DEFORMING THE METRIC ON COMPLETE RIEMANNIAN MANIFOLDS

WAN-XIONG SHI

1. Introduction

In his paper [3] R. S. Hamilton introduced the evolution equation method which has proved to be very useful in the research of differential geometrical problems.

Using the evolution equation to deform the metric on any n-dimensional Riemannian manifold ($M, g_{i j}$):

$$
\begin{equation*}
\frac{\partial}{\partial t} g_{i j}=-2 R_{i j} \tag{1}
\end{equation*}
$$

where $R_{i j}$ is the Ricci curvature of M, the first important thing which we have to consider is the short-time existence of the solution of the evolution equation (1). In the case where M is a compact Riemannian manifold, Hamilton in [3] proved that for any given initial data metric $g_{i j}$ on M the evolution equation (1) always has a unique solution for a short time. Therefore the short time existence problem of the evolution equation (1) was solved completely in the case when M is compact.

In the case where M is a noncompact complete Riemannian manifold, the short time existence problem of the evolution equation (1) is more difficult than the same problem for the compact case. Actually one cannot prove the short time existence of the evolution equation (1) for an arbitrary complete noncompact Riemannian manifold M; it is easy to find a complete noncompact Riemannian manifold ($M, g_{i j}$) on which the evolution equation (1) does not have any solution for an arbitrarily small time interval. Therefore to get the short time existence we have to make some assumptions on the curvature of M.

For a Riemannian manifold M with metric

$$
d s^{2}=g_{i j}(x) d x^{i} d x^{j}>0
$$

we use $\left\{R_{i j k l}\right\}$ to denote the Riemannian curvature tensor of M and let

$$
R_{i j}=g^{k l} R_{i k j l} \quad \text { and } \quad R=g^{i j} R_{i j}=g^{i j} g^{k l} R_{i k j l}
$$

Received August 3, 1987.
to be the Ricci curvature and scalar curvature respectively, where $\left(g^{i j}\right)=$ $\left(g_{i j}\right)^{-1}$.

For any tensors such as $\left\{T_{i j k l}\right\}$, $\left\{U_{i j k l}\right\}$ defined on M, we have the inner product

$$
\left\langle T_{i j k l}, U_{i j k l}\right\rangle=g^{i \alpha} g^{j \beta} g^{k \gamma} g^{l \delta} T_{i j k l} U_{\alpha \beta \gamma \delta},
$$

and the norm of $\left\{T_{i j k l}\right\}$ is defined as follows:

$$
\left|T_{i j k l}\right|^{2}=\left\langle T_{i j k l}, T_{i j k l}\right\rangle .
$$

We use $\nabla T_{i j k l}$ to denote the covariant derivatives of the tensor $\left\{T_{i j k l}\right\}$ with respect to the metric $d s^{2}, \nabla^{m} T_{i j k l}$ all of the m th covariant derivatives of $\left\{T_{i j k l}\right\}$, and $\operatorname{inj}(M)$ the injectivity radius of M.
Under these notations, the main theorem which we will prove in this paper is the following:

Theorem 1.1. Let $\left(M, g_{i j}(x)\right)$ be an n-dimensional complete noncompact Riemannian manifold with its Riemannian curvature tensor $\left\{R_{i j k l}\right\}$ satisfying

$$
\begin{equation*}
\left|R_{i j k l}\right|^{2} \leq k_{0} \text { on } M \text {, } \tag{2}
\end{equation*}
$$

where $0<k_{0}<+\infty$ is a constant. Then there exists a constant $T\left(n, k_{0}\right)>0$ depending only on n and k_{0} such that the evolution equation

$$
\begin{align*}
& \frac{\partial}{\partial t} g_{i j}(x, t)=-2 R_{i j}(x, t) \quad \text { on } M, \tag{3}\\
& g_{i j}(x, 0)=g_{i j}(x) \quad \forall x \in M
\end{align*}
$$

has a smooth solution $g_{i j}(x, t)>0$ for a short time $0 \leq t \leq T\left(n, k_{0}\right)$, and satisfies the following estimates: For any integer $m \geq 0$, there exist constants $c_{m}>0$ depending only on n, m and k_{0} such that

$$
\begin{equation*}
\sup _{x \in M}\left|\nabla^{m} R_{i j k l}(x, t)\right|^{2} \leq C_{m} / t^{m}, \quad 0 \leq t \leq T\left(n, k_{0}\right) . \tag{4}
\end{equation*}
$$

In Theorem 1.1 if we consider the new metric

$$
d \tilde{s}^{2}=g_{i j}(x, T) d x^{i} d x^{j}>0
$$

on the manifold M, then we get the following theorem immediately:
Theorem 1.2. Let $\left(M, g_{i j}(x)\right)$ be an n-dimensional complete noncompact Riemannian manifold with its Riemannian curvature tensor $\left\{R_{i j k l}\right\}$ satisfying

$$
\left|R_{i j k l}(x)\right|^{2} \leq k_{0} \quad \forall x \in M
$$

where $0<k_{0}<+\infty$ is a constant. Then there exists another metric

$$
d \tilde{s}^{2}=\tilde{g}_{i j}(x) d x^{i} d x^{j}>0
$$

on M and constants $c>0, \tilde{c}_{m}>0(m=0,1,2,3, \cdots)$ depending only on n and k_{0} such that

$$
\begin{align*}
& \frac{1}{c} g_{i j}(x) \leq \tilde{g}_{i j}(x) \leq c g_{i j}(x) \quad \forall x \in M, \tag{5}\\
& \left|\tilde{\nabla}^{m} \tilde{R}_{i j k l}(x)\right|^{2} \leq \tilde{c}_{m} \quad \forall x \in M, m \geq 0
\end{align*}
$$

where $\tilde{\nabla}^{m} \tilde{R}_{i j k l}$ denotes the mth covariant derivatives of the curvature tensor $\left\{\tilde{R}_{i j k l}(x)\right\}$ with respect to the metric d \tilde{s}^{2}.

Proof of Theorem 1.2. We let $T=T\left(n, k_{0}\right)$ and

$$
\tilde{g}_{i j}(x)=g_{i j}(x, T) \quad \forall x \in M
$$

where $g_{i j}(x, t)$ is the solution of the evolution equation (3) in Theorem 1.1. Since $T>0$ depends only on n and k_{0}, from (4) we know that for any integer $m \geq 0$ one has

$$
\begin{equation*}
\left|\tilde{\nabla}^{m} \tilde{R}_{i j k l}(x)\right|^{2} \leq \tilde{c}_{m}\left(n, k_{0}\right) \quad \forall x \in M \tag{6}
\end{equation*}
$$

where $0<\tilde{c}_{m}\left(n, k_{0}\right)<+\infty$ are constants depending only on n and k_{0}.
From the equation

$$
\frac{\partial}{\partial t} g_{i j}(x, t)=-2 R_{i j}(x, t), \quad 0 \leq t \leq T
$$

it follows that

$$
\begin{equation*}
\left|\frac{\partial}{\partial t} g_{i j}\right|^{2} \leq 4\left|R_{i j}\right|^{2} \leq 4 n^{2}\left|R_{i j k l}\right|^{2}, \quad 0 \leq t \leq T \tag{7}
\end{equation*}
$$

Using (4) we have

$$
\begin{equation*}
\left|R_{i j k l}\right|^{2} \leq c_{0}, \quad 0 \leq t \leq T \tag{8}
\end{equation*}
$$

From (7) and (8) we get

$$
\begin{aligned}
&\left|\frac{\partial}{\partial t} g_{i j}\right|^{2} \leq 4 n^{2} c_{0}, \quad 0 \leq t \leq T \\
&\left|\frac{\partial}{\partial t} g_{i j}\right| \leq 2 n \sqrt{c_{0}}, \quad 0 \leq t \leq T \\
&-2 n \sqrt{c_{0}} g_{i j} \leq \frac{\partial}{\partial t} g_{i j} \leq 2 n \sqrt{c_{0}} g_{i j}, \quad 0 \leq t \leq T
\end{aligned}
$$

This implies
(9) $e^{-2 n \sqrt{c_{0}} t} g_{i j}(x, 0) \leq g_{i j}(x, t) \leq e^{2 n \sqrt{c_{0}} t} g_{i j}(x, 0) \quad \forall x \in M, 0 \leq t \leq T$.

Let $t=T$ and $c=e^{2 n \sqrt{c_{0} T}}$. From (9) we get

$$
\frac{1}{c} g_{i j}(x) \leq g_{i j}(x, T) \leq c g_{i j}(x)
$$

that is

$$
\begin{equation*}
\frac{1}{c} g_{i j}(x) \leq \tilde{g}_{i j}(x) \leq c g_{i j}(x) \tag{10}
\end{equation*}
$$

which together with (6) shows that (5) is true; thus we have completed the proof of Theorem 1.2.

In the remainder of this paper we will prove Theorem 1.1.
The author would like to express his gratitude to Professors R. S. Hamilton and S. T. Yau for many inspirational remarks and encouragement.

2. Modified equation and zero order estimates

In the remainder of the paper we will assume that M is an n-dimensional complete noncompact Riemannian manifold with metric

$$
\begin{equation*}
d \tilde{s}^{2}=\tilde{g}_{i j}(x) d x^{i} d x^{j}>0 \tag{1}
\end{equation*}
$$

and that its Riemannian curvature tensor $\left\{R_{i j k l}\right\}$ satisfies

$$
\begin{equation*}
\left|\tilde{R}_{i j k l}\right|^{2} \leq k_{0} \quad \text { on } M . \tag{2}
\end{equation*}
$$

Fix a point $x_{0} \in M$ and let $B\left(x_{0}, \gamma\right)$ be the geodesic ball of radius γ centered at x_{0}. For any integer $k>0$, let

$$
\begin{equation*}
D_{\ell}=B\left(x_{0}, \not \subset\right) . \tag{3}
\end{equation*}
$$

Then we get a family of open subsets $\left\{D_{\ell}\right\}$ such that

$$
\begin{align*}
& D_{\ell} \subseteq D_{\ell+1} \\
& \bar{D}_{k} \text { is a compact subset of } M \\
& M=\bigcup_{k=1}^{\infty} D_{\ell} \tag{4}
\end{align*}
$$

where $\bar{D}_{A}=D_{A} \cup \partial D_{A}$ denotes the closure of D_{k} on M.
To obtain a solution of the evolution equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \hat{g}_{i j}(x, t)=-2 \hat{R}_{i j}(x, t), \quad \hat{g}_{i j}(x, 0)=\tilde{g}_{i j}(x) \tag{5}
\end{equation*}
$$

for a short time $0 \leq t \leq T$, we try to solve the Dirichlet boundary problem

$$
\begin{align*}
& \frac{\partial}{\partial t} \hat{g}_{i j}(k, x, t)=-2 \hat{R}_{i j}(\not, x, x), \quad x \in D_{\neq}, \\
& \hat{g}_{i j}(\not, x, x, 0)=\tilde{g}_{i j}(x), \quad x \in D_{\neq}, \tag{6}\\
& \hat{g}_{i j}(\not, x, x) \equiv \tilde{g}_{i j}(x), \quad x \in \partial D_{k}, 0 \leq t \leq T
\end{align*}
$$

for each open set D_{ℓ}, and then we let $\notin \rightarrow+\infty$. If the limit metric $\hat{g}_{i j}(x, t)=\lim _{\ell \rightarrow+\infty} \hat{g}_{i j}(\not, x, t)$ exists, we get a solution of (5) for a short time $0 \leq t \leq T$.

The Dirichlet boundary problem (6) may not have any solutions because the evolution equation (6) is not a strictly parabolic system, and is only a weak parabolic system. For the proof of weak parabolicity of (6), one can see R. S. Hamilton [3].

Therefore, instead of considering the weak parabolic system (5) we consider a modified evolution equation which is strictly parabolic so that we can get a solution of it for at least a short time by solving the corresponding Dirichlet boundary problems. The solution of system (5) then comes from the solution of the modified equation.

Suppose the metrics

$$
\begin{equation*}
d \hat{s}_{t}^{2}=\hat{g}_{i j}(x, t) d x^{i} d x^{j}>0, \quad 0 \leq t \leq T \tag{7}
\end{equation*}
$$

are the solution of (5) for $0 \leq t \leq T$, and $\varphi_{t}: M \rightarrow M(0 \leq t \leq T)$ is a family of diffeomorphisms of M. Let

$$
\begin{equation*}
d s_{t}^{2}=\varphi_{t}^{*} d \hat{s}_{t}^{2}, \quad 0 \leq t \leq T \tag{8}
\end{equation*}
$$

be the pull-back metrics. Then we want to find the evolution equation for the metrics $d s_{t}^{2}$.

For any coordinate system $x=\left\{x^{1}, x^{2}, \cdots, x^{n}\right\}$ on M, let

$$
\begin{equation*}
y(x, t)=\varphi_{t}(x)=\left\{y^{1}(x, t), y^{2}(x, t), \cdots, y^{n}(x, t)\right\} \tag{9}
\end{equation*}
$$

Then by (7), (8) and (9) we have

$$
\begin{equation*}
g_{i j}(x, t)=\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \hat{g}_{\alpha \beta}(y, t) \tag{11}
\end{equation*}
$$

and by the assumption $\hat{g}_{\alpha \beta}(x, t)$ satisfies the following equations:

$$
\begin{align*}
& \frac{\partial}{\partial t} \hat{g}_{\alpha \beta}(x, t)=-2 \hat{R}_{\alpha \beta}(x, t), \quad 0 \leq t \leq T \tag{12}\\
& \hat{g}_{\alpha \beta}(x, 0)=\tilde{g}_{\alpha \beta}(x)
\end{align*}
$$

We use $R_{i j}, \hat{R}_{i j}, \tilde{R}_{i j} ; \Gamma_{i j}^{k}, \hat{\Gamma}_{i j}^{k}, \tilde{\Gamma}_{i j}^{k} ; \nabla, \hat{\nabla}, \tilde{\nabla}$ to denote the Ricci curvature, the Christoffel symbols, and the covariant derivatives with respect to $g_{i j}, \hat{g}_{i j}$,
$\tilde{g}_{i j}$, respectively. Then from (11) it follows that

$$
\begin{align*}
\frac{\partial}{\partial t} g_{i j}(x, t)= & \frac{\partial}{\partial t}\left[\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \hat{g}_{\alpha \beta}(y, t)\right] \\
= & \frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial}{\partial t} \hat{g}_{\alpha \beta}(y, t)+\frac{\partial}{\partial x^{i}}\left(\frac{\partial y^{\alpha}}{\partial t}\right) \frac{\partial y^{\beta}}{\partial x^{j}} \hat{g}_{\alpha \beta}(y, t) \tag{13}\\
& +\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial}{\partial x^{j}}\left(\frac{\partial y^{\beta}}{\partial t}\right) \hat{g}_{\alpha \beta}(y, t) .
\end{align*}
$$

Using (12) we have

$$
\begin{equation*}
\frac{\partial}{\partial t} \hat{g}_{\alpha \beta}(y, t)=-2 \hat{R}_{\alpha \beta}(y, t)+\frac{\partial \hat{g}_{\alpha \beta}}{\partial y^{\gamma}} \frac{\partial y^{\gamma}}{\partial t} \tag{14}
\end{equation*}
$$

and therefore

$$
\begin{align*}
\frac{\partial}{\partial t} g_{i j}(x, t)= & -2 \frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \hat{R}_{\alpha \beta}(y, t) \\
& +\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial \hat{g}_{\alpha \beta}}{\partial y^{\gamma}} \frac{\partial y^{\gamma}}{\partial t}+\frac{\partial}{\partial x^{i}}\left(\frac{\partial y^{\alpha}}{\partial t}\right) \frac{\partial y^{\beta}}{\partial x^{j}} \hat{g}_{\alpha \beta}(y, t) \tag{15}\\
& +\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial}{\partial x^{j}}\left(\frac{\partial y^{\beta}}{\partial t}\right) \hat{g}_{\alpha \beta}(y, t), \quad 0 \leq t \leq T .
\end{align*}
$$

