler characteristics [5];

Let B(x0, p) = {x G M\ d(x, x0) < p} be the geodesic ball in M with
center xoe M and radius 0 < p < π/2.

Lemma 4.7. L ^ / e C2{B(x0, /?)) and - Δ / < 6 / + ^ , / > 0, b > 0,
ybr Λ constant A > 0. For α/ry η > 0, if

L b

2

d μ <

) 4 C

a constant

c \A,p,η, f dμ 1 > 0
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sup f<clA,p,η,l f2dμ\.

Proof The standard Moser iteration easily yields 4.7 [28].
In the following, the constants κ{, κ2, depend only on the lower

bound V of V(M), and the upper bound d of d(M).
Theorem 4.8. Let κ{ > 0 be small. Then for any 0 < η < 1,

a constant c(p, η), such that if

I \Rijkl\
2dμ<κχ,

JB(XO,P)

then

B(x T-ηγp)lRUkίl " C V ' η' I** P) l R i J k l l 2 d μ ) '
Proof From Corollary 4.3, taking / = \Rijkl\, we have

Δ/ = '—j γ3 > -(c/2) - 6/ > -(c +

Taking b = (c + 2)/ and A = 0 gives

ί 2 1

JB(XO,P) ~ 4c^

For small κχ, 4.8 follows easily from 4.7.
Theorem 4.9. Let κ2> 0 be small. Then for any 0 < η < 1

/ |tf/7j
2rfμ<κ2,

JB(xo,p)

we have

/ v ' p ijkn — \r * l)m

B(xQ,(\-η)"p)

Proof This easily follows from 4.4 and 4.7.
Lemma 4.10. For each positive integer m > 1, there is an absolute

constant Am such that

\A(dmR)\<An
\dlR\) +\dmR\\R\

J
Proof Using the equation for ΔRijkl, taking covariant derivative m

times, and using Ricci identities, by Lemma 3.1 it is clear that such a

constant Am exists.
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T h e o r e m 4 . 1 1 . Let κm > 0 be small, m = 3 , 4 , ••• . Then for 0 <
η < 1 and p > 0,

i j k ι m

B{xo,p)

implies that
(4.12) s u p \dmR\ < C ( m , p , η ) , m = 0, 1 , 2 ,

2

/ We prove this theorem by induction. Theorems 4.8 and 4.9
imply that (4.11) is true for m = 0 and m—\. Assuming that Theorem
4.11 is true for m , by Lemma 4.10 we have

\dm+ιR\

> -Am+\
+\Θm+1R\\R\

The induction assumption then gives us

(4.13) A\dm+lR\ > -Am+ιC(p, η, m) - Am+χ\R\ \dm+iR\
2m

onB(x0, (l-η) p).

Taking b = Am+ι\R\, f=\dm+ιR\, A = Am+ιC, and using Lemma 4.7,
we obtain

sup f<cίp,η,m, fdμ) .
B(xo,(l-η)2m+2p) \ JB(xQ,(l-η)2m+lp) J

Taking a function u on B(xo,(l - η)2mρ) such that u = 1 on

1 — η) m+ p), suppw c 5 ( x 0 , (1 — η) mp), and |Vw|

- η)2mp, we have

u2f2dμ= -
, (\-η)2mp)

u2(A(dmR), 9WΛ) rf/i

-2 f uVu (V(dmR),d
JB(xo,(\-η)2mp)

Using (4.10) and the induction assumption then implies

/
u f dμ < c(m, p9 η) + c(m, p, η) I u\V{dmR)\dμ

JB(xo,(l-η)2mp)

<c(m, p , η ) + - l uf2 d μ + c ( m 9 p , η ) ,
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where the last inequality is obtained by applying the Cauchy inequality
lab < δa2 + \b2 . From the above formula it follows that

, fdμ< ίu2f2dμ<c(m,p,η),
o,(\-η)2m+lp) J

which thus implies Theorem 4.11.
Now for the sake of the reader, we will sketch the proof of Theorem

3.11.
Theorem 4.14. For H > 0 and i0 > 0 there exists a constant c =

c{H, i 0 , η) > 0 such that for any n-dimensional Riemannian manifold
(M, g) with Ric(g) > -H, inj(M, g) >io>O and r <\io,we have

x0)) < cr, xoe M.

