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THE TOPOLOGICAL UNIQUENESS
OF TRIPLY PERIODIC

MINIMAL SURFACES IN R3

CHARLES FROHMAN

0. Introduction

The study of topological uniqueness questions related to minimal sur-
faces was initiated by Lawson in [7]. Lawson proved that if F\ and F2 are
embedded minimal surfaces in the three-sphere having the same genus,
then there is a homeomorphism of the three-sphere taking F\ to F2. The
method of proof is to show that an embedded minimal surface in a three-
manifold of positive Ricci curvature is a Heegaard splitting, and then ap-
peal to a theorem of Waldhausen stating that any two Heegaard splittings
of the three-sphere having the same genus are topologically equivalent.

The study of the topological uniqueness of minimal surfaces was fur-
thered by Meeks; a good source for this material is his IMPA lecture notes
[8]. Meeks proved that if F is an embedded minimal surface in a closed flat
three-manifold, then F is either totally geodesic or a Heegaard splitting.
Using this fact he proved that if F\ and F2 are minimal surfaces having
one boundary component and the same genus in a flat three-ball with con-
vex boundary, then the surfaces are topologically equivalent. Once again
the proof is by appeal to Waldhausen's theorem.

In [5] the author showed that any two genus-three minimal surfaces in
a flat three-torus are topologically equivalent. The proof is a topologi-
cal analysis of genus-three Heegaard splittings of Γ 3 that can be minimal
surfaces. In [6] it is shown that genus-three Heegaard splittings of the
three-torus are topologically unique. The method of proof is to obtain a
minimax surface from the isotopy class of the Heegaard splitting using
a technique of Pitts and Rubinstein [9]. The topological uniqueness of
genus-three Heegaard splittings can be determined by analyzing the result-
ing minimal surface.

At the end of [8], Meeks gives a list of fifty open problems in minimal
surface theory. Many of them pertain to the topology of minimal surfaces.
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In this paper we give a proof of the first conjecture in the list. A triply pe-
riodic minimal surface is a connected properly embedded minimal surface
that is invariant under the action of a cocompact lattice in R3.

Theorem 2.3. Let F and F' be triply periodic minimal surfaces in a
Euclidean 3-space R3. Then there is a homeomorphism ofh: R3 —• R3 so
that h{F) = F'.

The proof we give of this theorem is topological and based on the fact
that F and F' cover Heegaard splittings of the three-torus. We use a
criterion for the reducibility of Heegaard splittings which was conjectured
by R. Craggs [4], and an observation of Meeks. In the first section we will
discuss Heegaard splittings and prove Craggs reducibility criterion. In the
second section we will prove the following theorem which clearly implies
Meeks conjecture.

Theorem 2.2. Let M be a closed three-manifold which has residually
finite fundamental group and is covered by R3. Let F{ and F2 be Heegaard
splittings ofM, and let F\ and Fι be their inverse images in R3. Then there
is a homeomorphism h: R3 —> R3, such that h(F\) = Fi

In light of this the following conjecture seems reasonable.
Conjecture. Up to topology there is only one properly embedded min-

imal surface in R3 having a single end and infinite genus.
It should be mentioned that Boileau and Otal [1] have recently given

an alternative solution to Meeks' conjecture. In their paper they prove
the topological uniqueness of Heegaard splittings of the three-torus, which
implies that the conjecture is true. The author would like to thank Bob
Edwards, Chuck Livingston, Bill Meeks and Peter Shalen for helpful con-
versations on this topic.

1. Heegaard splittings of three-manifolds

In this paper we will only work with orientable three-manifolds. By regu-
lar neighborhood we mean closed regular neighborhood. A three-manifold
M is said to be irreducible if every sphere in M bounds a ball. All embed-
dings will be locally flat.

A handlebody B is a three-manifold which is the result of adding 1-
handles to a three-sphere. Another way of saying this is that there is a
family of properly embedded disks in B so that the result of cutting B along
the disks is a ball. The boundary of a handlebody is a closed orientable
surface. The genus of a handlebody is the genus of its boundary. Two
handlebodies are homeomorphic if and only if they have the same genus.
It is easy to see that if X is a finite graph embedded in a three-manifold,
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then any closed regular neighborhood of X is a handlebody. Conversely if
B is a handlebody which is embedded in a three-manifold, we can find a
finite graph X that has B as a regular neighborhood. In this case we say
that X carries B.