It is easy to see that

$$
\begin{equation*}
R_{i j}(x, t)=\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \hat{R}_{\alpha \beta}(y, t) . \tag{16}
\end{equation*}
$$

If we choose a coordinate system $\left\{x^{i}\right\}$ such that at one point

$$
\begin{equation*}
\Gamma_{i j}^{k}=0 \tag{17}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{\partial g_{i j}}{\partial x^{k}}=0 \tag{18}
\end{equation*}
$$

From (11) we have

$$
\begin{equation*}
\hat{\mathrm{g}}_{\alpha \beta}=\frac{\partial x^{k}}{\partial y^{\alpha}} \frac{\partial x^{l}}{\partial y^{\beta}} g_{k l} \tag{19}
\end{equation*}
$$

and therefore

$$
\begin{align*}
\frac{\partial y^{\beta}}{\partial x^{j}} \hat{g}_{\alpha \beta}(y, t) & =\frac{\partial x^{k}}{\partial y^{\alpha}} g_{j k} \\
\frac{\partial}{\partial x^{i}}\left(\frac{\partial y^{\alpha}}{\partial t}\right) \frac{\partial y^{\beta}}{\partial x^{j}} \hat{g}_{\alpha \beta}(y, t) & =\frac{\partial}{\partial x^{i}}\left(\frac{\partial y^{\alpha}}{\partial t}\right) \cdot \frac{\partial x^{k}}{\partial y^{\alpha}} g_{j k} \tag{20}
\end{align*}
$$

which together with (18) implies

$$
\begin{equation*}
\frac{\partial}{\partial x^{i}}\left(\frac{\partial y^{\alpha}}{\partial t}\right) \frac{\partial y^{\beta}}{\partial x^{j}} \hat{g}_{\alpha \beta}(y, t)=\frac{\partial}{\partial x^{i}}\left(\frac{\partial y^{\alpha}}{\partial t} \frac{\partial x^{k}}{\partial y^{\alpha}} g_{j k}\right)-\frac{\partial y^{\alpha}}{\partial t} \frac{\partial}{\partial x^{i}}\left(\frac{\partial x^{k}}{\partial y^{\alpha}}\right) \cdot g_{j k} \tag{21}
\end{equation*}
$$

For the same reasoning we get
(22)

$$
\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial}{\partial x^{j}}\left(\frac{\partial y^{\beta}}{\partial t}\right) \hat{g}_{\alpha \beta}(y, t)=\frac{\partial}{\partial x^{j}}\left(\frac{\partial y^{\beta}}{\partial t} \frac{\partial x^{k}}{\partial y^{\beta}} g_{i k}\right)-\frac{\partial y^{\beta}}{\partial t} \frac{\partial}{\partial x^{j}}\left(\frac{\partial x^{k}}{\partial y^{\beta}}\right) \cdot g_{i k} .
$$

From (19) we have

$$
\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial t} \frac{\partial \hat{g}_{\alpha \beta}}{\partial y^{\gamma}}=\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial t} \frac{\partial}{\partial y^{\gamma}}\left(\frac{\partial x^{k}}{\partial y^{\alpha}} \frac{\partial x^{l}}{\partial y^{\beta}} g_{k l}\right) .
$$

Since

$$
\begin{equation*}
\frac{\partial}{\partial y^{\gamma}} g_{k l}=0 \tag{23}
\end{equation*}
$$

by (18), the above equation becomes

$$
\begin{align*}
\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial t} \frac{\partial \hat{g}_{\alpha \beta}}{\partial y^{\gamma}}= & \frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial t} g_{k l} \frac{\partial}{\partial y^{\gamma}}\left(\frac{\partial x^{k}}{\partial y^{\alpha}} \frac{\partial x^{l}}{\partial y^{\beta}}\right) \\
= & \frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\gamma}}{\partial t} \frac{\partial}{\partial y^{\gamma}}\left(\frac{\partial x^{k}}{\partial y^{\alpha}}\right) g_{j k} \tag{24}\\
& +\frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial t} \frac{\partial}{\partial y^{\gamma}}\left(\frac{\partial x^{k}}{\partial y^{\beta}}\right) g_{i k} .
\end{align*}
$$

Substituting (16), (21), (22), and (24) into (15) gives

$$
\begin{align*}
\frac{\partial}{\partial t} g_{i j}(x, t)= & -2 R_{i j}(x, t)+\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\gamma}}{\partial t} \frac{\partial}{\partial y^{\gamma}}\left(\frac{\partial x^{k}}{\partial y^{\alpha}}\right) g_{j k} \\
& +\frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial t} \frac{\partial}{\partial y^{\gamma}}\left(\frac{\partial x^{k}}{\partial y^{\beta}}\right) g_{i k} \\
& -\frac{\partial y^{\alpha}}{\partial t} \frac{\partial}{\partial x^{i}}\left(\frac{\partial x^{k}}{\partial y^{\alpha}}\right) g_{j k}-\frac{\partial y^{\beta}}{\partial t} \frac{\partial}{\partial x^{j}}\left(\frac{\partial x^{k}}{\partial y^{\beta}}\right) \cdot g_{i k} \tag{25}\\
& +\frac{\partial}{\partial x^{i}}\left(\frac{\partial y^{\alpha}}{\partial t} \frac{\partial x^{k}}{\partial y^{\alpha}} g_{j k}\right)+\frac{\partial}{\partial x^{j}}\left(\frac{\partial y^{\beta}}{\partial t} \frac{\partial x^{k}}{\partial y^{\beta}} g_{i k}\right) .
\end{align*}
$$

On the other hand,

$$
\begin{equation*}
-\frac{\partial y^{\alpha}}{\partial t} \frac{\partial}{\partial x^{i}}\left(\frac{\partial x^{k}}{\partial y^{\alpha}}\right) g_{j k}=-\frac{\partial y^{\alpha}}{\partial t} \frac{\partial^{2} x^{k}}{\partial y^{\gamma} \partial y^{\alpha}} \frac{\partial y^{\gamma}}{\partial x^{i}} g_{j k}=-\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial^{2} x^{k}}{\partial y^{\gamma} \partial y^{\alpha}} \frac{\partial y^{\gamma}}{\partial t} g_{j k} \tag{26}
\end{equation*}
$$

or

$$
\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\gamma}}{\partial t} \frac{\partial}{\partial y^{\gamma}}\left(\frac{\partial x^{k}}{\partial y^{\alpha}}\right) g_{j k}-\frac{\partial y^{\alpha}}{\partial t} \frac{\partial}{\partial x^{i}}\left(\frac{\partial x^{k}}{\partial y^{\alpha}}\right) g_{j k}=0
$$

We also have

$$
\begin{equation*}
\frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial t} \frac{\partial}{\partial y^{\gamma}}\left(\frac{\partial x^{k}}{\partial y^{\beta}}\right) g_{i k}-\frac{\partial y^{\beta}}{\partial t} \frac{\partial}{\partial x^{j}}\left(\frac{\partial x^{k}}{\partial y^{\beta}}\right) g_{i k}=0 . \tag{27}
\end{equation*}
$$

Combining (25), (26), and (27) we get

$$
\begin{equation*}
\frac{\partial}{\partial t} g_{i j}(x, t)=-2 R_{i j}(x, t)+\frac{\partial}{\partial x^{i}}\left(\frac{\partial y^{\alpha}}{\partial t} \frac{\partial x^{k}}{\partial y^{\alpha}} g_{j k}\right)+\frac{\partial}{\partial x^{j}}\left(\frac{\partial y^{\beta}}{\partial t} \frac{\partial x^{k}}{\partial y^{\beta}} g_{i k}\right) . \tag{28}
\end{equation*}
$$

Since $\Gamma_{i j}^{k}=0$, from (28) one has
(29) $\frac{\partial}{\partial t} g_{i j}(x, t)=-2 R_{i j}(x, t)+\nabla_{i}\left(\frac{\partial y^{\alpha}}{\partial t} \frac{\partial x^{k}}{\partial y^{\alpha}} g_{j k}\right)+\nabla_{j}\left(\frac{\partial y^{\alpha}}{\partial t} \frac{\partial x^{k}}{\partial y^{\alpha}} g_{i k}\right)$.

If we define $y(x, t)=\varphi_{t}(x)$ by the equations

$$
\begin{equation*}
\frac{\partial y^{\alpha}}{\partial t}=\frac{\partial y^{\alpha}}{\partial x^{k}} g^{\beta \gamma}\left(\Gamma_{\beta \gamma}^{k}-\tilde{\Gamma}_{\beta \gamma}^{k}\right), \quad y^{\alpha}(x, 0)=x^{\alpha} \tag{30}
\end{equation*}
$$

then (30) is a quasilinear first order system:

$$
\begin{gather*}
\frac{\partial y^{\alpha}}{\partial t}=\frac{\partial y^{\alpha}}{\partial x^{k}} g^{\beta \gamma} g^{i k} \cdot \frac{1}{2}\left(\tilde{\nabla}_{\beta} g_{i \gamma}+\tilde{\nabla}_{\gamma} g_{i \beta}-\tilde{\nabla}_{i} g_{\beta \gamma}\right) \tag{31}\\
y^{\alpha}(x, 0)=x^{\alpha} .
\end{gather*}
$$

From (29) we get

$$
\begin{align*}
\frac{\partial}{\partial t} g_{i j}(x, t)= & -2 R_{i j}(x, t)+\nabla_{i}\left[g_{j k} g^{\beta \gamma}\left(\Gamma_{\beta \gamma}^{k}-\tilde{\Gamma}_{\beta \gamma}^{k}\right)\right] \tag{32}\\
& +\nabla_{j}\left[g_{i k} g^{\beta \gamma}\left(\Gamma_{\beta \gamma}^{k}-\tilde{\Gamma}_{\beta \gamma}^{k}\right)\right] .
\end{align*}
$$

Since $y^{\alpha}(x, 0)=x^{\alpha}$, from (11) it follows that

$$
\begin{equation*}
g_{i j}(x, 0)=\hat{g}_{i j}(x, 0)=\tilde{g}_{i j}(x) \tag{33}
\end{equation*}
$$

If we define a tensor

$$
\begin{equation*}
V_{i}=g_{i k} g^{\beta \gamma}\left(\Gamma_{\beta \gamma}^{k}-\tilde{\Gamma}_{\beta \gamma}^{k}\right), \tag{34}
\end{equation*}
$$

then using (32) and (33) we get the evolution equation for the pull-back metric $g_{i j}(x, t)$:

$$
\begin{gather*}
\frac{\partial}{\partial t} g_{i j}(x, t)=-2 R_{i j}(x, t)+\nabla_{i} V_{j}+\nabla_{j} V_{i}, \tag{35}\\
g_{i j}(x, 0)=\tilde{g}_{i j}(x) .
\end{gather*}
$$

System (35) is the modified evolution equation. In this paper we consider system (35) instead of the original evolution equation (5) because (35) is a strictly parabolic system, while (5) is only a weak parabolic system.

Lemma 2.1. The modified evolution equation (35) is a strictly parabolic system. Actually we have

$$
\begin{aligned}
\frac{\partial}{\partial t} g_{i j}= & g^{\alpha \beta} \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} g_{i j}-g^{\alpha \beta} g_{i p} \tilde{g}^{p q} \tilde{R}_{j \alpha q \beta}-g^{\alpha \beta} g_{j p} \tilde{g}^{p q} \tilde{R}_{i \alpha q \beta} \\
& +\frac{1}{2} g^{\alpha \beta} g^{p q}\left(\tilde{\nabla}_{i} g_{p \alpha} \cdot \tilde{\nabla}_{j} g_{q \beta}\right.
\end{aligned} \quad+2 \tilde{\nabla}_{\alpha} g_{j p} \cdot \tilde{\nabla}_{q} g_{i \beta}-2 \tilde{\nabla}_{\alpha} g_{j p} \cdot \tilde{\nabla}_{\beta} g_{i q} .
$$

Proof. By the definition of the Christoffel symbols and the Riemannian curvature tensor we have

$$
\begin{align*}
& R_{i j k l}=g_{p k} R_{i j l}^{p}, \\
& R_{i j l}^{k}=\frac{\partial}{\partial x^{i}} \Gamma_{j l}^{k}-\frac{\partial}{\partial x^{j}} \Gamma_{i l}^{k}+\Gamma_{i p}^{k} \Gamma_{j l}^{p}-\Gamma_{j p}^{k} \Gamma_{i l}^{p}, \tag{36}\\
& \Gamma_{i j}^{k}= \\
& \frac{1}{2} g^{k l}\left(\frac{\partial g_{i l}}{\partial x^{j}}+\frac{\partial g_{j l}}{\partial x^{i}}-\frac{\partial g_{i j}}{\partial x^{l}}\right) ; \\
& R_{i j k l}=\frac{1}{2}\left(\frac{\partial^{2} g_{j k}}{\partial x^{i} \partial x^{l}}+\frac{\partial^{2} g_{i l}}{\partial x^{j} \partial x^{k}}-\frac{\partial^{2} g_{j l}}{\partial x^{i} \partial x^{k}}-\frac{\partial^{2} g_{i k}}{\partial x^{j} \partial x^{l}}\right) \\
& +\frac{1}{4} g^{p q}\left(\frac{\partial g_{p k}}{\partial x^{j}} \frac{\partial g_{i q}}{\partial x^{l}}+\frac{\partial g_{p k}}{\partial x^{j}} \frac{\partial g_{l q}}{\partial x^{i}}-\frac{\partial g_{p k}}{\partial x^{j}} \frac{\partial g_{i l}}{\partial x^{q}}\right. \\
& \quad-\frac{\partial g_{p k}}{\partial x^{i}} \frac{\partial g_{j q}}{\partial x^{l}}-\frac{\partial g_{p k}}{\partial x^{i}} \frac{\partial g_{l q}}{\partial x^{j}}+\frac{\partial g_{p k}}{\partial x^{i}} \frac{\partial g_{j l}}{\partial x^{q}} \\
& \\
& \quad+\frac{\partial g_{i k}}{\partial x^{p}} \frac{\partial g_{j q}}{\partial x^{l}}+\frac{\partial g_{i k}}{\partial x^{p}} \frac{\partial g_{l q}}{\partial x^{j}}-\frac{\partial g_{i k}}{\partial x^{p}} \frac{\partial g_{j l}}{\partial x^{q}} \\
& \\
& \quad-\frac{\partial g_{i p}}{\partial x^{k}} \frac{\partial g_{j q}}{\partial x^{l}}-\frac{\partial g_{i p}}{\partial x^{k}} \frac{\partial g_{l q}}{\partial x^{j}}+\frac{\partial g_{i k}}{\partial x^{p} p} \frac{\partial g_{j l}}{\partial x^{q}} \\
& \\
& \quad-\frac{\partial g_{j k}}{\partial x^{p}} \frac{\partial g_{i q}}{\partial x^{l}}-\frac{\partial g_{j k}}{\partial x^{p}} \frac{\partial g_{l q}}{\partial x^{i}}+\frac{\partial g_{j k}}{\partial x^{p}} \frac{\partial g_{i l}}{\partial x^{q}} \\
& \\
& \left.+\frac{\partial g_{j p}}{\partial x^{k}} \frac{\partial g_{i q}}{\partial x^{l}}+\frac{\partial g_{j p}}{\partial x^{k}} \frac{\partial g_{l q}}{\partial x^{i}}-\frac{\partial g_{j p}}{\partial x^{k}} \frac{\partial g_{i l}}{\partial x^{q}}\right) .
\end{align*}
$$

We still have

$$
\begin{equation*}
\Gamma_{k l}^{j}-\tilde{\Gamma}_{k l}^{j}=\frac{1}{2} g^{j p}\left(\tilde{\nabla}_{k} g_{p l}+\tilde{\nabla}_{l} g_{p k}-\tilde{\nabla}_{p} g_{k l}\right) \tag{38}
\end{equation*}
$$

By definition, $V_{i}=g_{i j} g^{k l}\left(\Gamma_{k l}^{j}-\tilde{\Gamma}_{k l}^{j}\right)$, so

$$
\begin{equation*}
V_{i}=\frac{1}{2} g^{k l}\left(\tilde{\nabla}_{k} g_{i l}+\tilde{\nabla}_{l} g_{i k}-\tilde{\nabla}_{i} g_{k l}\right) \tag{39}
\end{equation*}
$$