Proof For r < ji0, we may rescale the metric ~g = g/r2. Since for this

new metric ~g we have RicQf) > -r2H > -{\io)
2H and inj(M, #) > 2,

we need only to show
(a) άi^m{Sχ{x^)) < c(H, i0, ή) for this new metric. So we may assume

that z0 > 2.

To this end, we use a geodesic polar coordinate {r, xι, , xn~1} on
52(x0) to obtain

Then the Ricci curvature is given by

9 1 9 d d

Using the cut-off function, integrating by parts, and noting that

d_
dr

Ing
d

we easily obtain, for p < \ ,

ί
Jo

d

which readily gives

(b)

(for details see §1 of [13]).

dr<c(H, i0, n)p

r \ <1 p 2
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Now for any sequence of Riemannian manifolds (Mn gt) with Ric(g7)

> -H and inj(^) > 2, we fix xt e Mι, and consider the ball 54(JCZ) c Mι

with the extrinsic distance. Then there exists a compact metric space Z

[15], such that B4(Xj) is isometrically embedded in Z . By passing to a

subsequence if necessary, we can assume that x{ —• x0 e Z , and {54 (.*/)}

converges to Sf(x0) C l in Haussdorff distance of Z . Since X is a

length space and Sf(x0) is connected, for any two points y, z e sf (x0),

there is a sequence of points y.., j = 0, 1, , m, such that y0 = y,

ym = z, and rf(yy., y.+ 1) < 3 . Now for yι, zι e S^Xj) such that

diamOS^)) = ̂ inf^{L(y): γ(0)=yl, γ(l) = z1},

we may assume that

yι->y9 z

ι ^ z , y,zesf(xo)..

If there exist

v / = 0 1 m d(v v ) < - v G SX(x )

then there is a sequence of points

such that {yj, 7 = 0, 1, , m} c Sx (JC7) and yj. -*• ŷ^ as / —• 00. For /

large, d{yι., yj+1) < \ we can connect y. and yy+1 by a minimal geodesic

in Af7. This implies that for / large we can connect yι and zι by broken

geodesies with total length < \m. Clearly, for each /, this curve lies in

^3/2ί-̂ /) ~Bχι2(
xι) and we can radially project this curve to S{ (x7). By (b),

the length of the projection curve is bounded by c(H, i0, n) \m . This

can apply to any subsequence of the sequence of manifolds, and proves

(a) (see III of [13]).

5. The curvature estimates and removability

of singularities of the metric g

In this section, we will prove that the singular points of the Einstein
metric g can be removed, and that g can be extended to an Einstein
metric on a compact manifold M.

To start, let M{ be obtained from Mf by adding {υ{, , vs+{} to

M' with the topology induced by the distance function d of g on M'.
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Clearly, d can be extended to Mχ, and Mχ - {υχ, , vs+ι} is isometric

to M' with Riemannian metric g.
Let us f ix ί ;=ί ; / , 1 < i < s+1, and let r be the distance function from

v, i.e., r(x) = d{x, ί;) for x e Mχ . We take TV to be a neighborhood
of v in Λ/j such that Nn{v{9 - , ^J+1} = v We may assume that
N D B(v, 2p0) = {x e Mχ\r(x) < 2p0} for some p0 > 0. Let F be the
curvature tensor for the metric g , and let R define a symmetric operator
A2(Mf) —• Λ2(M') on the space of two-forms. We take N small such that
TV is orientable. (In fact, we may assume that N is simply connected.)
The Hodge star operator *: Λ2 —• Λ2 satisfies *2 = + 1 , and the bundle
Λ2 splits into a direct sum

Λ2 = Λ2 φ λ i .

Here Λ2 , A2_ are called the bundles of self-dual and anti-self-dual 2-forms
respectively.

For the Riemannian metric g on N, we consider the bundle Λ2 (or

Λ^ with the induced Riemannian connection D+ (or D_). The Rieman-

nian curvature tensor F: Λ2 —> Λ2 is given by

where {et} is a local orthonormal basis of /-forms. We can write R as a

)osition

A B

block matrix relative to the decomposition Λ2 = Λ2 Θ Λ^ :

R=[B* C

where B e Hom(A^ , Λ 2 ) , and A G EndΛ2 and c e EndΛ^ are self-

adjoint. For the Einstein metric g , 5 = 0. The curvature Ω+ (resp.