A meridian disk for a handlebody B is a properly embedded disk in B,
whose boundary is nontrivial in dB. Let B be a handlebody, and A a
family of disjoint meridian disks. Let H be a regular neighborhood of the
union of dB and the disks A . If no boundary component of H is a sphere,
then H is an irreducible three-manifold. We call H a hollow handlebody,
and dB c // the distinguished boundary component of H.

Let Λf be a closed three-manifold. A Heegaard splitting of M is a
surface F such that there are handlebodies B\ and B2 in M so that B\ \JB2 =
M and B\ Γ\B2 = F. If Af is a compact manifold, we say that a surface
F contained in M is a hollow Heegaard splitting if there exist H{ and
H2 embedded in M, which are handlebodies or hollow handlebodies such
that H\ U H2 = M, H\ n H2 = F, and F is the distinguished boundary
component of the /// which are hollow handlebodies.

Let F\ be a genus-one surface with one boundary component which
is properly embedded in a three-ball E so that Fγ cuts F into genus-one
handlebodies B\ and B2 (see Figure 1). There is an operation on Heegaard
splittings called stabilization. If F c M is a Heegaard splitting, find a ball
embedded in M which intersects F in a disk. Remove the part of F lying
inside the ball and replace it with F\. This operation is well defined up
to homeomorphism and yields a new Heegaard splitting. We say that a
Heegaard splitting is reducible if it is the result of stabilizing some other
Heegaard splitting.

The Reidemeister-Singer theorem states that if F and F' are Heegaard
splittings of M, then after stabilizing each several times we can obtain
new Heegaard splittings which are topologically equivalent [10]. It is a
theorem of Waldhausen [11] that any Heegaard splitting of the three-sphere
is topologically equivalent to the result of stabilizing the standard two-
sphere in the three-sphere the appropriate number of times. From this
one can conclude that if F is a surface with one boundary component
that is properly embedded in the three-ball and splits the ball into two
handlebodies, then F is topologically equivalent to the result of stabilizing
a properly embedded disk.

The final classical result which we will be using is Haken's Lemma as
generalized by Bonahon and Otal [2], [3]. Let F c M be a hollow Heegaard
splitting, and suppose that there is a sphere in M which does not bound
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FIGURE 1

a ball. Then there is a sphere in M which does not bound a ball and
intersects F in a single simple closed curve.

The following criterion for reducibility was conjectured by R. Craggs
[4].

Lemma 1.1. Let F be a Heegaard splitting of the closed irreducible
three-manifold M, and X a graph that carries B. Suppose there is a sphere
bounding a ball in M so that some cycle ofX lies in the interior of the ball.
Then F is reducible.

Proof We can assume that M is not the three-sphere, for in that case
the theorem is a trivial corollary of Waldhausen's theorem. Now suppose
that S is a sphere in M bounding a ball E, and some cycle C of X lies
in the interior of E. Remove the interior of a regular neighborhood of C
from M, which is small enough to lie inside the same handlebody as C and
to lie inside E. Call the manifold obtained M. Notice that F is a hollow
Heegaard splitting of M, and further that S does not bound a ball in M
since M is not the three-sphere. By Haken's Lemma, there exists a sphere
S' which does not bound a ball in M and intersects F in a single simple
closed curve. The sphere S' bounds a ball E' in M. The cycle C lies in
Ef, otherwise Sf would bound a ball in M. This means that the part of F
lying in E' must have genus greater than zero. By Waldhausen's theorem
F is reducible.

Lemma 1.2. Let M be an irreducible three-manifold with residually fi-
nite fundamental group whose universal cover is homeomorphic to R3, and
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let F be a Heegaardsplitting ofM. Then there exists a cover p: M -> M
having finite degree, so that F = p~ι(F) is a reducible Heegaard splitting.

