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A RIGIDITY THEOREM FOR PROPERLY
EMBEDDED MINIMAL SURFACES IN R3

HYEONG IN CHOI, WILLIAM H. MEEKS, III, & BRIAN WHITE

Abstract

We consider the question of when an intrinsic isometry of a properly
embedded minimal surface is induced by an ambient isometry. We prove
it always extends when the surface has at least two ends.

There are several interesting theorems and conjectures on the rigidity of
complete surfaces in R3, which satisfy some natural geometric constraint.
Perhaps the best known theorem of this type is the Cohn-Vossen theorem
which shows that a compact Riemannian surface of positive curvature has
a unique immersion into R . A similar result is conjectured for complete
surfaces of nonpositive or nonnegative curvature with the additional hy-
pothesis that the surface has finite area. It is also conjectured that tight
surfaces are rigid.

In this paper we prove a rigidity theorem for properly embedded mini-
mal surfaces in R3, which have more than one end. This theorem states
that the inclusion map of the surface into R3 represents the unique iso-
metric minimal immersion of such a surface up to a rigid motion of R3.
In particular it follows from our theorem that every intrinsic isometry of
this type of surface extends to an isometry of R3.

In § 1 we derive a geometric condition on an immersed minimal surface
which guarantees that the surface is minimally rigid. We prove that if the
surface intersects a plane transversally along an immersed closed curve,
then any other isometric minimal immersion of the surface into R differs
from the original immersion by an ambient isometry. In §2 we obtain
some asymptotic properties of solutions of the minimal surface equation
over annular planar domains. In §3 we prove that if a properly embedded
minimal surface M in R3 has more than one end, then M is transverse
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to a plane P, and also some component a of P Π M is a closed Jordan
curve. It seems likely that P can also be chosen so that P Γ\M consists
entirely of pairwise disjoint closed Jordan curves but we are unable to
prove this result. The existence of the Jordan curve a together with the
already mentioned rigidity result in § 1 proves our main rigidity theorem.

Recently, examples of properly embedded minimal surfaces with three
ends were described by Hoffman and Meeks [6]. Their surfaces have fi-
nite total curvature. They prove our rigidity result with the additional
assumption that the properly embedded surfaces have finite total curva-
ture. Examples of properly embedded minimal surfaces with an infinite
number of ends is described in Riemann's complete works [14] as well as
in [1]. It should be noted that our rigidity theorem fails to hold when
the surface has one end, as is pfnstrated by the nonrigidity of the heli-
coid. However, every other known properly embedded minimal surface
satisfies the rigidity criterion of §1. Therefore, we would like to conjec-
ture that any properly embedded nonsimply-connected minimal surface is
minimally rigid and that an isometry of any properly embedded minimal
surface extends to an ambient isometry of R3.

1. The basic rigidity theorem

One of the interesting questions in the theory of minimal surfaces is to
determine whether a given minimal surface can be deformed in a nontrivial
way. The first step to this problem is to understand when a given minimal
surface can be isometrically deformed to a noncongruent minimal surface.
Lawson [9] has shown that two isometric minimal immersions in a three-
dimensional space form have the same second fundamental form, except
that one may be a rotation of the other by a constant angle everywhere.
This generalizes the concept of associated surfaces in the Weierstrass Rep-
resentation, and, in this sense, two isometric minimal immersions in a
three-dimensional space form can still be called associated surfaces. (See
[9] for the more general case of constant mean curvature surfaces.)

In this section, we mention a few well-known elementary facts about the
local geometry of minimal immersions in a three-dimensional manifold of
constant sectional curvature, and give the basic rigidity theorem on which
our work is based.