Ω_) is self-dual (resp. anti-self-dual), and \R\2 = |Ω + | 2 + |Ω_| 2 [2].
Let us fix F = Ω+ (or Ω J and / = \F\. We have a Weitzenbόck

formula for self-dual (or anti-self-dual) 2-forms [11]

2D+D*+ = V*V - 2W+( ) + s/3 + [P+F, •],

where P+ is the projection onto self-dual 2-forms, V is the induced con-

nection on T*N 0 Λ2 , and W and s are the Weyl tensor and scalar

curvature of the metric g1. Applying this Weitzenbόck formula to F and

using D* F = 0, we have

(5.1) AF =
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Noting that \W+\ < \A\ = \F\ and \P+F\ < \F\, this implies that for an
absolute constant c > 0,

(5.2) Δ/>f/-c/2.

The following proposition gives the basic estimate of the curvature F
on N.

Proposition 5.3. We have f < ε(r)/r2 where ε(r) is a decreasing func-
tion and limr_^0 ε{r) = 0.

Proof. For each small p > 0, we define the metric ~g = g /p . Since
the Yang-Mills equations and the L norm of the curvature F of the
fixed connection D+ are conformally invariant, we have / = | F | - = p2f.
We fix the point x0 e N such that r(xQ) = p. From the above sections,
g' is the weak limit. Since

τ^l ί f2dv'<-^ [ \R\2dv'<-^ lim / \R(gk)\2 dvk = χ(M)9

we have

ffdg<Sπ2χ(M).
JN

We now observe the uniform Sobolev inequality for the manifold M
•1
1

in G{M). For (M, g) e G{M) and φ € H2ΛM),

(I Φ4dg) <c\[ \Vφ\2dg+ ί φ2dg\.
\JM ) UM JM J

By taking limits, Proposition 3.10 then implies that for any φ e H2(N)
with compact support in N

α x 1/2 r - , 1

Φ4 d g ) < c(i0) \j \Vφ\2 dg + / φ 2 d g \ .
Taking p small, p < 1, we obtain the following Sobolev inequality on

TV:

(5.4) (fφ4 dg) < c(i0) ί \Vφ\2 dg+ f φ2 dg,
\JN ) JN JN

By taking TV small, we have

I \F\\dg= f \F\2

gdg
JN S JN *

small. Using (5.2) for the metric ~g and noting that the scalar curvature
s of ~g satisfies s > -12, by (5.4) and Moser iteration (see §4), we easily
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obtain

if \
(5.5) sup f<c(iQ,d)[ W\jdl

which clearly implies (5.3).

Now, for p > 0 small, since inj(gk) > z0 > 0, a result of Croke [9]

implies that Vo\(Bgk(x, \p)) > cp4 for a constant c independent of p.

By taking limits, we have

Vol(Bg,(x,{r(x)))>cr(x)4,

and for p = r(x0), x0 e N, and p small, we obtain

Using (5.3), we have the bound for the curvature tensor of ~g on B-(x0, ±),
\Rm(g)\ < c; these and a local inactivity radius estimate easily give the
following theorem.

Theorem 5.6. Let inj(ΐ ) denote the injectivity radius of M1 at v.
Then inj(t>) > cr(v) for a constant c independent of r(υ).

Let

A(p, p) = Bp(v) - B-{v} = {xeM,p< r{x) < 2p}

here A(p,~p) is an open subset of Mf. We consider A(p, /?) as a Rie-
mannian manifold with metric gf. Let ^-A(p,~p) be the Riemannian

manifold A(p, p) with metric g /p2 . For any fixed large number K, by
Proposition 5.3 we have

(5.7) \Rp\ = p2\R\ < ψ Ά p2 < 2K2ε(2p) on \A (p, £ ) ,
(/?/A:) P V A /

where i?p denotes the curvature tensor of the metric g /p2 . Let xp e

A{p, 0), such that r(xp) = p . Then {(^(/?, 0), xp)} is a family of

Einstein manifolds, and for fixed K, li?^ converges to 0 uniformly when

p —> 0 on ^A(p9 p/K). We now are ready to prove

Theorem 5.8. (^A(p, 0), x ) converges to (D4 - {0}, ^) weakly in c4

topology, where D4 = {w e R4, \w\ < 2} is the Euclidean ball of radius
2.