Since $\nabla_{k} g_{i j}=0$ and $\nabla_{k} g^{i j}=0$, from (39) we have

$$
\begin{align*}
& \nabla_{j} V_{i}+\nabla_{i} V_{j}=\frac{1}{2} g^{k l}\left(\nabla_{j} \tilde{\nabla}_{k} g_{i l}+\nabla_{j} \tilde{\nabla}_{l} g_{i k}-\nabla_{j} \tilde{\nabla}_{i} g_{k l}\right. \\
&\left.+\nabla_{i} \tilde{\nabla}_{k} g_{j l}+\nabla_{i} \tilde{\nabla}_{l} g_{j k}-\nabla_{i} \tilde{\nabla}_{j} g_{k l}\right) \tag{40}
\end{align*}
$$

If we choose a coordinate system $\left\{x^{i}\right\}$ such that at one point

$$
\begin{equation*}
\tilde{\Gamma}_{i j}^{k}=0 \tag{41}
\end{equation*}
$$

then from (38) it follows that

$$
\begin{equation*}
\Gamma_{i j}^{k}=\frac{1}{2} g^{k l}\left(\tilde{\nabla}_{i} g_{j l}+\tilde{\nabla}_{j} g_{i l}-\tilde{\nabla}_{l} g_{i j}\right) \tag{42}
\end{equation*}
$$

By the definition of covariant derivative, we have

$$
\begin{align*}
\nabla_{j} \tilde{\nabla}_{k} g_{i l} & =\frac{\partial}{\partial x^{j}} \tilde{\nabla}_{k} g_{i l}-\Gamma_{j k}^{p} \tilde{\nabla}_{p} g_{i l}-\Gamma_{j i}^{p} \tilde{\nabla}_{k} g_{p l}-\Gamma_{j l}^{p} \tilde{\nabla}_{k} g_{i p} \tag{43}\\
& =\tilde{\nabla}_{j} \tilde{\nabla}_{k} g_{i l}-\Gamma_{j k}^{p} \tilde{\nabla}_{p} g_{i l}-\Gamma_{j i}^{p} \tilde{\nabla}_{k} g_{p l}-\Gamma_{j l}^{p} \tilde{\nabla}_{k} g_{i p}
\end{align*}
$$

Substituting (42) into (43) yields

$$
\begin{align*}
& \frac{1}{2} g^{k l} \nabla_{j} \tilde{\nabla}_{k} g_{i l}=\frac{1}{2} g^{k l} \tilde{\nabla}_{j} \tilde{\nabla}_{k} g_{i l} \\
& +\frac{1}{4} g^{k l} g^{p q}\left(\tilde{\nabla}_{p} g_{i l} \cdot \tilde{\nabla}_{q} g_{j k}-\tilde{\nabla}_{p} g_{i l} \cdot \tilde{\nabla}_{j} g_{q k}-\tilde{\nabla}_{p} g_{i l} \cdot \tilde{\nabla}_{k} g_{j q}\right. \tag{44}\\
& \quad+\tilde{\nabla}_{k} g_{p l} \cdot \tilde{\nabla}_{q} g_{i j}-\tilde{\nabla}_{j} g_{q i} \cdot \tilde{\nabla}_{k} g_{p l}-\tilde{\nabla}_{k} g_{p l} \cdot \tilde{\nabla}_{i} g_{j q} \\
& \left.\quad+\tilde{\nabla}_{k} g_{i p} \cdot \tilde{\nabla}_{q} g_{j l}-\tilde{\nabla}_{k} g_{i p} \cdot \tilde{\nabla}_{j} g_{q l}-\tilde{\nabla}_{k} g_{i p} \cdot \tilde{\nabla}_{l} g_{j q}\right) .
\end{align*}
$$

Substituting (44) and the similar formulas into (40), we get

$$
\begin{equation*}
\nabla_{i} V_{j}+\nabla_{j} V_{i} \tag{45}
\end{equation*}
$$

$$
=\frac{1}{2} g^{k l}\left(\tilde{\nabla}_{j} \tilde{\nabla}_{k} g_{i l}+\tilde{\nabla}_{j} \tilde{\nabla}_{l} g_{i k}-\tilde{\nabla}_{j} \tilde{\nabla}_{i} g_{k l}\right.
$$

$$
\left.+\tilde{\nabla}_{i} \tilde{\nabla}_{k} g_{j l}+\tilde{\nabla}_{i} \tilde{\nabla}_{l} g_{j k}-\tilde{\nabla}_{i} \tilde{\nabla}_{j} g_{k l}\right)
$$

$$
+\frac{1}{2} g^{k l} g^{p q}\left(\tilde{\nabla}_{p} g_{i l} \cdot \tilde{\nabla}_{q} g_{j k}-\tilde{\nabla}_{p} g_{i l} \cdot \tilde{\nabla}_{j} g_{q k}-\tilde{\nabla}_{p} g_{i l} \cdot \tilde{\nabla}_{k} g_{q j}\right.
$$

$$
+\tilde{\nabla}_{k} g_{p l} \cdot \tilde{\nabla}_{q} g_{i j}-\tilde{\nabla}_{j} g_{q i} \cdot \tilde{\nabla}_{k} g_{p l}-\tilde{\nabla}_{k} g_{p l} \cdot \tilde{\nabla}_{i} g_{q j}
$$

$$
+\tilde{\nabla}_{k} g_{i p} \cdot \tilde{\nabla}_{q} g_{j l}-\tilde{\nabla}_{k} g_{i p} \cdot \tilde{\nabla}_{j} g_{q l}-\tilde{\nabla}_{k} g_{i p} \cdot \tilde{\nabla}_{l} g_{q j}
$$

$$
+\tilde{\nabla}_{p} g_{j l} \cdot \tilde{\nabla}_{q} g_{i k}-\tilde{\nabla}_{p} g_{j l} \cdot \tilde{\nabla}_{i} g_{q k}-\tilde{\nabla}_{p} g_{j l} \cdot \tilde{\nabla}_{k} g_{q i}
$$

$$
+\tilde{\nabla}_{k} g_{p l} \cdot \tilde{\nabla}_{q} g_{i j}-\tilde{\nabla}_{k} g_{p l} \cdot \tilde{\nabla}_{i} g_{q j}-\tilde{\nabla}_{k} g_{p l} \cdot \tilde{\nabla}_{j} g_{q i}
$$

$$
\left.+\tilde{\nabla}_{k} g_{j p} \cdot \tilde{\nabla}_{q} g_{i l}-\tilde{\nabla}_{k} g_{j p} \cdot \tilde{\nabla}_{i} g_{q l}-\tilde{\nabla}_{k} g_{j p} \cdot \tilde{\nabla}_{l} g_{q i}\right)
$$

$$
+\frac{1}{4} g^{k l} g^{p q}\left(\tilde{\nabla}_{p} g_{k l} \cdot \tilde{\nabla}_{j} g_{q i}+\tilde{\nabla}_{p} g_{k l} \cdot \tilde{\nabla}_{i} g_{q j}-\tilde{\nabla}_{p} g_{k l} \cdot \tilde{\nabla}_{q} g_{i j}\right.
$$

$$
+\tilde{\nabla}_{j} g_{q k} \cdot \tilde{\nabla}_{i} g_{p l}+\tilde{\nabla}_{i} g_{p l} \cdot \tilde{\nabla}_{k} g_{q j}-\tilde{\nabla}_{i} g_{p l} \cdot \tilde{\nabla}_{q} g_{k j}
$$

$$
+\tilde{\nabla}_{i} g_{p k} \cdot \tilde{\nabla}_{j} g_{q l}+\tilde{\nabla}_{i} g_{p k} \cdot \tilde{\nabla}_{l} g_{q j}-\tilde{\nabla}_{i} g_{p k} \cdot \tilde{\nabla}_{q} g_{j l}
$$

$$
+\tilde{\nabla}_{p} g_{k l} \cdot \tilde{\nabla}_{i} g_{q j}+\tilde{\nabla}_{p} g_{k l} \cdot \tilde{\nabla}_{j} g_{q i}-\tilde{\nabla}_{p} g_{k l} \cdot \tilde{\nabla}_{q} g_{i j}
$$

$$
+\tilde{\nabla}_{i} g_{q k} \cdot \tilde{\nabla}_{j} g_{p l}+\tilde{\nabla}_{j} g_{p l} \cdot \tilde{\nabla}_{k} g_{q i}-\tilde{\nabla}_{j} g_{p l} \cdot \tilde{\nabla}_{q} g_{k i}
$$

$$
\left.+\tilde{\nabla}_{j} g_{p k} \cdot \tilde{\nabla}_{i} g_{q l}+\tilde{\nabla}_{j} g_{p k} \cdot \tilde{\nabla}_{l} g_{q i}-\tilde{\nabla}_{j} g_{p k} \cdot \tilde{\nabla}_{q} g_{i l}\right)
$$

Since $R_{i j}=g^{k l} R_{i k j l}$ and $\tilde{\Gamma}_{i j}^{k}=0$ at one point, from (37) it follows that (46)

$$
\begin{aligned}
&-2 R_{i j}=g^{k l}\left(\frac{\partial^{2} g_{i j}}{\partial x^{k} \partial x^{l}}+\frac{\partial^{2} g_{k l}}{\partial x^{i} \partial x^{j}}-\frac{\partial^{2} g_{j k}}{\partial x^{i} \partial x^{l}}-\frac{\partial^{2} g_{i l}}{\partial x^{k} \partial x^{j}}\right) \\
&+\frac{1}{2} g^{k l} g^{p q}\left(\tilde{\nabla}_{k} g_{p j} \cdot \tilde{\nabla}_{q} g_{i l}-\tilde{\nabla}_{k} g_{p j} \cdot \tilde{\nabla}_{l} g_{q i}-\tilde{\nabla}_{k} g_{p j} \cdot \tilde{\nabla}_{i} g_{q l}\right. \\
&+\tilde{\nabla}_{i} g_{p j} \cdot \tilde{\nabla}_{l} g_{q k}+\tilde{\nabla}_{i} g_{p j} \cdot \tilde{\nabla}_{k} g_{q l}-\tilde{\nabla}_{i} g_{p j} \cdot \tilde{\nabla}_{q} g_{k l} \\
&+\tilde{\nabla}_{p} g_{i j} \cdot \tilde{\nabla}_{q} g_{k l}-\tilde{\nabla}_{p} g_{i j} \cdot \tilde{\nabla}_{l} g_{q k}-\tilde{\nabla}_{p} g_{i j} \cdot \tilde{\nabla}_{k} g_{q l} \\
&+\tilde{\nabla}_{j} g_{i p} \cdot \tilde{\nabla}_{l} g_{q k}+\tilde{\nabla}_{j} g_{i p} \cdot \tilde{\nabla}_{k} g_{q l}-\tilde{\nabla}_{j} g_{i p} \cdot \tilde{\nabla}_{q} g_{k l} \\
&+\tilde{\nabla}_{p} g_{j k} \cdot \tilde{\nabla}_{l} g_{q i}+\tilde{\nabla}_{p} g_{j k} \cdot \tilde{\nabla}_{i} g_{q l}-\tilde{\nabla}_{p} g_{j k} \cdot \tilde{\nabla}_{q} g_{i l} \\
&\left.+\tilde{\nabla}_{j} g_{p k} \cdot \tilde{\nabla}_{q} g_{i l}-\tilde{\nabla}_{j} g_{p k} \cdot \tilde{\nabla}_{l} g_{q i}-\tilde{\nabla}_{j} g_{p k} \cdot \tilde{\nabla}_{i} g_{q l}\right) .
\end{aligned}
$$

By definition,

$$
\tilde{\nabla}_{l} g_{i j}=\frac{\partial g_{i j}}{\partial x^{l}}-\tilde{\Gamma}_{i l}^{p} g_{p j}-\tilde{\Gamma}_{j l}^{p} g_{i p}
$$

But since $\tilde{\Gamma}_{i j}^{k}=0$, we have

$$
\begin{aligned}
\tilde{\nabla}_{k} \tilde{\nabla}_{l} g_{i j} & =\frac{\partial}{\partial x^{k}} \tilde{\nabla}_{l} g_{i j}=\frac{\partial}{\partial x^{k}}\left(\frac{\partial g_{i j}}{\partial x^{l}}-\tilde{\Gamma}_{i l}^{p} g_{p j}-\tilde{\Gamma}_{j l}^{p} g_{i p}\right) \\
& =\frac{\partial^{2} g_{i j}}{\partial x^{k} \partial x^{l}}-g_{j p} \frac{\partial}{\partial x^{k}} \tilde{\Gamma}_{i l}^{p}-g_{i p} \frac{\partial}{\partial x^{k}} \tilde{\Gamma}_{j l}^{p},
\end{aligned}
$$

and therefore the following formula:

$$
\begin{equation*}
g^{k l} \frac{\partial^{2} g_{i j}}{\partial x^{k} \partial x^{l}}=g^{k l} \tilde{\nabla}_{k} \tilde{\nabla}_{l} g_{i j}+g^{k l} g_{j p} \frac{\partial}{\partial x^{k}} \tilde{\Gamma}_{i l}^{p}+g^{k l} g_{i p} \frac{\partial}{\partial x^{k}} \tilde{\Gamma}_{j l}^{p} . \tag{47}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
& g^{k l} \frac{\partial^{2} g_{k l}}{\partial x^{i} \partial x^{j}}=g^{k l} \tilde{\nabla}_{i} \tilde{\nabla}_{j} g_{k l}+\frac{\partial}{\partial x^{i}} \tilde{\Gamma}_{k j}^{k}+\frac{\partial}{\partial x^{i}} \tilde{\Gamma}_{l j}^{l}, \\
& g^{k l} \frac{\partial^{2} g_{j k}}{\partial x^{i} \partial x^{l}}=g^{k l} \tilde{\nabla}_{i} \tilde{\nabla}_{l} g_{j k}+\frac{\partial}{\partial x^{i}} \tilde{\Gamma}_{l j}^{l}+g^{k l} g_{j p} \frac{\partial}{\partial x^{i}} \tilde{\Gamma}_{k l}^{p} \tag{48}\\
& g^{k l} \frac{\partial^{2} g_{i l}}{\partial x^{k} \partial x^{j}}=g^{k l} \tilde{\nabla}_{k} \tilde{\nabla}_{j} g_{i l}+\frac{\partial}{\partial x^{k}} \tilde{\Gamma}_{i j}^{k}+g^{k l} g_{i p} \frac{\partial}{\partial x^{k}} \tilde{\Gamma}_{j l}^{p}
\end{align*}
$$

From (47) and (48) it follows that

$$
\begin{align*}
& g^{k l}\left(\frac{\partial^{2} g_{i j}}{\partial x^{k} \partial x^{l}}+\frac{\partial^{2} g_{k l}}{\partial x^{i} \partial x^{j}}-\frac{\partial^{2} g_{j k}}{\partial x^{i} \partial x^{l}}-\frac{\partial^{2} g_{i l}}{\partial x^{k} \partial x^{j}}\right) \\
& =g^{k l}\left(\tilde{\nabla}_{k} \tilde{\nabla}_{l} g_{i j}+\tilde{\nabla}_{i} \tilde{\nabla}_{j} g_{k l}-\tilde{\nabla}_{i} \tilde{\nabla}_{l} g_{j k}-\tilde{\nabla}_{k} \tilde{\nabla}_{j} g_{i l}\right) \tag{49}\\
& \quad+g^{k l} g_{j p} \frac{\partial}{\partial x^{k}} \tilde{\Gamma}_{i l}^{p}-g^{k l} g_{j p} \frac{\partial}{\partial x^{i}} \tilde{\Gamma}_{k l}^{p}+\frac{\partial}{\partial x^{i}} \tilde{\Gamma}_{k j}^{k}-\frac{\partial}{\partial x^{k}} \tilde{\Gamma}_{i j}^{k} .
\end{align*}
$$