Let N (c) be a three-dimensional manifold of constant sectional cur-
vature c, and let / : M2 —• TV3 be a minimal immersion. Choose local
orthonormal vector fields ex, e2, e3 on N such that e{, e2 are tangent to
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M and e3 is normal to M. Let w{, w2, w3 be the dual 1-forms. The
first structure equations are

dwi = -ΣwijAwj> / = 1, 2, 3,

wij + W/z = 0, i, J = 1 , 2 , 3 ,

where wn is the connection form of the induced metric on M, and
w3ι, w32 define the second fundamental form by

2

Differentiating tt;12 gives the Gauss equation

where KM is the Gaussian curvature of M, and |^4|2 = γft j=ι h].. Dif-
ferentiation of w3i gives the Codazzi equation which states that hijk is
symmetric in all three indices, where hijk is the covariant derivative of
htj defined by the formula

2

d h i j = Y J < h i j k w k + h i k w k j + h k j w k i ) ' i , 7 = l , 2 .
k=\

The Codazzi equations can be neatly expressed in terms of holomorphicity
of Hopf s quadratic differential Q = (hl2 + \/^ϊhn)(wι + \ΓΛw2)

2 . In
other words, if e{ and e2 are chosen so that wχ -h \Γ-iw2 = λdz, then
(/z^+v^TΛj^λ2 is a holomorphic function, where λ21dz\2 is the metric of
M. The theorem of Lawson about the associated surfaces follows directly
from this fact: Let fγ:M^N and f2: M —• TV be isometric minimal
immersions. By the Gaussian equation, \A\ = \A\ where \A\ (resp. \A\)
is the length of the second fundamental form of fχ (resp. f 2 ) . Therefore

for some real valued function θ . Multiplying both sides by λ2, and us-
ing the holomoφhicity, we obtain that e is a holomorphic function.
Then the maximum modulus principle implies that θ is a constant func-
tion.

We are now in a position to ask the fundamental question: Given a
minimal immersion f:M^N,is there another minimal immersion iso-
metric to / ? If N = R 3 , H 3 or 5 3 , and M is simply connected, then
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the answer is yes. The construction is a straightforward consequence of
the fundamental theorem of surface theory: the Gauss and the Codazzi
equations are a complete set of local invariants, and they are clearly satis-
fied even if the second fundamental form is rotated by a constant angle.
Therefore the procedure is first to rotate the second fundamental form
by a constant angle, then to integrate out the Gauss and Codazzi equa-
tions. This procedure is a local one, and cannot be carried out in general
if πχ(M) φ 0. In this case it is not hard to describe the obstruction
as a homomorphism h: πχ(M) —• Iso(iV), where Iso(iV) is the isome-
try group of TV. If N is not simply connected, then the obstruction is
a homomorphism h: nχ(M) —• Iso(TV) which commutes with the deck
transformations, where N is the universal cover of N. We are now ready
to discuss the notion of minimal rigidity.

Definition 1.1. An isometric minimal immersion f:M—*N is called
minimally rigid if any isometric minimal immersion into N differs from
/ by an ambient isometry.

Since the rigidity phenomenon occurs only when πχ(M) φ 0, we first

look at what happens to a closed curve. Let γ be a closed curve in M.

Choose orthonormal vector fields eχ, e2, e3 such that eχ = γ, eχ, e2 are

tangent to M, and e3 is normal to M. Then De eχ = ax2e2 + hχχe3,

De e2 = hχ2e3 - aX2ex of JV and aX2 = w2x(ex). In the matrix form,

(1.1)

which is essentially the "Serret-Frenet Formula" for the curve γ, although
hχχ and hχ2 are allowed to have variable signs and aχ2 may not vanish.
Here prime (') denotes the covariant differentiation ZK . As we described
above, we want to rotate the second fundamental form by a constant angle
θ and integrate the Codazzi and Gauss euations to produce a new / : M —•
N. So now let us imagine that / exists. Then

12 11 ^ 1 2 11'

The curve γ must be integrated out to a closed curve. Therefore the
O.D.E.

feΛ' ( 0 hn al2 \ (~ex

(1.2) μ 3 = -hn 0 -h,
VΛ/ V-fl 1 2 hn 0

must have a solution (ex, <?3, e2)' such that eι integrates out to a closed

curve γ (i.e., γ = ex). For simplicity, we call γ a solution curve of (1.2).
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Clearly if some closed curve of M does not integrate out to a new closed
solution curve of (1.2) for any θ e (0, 2π), then M is minimally rigid.
This O.D.E. can be handled easily if N — R 3 . However, if N is S3 or
H 3 , we are unable to obtain a simple geometric criterion for the solution
curve of (1.2) to be closed, which should give a corresponding "Rigidity
Theorem" in S or H . We now assume that N = R 3 .