Proof The proof is similar to that of Theorem 3.1. For fixed K, we
show that {^A(p, p/K), xp) converges to a flat manifold D(l/K).

Using (5.6) and (5.7), as in the proof of Proposition 3.2, a subsequence
of {^A(p, p/K), x ) converges to a flat manifold D{l/K).
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In order to show that

we need only show that for each subsequence

of {±A(p, 0), x }, there exists a subsequence of

which converges to D 4 - {0} in c4 topology.
For such a subsequence, the Einstein manifold

has a subsequence which converges to a flat manifold (D(^), pκ). By
diagonalization (passing to a subsequence if necessary), we may assume
that for each positive integer K, we have

This implies

where D4(0) = U n ^ 4 ( r ) ' a n d clearly (D4(±), eκ) is isometrically em-
bedded in

as a submanifold. It is easy to see by 3.25 that D4(0) has a one-point

compactification D4, such that D^_= Z)4(0) U {0} and that the distance

function d on D4(0) extends to D4. Z>4(0) is a flat Riemannian mani-

fold; we claim that D4 is isometric to the standard Euclidean ball {w e

R4, |tu| < 2} . In fact, if D4(0) is simply connected, then it is not difficult

to prove that, using a holonomy argument, we can isometrically embed

Z)4(0) into R4 . We can extend the flat metric smoothly on D4 , and D4

is the standard Euclidean ball of radius 2 in R4. If A(p, ~p) is simply

connected, then D4(j?) is simply connected, which implies that D4(0) is



176 L. ZHIYONGGAO

simply connected, so in order to finish the proof of Theorem 5.8, we only
need to prove the following lemma.

Lemma 5.9. A(p,~p) is simply connected for small 0 < ~p < p.
Proof. Let a be a closed curve in A(p, /?). Since a is compact, there

exists η > 0 such that ~p + η<r\a<p-η. Using Theorem 3.11, we

take rι small such that A{p,~p) c D(η). Note that fk(rι)*gk -• g in

c2 topology. Let

Ak(p,p)=fk{rι)
 ι{A(p,p)).

Then Ak(p, p) c Fk{rt). From 3.2, 3.10 and 3.11, it is easily seen that
for / and k sufficiently large, and δ small, we have

MP -n,~P + ri)C Bk

p_η+δ(mk) - aB-p+η_δ{mk) cAk(p,p)9

for m ; G M , thus a can be contracted to a point in A(p ,~p). This
completes the proofs of Lemma 5.9 and Theorem 5.8.

We deform the metric g conformally to the metric g = g' /r2 on iV.
By the conformal invariance of the Yang-Mills equation and iΛnorm of
the curvature F of the fixed connection D+, for / = | F | ^ = r2f, we
obtain the Sobolev inequality for the metric g on N:

< c [ ^ IVφ\2 dg + ̂  φ2 d

here 0 has compact support in TV.
Let τ = - log r be the distance function of g to the point v . We are

now ready to give the decay estimate of / .
Theorem 5.10. There exist a constant c > 0, and δ > 0, such that for

τ 0 large, we have

f(τ)<cf(τo)e-~δ{τ-τ^ forτ>τ0.

Remark. Theorem 5.10 implies that f(r) < c/r ~s.

Proof Let h2: D4 —• R be the square of the distance function on

D4 at the origin, i.e., h2(w) = \w\2, w e D4. We take T > 10 large

and fix it, and set K = e4T. By using Theorem 5.8, there are dif-

feomorphisms Ψ^ from (±A(%p9 p/2K), x) into (D4, e) such that

(Ψ~1)*(<^///?2) converges to the flat Euclidean metric ds2 on D4, and

for S(p) = {y e M, r(.y) = /?}, Ψp(^S(p)) converges to the standard

sphere S0(l) = {w e D4, \w\ = 1} of radius 1 in D4. This implies that
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for a small p0 > 0, if p < p0, we have

-δ)r- <

for small δ > 0 on -A{\p, ρ/2K), and

Let Δ and Δo be the Laplacians on jA(p, 0) and D4 respectively.