Since $\tilde{\Gamma}_{i j}^{k}=0$, we have

$$
\begin{gather*}
\frac{\partial}{\partial x^{k}} \tilde{\Gamma}_{i l}^{p}-\frac{\partial}{\partial x^{i}} \tilde{\Gamma}_{k l}^{p}=\tilde{R}_{k i l}^{p}=\tilde{g}^{p q} \tilde{R}_{k i q l}, \\
g^{k l} g_{j p} \frac{\partial}{\partial x^{k}} \tilde{\Gamma}_{i l}^{p}-g^{k l} g_{j p} \frac{\partial}{\partial x^{i}} \tilde{\Gamma}_{k l}^{p}=g^{k l} g_{j p} \tilde{g}^{p q} \tilde{R}_{k i q l} \tag{50}\\
\frac{\partial}{\partial x^{i}} \tilde{\Gamma}_{k j}^{k}-\frac{\partial}{\partial x^{k}} \tilde{\Gamma}_{i j}^{k}=\tilde{R}_{i k j}^{k}=\tilde{g}^{k l} \tilde{R}_{i k l j}=-\tilde{R}_{i j} \tag{51}
\end{gather*}
$$

Combining (49), (50), and (51) we get

$$
\begin{align*}
& g^{k l}\left(\frac{\partial^{2} g_{i j}}{\partial x^{k} \partial x^{l}}+\frac{\partial^{2} g_{k l}}{\partial x^{i} \partial x^{j}}-\frac{\partial^{2} g_{j k}}{\partial x^{i} \partial x^{l}}-\frac{\partial^{2} g_{i l}}{\partial x^{k} \partial x^{j}}\right) \\
& =g^{k l}\left(\tilde{\nabla}_{k} \tilde{\nabla}_{l} g_{i j}+\tilde{\nabla}_{i} \tilde{\nabla}_{j} g_{k l}-\tilde{\nabla}_{i} \tilde{\nabla}_{l} g_{j k}-\tilde{\nabla}_{k} \tilde{\nabla}_{j} g_{i l}\right) \tag{52}\\
& \quad+g^{k l} g_{j p} \tilde{g}^{p q} \tilde{R}_{i k l q}-\tilde{R}_{i j} .
\end{align*}
$$

Substituting (52) into (46) gives
$-2 R_{i j}=g^{k l}\left(\tilde{\nabla}_{k} \tilde{\nabla}_{l} g_{i j}+\tilde{\nabla}_{i} \tilde{\nabla}_{j} g_{k l}-\tilde{\nabla}_{i} \tilde{\nabla}_{l} g_{j k}-\tilde{\nabla}_{k} \tilde{\nabla}_{j} g_{i l}\right)$

$$
-g^{k l} g_{j p} \tilde{g}^{p q} \tilde{R}_{i k q l}-\tilde{R}_{i j}
$$

$$
+\frac{1}{2} g^{k l} g^{p q}\left(\tilde{\nabla}_{k} g_{j p} \cdot \tilde{\nabla}_{q} g_{i l}-\tilde{\nabla}_{k} g_{j p} \cdot \tilde{\nabla}_{l} g_{q i}-\tilde{\nabla}_{k} g_{j p} \cdot \tilde{\nabla}_{i} g_{q l}\right.
$$

$$
+\tilde{\nabla}_{i} g_{j p} \cdot \tilde{\nabla}_{l} g_{q k}+\tilde{\nabla}_{i} g_{j p} \cdot \tilde{\nabla}_{k} g_{q l}-\tilde{\nabla}_{i} g_{j p} \cdot \tilde{\nabla}_{q} g_{k l}
$$

$$
+\tilde{\nabla}_{p} g_{i j} \cdot \tilde{\nabla}_{q} g_{k l}-\tilde{\nabla}_{p} g_{i j} \cdot \tilde{\nabla}_{l} g_{q k}-\tilde{\nabla}_{p} g_{i j} \cdot \tilde{\nabla}_{k} g_{q l}
$$

$$
+\tilde{\nabla}_{j} g_{i p} \cdot \tilde{\nabla}_{l} g_{q k}+\tilde{\nabla}_{j} g_{i p} \cdot \tilde{\nabla}_{k} g_{q l}-\tilde{\nabla}_{j} g_{i p} \cdot \tilde{\nabla}_{q} g_{k l}
$$

$$
+\tilde{\nabla}_{p} g_{j k} \cdot \tilde{\nabla}_{l} g_{q i}+\tilde{\nabla}_{p} g_{j k} \cdot \tilde{\nabla}_{i} g_{q l}-\tilde{\nabla}_{p} g_{j k} \cdot \tilde{\nabla}_{q} g_{i l}
$$

$$
\left.+\tilde{\nabla}_{j} g_{p k} \cdot \tilde{\nabla}_{q} g_{i l}-\tilde{\nabla}_{j} g_{p k} \cdot \tilde{\nabla}_{l} g_{q i}-\tilde{\nabla}_{j} g_{p k} \cdot \tilde{\nabla}_{i} g_{q l}\right)
$$

Substituting (45) and (53) into (35), simplifying and collecting the terms of the same type, and using the following formula to switch the second covariant derivatives:

$$
\begin{equation*}
\tilde{\nabla}_{i} \tilde{\nabla}_{j} g_{k l}=\tilde{\nabla}_{j} \tilde{\nabla}_{i} g_{k l}+\tilde{g}^{p q} \tilde{R}_{i j k p} g_{q l}+\tilde{g}^{p q} \tilde{R}_{i j l p} g_{q k} \tag{54}
\end{equation*}
$$

Finally,

$$
\begin{aligned}
& \frac{\partial}{\partial t} g_{i j}= g^{k l} \tilde{\nabla}_{k} \tilde{\nabla}_{l} g_{i j}-g^{k l} g_{i p} \tilde{g}^{p q} \tilde{R}_{j k q l}-g^{k l} g_{j p} \tilde{g}^{p q} \tilde{R}_{i k q l} \\
&+\frac{1}{2} g^{k l} g^{p q}\left(\tilde{\nabla}_{i} g_{p k} \cdot \tilde{\nabla}_{j} g_{q l}+\right. \\
&+2 \tilde{\nabla}_{k} g_{j p} \cdot \tilde{\nabla}_{q} g_{i l}-2 \tilde{\nabla}_{k} g_{j p} \cdot \tilde{\nabla}_{l} g_{i q} \\
&\left.-2 \tilde{\nabla}_{j} g_{p k} \tilde{\nabla}_{l} g_{i q}-2 \tilde{\nabla}_{i} g_{p k} \cdot \tilde{\nabla}_{l} g_{j q}\right) .
\end{aligned}
$$

Hence we have completed the proof of the lemma.

From Lemma 2.1 we know that the modified evolution equation (35) is a strictly parabolic system, therefore we can consider the corresponding Dirichlet boundary problem in any domain $D \subseteq M$.

Suppose $D \subseteq M$ is a domain with boundary ∂D a compact $C^{\infty}(n-1)$ dimensional submanifold of M, and assume that the closure $\bar{D}=D \cup \partial D$ is a compact subset of M. We will solve the following Dirichlet boundary problem:

$$
\begin{align*}
& \frac{\partial}{\partial t} g_{i j}(x, t)=-2 R_{i j}(x, t)+\nabla_{i} V_{j}+\nabla_{j} V_{i}, \quad x \in D, \\
& g_{i j}(x, 0)=\tilde{g}_{i j}(x), \quad x \in D, \tag{56}\\
& g_{i j}(x, t) \equiv \tilde{g}_{i j}(x), \quad x \in \partial D, 0 \leq t \leq T .
\end{align*}
$$

In this section we want to establish the zero order estimates for the solution of (56). The existence theorem for the solution of (56) will be proved in the next section.

First, we have the following lemma.
Lemma 2.2. Suppose $g_{i j}(x, t)>0$ is a solution of (56), and $m>0$ is an integer, and define

$$
\begin{aligned}
& \varphi(x, t)=g^{\alpha_{1} \beta_{1}} \tilde{g}_{\beta_{1} \alpha_{2}} g^{\alpha_{2} \beta_{2}} \tilde{g}_{\beta_{2} \alpha_{3}} g^{\alpha_{3} \beta_{3}} \tilde{g}_{\beta_{3} \alpha_{4}} \cdots g^{\alpha_{m} \beta_{m}} \tilde{g}_{\beta_{m} \alpha_{1}} \\
& x \in D, 0 \leq t \leq T .
\end{aligned}
$$

Then

$$
\begin{gather*}
\frac{\partial \varphi}{\partial t} \leq g^{\alpha \beta} \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} \varphi+2 m n \sqrt{k_{0}} \varphi^{1+1 / m}, \quad x \in D \tag{57}\\
\varphi(x, 0) \equiv n, \quad x \in D \tag{58}\\
\varphi(x, t) \equiv n, \quad x \in \partial D, 0 \leq t \leq T \tag{59}
\end{gather*}
$$

Proof. Using the initial and boundary value conditions in (56) we get (58) and (59) immediately. From Lemma 2.1 it follows that

$$
\begin{align*}
\frac{\partial}{\partial t} g^{i j}= & -g^{i k} g^{j l} \frac{\partial}{\partial t} g_{k l} \\
= & -g^{\alpha \beta} g^{i k} g^{j l} \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} g_{k l}+g^{\alpha \beta} g^{i k} g^{j l} g_{k p} \tilde{g}^{p q} \tilde{R}_{l \alpha q \beta} \\
& +g^{\alpha \beta} g^{i k} g^{j l} g_{p l} \tilde{g}^{p q} \tilde{R}_{k \alpha q \beta}+\frac{1}{2} g^{\alpha \beta} g^{p q} g^{i k} g^{j l} \tag{60}\\
& \cdot\left(2 \tilde{\nabla}_{\alpha} g_{p l} \cdot \tilde{\nabla}_{\beta} g_{q k}+2 \tilde{\nabla}_{l} g_{p \alpha} \cdot \tilde{\nabla}_{\beta} g_{q k}+2 \tilde{\nabla}_{k} g_{p \alpha} \cdot \tilde{\nabla}_{\beta} g_{q l}\right. \\
& \left.-2 \tilde{\nabla}_{\alpha} g_{p l} \cdot \tilde{\nabla}_{q} g_{\beta k}-\tilde{\nabla}_{k} g_{p \alpha} \cdot \tilde{\nabla}_{l} g_{q \beta}\right) .
\end{align*}
$$

Since $g^{i p} g_{j p}=\delta_{j}^{i}$, we have

$$
\begin{align*}
& \tilde{\nabla}_{\beta}\left(g^{i p} g_{j p}\right)=0, \\
& g_{j p} \tilde{\nabla}_{\beta} g^{i p}+g^{i p} \tilde{\nabla}_{\beta} g_{j p}=0, \\
& \tilde{\nabla}_{\beta} g^{i j}=-g^{i p} g^{j q} \tilde{\nabla}_{\beta} g_{p q}, \tag{61}\\
& \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} g^{i j}=-g^{i p} g^{j q} \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} g_{p q}-\tilde{\nabla}_{\alpha}\left(g^{i p} g^{j q}\right) \cdot \tilde{\nabla}_{\beta} g_{p q}, \\
& g^{\alpha \beta} \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} g^{i j}=-g^{\alpha \beta} g^{i k} g^{j l} \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} g_{k l}-g^{\alpha \beta} \tilde{\nabla}_{\alpha}\left(g^{i p} g^{j q}\right) \cdot \tilde{\nabla}_{\beta} g_{p q} .
\end{align*}
$$

Substituting (61) into (60) yields

$$
\begin{align*}
\frac{\partial}{\partial t} g^{i j}= & g^{\alpha \beta} \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} g^{i j}+g^{\alpha \beta} g^{i k} g^{j l} g_{k p} \tilde{g}^{p q} \tilde{R}_{l \alpha q \beta} \\
& +g^{\alpha \beta} g^{i k} g^{j l} g_{p l} \tilde{g}^{p q} \tilde{R}_{k \alpha q \beta}+g^{\alpha \beta} g^{i p} \tilde{\nabla}_{\alpha} g^{j q} \cdot \tilde{\nabla}_{\beta} g_{p q} \\
& +g^{\alpha \beta} g^{j q} \tilde{\nabla}_{\alpha} g^{i p} \tilde{\nabla}_{\beta} g_{p q}+\frac{1}{2} g^{\alpha \beta} g^{p q} g^{i k} g^{j l} \tag{62}\\
& \quad \cdot\left(2 \tilde{\nabla}_{\alpha} g_{p l} \cdot \tilde{\nabla}_{\beta} g_{q k}+2 \tilde{\nabla}_{l} g_{p \alpha} \cdot \tilde{\nabla}_{\beta} g_{q k}+2 \tilde{\nabla}_{k} g_{p \alpha} \cdot \tilde{\nabla}_{\beta} g_{q l}\right. \\
& \left.-2 \tilde{\nabla}_{\alpha} g_{p l} \cdot \tilde{\nabla}_{q} g_{\beta k}-\tilde{\nabla}_{k} g_{p \alpha} \cdot \tilde{\nabla}_{l} g_{q \beta}\right) .
\end{align*}
$$

If we choose a coordinate system $\left\{x^{i}\right\}$ such that at one point

$$
\left(\tilde{g}_{i j}\right)=\left(\begin{array}{ccc}
1 & & 0 \tag{63}\\
& 1 & \\
\\
0 & \ddots & \\
& & \\
1
\end{array}\right), \quad\left(g_{i j}\right)=\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
\lambda_{2} & & \\
0 & \ddots & \\
& & \lambda_{n}
\end{array}\right)
$$

then

$$
\left(g^{i j}\right)=\left(\begin{array}{cc}
\lambda_{1}^{-1} & 0 \tag{64}\\
\lambda_{2}^{-1} & 0 \\
0 & \ddots \\
& \\
& \lambda_{n}^{-1}
\end{array}\right)
$$

From (61) it follows that

$$
\begin{equation*}
\tilde{\nabla}_{\beta} g^{i j}=-\frac{1}{\lambda_{i} \lambda_{j}} \tilde{\nabla}_{\beta} g_{i j} \tag{65}
\end{equation*}
$$

Substituting (63), (64), and (65) into (62), we get

$$
\begin{align*}
\frac{\partial}{\partial t} g^{i j}= & g^{\alpha \beta} \widetilde{\nabla}_{k} \widetilde{\nabla}_{\beta} g^{i j}+\frac{1}{\lambda_{i} \lambda_{q}} \widetilde{R}_{i q j q}+\frac{1}{\lambda_{j} \lambda_{q}} \widetilde{R}_{j q i q} \\
& -\frac{2}{\lambda_{k} \lambda_{q} \lambda_{i} \lambda_{j}} \widetilde{\nabla}_{k} g_{j q} \cdot \widetilde{\nabla}_{k} g_{i q}+\frac{1}{2 \lambda_{i} \lambda_{j} \lambda_{k} \lambda_{q}} \tag{66}\\
& \cdot\left(2 \widetilde{\nabla}_{k} g_{q j} \cdot \widetilde{\nabla}_{k} g_{i q}+2 \widetilde{\nabla}_{j} g_{q k} \cdot \widetilde{\nabla}_{k} g_{i q}+2 \widetilde{\nabla}_{i} g_{q k} \cdot \widetilde{\nabla}_{k} g_{j q}\right. \\
& \left.-2 \widetilde{\nabla}_{k} g_{q j} \cdot \widetilde{\nabla}_{q} g_{i k}-\widetilde{\nabla}_{i} g_{q k} \cdot \widetilde{\nabla}_{j} g_{q k}\right)
\end{align*}
$$

By the definition of $\varphi(x, t)$ we have

$$
\begin{equation*}
\varphi(x, t)=\sum_{k=1}^{n}\left(\frac{1}{\lambda_{k}}\right)^{m}>0 ; \tag{67}
\end{equation*}
$$

thus

$$
\frac{\partial \varphi}{\partial t}=m\left(\frac{1}{\lambda_{i}}\right)^{m-1} \frac{\partial}{\partial t} g^{i i} .
$$