PROOF. Let X be a graph embedded in M which carries F. Let X be
the graph in R3 lying over X in the universal cover of M. Notice that the
fundamental group of M acts freely on X without fixed points. If X was a
tree, then the fundamental group of M would be free. This would violate
the fact that H3(M) = Z. Hence there must be a cycle C in X. This
cycle is compact, so there exists a ball B in R3 containing C in its interior.
Since the fundamental group of M is residually finite, it is possible to find
a subgroup of finite index G so that every deck transformation in G moves
B completely off itself. Let M = R3/G. The cycle C embeds in M and is
contained in the image of B in M which is a ball. By Lemma 1.1 F is a
reducible Heegaard splitting of M.

2. Triply periodic minimal surfaces in R3

Our goal in this section is to prove the theorems stated in the introduc-
tion. The next lemma is essentially due to Bill Meeks.

Lemma 2.1. Suppose that M has R3 as its universal cover, F is a re-
ducible Heegaard splitting of M, and F1 is the result of stabilizing F. Let
p: R3 —• M be the universal covering. Let F and F' be the inverse images
of F and F' under p. There is a homeomorphism h: R3 —> R3 such that
h{F) = F'.

Proof The fundamental group of M can be seen as acting freely and
properly discontinuously on R3 with compact quotient. Hence we can
conclude that π\(M) has one end. Since F carries the fundamental group
of M, F has one end. Hence we can find an ascending family of compact
sets Kj which have the property that (J AΓ, = R3 and (F - K\) is connected
for all /.

We can find a fundamental domain Δ for the action of π\ (M) on R3 by
lifting a spine for M. Number the translates Δz of Δ under ττi(Af), letting
Δi = Δ. Since F is reducible, we can arrange that there is a ball E\ in Δi so
that 8E\ intersects F in a single simple closed curve, and EnF has genus
one. In Figure 2 we have drawn a fundamental domain for the action of
π\{T3) on R3. Inside we have sketched F n Δ i where F is a genus-four
Heegaard splitting of T3. The ball in the figure represents E\. Number
the translates of E\ so that Ei c Δ, .

Choose an arc in F that runs from dE2 into Δi. Use the arc to construct
an isotopy which moves F Π Ei into Δi so that what lies inside Δi covers
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FIGURE 2

the result of stabilizing F once, and the isotopy only moves points which
are near the arc. Now choose arcs in F running from d£3 and d£4 into A2,
and isotope the parts of F lying inside £3 and E4 into Δ2 so that the end
result does not change A\ΠF9 and so that what lies inside Δ2 is the translate
of what now lies inside Δi. Now continue dragging handles from £27-1
and E2j into Δ, so that Δi, ,Δj-\ are the same after the isotopy, and
the part lying inside Δ7 is the translate of what lies in the earlier translates.
Furthermore since F - K[ is connected, if Δ7, E2j and E2j-\ are outside
of Ki, then we can require that our isotopy does not move points inside
K[. Consequently this process converges pointwise to a homeomorphism
h: R3 —• R3. From our construction h(F) = F'.

Proof of Theorem 2.2. Let M be as in the hypothesis, and F\ and F2

be two Heegaard splittings of M. Using Lemma 1.2 we can pass to a fi-
nite cover Mι of M so that the inverse images i7/ and F^ are reducible
Heegaard splittings of Mι. By the Reidemeister-Singer theorem we can
stabilize F{ and F\ several times apiece to obtain topologically equiva-
lent Heegaard splittings Ff and F£. Hence there is a homeomorphism
g: M[ —• Mι so that g{Ff) = Ff). We will denote the inverse images of
Ff and F 2

5 in the universal cover by using a tilda. Let g: R3 —• R3 be a
lift of g. By Lemma 2.1 there are homeomorphisms h\, h2: R3 —• i?3 so
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that h\(F\) = Ff and A2CF2) = Fξ. The homeomorphism h\ followed by
g followed by h^1 takes F\ to F2.

Proof of Theorem 2.3. Let F\ and F2 be triply periodic minimal surfaces
in R3. Since the quotient of R3 by the action of cocompact lattice is
homeomorphic to T3 = Sι x Sι x S\ we can view the images of /i and #2
in their respective quotient spaces as being two surfaces F\ and F2 lying
in T3. It is a theorem of Meeks [8] that a minimal surface in a closed flat
three-manifold is either totally geodesic, or a Heegaard splitting. Since
F\ and F2 are connected, F{ and F2 are Heegaard splittings of T3. The
hypotheses of Theorem 2.2 are satisfied.
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