Taking δ small, then Δ0Λ
2 = 8 on Z)4 implies that Ap(Ψp)*(h2) > Ί\,

and that |VO(ΨJ*Λ2 |2 < 1 + 4 . Let
p\ pi

Let sp be the scalar curvature of the metric gp . Then we have

Lemma 5.11. Let

F{τ{,τ2)=ί f2.
Jτx<τ<t2

Then for δ small and T large, we have

where

τ 0 < τ{ < T{\ +δ)<τ2 = τp + T(l - δ).

Proof. We take τx > τ 0 = -log/?0, and a function φε: (-00, 00) ->

[0, 1] such that φε = l on [τ + ε, Γ + τ ] , 0 ε = 0 on (-ex), cx))-[τ, 2Γ+

τ], and that φε is linear on [τ, τ + ε] and [Γ + τ, 2Γ + τ] . Then φ'E = \

on [τ, τ + ε], and φ'e = -γ on [Γ + τ, IT + τ] . Let uε = φε(rp + τ),

where rp is the distance function from ^S(p) of the metric gp. Then

|V uε\
2 < |<//12 . Using Proposition 5.3, and taking p0 small, we have

fp = p2S2

pf<p2{\+δ)-2f

<yc on A(^P,^I , for p<p0.
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Applying the Weitzenbock formula (5.2) yields

where Ap is the Laplacian of the metric g . Using this inequality and
integrating by parts, we derive

Applying the Cauchy inequality to the last term on the right, we obtain

/«e

2| V / + / u j ] < \Iu]\Vpfp\
2 + 21 \Vpuε\f2

p.

Hence,

ί ΊξsU fr+U ξ.
J μ £ Jθ<rp<ε μ l JT<rp<2T μ

Letting ε -*> 0, and E{t) = ft<r u2

0f*, we have

/ ' t<T.
τ<rp<2T μ

Solving the differential inequality gives

(*) E(ή < E(0)e-t/2 + 1 / f).
1 Jτ<rp<2T

On the other hand, (1 - δ)r2 < p2S2

p < (1 + δ)r2 implies that

(l+δΓ{g<gp<(l-δΓιg on ±A{\p,\pK). We also have

r^T^δ) a n d ( %

where τp = -log/? = τ(p). Combining these with (*) yields

(\+δ)t<τ-τp<T(\-δ)

fl < E{t)

< e~'/2

/ f2 + γf *
Jτ <τ<τ +2T(\+δ) λ J(\-δ)T<τ-τ <2{\+δ)T



for 0 < t < T. Let F ( τ , , τ2) = / T < T < r 2 f . Thus
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, , τ2) < e-
{τ'-τ")/2{ι+δ)F(τp, τ2 + T{\

where

τ, < τ, < τ^ + (1 + δ)T < τ2 = xp + Γ( 1 - δ).

By taking (J small and T large such that e-V-*)/(ι+*) τv < ^ ; w h e n

T, >τp + ±(l-δ)T, we have

which clearly implies Lemma 5.11.
We are now ready to finish the proof of Theorem 5.10. Since Lemma

5.11 is true for all τ > τ , we will use Lemma 5.11 to iterate. To start,

taking τ, = τ + j(l - ί )Γ in Lemma 5.11, we have

where ε = 4/T+2e~{{l~δ)μ{l+δ))T. We take δ small such that |(1+2<J) <
2(1 - δ), which implies that

(5.12) < 2 e - 5 Γ

J

+ eF(τp + (l-δ)T, xp + 2{l-δ)T), δ <τp

Hence we set xp = xp + f (1 - δ)T, m = 0, 1, 2, ••• , so that by
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inequality (5.12) we have

F(τp ,τp ) = F(τ + i ( l - δ)T,τ + (I - δ)T)
"m+l "m+2 "m "m

+ εF(τPm +{\-δ)T,τPm+2{\- δ)T)

<2e~δTF(τ ,τ ) + εF(τ τ ).
"m rm+\ rm+2 "m+4

Summing up from m to infinity leads to the inequality

F{τ , oo) < (2e~δT)F(τ , oo) + 2εF{τ , oo)
"m+l "m "m+2

< {2e-δT)F{τPm , oo) + 2εF{τp^ , oo).

For T large and δ small, we may assume that 2ε < \ , and 4e~δT^2 < \ ,
so that we have

F(τ ,oo)<(4e-δT)F(τ ,00)
" m + l "m

)F(τ , 00) < (e ) F(τ , oo)
(3.13) m

^ -ί(m+l)Γ/2 Γ / x
< ^ ^(V<χ>)

^ ^ - ^ ^ . - ^ ^ ^ - ^ ^ ( τ ^ o o ) .