Using (66) we find

$$
\begin{align*}
\frac{\partial \varphi}{\partial t}= & m\left(\frac{1}{\lambda_{i}}\right)^{m-1} g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} g^{i i}+\frac{2 m}{\lambda_{i}^{m} \lambda_{q}} \widetilde{R}_{i q i q} \\
& -\frac{m}{\lambda_{i}^{m+1} \lambda_{q} \lambda_{k}} \widetilde{\nabla}_{k} g_{i q} \cdot \widetilde{\nabla}_{k} g_{i q}-\frac{m}{2 \lambda_{i}^{m+1} \lambda_{k} \lambda_{q}} \\
& \cdot\left(\widetilde{\nabla}_{i} g_{q k} \cdot \widetilde{\nabla}_{i} g_{q k}+2 \widetilde{\nabla}_{k} g_{i q} \cdot \widetilde{\nabla}_{q} g_{i k}-4 \widetilde{\nabla}_{i} g_{q k} \cdot \widetilde{\nabla}_{k} g_{i q}\right), \tag{68}\\
\frac{\partial \varphi}{\partial t}= & m\left(\frac{1}{\lambda_{i}}\right)^{m-1} g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} g^{i i}+\frac{2 m}{\lambda_{i}^{m} \lambda_{q}} \widetilde{R}_{i q i q} \\
& -\frac{m}{2 \lambda_{q} \lambda_{k} \lambda_{i}^{m+1}}\left(\widetilde{\nabla}_{k} g_{i q}+\widetilde{\nabla}_{q} g_{i k}-\widetilde{\nabla}_{i} g_{q k}\right)^{2} .
\end{align*}
$$

From (67) it follows that

$$
\begin{align*}
g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} \varphi= & m\left(\frac{1}{\lambda_{i}}\right)^{m-1} g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} g^{i i}+m g^{\alpha \beta} \tilde{\nabla}_{\alpha} g^{i j} \tag{69}\\
& \cdot \tilde{\nabla}_{\beta} g^{i j}\left[\left(\frac{1}{\lambda_{i}}\right)^{m-2}+\left(\frac{1}{\lambda_{i}}\right)^{m-3}\left(\frac{1}{\lambda_{j}}\right)+\cdots+\left(\frac{1}{\lambda_{j}}\right)^{m-2}\right] .
\end{align*}
$$

Substituting (69) into (68) and using (65) we have

$$
\begin{align*}
& \frac{\partial \varphi}{\partial t}= g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} \varphi+\frac{2 m}{\lambda_{i}^{m} \lambda_{q}} \widetilde{R}_{i q i q} \\
&-m\left(\frac{1}{\lambda_{\alpha}}\right)\left[\left(\frac{1}{\lambda_{i}}\right)^{m}\left(\frac{1}{\lambda_{j}}\right)^{2}+\left(\frac{1}{\lambda_{i}}\right)^{m-1}\left(\frac{1}{\lambda_{j}}\right)^{3}\right. \tag{70}\\
&\left.+\cdots+\left(\frac{1}{\lambda_{i}}\right)^{2}\left(\frac{1}{\lambda_{j}}\right)^{m}\right]\left(\widetilde{\nabla}_{\alpha} g_{i j}\right)^{2} \\
& \quad-\frac{m}{2 \lambda_{i}^{m+1} \lambda_{q} \lambda_{k}}\left(\widetilde{\nabla}_{k} g_{i q}+\widetilde{\nabla}_{q} g_{i k}-\tilde{\nabla}_{i} g_{q k}\right)^{2}
\end{align*}
$$

thus

$$
\begin{equation*}
\frac{\partial \varphi}{\partial t} \leq g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} \varphi+\frac{2 m}{\lambda_{i}^{m} \lambda_{q}} \widetilde{R}_{i q i q} . \tag{71}
\end{equation*}
$$

By assumption (2), $\left|\widetilde{R}_{i q i q}\right| \leq \sqrt{k_{0}}$, and, in consequence of (67) and (71),

$$
\frac{\partial \varphi}{\partial t} \leq g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} \varphi+2 m \sqrt{k_{0}}\left(\sum_{q=1}^{n} \frac{1}{\lambda_{q}}\right) \cdot \varphi
$$

It is easy to see that

$$
\sum_{q=1}^{n} \frac{1}{\lambda_{q}} \leq n \varphi^{1 / m}
$$

so that

$$
\frac{\partial \varphi}{\partial t} \leq g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} \varphi+2 m n \sqrt{k_{0}} \varphi^{1+1 / m}
$$

which completes the proof of Lemma 2.2.
Lemma 2.3. Suppose $g_{i j}(x, t)>0$ is a solution of (56). Then for any $\delta>0$, we have

$$
g_{i j}(x, t) \geq(1-\delta) \tilde{g}_{i j}(x)
$$

where $x \in D, 0 \leq t \leq\left(1 /\left(2 \sqrt{k_{0}}\right)\right)\left(\frac{1}{n}\right)^{1+1 / m}\left[1-\left(\frac{1}{2}\right)^{1 / m}\right], m>0$ is an integer, and

$$
\begin{equation*}
\frac{\log 2 n}{\log (1 /(1-\delta))} \leq m<\frac{\log 2 n}{\log (1 /(1-\delta))}+1 \tag{72}
\end{equation*}
$$

Proof. Choose an integer $m>0$ which satisfies (72), and let $\varphi(x, t)$ be the function defined in Lemma 2.2. Since $\bar{D} \subseteq M$ is compact, we can define

$$
\begin{equation*}
\varphi(t)=\max _{x \in \bar{D}} \varphi(x, t) . \tag{73}
\end{equation*}
$$

Using the maximal principle on \bar{D}, from (57), (58), (59), and (73) we get

$$
\begin{equation*}
\frac{d \varphi(t)}{d t} \leq 2 m n \sqrt{k_{0}} \varphi(t)^{1+1 / m}, \quad \varphi(0)=n \tag{74}
\end{equation*}
$$

Thus we have

$$
\begin{gather*}
\varphi(t) \leq \frac{n}{\left[1-2 n^{1+1 / m} \sqrt{k_{0}} t\right]^{m}} \tag{75}\\
\varphi(x, t) \leq \frac{n}{\left[1-2 n^{1+1 / m} \sqrt{k_{0}} t\right]^{m}} \quad \forall x \in \bar{D} . \tag{76}
\end{gather*}
$$

If

$$
0 \leq t \leq \frac{1}{2 \sqrt{k_{0}}}\left(\frac{1}{n}\right)^{1+1 / m}\left[1-\left(\frac{1}{2}\right)^{1 / m}\right]
$$

then from (76),

$$
\varphi(x, t) \leq 2 n \quad \forall x \in \bar{D}
$$

that is, $\sum_{k=1}^{n}\left(1 / \lambda_{k}\right)^{m} \leq 2 n$.
Since $0<\left(1 / \lambda_{k}\right)^{m} \leq 2 n \forall k, \lambda_{k} \geq(1 / 2 n)^{1 / m}, k=1,2, \cdots, n$. From (63) it follows that

$$
g_{i j}(x, t) \geq\left(\frac{1}{2 n}\right)^{1 / m} \tilde{g}_{i j}(x) \quad \forall x \in \bar{D}
$$

By (72) we have $(1 / 2 n)^{1 / m} \geq 1-\delta$, and therefore

$$
\begin{equation*}
g_{i j}(x, t) \geq(1-\delta) \tilde{g}_{i j}(x) \quad \forall x \in D \tag{77}
\end{equation*}
$$

if

$$
0 \leq t \leq \frac{1}{2 \sqrt{k_{0}}}\left(\frac{1}{n}\right)^{1+1 / m}\left[1-\left(\frac{1}{2}\right)^{1 / m}\right]
$$

In Lemma 2.3 we obtained the lower bound of $g_{i j}(x, t)$; now we want to estimate the upper bound of $g_{i j}(x, t)$.

Using the notation of (63), from Lemma 2.1 we get

$$
\begin{align*}
\frac{\partial}{\partial t} g_{i j}= & g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} g_{i j}-\frac{1}{\lambda_{i} \lambda_{\alpha}} \widetilde{R}_{j \alpha i \alpha}-\frac{1}{\lambda_{j} \lambda_{\alpha}} \widetilde{R}_{i \alpha j \alpha} \\
+\frac{1}{2 \lambda_{k} \lambda_{q}}\left(\tilde{\nabla}_{i} g_{k q} \cdot \tilde{\nabla}_{j} g_{k q}\right. & +2 \widetilde{\nabla}_{k} g_{j q} \cdot \tilde{\nabla}_{q} g_{i k}-2 \widetilde{\nabla}_{k} g_{j q} \cdot \widetilde{\nabla}_{k} g_{i q} \tag{78}\\
& \left.-2 \widetilde{\nabla}_{j} g_{k q} \cdot \tilde{\nabla}_{k} g_{i q}-2 \widetilde{\nabla}_{i} g_{k q} \cdot \widetilde{\nabla}_{k} g_{j q}\right) .
\end{align*}
$$

Supposing $\varepsilon>0$ is a constant and $m>0$ is an integer, we define a function

$$
\begin{equation*}
F(x, t)=\frac{1}{1-[1 /(n+\varepsilon)]\left(\lambda_{1}^{m}+\lambda_{2}^{m}+\cdots+\lambda_{n}^{m}\right)} . \tag{79}
\end{equation*}
$$

Then from (56) we know that

$$
\begin{equation*}
F(x, 0) \equiv(n+\varepsilon) / \varepsilon, \quad x \in D \tag{80}
\end{equation*}
$$

$$
\begin{equation*}
F(x, t) \equiv(n+\varepsilon) / \varepsilon, \quad x \in \partial D, 0 \leq t \leq T . \tag{81}
\end{equation*}
$$

By definition we have

$$
\begin{aligned}
\frac{\partial F}{\partial t} & =\left(1-\frac{1}{n+\varepsilon} \sum_{k=1}^{n} \lambda_{k}^{m}\right)^{-2} \cdot \frac{m \lambda_{i}^{m-1}}{n+\varepsilon} \frac{\partial}{\partial t} g_{i i} \\
& =\left(1-\frac{1}{n+\varepsilon} \sum_{k=1}^{n} \lambda_{k}^{m}\right)^{-2} \cdot \frac{m \lambda_{i}^{m-1}}{n+\varepsilon} \cdot g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} g_{i i}
\end{aligned}
$$

$$
\begin{align*}
& +\left(1-\frac{1}{n+\varepsilon} \sum_{k=1}^{n} \lambda_{k}^{m}\right)^{-2} \cdot \frac{m \lambda_{i}^{m-1}}{n+\varepsilon} \tag{82}\\
& \cdot\left[-\frac{2}{\lambda_{i} \lambda_{\alpha}} \widetilde{R}_{i \alpha i \alpha}+\frac{1}{2 \lambda_{k} \lambda_{q}}\left(\widetilde{\nabla}_{i} g_{q k} \cdot \widetilde{\nabla}_{i} g_{q k}+2 \widetilde{\nabla}_{k} g_{q i} \cdot \widetilde{\nabla}_{q} g_{i k}\right.\right. \\
& \left.\left.-2 \widetilde{\nabla}_{k} g_{q i} \cdot \widetilde{\nabla}_{k} g_{q i}-4 \widetilde{\nabla}_{i} g_{q k} \cdot \widetilde{\nabla}_{k} g_{q i}\right)\right]
\end{align*}
$$

For any $\delta>0$, from Lemma 2.3 we know that there exists a constant $T\left(\delta, n, k_{0}\right)>0$ depending only on δ, n, and k_{0} such that

$$
\begin{equation*}
g_{i j}(x, t) \geq(1-\delta) \tilde{g}_{i j}(x), \quad 0 \leq t \leq T\left(\delta, n, k_{0}\right) \tag{83}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\lambda_{k} \geq 1-\delta, \quad k=1,2, \cdots, n, 0 \leq t \leq T\left(\delta, n, k_{0}\right) \tag{84}
\end{equation*}
$$

Furthermore if $0 \leq t \leq T\left(\delta, n, k_{0}\right)$ and $F(x, t)<+\infty$, then

$$
\begin{equation*}
\lambda_{k} \geq 1-\delta, \quad 1-\frac{1}{n+\varepsilon} \sum_{k=1}^{n} \lambda_{k}^{m}>0 \tag{85}
\end{equation*}
$$

Using (85) and the fact $\left|\widetilde{R}_{i \alpha i \alpha}\right| \leq \sqrt{k_{0}}$ we get

$$
\begin{align*}
& \begin{aligned}
& \frac{m \lambda_{i}^{m-1}}{n+\varepsilon}\left[-\frac{2}{\lambda_{i} \lambda_{\alpha}} \widetilde{R}_{i \alpha i \alpha}+\frac{1}{2 \lambda_{k} \lambda_{q}}(\right.\left(\widetilde{\nabla}_{i} g_{q k} \cdot \widetilde{\nabla}_{i} q_{q k}+2 \widetilde{\nabla}_{k} g_{q i} \cdot \widetilde{\nabla}_{q} g_{i k}\right. \\
&\left.\left.-2 \widetilde{\nabla}_{k} g_{q i} \cdot \widetilde{\nabla}_{k} g_{q i}-4 \widetilde{\nabla}_{i} g_{q k} \cdot \widetilde{\nabla}_{k} g_{q i}\right)\right] \\
& \leq \frac{m}{(1-\delta)^{3}}\left(n^{2} \sqrt{k_{0}}+4 \widetilde{\nabla}_{k} g_{i j} \cdot \widetilde{\nabla}_{k} g_{i j}\right) .
\end{aligned}
\end{align*}
$$

Substituting (86) into (82) yields

$$
\begin{align*}
\frac{\partial F}{\partial t} \leq & \left(1-\frac{1}{n+\varepsilon} \sum_{k=1}^{n} \lambda_{k}^{m}\right)^{-2} \cdot \frac{m \lambda_{i}^{m-1}}{n+\varepsilon} \cdot g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} g_{i i} \tag{87}\\
& +\frac{m F^{2}}{(1-\delta)^{3}}\left(n^{2} \sqrt{k_{0}}+4 \widetilde{\nabla}_{k} g_{i j} \cdot \widetilde{\nabla}_{k} g_{i j}\right), \quad 0 \leq t \leq T\left(\delta, n, k_{0}\right)
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
& g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} F=\left(1-\frac{1}{n+\varepsilon} \sum_{k=1}^{n} \lambda_{k}^{m}\right)^{-2} \cdot \frac{m \lambda_{i}^{m-1}}{n+\varepsilon} \cdot g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} g_{i i} \\
& \quad+\left(1-\frac{1}{n+\varepsilon} \sum_{k=1}^{n} \lambda_{k}^{m}\right)^{-3} \cdot \frac{2 m^{2} \lambda_{i}^{m-1} \lambda_{j}^{m-1}}{(n+\varepsilon)^{2}} \cdot g^{\alpha \beta} \widetilde{\nabla}_{\alpha} g_{i i} \cdot \widetilde{\nabla}_{\beta} g_{j j} \\
& \quad+\left(1-\frac{1}{n+\varepsilon} \sum_{k=1}^{n} \lambda_{k}^{m}\right)^{-2} \cdot g^{\alpha \beta} \widetilde{\nabla}_{\alpha} g_{i j} \cdot \tilde{\nabla}_{\beta} g_{i j} \\
& \quad \cdot \frac{m}{n+\varepsilon}\left(\lambda_{i}^{m-2}+\lambda_{i}^{m-3} \lambda_{j}+\cdots+\lambda_{j}^{m-2}\right) .
\end{aligned}
$$

Since

$$
\left(1-\frac{1}{n+\varepsilon} \sum_{k=1}^{n} \lambda_{k}^{m}\right)^{-3} \cdot \frac{2 m^{2} \lambda_{i}^{m-1} \lambda_{j}^{m-1}}{(n+\varepsilon)^{2}} \cdot g^{\alpha \beta} \tilde{\nabla}_{\alpha} g_{i i} \cdot \tilde{\nabla}_{\beta} g_{j j} \geq 0
$$

one has

$$
\begin{aligned}
g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} F \geq & \left(1-\frac{1}{n+\varepsilon} \sum_{k=1}^{n} \lambda_{k}^{m}\right)^{-2} \cdot \frac{m \lambda_{i}^{m-1}}{n+\varepsilon} \cdot g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} g_{i i} \\
& +\left(1-\frac{1}{n+\varepsilon} \sum_{k=1}^{n} \lambda_{k}^{m}\right)^{-2} \cdot g^{\alpha \beta} \widetilde{\nabla}_{\alpha} g_{i j} \cdot \widetilde{\nabla}_{\beta} g_{i j} \\
& \cdot \frac{m}{n+\varepsilon}\left[\lambda_{i}^{m-2}+\lambda_{i}^{m-3} \lambda_{j}+\cdots+\lambda_{j}^{m-2}\right] .
\end{aligned}
$$