Let γθ be a solution curve of O.D.E. (1.2) in R 3 . It is easy to check that

(e{, e3, e2)
1 = (e2, e3, -e^)1 is a solution of (1.2) for θ = π/2. Therefore

\(s)ds = / e2(s)ds.
o Jo

Hence yπ/2 is a closed curve if and only if /J e2(s) = 0, where / is the
length of γQ . Once γ0 and yπ/2 are known it is easy to obtain γθ . In fact
γθ is given by

γθ(s) = cosθγ0(s) + sinθγπ/2(s).

Therefore γθ is closed for all θ if and only if γ0 and yπ/2 are closed. To
summarize, we have the basic rigidity formula

Theorem 1.2. Let f:M-+R3 be an isometric minimal immersion.
Let γ be a closed curve in M such that

ί
where I is the length of γ and B: [0, /] —• R3 is a unit vector field along
γ such that B is tangent to M, but normal to y. Then M is minimally
rigid.

Proof. Suppose / : M —• R3 is another isometric minimal immersion.
Since they are associated surfaces, the second fundamental form of / is
that of / rotated by a constant angle, say, θ. Thus γ must be a solution
curve of O.D.E. (1.2). On the other hand, since the integral condition
implies that yπ/2 is not a closed curve, no γθ is a closed curve unless
θ = 0. Hence θ must be zero, and the proof follows from the fundamental
theorem of surface theory.

Corollary 1.3 (Basic rigidity theorem). Suppose f:M-^R3 is an iso-
metric minimal immersion. If M contains a compact minimal annulus A
whose image boundary curves lie on opposite sides of a plane P, then M
is minimally rigid.

Proof Since the intersection of P with A is compact and disjoint
from dA, P can be moved slightly to meet A transversally and remain
disjoint from dA. Thus PDA contains an immersed circle γ and P
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is transverse to A along γ . Let v be a unit vector perpendicular to the
plane P, and note that (B, υ) is never zero. Therefore j B Φ 0.

Another proof of Theorem 1.2. Suppose / : M —> R is an isometric
minimal immersion. Then the Weierstrass representation tells us that /
can be written in the form

fip) = Re , w3)

where wi9 i = 1, 2, 3, are holomorphic 1-forms on M. An associated
surface is then up to a rigid motion

rP
= Re / ti; 2

Suppose fθ is defined for some θ Φ 0, π. Then the imaginary periods

vanish, and / : (/, -fπ): M —• C3 = R3 Θ /R3 defines a holomorphic

map from the Riemannian surface M. Let / be the associated almost

complex structure on C 3 . Let η: Sι —• M be a closed curve, and denote

γ = foη and γ = / o γ . Let T and t be the associated tangent vector

fields and let B = J(T). Since / is conformal, f = T®if^(J(T)). Now

let γθ = fθ o η . Then γ'θ = Re{eiθγ) = cos ΘT + sin (95 . Since / 0 is well

defined, γθ is a closed curve, i.e.,

0= / γ'θ(t)dt = cosθ ί Tdt + isinθ I Bdt
J s J s Js

= i sinθ / Bdt,
J s

which is a contradiction.
Remark 1.4. Similarly Corollary 1.3 can be directly proved without

the use of Theorem 1.2 by the following argument. In the proof of the
corollary assume that P is the xy-plane. Since f*dz is never tangent
along the curve γ, the conjugate 1-form *f*(dz) has the property that
(*f*(dz), γ) is never zero along γ, where ( , ) is the pairing of a 1-
form with a vector and * is the Hodge star operator. The existence of the
nonzero period P(γ) - f *f*(dz) implies the corollary.