By noting that τ^ > τ is arbitrary, inequality (5.13) and (5.5) clearly

imply Theorem 5.10.
We are now ready to prove the main theorem of this section.
Theorem 5.14. The norm \R\ of the curvature tensor R of the metric

g1 is bounded.
We start with the following lemma.
Lemma 5.15. There exists p > 2, such that, for small ro> 0,

<B υ

l R f d g ' - C

Proof By Theorem 5.8,

L

converges to the standard sphere S4(l) of radius 1 in R4 . In the Hausdorff
metric, we take rQ small such that we have the estimates of Hausdorff
measure of jS(r) for r < ro[F]:

H\±S(r)) < 2H\s\\)) = wω44 = 8ω 4,
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which implies

H3(S(r)) < Sω/.

Hence, taking 2 < p < 4/(2 - δ), by Theorem 5.10, we have

f \Rfdg'<ί (C4

which completes the proof of Lemma 5.15.
Now Theorem 5.14 follows from Δ|ϋ | > -c\R\2 and a method of Serrin

[24] by iteration.
We have shown that the curvature of M' is bounded and that M1 is

a weak limit of Mk with inj(Mk) > i0 > 0. We now prove that the
exponential map of Mχ at v can be defined.

Lemma 5.16. The exponential map of Mχ at v can be defined, and it
is a homeomorphism between a small Euclidean ball and a small geodesic
ball of Mχ at υ .

Proof All we need to show is that for two different geodesic segments
γ a n d γ{ of Mχ f r o m v, i.e., for γ(l) — γι(l) = v, γ(t), yx{t) c Mf for
0 < ί < l , a n d | | y | | < i 0 / 1 0 0 , \\γx\\ < / 0/100, we have 7 ( 0 ) ^ ^ ( 0 ) .

S u p p o s e t h a t γ(0) = γx{0). Firs t , for e a c h t <l, γ\[0, t] a n d γx\[0, t]
are limits of sequences of segments (ak) and (βk), where ak, βk c Mk

and 0^(0) = ^ ( 0 ) . This follows from the fact that Mk —• M1 weakly in
C 2-norm. For k large, ak and βk will be contained in the geodesic ball of
Mk with curvature bounded independent of k. The Rauch comparison
theorem then implies that d(ak(t), βk(ή) > C > 0 for t > 1/2, and
therefore that d{γ(t), γx(ή) > C > 0 this contradicts that γ(l) = γχ(\).

Clearly, the same argument also implies
Lemma 5.17. For any x e Mχ-{v} and r(x) < iQ/2, we have inj(x) >

r(x).
The following theorem is a special case of the removable singularity

theorem of Smith and Yang [26].
Theorem 5.18. If M is a Riemannian manifold with isolated singular

point v, and M1 = M - {v}, such that
(a) the exponential map of M at v is defined and is a homomeorphism

between a small Euclidean ball and a small geodesic ball of M at v,
(b) (l/p)A(p9 0) converges weakly to Dn - (0) in C2-norm,
(c) the curvature of M is bounded, and
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(d) inj(x) > r(x) for x e Mf and r{x) small
then there exists a harmonic coordinate on Mf around υ such that in this
coordinate system, the metrics g of M1 can be extended to a C ' a metric
g on M.

Proof In our case, it is easily seen that we still can define the almost
linear coordinate of M at v as in [19], and the estimates of the almost
linear coordinate still hold, so we can use the almost linear coordinate to
define a harmonic coordinate. Note that all the estimates of [19] can be
done away from the point v . We have

in the harmonic coordinate, and g1 can be extended to a C l α -metric g
on M.

Theorem 5.19. The Einstein metric g on M1 can extend to a smooth
Einstein metric g on M.

Proof Using 5.17, there exists a harmonic coordinate neighborhood
N of v , with harmonic coordinate (xι) on N, such that g is C l α on
(N-(v)) so that g can be extended to a C 1 ' "-metric g on N. We then
have

in the weak sense on N. The regularity theory of the elliptic equation

then implies that gιj is smooth on N, and that g is Einstein on N.
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