Substituting this into (87) gives

$$
\begin{aligned}
\frac{\partial F}{\partial t} \leq & g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} F+\frac{m F^{2}}{(1-\delta)^{3}}\left(n^{2} \sqrt{k_{0}}+4 \widetilde{\nabla}_{k} g_{i j} \cdot \widetilde{\nabla}_{k} g_{i j}\right) \\
- & \frac{m F^{2}}{n+\varepsilon}\left(\lambda_{i}^{m-2}+\lambda_{i}^{m-3} \lambda_{j}+\cdots+\lambda_{j}^{m-2}\right) \\
& \cdot \frac{1}{\lambda_{k}} \widetilde{\nabla}_{k} g_{i j} \cdot \widetilde{\nabla}_{k} g_{i j}, \quad 0 \leq t \leq T\left(\delta, n, k_{0}\right) .
\end{aligned}
$$

From (85) we have $1-\delta \leq \lambda_{k} \leq(n+\varepsilon)^{1 / m}$; thus from (88) we get

$$
\begin{array}{r}
\frac{\partial F}{\partial t} \leq g^{\alpha \beta} \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} F+\frac{m F^{2}}{(1-\delta)^{3}}\left(n^{2} \sqrt{k_{0}}+4 \widetilde{\nabla}_{k} g_{i j} \cdot \tilde{\nabla}_{k} g_{i j}\right) \\
-m(m-1)\left(\frac{1}{n+\varepsilon}\right)^{1+1 / m}(1-\delta)^{m-2} \widetilde{\nabla}_{k} g_{i j} \cdot \tilde{\nabla}_{k} g_{i j} \cdot F^{2} \tag{89}\\
0 \leq t \leq T\left(\delta, n, k_{0}\right)
\end{array}
$$

Lemma 2.4. Suppose $g_{i j}(x, t)>0$ is a solution of (56). Then for a_{i} $\theta>0$ there exists a constant $c\left(\theta, n, k_{0}\right)>0$ depending only on θ, n, and such that

$$
g_{i j}(x, t) \leq(1+\theta) \tilde{g}_{i j}(x), \quad x \in D, 0 \leq t \leq c\left(\theta, n, k_{0}\right) .
$$

Proof. In (79) we let $\varepsilon=n$, and m be an integer such that

$$
\begin{equation*}
20 n^{2}+\frac{\log 2 n}{\log (1+\theta)} \leq m<\frac{\log 2 n}{\log (1+\theta)}+20 n^{2}+1 \tag{90}
\end{equation*}
$$

Then

$$
\begin{gather*}
(2 n)^{1 / m} \leq 1+\theta \tag{91}\\
(m-1)\left(\frac{1}{2 n}\right)^{2} \geq \frac{9}{2}
\end{gather*}
$$

thus we can find a constant $\delta>0$ depending only on m such that

$$
\begin{equation*}
(m-1)\left(\frac{1}{2 n}\right)^{2} \geq \frac{4}{(1-\delta)^{m+1}} \tag{93}
\end{equation*}
$$

so that

$$
\begin{gather*}
(m-1)\left(\frac{1}{2 n}\right)^{1+1 / m} \geq \frac{4}{(1-\delta)^{m+1}} \\
m(m-1)\left(\frac{1}{2 n}\right)^{1+1 / m}(1-\delta)^{m-2} \geq \frac{4 m}{(1-\delta)^{3}} \tag{94}
\end{gather*}
$$

From (89) we have

$$
\begin{aligned}
\frac{\partial F}{\partial t} \leq & g^{\alpha \beta} \tilde{\nabla}_{c} \tilde{\nabla}_{\beta} F+\frac{m n^{2} \sqrt{k_{0}}}{(1-\delta)^{3}} F^{2} \\
& +\left(\frac{4 m}{(1-\delta)^{3}}-m(m-1)\left(\frac{1}{2 n}\right)^{1+1 / m}(1-\delta)^{m-2}\right) F^{2} \\
& . \widetilde{\nabla}_{k} g_{i j} \cdot \tilde{\nabla}_{k} g_{i j}, \quad 0 \leq t \leq T\left(\delta, n, k_{0}\right)
\end{aligned}
$$

which can be reduced to, in consequence of (94),

$$
\begin{equation*}
\frac{\partial F}{\partial t} \leq g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} F+\frac{m n^{2} \sqrt{k_{0}}}{(1-\delta)^{3}} F^{2}, \quad 0 \leq t \leq T\left(\delta, n, k_{0}\right) \tag{95}
\end{equation*}
$$

Since from (80) and (81) we have

$$
\begin{equation*}
F(x, 0) \equiv 2, \quad x \in D, \quad F(x, t) \equiv 2, \quad x \in \partial D \tag{96}
\end{equation*}
$$

using the maximal principle, from (95) and (96) it follows that

$$
\begin{equation*}
F(x, t) \leq 2\left[1-\frac{m n^{2} \sqrt{k_{0}}}{(1-\delta)^{3}} t\right]^{-1}, \quad 0 \leq t \leq T\left(\delta, n, k_{0}\right) \tag{97}
\end{equation*}
$$

If we let

$$
\begin{equation*}
0 \leq t \leq \min \left[T\left(\delta, n, k_{0}\right), \frac{(1-\delta)^{3}}{2 m n^{2} \sqrt{k_{0}}}\right] \tag{98}
\end{equation*}
$$

then we know that $F(x, t) \leq 4$ by (97), and that

$$
\begin{equation*}
\sum_{k=1}^{n} \lambda_{k}^{m} \leq 2 n \tag{99}
\end{equation*}
$$

by (79). From (91) and (99) it follows that

$$
\begin{equation*}
\lambda_{k} \leq(2 n)^{1 / m} \leq 1+\theta, \quad k=1,2, \cdots, n . \tag{100}
\end{equation*}
$$

Thus if we define

$$
c\left(\theta, n, k_{0}\right)=\min \left(T\left(\delta, n, k_{0}\right), \frac{(1-\delta)^{3}}{2 m n^{2} \sqrt{k_{0}}}\right)
$$

then

$$
g_{i j}(x, t) \leq(1+\theta) \tilde{g}_{i j}(x), \quad x \in D, 0 \leq t \leq c\left(\theta, n, k_{0}\right)
$$

A combination of Lemmas 2.3 and 2.4 gives readily
Theorem 2.5. Suppose $g_{i j}(x, t)>0$ is a solution of (56). Then for any $\delta>0$ there exists a constant $T\left(\delta, n, k_{0}\right)>0$ depending only on δ, n, and k_{0} such that

$$
(1-\delta) \tilde{g}_{i j}(x) \leq g_{i j}(x, t) \leq(1+\delta) \tilde{g}_{i j}(x), \quad x \in D, 0 \leq t \leq T\left(\delta, n, k_{0}\right)
$$

3. Solving the Dirichlet boundary problem

As in the previous section, we assume that $D \subseteq M$ is a domain with boundary ∂D a compact $C^{\infty},(n-1)$-dimensional submanifold (not necessarily connected) of M, and its closure \bar{D} is a compact subset of M.

In this section we want to prove the existence theorem for the solution of the following Dirichlet boundary problem:

$$
\begin{align*}
& \frac{\partial}{\partial t} g_{i j}(x, t)=-2 R_{i j}(x, t)+\nabla_{i} V_{j}+\nabla_{j} V_{i}, \quad x \in D \\
& g_{i j}(x, 0)=\tilde{g}_{i j}(x), \quad x \in D \tag{1}\\
& g_{i j}(x, t) \equiv \tilde{g}_{i j}(x), \quad x \in \partial D, 0 \leq t \leq T
\end{align*}
$$

If we define a new tensor

$$
\begin{equation*}
h_{i j}(x, t)=g_{i j}(x, t)-\tilde{g}_{i j}(x) \tag{2}
\end{equation*}
$$

then from (1) and Lemma 2.1 we get

$$
\begin{align*}
& \frac{\partial}{\partial t} h_{i j}=g^{\alpha \beta} \tilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} h_{i j}+A_{i j}, \quad x \in D \\
& h_{i j}(x, 0) \equiv 0, \quad x \in D, \tag{3}\\
& h_{i j}(x, t) \equiv 0, \quad x \in \partial D, 0 \leq t \leq T
\end{align*}
$$

where we use the property $\widetilde{\nabla} \tilde{g}_{i j}(x) \equiv 0$ and

$$
\begin{aligned}
A_{i j}=- & g^{\alpha \beta} g_{i p} \tilde{g}^{p q} \widetilde{R}_{j \alpha q \beta}-g^{\alpha \beta} g_{j p} \tilde{g}^{p q} \widetilde{R}_{i \alpha q \beta} \\
& +\frac{1}{2} g^{\alpha \beta} g^{p q}\left(\widetilde{\nabla}_{i} h_{p \alpha} \cdot \widetilde{\nabla}_{j} h_{q \beta}+2 \widetilde{\nabla}_{\alpha} h_{j p} \cdot \widetilde{\nabla}_{q} h_{i \beta}-2 \widetilde{\nabla}_{\alpha} h_{j p} \cdot \widetilde{\nabla}_{\beta} h_{i q}\right. \\
& \left.-2 \widetilde{\nabla}_{j} h_{p \alpha} \cdot \widetilde{\nabla}_{\beta} h_{i q}-2 \widetilde{\nabla}_{i} h_{p \alpha} \cdot \widetilde{\nabla}_{\beta} h_{j q}\right) .
\end{aligned}
$$

If $\frac{1}{2} \tilde{g}_{i j}(x) \leq g_{i j}(x, t) \leq 2 \tilde{g}_{i j}(x)$, from (4) it follows that

$$
\begin{align*}
\left(-8 n \sqrt{k_{0}}-20\left|\widetilde{\nabla}_{\alpha} h_{\beta \gamma}\right|^{2}\right) \tilde{g}_{i j}(x) & \leq A_{i j}(x, t) \tag{5}\\
& \leq\left(8 n \sqrt{k_{0}}+20\left|\widetilde{\nabla}_{\alpha} h_{\beta \gamma}\right|^{2}\right) \tilde{g}_{i j}(x)
\end{align*}
$$

Lemma 3.1. There exists a constant $\delta=\delta\left(n, k_{0}\right)>0$ depending only on n and k_{0} such that if $g_{i j}(x, t)>0$ is a smooth solution of (1) and

$$
\begin{equation*}
(1-\delta) \tilde{g}_{i j}(x) \leq g_{i j}(x, t) \leq(1+\delta) \tilde{g}_{i j}(x) \tag{6}
\end{equation*}
$$

holds for all $(x, t) \in \bar{D} \times[0, T]$, then for any integer $m \geq 0$, there exist constants $C_{m}\left(n, \theta_{0}, k_{0}, T, \tilde{g}_{i j}, D\right)>0$ depending only on $n, \theta_{0}, k_{0}, T, \tilde{g}_{i j}$, and D such that

$$
\begin{equation*}
\left|\widetilde{\nabla}^{m} g_{i j}(x, t)\right|^{2} \leq c_{m}\left(n, \theta_{0}, k_{0}, T, \tilde{g}_{i j}, D\right) \tag{7}
\end{equation*}
$$

for all $(x, t) \in \bar{D} \times[0, T]$, where $\theta_{0}=\inf _{x \in \bar{D}} \operatorname{inj}(x)>0$ is the lower bound of $\operatorname{inj}(x)$ on \bar{D}.

Proof. From (2) and (6) it follows that

$$
\begin{equation*}
-\delta \tilde{g}_{i j}(x) \leq h_{i j}(x, t) \leq \delta \tilde{g}_{i j}(x) \tag{8}
\end{equation*}
$$

If we let

$$
\begin{equation*}
H_{i j}(x, t)=\frac{1}{\delta} h_{i j}(x, t), \tag{9}
\end{equation*}
$$

then by (3) we have

$$
\begin{align*}
& \frac{\partial}{\partial t} H_{i j}=g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} H_{i j}+B_{i j}, \quad x \in D, 0 \leq t \leq T \\
& H_{i j}(x, 0) \equiv 0, \quad x \in D, \tag{10}\\
& H_{i j}(x, t) \equiv 0, \quad x \in \partial D, 0 \leq t \leq T
\end{align*}
$$

where $B_{i j}=\frac{1}{\delta} A_{i j}$. From (5), (8), (6) we get, respectively,

$$
\begin{align*}
& -\left(\frac{8 n \sqrt{k_{0}}}{\delta}+20 \delta\left|\widetilde{\nabla}_{\alpha} H_{\beta \gamma}\right|^{2}\right) \tilde{g}_{i j}(x) \leq B_{i j}(x, t) \tag{11}\\
& \quad \leq\left(\frac{8 n \sqrt{k_{0}}}{\delta}+20 \delta\left|\widetilde{\nabla}_{\alpha} H_{\beta \gamma}\right|^{2}\right) \tilde{g}_{i j}(x), \quad(x, t) \in D \times[0, T] \\
& -\tilde{g}_{i j}(x) \leq H_{i j}(x, t) \leq \tilde{g}_{i j}(x), \quad(x, t) \in \bar{D} \times[0, T], \tag{12}\\
& \quad \frac{1}{1+\delta} \tilde{g}^{\alpha \beta}(x) \leq g^{\alpha \beta}(x, t) \leq \frac{1}{1-\delta} \tilde{g}^{\alpha \beta}(x) . \tag{13}
\end{align*}
$$

Furthermore, we still have

$$
\begin{aligned}
\tilde{\nabla}_{i} g^{\alpha \beta} & =-g^{\alpha k} g^{\beta l} \widetilde{\nabla}_{i} g_{k l} \\
& =-g^{\alpha k} g^{\beta l} \widetilde{\nabla}_{i} h_{k l}=-g^{\alpha k} g^{\beta l} \cdot \delta \tilde{\nabla}_{i} H_{k l} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left|\tilde{\nabla}_{i} g^{\alpha \beta}\right|^{2} \leq \frac{\delta^{2}}{(1-\delta)^{4}}\left|\widetilde{\nabla}_{i} H_{k l}\right|^{2} \quad \text { on } D \times[0, T] \tag{14}
\end{equation*}
$$

Using (10)-(14) and exactly the same arguments as in the proof of Theorem 6.1 in [4, $\S 6$, Chapter VII], we know that if $\delta>0$ is small enough compared to n and k_{0}, then we can find a constant $\tilde{c}_{1}\left(n, \theta_{0}, k_{0}, \tilde{g}_{i j}, D\right)$, $0<\tilde{c}_{1}<+\infty$, such that

$$
\begin{equation*}
\max _{(x, t) \in \bar{D} \times[0, T]}\left|\tilde{\nabla} H_{i j}(x, t)\right|^{2} \leq \tilde{c}_{1}\left(n, \theta_{0}, k_{0}, \tilde{g}_{i j}, D\right) \tag{15}
\end{equation*}
$$

Since

$$
\tilde{\nabla}_{k} g_{i j}=\tilde{\nabla}_{k} h_{i j}=\delta \tilde{\nabla}_{k} H_{i j}
$$

we get

$$
\begin{equation*}
\max _{(x, t) \in \bar{D} \times[0, T]}\left|\widetilde{\nabla} g_{i j}(x, t)\right|^{2} \leq c_{1}\left(n, \theta_{0}, k_{0}, \tilde{g}_{i j}, D\right) . \tag{16}
\end{equation*}
$$

Using (10)-(15) and the same arguments as in [4, Chapter IV, §§5-9], we know that for any integer $m \geq 2$ we have

$$
\begin{equation*}
\max _{(x, t) \in \bar{D} \times[0, T]}\left|\widetilde{\nabla}^{m} H_{i j}(x, t)\right|^{2} \leq \tilde{c}_{m}\left(n, \theta_{0}, k_{0}, T, \tilde{g}_{i j}, D\right) . \tag{17}
\end{equation*}
$$

But $\tilde{\nabla}^{m} g_{i j}=\delta \tilde{\nabla}^{m} H_{i j}$, so we get

$$
\begin{equation*}
\max _{(x, t) \in \bar{D} \times[0, T]}\left|\tilde{\nabla}^{m} g_{i j}(x, t)\right|^{2} \leq c_{m}\left(n, \theta_{0}, k_{0}, T, \tilde{g}_{i j}, D\right), \tag{18}
\end{equation*}
$$

which completes the proof of the lemma.