2. A maximum principle at infinity

2:Proposition 2.1. Let / , g: {x e R2: |JC| > R} -• R be solutions of the
minimal surface equation such that g > f and

lim f(χ) = 0.
x—>-oo

Then liminf g(x) > 0.
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Proof. It is well known (for example, by the Weierstrass representation
[13]) that

from which it readily follows (from the estimates in [5, Corollary 16.7]
applied to balls B,χ,,2(x)) that

Q(v) = (14- \Dv\2)Av - DjVDj

Let Q be the minimal surface operator:

Let u(x) = |xf1/2, so that

\Du(x)\ = O(\x\-3/2), \D2u(x)\ = O(\x\-5/2), Au(x) = M~5/2/4.

Then for 0 < / < 1:

= Q(f+tu)-Q{f)

> (1 + \D(f + tu)\2)tAu + (2tDf - Du 2 2

-t.(\Du\ + \Df\)2 (\D2f\ + \D2u\

Thus Q(/+ ίw) > 0 for |JC| sufficiently large, say |x| > R. Choose a
value t < 1 such that

Thus

and

0 < /

8(x)

<R in

>/(*)H

u{g(x) ~.

vt\x\-111

f(x): |;

when

c| = Λ}.

\x\ = R

liminfg(x) > 0 = lim fix) + ίw(x).
JC—•oo x—VQO

Since f +tu is a subsolution of the minimal surface equation, the maxi-
mum principle implies

for \x\ > R. But \f(x)\ = O(\x\~ι), so this implies g(x) > 0 for suf-
ficiently large x, say \x\ > r. Let c = inf{g(x): \x\ = r}, and for
each s > r, let v5 be the solution of the minimal surface equation in
{x: r < \x\ < s} with

υs(x) = c if |JC| = r,

υ (x) = 0 if |JC| = s.
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(The graph of υs is a portion of a catenoid.) By the maximum principle,
g(x) > vs(x) for r < \x\ < s. But l i m ^ ^ vs(x) = c. (To see this, either
write down the equation of the catenoid or note that v = limJ_>oo vs is a
positive solution of the minimal surface equation, so the argument above
(with g and u replaced by v andO) shows that v(x) > t\x\~ι/2 for some
/ > 0. But if l i m ^ ^ υ(x) = 0, then \υ(x)\ = O(\x\~{), a contradiction.)
Thus g > c.

Theorem 2.2. Let AR = {x e R2|||JC|| > R} be the annular region of
R2, which is the exterior of a disk of radius R. Let g: AR —• R be a
solution of the minimal surface equation such that

Let M be a complete properly immersed minimal surface in R with com-
pact, possibly empty, boundary. If M does not intersect the graph G of
g, then dist(Λ/, g) > 0.

Proof Since dM is compact, there exists a number T > R such that
dM is contained in the interior of the ball of radius T centered at the
origin. Let Cτ be the catenoid whose waist is the circle {x e R3\x3 =
0, \x\ = T} . Since G is asymptotic to the xχx2-plane, we can choose T
large enough so that Cτ separates G into two annular components. Let
W be the closure of the nonsimply connected component of R3 - Cτ.
Note that G = GnW separates W into two components Wχ and W2

and dG is homologically nontrivial in either Wχ or W2.

Assume now that M is disjoint from G. If M is disjoint from W,
then dist(Λ/, G) is clearly positive. Suppose now that M Γ\W ^ 0 and
suppose, after possibly reindexing, that M Γ\Wχ φ 0 . Let W be the
closure of the component of Wχ-M which contains G. The manifold W
has piecewise smooth boundary. Furthermore the nonsmooth boundary
points of W arise locally in R3 from the intersection of a finite number of
embedded minimal disks. It follows from this description of W that d W
is an appropriate barrier for solving least area problems in W. (See the
discussion before Theorem 1 in [11] concerning this boundary condition
for W.) Since dist(M, dG) > 0, we can choose a curve y c (dW) Π Cτ

which is a small perturbation of d Γ)G c dW and such γ Π (M U G) =
0 . For integers n > T let Tn be the intersection of the cylinder An —
{x e R 3 |x 2 + x\ = n} of radius n with G. The curves Γ^ and γ are
homologous in d W (in fact Γ n U y is the boundary of an annulus in
d W), and hence Γ^ and y are homologous in W. Let Σn be a smooth
surface that minimizes area mod 2 in W and has boundary Γ and γ .
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Note that the intersection of Σn with any ball B of radius r inside W
has area < 2πr2 (otherwise replace Σ n n 5 by the smaller of the two
regions into which Σn divides dB). Thus as n —> oo, a subsequence of
Γn must converge to a surface Σ that is stable and locally area minimizing
mod 2.

Since the surface Σ is area minimizing mod 2, it is embedded. The
maximum principle implies that Σ intersects d W only along its boundary
curve γ. Recall that γ is the boundary of a proper annulus A c d W
which contains the annulus G. Since Σ u A is a properly embedded
piecewise smooth surface in R 3 , it must be orientable and hence Σ is
an orientable stable minimal surface. In this case Theorem 2.1 in [12]
implies that Σ has finite total curvature. Since Σ has finite total curvature
and it is embedded, then Σ has a finite number of ends each of which
converges to a catenoid or a flat plane. Since the ends of Σ are disjoint
from the catenoid Cτ and G, it is clear that each end can be represented
as the graph of a solution to the minimal surface equation defined on
the exterior of some disk in R 3 . Theorem 2.1 implies that each end
of Σ is a positive distance from G, and hence the distance from Σ to
G is greater than some ε > 0. However since Σ separates W into two
components, one of which contains MnW and one of which contains G,
dist(Af n W, G) > dist(Σ, G) > ε. A similar argument shows that MnW2

is a positive distance from G. It follows from the triangle inequality that
M is a positive distance from G. This completes the proof of Theorem
2.2.

Remark 2.3. Theorems 2.1 and 2.2 are examples of maximum princi-
ples at infinity, and recently have had useful generalizations (see [8], [10]).

3. Some special properties of properly embedded minimal surfaces
with more than one end

In this section we prove that a properly embedded minimal surface M
in R3 with more than one end always intersects transversally some plane
P so that PnM contains a component γ which is a simple closed curve.
The existence of such a curve γ together with Corollary 1.3 proves that
M is minimally rigid. The technique of proof of this fact is one developed
by Meeks and Yau in their proof of the topological uniqueness of properly
embedded minimal surfaces of finite type in R3 [12]. Their technique of
proof is to derive geometric information on the behavior of the ends of M
through the existence and geometry of stable minimal surfaces contained
in one of the components of R - M.
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Proposition 3.1. If M is a properly embedded minimal surface in R3

with more than one end, then there exists a plane P which is transverse to
M and such that P Γ) M contains a component which is a simple closed
curve.

Proof Since M has more than one end, there exists a simple closed
curve γ on M, which separates M into two noncompact subsurfaces
Mχ and M2. Alexander duality implies that M disconnects R3 into two
components and hence M is orientable. If Mχ and M2 are both stable,
then the work of Fischer-Colbrie [3], as adapted by Meeks-Yau in Theorem
2.1 in [12], proves that M has finite total curvature. In the case where M
has finite total curvature, it is relatively easy to prove the lemma and this
is actually carried out by Hoffman and Meeks [6]. Hence from now on we
assume that the component M2 does not have finite total curvature. In
this case M2 is unstable by the above mentioned results of Fischer-Colbrie
and Meeks-Yau.

Assertion 3.2. The curve γ is nonhomologous to zero in a component
X o/R3 -M.