As soon as we established the prior estimates in (7), using Theorem 2.5 and the same arguments as in the proof of Theorem 7.1 in [4, §7, Chapter VII], we have the following existence theorem.

Theorem 3.2. There exists a constant $T\left(n, k_{0}\right)>0$ depending only on n and k_{0} such that the Dirichlet boundary problem (1) has a unique smooth solution $g_{i j}(x, t)>0$ on $0 \leq t \leq T\left(n, k_{0}\right)$.

4. Local estimates and convergence

In the last section we get a solution $g_{i j}(x, t)>0$ on the domain $D \subseteq M$ by solving the Dirichlet boundary problem. To get a solution $g_{i j}(x, t)>0$ on the whole manifold M by letting ∂D go to infinity on M we need to estimate $g_{i j}(x, t)$ locally; that means to control the derivatives of $g_{i j}(x, t)$ only in terms of $\tilde{g}_{i j}(x)$ and independent of D.

Fix a point $x_{0} \in M$ and let $B\left(x_{0}, \gamma\right)$ be the geodesic ball of radius γ centered at x_{0} with respect to the metric $\tilde{g}_{i j}$. Then we have the following lemma.

Lemma 4.1. Suppose $0<\gamma, \delta, T<+\infty$ are some constants, and $g_{i j}(x, t)$ >0 is a solution of the following equation:

$$
\begin{align*}
& \frac{\partial}{\partial t} g_{i j}(x, t)=-2 R_{i j}(x, t)+\nabla_{i} V_{j}+\nabla_{j} V_{i} \\
& \qquad \text { for }(x, t) \in B\left(x_{0}, \gamma+\delta\right) \times[0, T], \tag{1}\\
& g_{i j}(x, 0)=\tilde{g}_{i j}(x), \quad x \in B\left(x_{0}, \gamma+\delta\right)
\end{align*}
$$

We also assume that on $B\left(x_{0}, \gamma+\delta\right) \times[0, T]$ we have

$$
\begin{equation*}
\left(1-\frac{1}{256000 n^{10}}\right) \tilde{g}_{i j}(x) \leq g_{i j}(x, t) \leq\left(1+\frac{1}{256000 n^{10}}\right) \tilde{g}_{i j}(x) \tag{2}
\end{equation*}
$$

Then there exists $c\left(n, \gamma, \delta, T, \tilde{g}_{i j}\right)>0$ depending only on n, γ, δ, T, and $\tilde{g}_{i j}$ such that

$$
\begin{equation*}
\left|\tilde{\nabla} g_{i j}(x, t)\right|^{2} \leq c\left(n, \gamma, \delta, T, \tilde{g}_{i j}\right) \tag{3}
\end{equation*}
$$

for all $(x, t) \in B\left(x_{0}, \gamma+\delta / 2\right) \times[0, T]$.
Proof. Differentiating the equation in Lemma 2.1, we get

$$
\begin{align*}
\frac{\partial}{\partial t} \tilde{\nabla} g_{i j}= & g^{\alpha \beta} \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta}\left(\widetilde{\nabla} g_{i j}\right)+\widetilde{\mathrm{R}} \mathrm{~m} * g^{-1} * \widetilde{\nabla} g+g^{-1} * g * \widetilde{\nabla} \tilde{\mathrm{R}} \mathrm{~m} \\
& +\widetilde{\mathrm{R}} \mathrm{~m} * g^{-1} * g^{-1} * g * \widetilde{\nabla} g+g^{-1} * g^{-1} * \widetilde{\nabla} g * \widetilde{\nabla} \widetilde{\nabla} g \tag{4}\\
& +g^{-1} * g^{-1} * g^{-1} * \widetilde{\nabla} g * \widetilde{\nabla} g * \widetilde{\nabla} g
\end{align*}
$$

where we have used $g, g^{-1}, \widetilde{\nabla}^{k} g$ and $*$ to denote respectively the tensor $g_{i j}$, the tensor $g^{i j}$, the tensor $\widetilde{\nabla}^{k} g_{i j}$, and the tensor product. From (4) it follows that
(5)

$$
\begin{aligned}
\frac{\partial}{\partial t}\left|\widetilde{\nabla} g_{i j}\right|^{2}= & g^{\alpha \beta} \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta}\left|\tilde{\nabla} g_{i j}\right|^{2}-2 g^{\alpha \beta} \widetilde{\nabla}_{\alpha}\left(\tilde{\nabla} g_{i j}\right) \cdot \widetilde{\nabla}_{\beta}\left(\widetilde{\nabla} g_{i j}\right) \\
& +\widetilde{\mathrm{R}} \mathrm{~m} * g^{-1} * g^{-1} * g * \widetilde{\nabla} g * \widetilde{\nabla} g+g^{-1} * g * \widetilde{\nabla} \tilde{\mathrm{R}} \mathrm{~m} * \widetilde{\nabla} g \\
& +g^{-1} * g^{-1} * \widetilde{\nabla} g * \widetilde{\nabla} g * \widetilde{\nabla} \widetilde{\nabla} g \\
& +g^{-1} * g^{-1} * g^{-1} * \widetilde{\nabla} g * \widetilde{\nabla} g * \widetilde{\nabla} g * \widetilde{\nabla} g .
\end{aligned}
$$

Since the closure $\overline{B\left(x_{0}, \gamma+\delta\right)}$ is compact, there exists a constant $c_{0}\left(\tilde{g}_{i j}\right)>0$ such that

$$
\begin{equation*}
|\tilde{\nabla} \tilde{\mathrm{R}} \mathrm{~m}| \leq c_{0}\left(\tilde{g}_{i j}\right) \quad \text { on } \overline{B\left(x_{0}, \gamma+\delta\right)} \tag{6}
\end{equation*}
$$

From (2) we have

$$
\begin{equation*}
\frac{1}{2} \tilde{g}_{i j}(x) \leq g_{i j}(x, t) \leq 2 \tilde{g}_{i j}(x) \quad \text { on } B\left(x_{0}, \gamma+\delta\right) \times[0, T] . \tag{7}
\end{equation*}
$$

Thus

$$
\begin{align*}
& \tilde{\mathrm{R}} \mathrm{~m} * g^{-1} * g^{-1} * g * \tilde{\nabla} g * \tilde{\nabla} g \leq c_{0}|\tilde{\nabla} g|^{2}, \\
& g^{-1} * g * \tilde{\nabla} \tilde{\mathrm{R}} \mathrm{~m} * \tilde{\nabla} g \leq c_{0}|\tilde{\nabla} g| \tag{8}
\end{align*}
$$

where the constant $c_{0}>0$ depends only on n and $\tilde{g}_{i j}$, and is not necessarily the same as the constant in (6).

Estimating the last two terms in (5) yields

$$
\begin{align*}
& g^{-1} * g^{-1} * \tilde{\nabla} g * \tilde{\nabla} g * \tilde{\nabla} \tilde{\nabla} g \leq 72 n^{5}|\tilde{\nabla} g|^{2} \cdot|\tilde{\nabla} \tilde{\nabla} g|, \\
& g^{-1} * g^{-1} * g^{-1} * \widetilde{\nabla} g * \widetilde{\nabla} g * \widetilde{\nabla} g * \widetilde{\nabla} g \leq 160 n^{6}|\widetilde{\nabla} g|^{4}, \tag{9}
\end{align*}
$$

where we have to use (7) and check carefully the number of terms in the equation of Lemma 2.1.

From (7) we also have

$$
\begin{equation*}
g^{\alpha \beta} \widetilde{\nabla}_{\alpha}\left(\tilde{\nabla} g_{i j}\right) \cdot \tilde{\nabla}_{\beta}\left(\tilde{\nabla} g_{i j}\right) \geq \frac{1}{2}|\tilde{\nabla} \widetilde{\nabla} g|^{2} \tag{10}
\end{equation*}
$$

Substituting (8), (9), and (10) into (5) gives

$$
\begin{align*}
\frac{\partial}{\partial t}|\tilde{\nabla} g|^{2} \leq & g^{\alpha \beta} \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta}|\tilde{\nabla} g|^{2}-\left|\tilde{\nabla}^{2} g\right|^{2}+c_{0}|\tilde{\nabla} g|^{2} \tag{11}\\
& +c_{0}|\tilde{\nabla} g|+72 n^{5}|\tilde{\nabla} g|^{2}\left|\tilde{\nabla}^{2} g\right|+160 n^{6}|\tilde{\nabla} g|^{4},
\end{align*}
$$

where the norm $|\widetilde{\nabla} g|$ is with respect to the metric $\tilde{g}_{i j}$.
It is easy to see that

$$
72 n^{5}|\tilde{\nabla} g|^{2} \cdot\left|\tilde{\nabla}^{2} g\right|+160 n^{6}|\tilde{\nabla} g|^{4} \leq \frac{1}{2}\left|\tilde{\nabla}^{2} g\right|^{2}+3200 n^{10}|\tilde{\nabla} g|^{4} ;
$$

thus from (11) we get

$$
\begin{align*}
\frac{\partial}{\partial t}|\tilde{\nabla} g|^{2} \leq & g^{\alpha \beta} \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta}|\tilde{\nabla} g|^{2}-\frac{1}{2}\left|\tilde{\nabla}^{2} g\right|^{2}+3200 n^{10}|\tilde{\nabla} g|^{4} \tag{12}\\
& +c_{0}|\tilde{\nabla} g|^{2}+c_{0}
\end{align*}
$$

If we let $\varepsilon=1 / 256000 n^{10}$ and use the notation in (63) of $\S 2$, then from (2) and (7) we have

$$
\begin{equation*}
1-\varepsilon \leq \lambda_{k} \leq 1+\varepsilon, \quad \frac{1}{2} \leq \lambda_{k} \leq 2, \quad k=1,2, \cdots, n \tag{13}
\end{equation*}
$$

Now let

$$
\begin{equation*}
m=25600 n^{10}, \quad a=6400 n^{10} \tag{14}
\end{equation*}
$$

and define a function:

$$
\begin{equation*}
\varphi(x, t)=a+\sum_{k=1}^{n} \lambda_{k}^{m} \quad \forall(x, t) \in B\left(x_{0}, \gamma+\delta\right) \times[0, T] . \tag{15}
\end{equation*}
$$

Then by definition and Lemma 2.1 we have

$$
\begin{align*}
\frac{\partial \varphi}{\partial t}= & m \lambda_{k}^{m-1} \frac{\partial}{\partial t} g_{k k} \\
= & m \lambda_{k}^{m-1} g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} g_{k k} \tag{16}\\
& +m \lambda_{k}^{m-1} *\left(\widetilde{\mathrm{R}} \mathrm{~m} * g^{-1} * g+g^{-1} * g^{-1} * \widetilde{\nabla} g * \widetilde{\nabla} g\right)
\end{align*}
$$

Using the same reasoning as before and (13) and (14) we get

$$
\begin{align*}
& m \lambda_{k}^{m-1} * \widetilde{R} m * g^{-1} * g \leq c_{0}, \tag{17}\\
& m \lambda_{k}^{m-1} * g^{-1} * g^{-1} * \widetilde{\nabla} g * \widetilde{\nabla} g \leq 10 n^{3} m(1+\varepsilon)^{m-1}|\tilde{\nabla} g|^{2}
\end{align*}
$$

Substituting (17) into (16) yields

$$
\begin{equation*}
\frac{\partial \varphi}{\partial t} \leq m \lambda_{k}^{m-1} g^{\alpha \beta} \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} g_{k k}+c_{0}+10 n^{3} m(1+\varepsilon)^{m-1}|\widetilde{\nabla} g|^{2} \tag{18}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
g^{\alpha \beta} \tilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} \varphi= & g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta}\left(\sum_{k=1}^{n} \lambda_{k}^{m}\right) \\
= & m \lambda_{k}^{m-1} g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} g_{k k}+m\left(\lambda_{i}^{m-2}+\lambda_{i}^{m-3} \lambda_{j}+\cdots+\lambda_{j}^{m-2}\right) \\
& \cdot g^{\alpha \beta} \widetilde{\nabla}_{\alpha} g_{i j} \cdot \widetilde{\nabla}_{\beta} g_{i j}
\end{aligned}
$$

which implies, in consequence of (13),

$$
g^{\alpha \beta} \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} \varphi \geq m \lambda_{k}^{m-1} g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} g_{k k}+\frac{m(m-1)}{2}(1-\varepsilon)^{m-2}|\tilde{\nabla} g|^{2}
$$

Substituting this into (18) gives

$$
\begin{align*}
\frac{\partial \varphi}{\partial t} \leq & g^{\alpha \beta} \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} \varphi-\frac{m(m-1)}{2}(1-\varepsilon)^{m-2}|\tilde{\nabla} g|^{2} \tag{19}\\
& +c_{0}+10 n^{3} m(1+\varepsilon)^{m-1}|\tilde{\nabla} g|^{2}
\end{align*}
$$

By the definition of ε and m we have

$$
\begin{gather*}
10 m n^{3}(1+\varepsilon)^{m-1} \leq \frac{m^{2}}{16} \tag{20}\\
(1-\varepsilon)^{m-2} \geq \frac{3}{4}
\end{gather*}
$$

thus

$$
\begin{equation*}
\frac{m(m-1)}{2}(1-\varepsilon)^{m-2} \geq \frac{m^{2}}{4}(1-\varepsilon)^{m-2} \geq \frac{3}{16} m^{2} \tag{22}
\end{equation*}
$$

Substituting (20) and (22) into (19) yields

$$
\begin{equation*}
\frac{\partial \varphi}{\partial t} \leq g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} \varphi+c_{0}-\frac{m^{2}}{8}|\widetilde{\nabla} g|^{2} . \tag{23}
\end{equation*}
$$

From (12) and (23) it follows that

$$
\begin{align*}
\frac{\partial}{\partial t}\left(\varphi \cdot|\widetilde{\nabla} g|^{2}\right) & \leq g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta}\left(\varphi \cdot|\tilde{\nabla} g|^{2}\right)-2 g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \varphi \widetilde{\nabla}_{\beta}|\widetilde{\nabla} g|^{2}-\frac{\varphi}{2}\left|\widetilde{\nabla}^{2} g\right|^{2} \tag{24}\\
& +3200 n^{10} \varphi|\widetilde{\nabla} g|^{4}+c_{0} \varphi|\tilde{\nabla} g|^{2}+c_{0} \varphi+c_{0}|\widetilde{\nabla} g|^{2}-\frac{m^{2}}{8}|\widetilde{\nabla} g|^{4}
\end{align*}
$$

From (15) we have

$$
\begin{equation*}
a+n(1-\varepsilon)^{m} \leq \varphi(x, t) \leq a+n(1+\varepsilon)^{m}, \tag{25}
\end{equation*}
$$

which together with (14) implies

$$
\begin{gather*}
3200 n^{10} \varphi \leq 3200 n^{10}\left[6400 n^{10}+n(1+\varepsilon)^{m}\right] \leq \frac{m^{2}}{16}, \tag{26}\\
3200 n^{10} \varphi|\widetilde{\nabla} g|^{4} \leq \frac{m^{2}}{16}|\tilde{\nabla} g|^{4} .
\end{gather*}
$$