Proof of Assertion 3.2. This follows immediately from the Mayer-Vietoris
sequence. However, we give more geometric proof. Suppose γ is homolo-
gous to zero in the closures X, Y of the two components R3 - M. In this
case γ is the boundary of compact surfaces Σχ and Σ2 embedded in X
and Y respectively such that Σχ Π Σ2 = γ = (Σχ u Σ2) Π M, and therefore
Σ = Σχ U Σ 2 is a closed embedded surface in R 3 . Let Q be the closure
of the bounded component of R3 - Σ. Suppose that Mχ enters Q near
γ . Since Mχ n dQ = γ, the surface Mχ cannot escape Q. On the other
hand, M{ is properly embedded in Q and therefore is a closed subset of
the compact set Q. However, this implies that M{ is compact contrary
to our assumption that M{ is noncompact. This contradiction proves the
assertion.

We now complete the proof of Proposition 3.1. By Assertion 3.2 there
exists a smooth simple closed curve γ which separates M into two non-
compact unstable components Mχ and M2, and in the closure X of one
of the components of R3 - M the curve γ is nonhomologous to zero.
Let N{ c N2 c c Nn - be a compact exhaustion of Mχ by smooth
compact subsurfaces where γ c dNχ . Let Γz denote the boundary curves
of TV . Since the boundary of X has nonnegative mean curvature, the
collection of curves Γi is the boundary of a least-area embedded minimal
surfaces Σ.: c X. Standard compactness theorems for area minimizing
surfaces show that a subsequence Σz converges to a properly embedded
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smooth least-area surface Σ in X with boundary γ. For the moment
assume that Σ is not equal to either Mχ or M2 . The maximum principle
theorem implies that Σ n dX = γ . Since ΣuM{ is a properly embedded
piecewise smooth surface in R 3 , Σ must be orientable.

The result of Fischer-Colbrie [3] (see also Theorem 2.1 in [12]) implies
that Σ has finite total curvature, so that Σ is conformally diffeomorphic
to a compact Riemannian surface with one boundary curve and a finite
number of punctures. Each puncture point of Σ corresponds to an annular
end of Σ. It is well known that an embedded minimal annular end of
finite total curvature converges smoothly to a flat plane or to a catenoid
at infinity (see [6] or [15]). Hence, each end of Σ converges to a flat
plane or to a catenoid. Suppose for the moment that E is a given end
which converges to a catenoid. In this case there exists a plane PE which
intersects E in a simple closed curve γE and such that PE is transverse
to M. The curve γE is the boundary of a disk DE c PE . If DEnM φ 0 ,
then DEΓ\M contains a simple closed curve component. Suppose for the
moment that all of the ends of Σ are of catenoid type. Let E{, , Ek

be these ends and let DE , , DE be the disks defined above. Since γ is
not homologous to zero in X and γ is homologous to γE +yE H \-yE ,

at least one of the disks, DE , must intersect M transversely and this disk
contains a component which is a simple closed curve. Thus we conclude
that the proposition can only fail if some end of M converges to a flat
plane.

Suppose now that at least one end of Σ converges to a flat plane P.
We can choose a representative E of this flat end to be a graph over the
complement of a disk D in P. We can also choose E to be disjoint from
γ so that E Π M = 0. Theorem 2.1 shows that the distance between E
and M is greater than some ε > 0. Let P' be a plane which is transverse
to M and is within a distance of e/2 from P. In this case P' Π M
is compact and consists of a finite number of simple closed curves. The
strong half-space theorem [7] guarantees that P' C\M Φ&. This completes
the proof of the proposition in the case Σ φ Mχ and Σ Φ M2.

If Σ = Mχ, then Mχ has finite total curvature. If Mχ has a catenoid
end, then it is clear that one can find a plane P such that PnM contains
a simple closed curve (just choose a plane near the end orthogonal to the
limiting normal vector). If an end E converges to a plane P, then the
argument in the previous paragraph shows that a nearby plane intersects
M compactly. This completes the proof of the proposition.

The next theorem is an immediate consequence of Corollary 1.3 and
Proposition 3.1.
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Theorem 3.3. A properly embedded minimal surface M in R3 which
has more than one end is minimally rigid. In particular any intrinsic isom-
etry of M extends to an isometry of R3.
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