Using (24), (25), and (26) we find that

$$
\begin{align*}
\frac{\partial}{\partial t}\left(|\tilde{\nabla} g|^{2} \varphi\right) \leq & g^{\alpha \beta} \tilde{\nabla}_{\kappa} \tilde{\nabla}_{\beta}\left(|\tilde{\nabla} g|^{2} \varphi\right)-2 g^{\alpha \beta} \tilde{\nabla}_{\kappa r} \varphi \cdot \tilde{\nabla}_{\beta}|\tilde{\nabla} g|^{2} \\
& -\frac{\varphi}{2}\left|\tilde{\nabla}^{2} g\right|^{2}-\frac{m^{2}}{16}|\tilde{\nabla} g|^{4}+c_{0}|\tilde{\nabla} g|^{2} \varphi+c_{0} \tag{27}
\end{align*}
$$

but we also know that

$$
\begin{align*}
-2 g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \varphi \cdot \widetilde{\nabla}_{\beta}|\widetilde{\nabla} g|^{2} & =-2 g^{\alpha \beta} \tilde{\nabla}_{\alpha}\left(\sum_{k=1}^{n} \lambda_{k}^{m}\right) \cdot \tilde{\nabla}_{\beta}|\tilde{\nabla} g|^{2} \\
& =-4 g^{\alpha \beta} \cdot m \lambda_{k}^{m-1} \cdot \tilde{\nabla}_{\alpha} g_{k k} \cdot \tilde{\nabla} g \cdot \tilde{\nabla} \tilde{\nabla} g \\
& \leq 8 m n^{5}(1+\varepsilon)^{m-1}|\widetilde{\nabla} g|^{2} \cdot|\tilde{\nabla} \tilde{\nabla} g| \tag{28}\\
& \leq 16 m n^{5}|\tilde{\nabla} g|^{2} \cdot|\tilde{\nabla} \tilde{\nabla} g| \\
& \leq \frac{\varphi}{2}\left|\tilde{\nabla}^{2} g\right|^{2}+\frac{200 m^{2} n^{10}}{\varphi}|\widetilde{\nabla} g|^{4} .
\end{align*}
$$

Combining (27) and (28) gives

$$
\begin{align*}
\frac{\partial}{\partial t}\left(|\tilde{\nabla} g|^{2} \varphi\right) \leq & g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta}\left(|\tilde{\nabla} g|^{2} \varphi\right)+\frac{200 m^{2} n^{10}}{\varphi}|\tilde{\nabla} g|^{4} \tag{29}\\
& -\frac{m^{2}}{16}|\widetilde{\nabla} g|^{4}+c_{0}|\widetilde{\nabla} g|^{2} \varphi+c_{0}
\end{align*}
$$

Since $\varphi(x, t) \geq a=6400 n^{10}$, we have

$$
\frac{200 m^{2} n^{10}}{\varphi} \leq \frac{m^{2}}{32}
$$

and therefore, in consequence of (29),

$$
\begin{align*}
\frac{\partial}{\partial t}\left(|\tilde{\nabla} g|^{2} \varphi\right) \leq & g^{\alpha \beta} \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta}\left(|\tilde{\nabla} g|^{2} \varphi\right)-\frac{m^{2}}{32}|\tilde{\nabla} g|^{4} \tag{30}\\
& +c_{0}|\tilde{\nabla} g|^{2} \varphi+c_{0}
\end{align*}
$$

Since

$$
\frac{m^{2}}{32}|\tilde{\nabla} g|^{4}=\frac{m^{2}}{32 \varphi^{2}}|\tilde{\nabla} g|^{4} \varphi^{2} \geq \frac{m^{2}}{32\left[a+n(1+\varepsilon)^{m}\right]^{2}}|\tilde{\nabla} g|^{4} \varphi^{2}
$$

using (14) we get

$$
\frac{m^{2}}{32}|\tilde{\nabla} g|^{4} \geq \frac{1}{8}|\tilde{\nabla} g|^{4} \varphi^{2}
$$

Thus

$$
\begin{align*}
\frac{\partial}{\partial t}\left(|\widetilde{\nabla} g|^{2} \varphi\right) \leq & g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta}\left(|\tilde{\nabla} g|^{2} \varphi\right)-\frac{1}{8}|\tilde{\nabla} g|^{4} \varphi^{2} \\
& +c_{0}|\tilde{\nabla} g|^{2} \varphi+c_{0}
\end{align*}
$$

If we define a function

$$
\begin{equation*}
\psi(x, t)=|\tilde{\nabla} g|^{2} \varphi(x, t) \tag{32}
\end{equation*}
$$

hen
33)

$$
\frac{\partial \psi}{\partial t} \leq g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} \psi-\frac{1}{16} \psi^{2}+c_{0}\left(n, \tilde{g}_{i j}\right)
$$

on $B\left(x_{0}, \gamma+\delta\right) \times[0, T]$. For any $x \in M$, we use $\gamma\left(x, x_{0}\right)$ to denote the distance between x_{0} and x with respect to the metric $\tilde{g}_{i j}$. Then we have

$$
\begin{equation*}
\left|\tilde{\nabla} \gamma\left(x, x_{0}\right)\right| \leq 1, \quad \forall x \in M \tag{34}
\end{equation*}
$$

Since $\left|\widetilde{R}_{i j k l}\right|^{2} \leq k_{0}$ on M, using the Hession comparison theorem in Riemannian geometry we know that there exists a constant $c\left(\gamma, \delta, k_{0}\right)>0$ depending only on γ, δ, and k_{0} such that

$$
\begin{equation*}
\tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} \gamma\left(x, x_{0}\right) \leq c\left(\gamma, \delta, k_{0}\right) \tilde{g}_{\alpha \beta}(x) \tag{35}
\end{equation*}
$$

for all $x \in B\left(x_{0}, \gamma+\delta\right) \backslash B\left(x_{0}, \gamma\right)$.
Choose a cut-off function $\eta(x) \in C^{\infty}(\mathbf{R})$ such that

$$
\begin{align*}
& \eta(x) \equiv 1, \quad x \leq 0 \\
& 1 \geq \eta(x) \geq 0, \quad 0 \leq x \leq 1 \tag{36}\\
& \eta(x) \equiv 0, \quad x \geq 1
\end{align*}
$$

and that

$$
\begin{align*}
& \eta^{\prime}(x) \leq 0 \quad \forall x \in \mathbf{R}, \\
& \left|\eta^{\prime \prime}(x)\right| \leq 8 \quad \forall x \in \mathbf{R}, \tag{37}\\
& \left|\eta^{\prime}(x)\right|^{2} / \eta(x) \leq 16, \quad x \leq 1
\end{align*}
$$

it is easy to see that such a function $\eta(x)$ exists. We define $\xi(x) \in c_{0}^{\infty}(M)$ as

$$
\begin{equation*}
\xi(x)=\eta\left(\frac{\gamma\left(x, x_{0}\right)-(\gamma+\delta / 2)}{\delta / 4}\right), \quad x \in M \tag{38}
\end{equation*}
$$

From (36), (37) and (38) we have

$$
\begin{align*}
& \xi(x) \equiv 1, \quad x \in B\left(x_{0}, \gamma+\delta / 2\right), \\
& \xi(x) \equiv 0, \quad x \in M \backslash B\left(x_{0}, \gamma+3 \delta / 4\right), \tag{39}\\
& 0 \leq \xi(x) \leq 1, \quad x \in M, \\
& |\widetilde{\nabla} \xi(x)|^{2} \leq \frac{16^{2}}{\delta^{2}}\left|\widetilde{\nabla} \gamma\left(x, x_{0}\right)\right|^{2} \cdot \xi(x), \quad x \in M,
\end{align*}
$$

which is reduced to, by use of (34),

$$
\begin{equation*}
|\tilde{\nabla} \xi(x)|^{2} \leq \frac{16^{2}}{\delta^{2}} \xi(x), \quad x \in M \tag{40}
\end{equation*}
$$

On the other hand, we have

$$
\begin{align*}
\tilde{\nabla}_{\beta} \xi(x) & =\frac{4}{\delta} \eta^{\prime} \cdot \tilde{\nabla}_{\beta} \gamma\left(x, x_{0}\right), \\
\widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} \xi(x) & =\frac{4}{\delta} \eta^{\prime} \cdot \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} \gamma\left(x, x_{0}\right)+\frac{16}{\delta^{2}} \eta^{\prime \prime} \cdot \tilde{\nabla}_{\alpha} \gamma\left(x, x_{0}\right) \cdot \tilde{\nabla}_{\beta} \gamma\left(x, x_{0}\right) . \tag{41}
\end{align*}
$$

From (36) and (37) it follows that

$$
\begin{equation*}
0 \geq \eta^{\prime}(x) \geq-4 \eta(x)^{1 / 2} \geq-4, \quad x \in \mathbb{R} \tag{42}
\end{equation*}
$$

Thus we get

$$
\begin{equation*}
\frac{4}{\delta} \eta^{\prime} \cdot \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} \gamma\left(x, x_{0}\right) \geq-\frac{16}{\delta} c\left(\gamma, \delta, k_{0}\right) \tilde{g}_{\alpha \beta}(x) \quad \forall x \in M \tag{43}
\end{equation*}
$$

from (35) and

$$
\begin{equation*}
\frac{16}{\delta^{2}} \eta^{\prime \prime} \cdot \tilde{\nabla}_{\alpha} \gamma\left(x, x_{0}\right) \cdot \tilde{\nabla}_{\beta} \gamma\left(x, x_{0}\right) \geq-\frac{128}{\delta^{2}} \tilde{g}_{\alpha \beta}(x), \quad x \in M \tag{44}
\end{equation*}
$$

from (34) and (37). Combining (41), (44), and (43) yields

$$
\begin{equation*}
\tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} \xi(x) \geq-c_{0}\left(\gamma, \delta, k_{0}\right) \tilde{g}_{\alpha \beta}(x), \quad x \in M \tag{45}
\end{equation*}
$$

Now consider the function

$$
\begin{equation*}
F(x, t)=\xi(x) \psi(x, t), \quad(x, t) \in B\left(x_{0}, \gamma+\delta\right) \times[0, T] . \tag{46}
\end{equation*}
$$

Then

$$
\begin{equation*}
F(x, t)=\xi(x) \varphi(x, t) \cdot|\tilde{\nabla} g|^{2} \geq 0 \tag{47}
\end{equation*}
$$

Since $|\tilde{\nabla} g|^{2}(x, 0) \equiv 0$, it follows that

$$
\begin{equation*}
F(x, 0) \equiv 0, \quad x \in B\left(x_{0}, \gamma+\delta\right) \tag{48}
\end{equation*}
$$

Using (39) we have

$$
\begin{equation*}
F(x, t) \equiv 0, \quad(x, t) \in\left(M \backslash B\left(x_{0}, \gamma+3 \delta / 4\right)\right) \times[0, T] \tag{49}
\end{equation*}
$$

From (47), (48), and (49) we know that there exists a point $\left(x_{0}, t_{0}\right) \in$ $B\left(x_{0}, \gamma+3 \delta / 4\right) \times[0, T]$ such that

$$
\begin{gather*}
F\left(x_{0}, t_{0}\right)=\max _{B\left(x_{0}, \gamma+\delta\right) \times[0, T]} F(x, t), \tag{50}\\
t_{0}>0 \tag{51}
\end{gather*}
$$

which imply the following:

$$
\begin{align*}
& \frac{\partial F}{\partial t}\left(x_{0}, t_{0}\right) \geq 0, \\
& \tilde{\nabla} F\left(x_{0}, t_{0}\right)=0, \tag{52}\\
& g^{\alpha \beta} \tilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} F\left(x_{0}, t_{0}\right) \leq 0 .
\end{align*}
$$

Thus

$$
\begin{equation*}
\xi\left(x_{0}\right) \frac{\partial \psi}{\partial t}\left(x_{0}, t_{0}\right) \geq 0 \tag{53}
\end{equation*}
$$

Since $\xi \geq 0$, from (33), (53), (52), (54) and (55) we get

$$
\begin{gather*}
\xi \cdot g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} \psi-\frac{1}{16} \xi \psi^{2}+c_{0} \xi \geq 0 \quad \text { at }\left(x_{0}, t_{0}\right), \tag{54}\\
\xi \cdot g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} \psi+\psi \cdot g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} \xi+2 g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \xi \cdot \widetilde{\nabla}_{\beta} \psi \leq 0, \tag{55}\\
\frac{1}{16} \xi \psi^{2} \leq c_{0} \xi-2 g^{\alpha \beta} \tilde{\nabla}_{\alpha} \xi \cdot \widetilde{\nabla}_{\beta} \psi-\psi \cdot g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} \xi . \tag{56}
\end{gather*}
$$

But $\widetilde{\nabla} F\left(x_{0}, t_{0}\right)=0$, so we have

$$
\begin{gather*}
\xi \cdot \widetilde{\nabla}_{\alpha} \psi+\psi \cdot \tilde{\nabla}_{\alpha} \xi=0 \\
-2 g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \xi \cdot \widetilde{\nabla}_{\beta} \psi=\frac{2 \psi}{\xi} g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \xi \cdot \widetilde{\nabla}_{\beta} \xi . \tag{57}
\end{gather*}
$$

From (56) and (57) it follows that

$$
\begin{equation*}
\frac{1}{16} \xi \psi^{2} \leq c_{0} \xi+\frac{2 \psi}{\xi} g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \xi \cdot \widetilde{\nabla}_{\beta} \xi-\psi \cdot g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} \xi \quad \text { at }\left(x_{0}, t_{0}\right) . \tag{58}
\end{equation*}
$$

Using (13), (40) and (45) we find

$$
\begin{gather*}
\frac{2 \psi}{\xi} g^{\alpha \beta} \tilde{\nabla}_{\alpha} \xi \cdot \tilde{\nabla}_{\beta} \xi \leq 1024 \psi \tag{59}\\
-\psi \cdot g^{\alpha \beta} \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} \xi \leq 2 \tilde{c}_{0} \psi \tag{60}
\end{gather*}
$$

But $0 \leq \xi \leq 1$, so from (58), (59), and (60) we get

$$
\begin{equation*}
\frac{1}{16} \xi \psi^{2} \leq c_{0}+1024 \psi+2 \tilde{c}_{0} \psi \quad \text { at }\left(x_{0}, t_{0}\right) \tag{61}
\end{equation*}
$$

where $c_{0}, \tilde{c}_{0}>0$ depend only on n, γ, δ, T, and $\tilde{g}_{i j}(x)$. Since

$$
\frac{1}{16}(\xi \psi)^{2} \leq c_{0} \xi+\left(2 \tilde{c}_{0}+1024\right)(\xi \psi) \quad \text { at }\left(x_{0}, t_{0}\right),
$$

and $\xi \leq 1$, we have

$$
\begin{equation*}
\frac{1}{16} F\left(x_{0}, t_{0}\right)^{2} \leq c_{0}+\left(2 \tilde{c}_{0}+1024\right) F\left(x_{0}, t_{0}\right) . \tag{62}
\end{equation*}
$$

Thus

$$
\begin{equation*}
F\left(x_{0}, t_{0}\right) \leq c\left(n, \gamma, \delta, T, \tilde{g}_{i j}\right) \tag{63}
\end{equation*}
$$

which together with (50) implies

$$
\begin{equation*}
F(x, t) \leq c\left(n, \gamma, \delta, T, \tilde{g}_{i j}\right) \quad \text { on } B\left(x_{0}, \gamma+\delta\right) \times[0, T] . \tag{64}
\end{equation*}
$$

Since $\xi(x) \equiv 1$ on $B\left(x_{0}, \gamma+\delta / 2\right)$, from (46) and (64) we get

$$
\begin{align*}
\psi(x, t) \leq c\left(n, \gamma, \delta, T, \tilde{g}_{i j}\right) & \text { on } B\left(x_{0}, \gamma+\delta / 2\right) \times[0, T], \\
|\widetilde{\nabla} g|^{2} \varphi(x, t) \leq c\left(n, \gamma, \delta, T, \tilde{g}_{i j}\right) & \text { on } B\left(x_{0}, \gamma+\delta / 2\right) \times[0, T] . \tag{65}
\end{align*}
$$

From (25), $\varphi(x, t) \geq a=6400 n^{10}$; thus using (65) we have

$$
\left|\widetilde{\nabla} g_{i j}(x, t)\right|^{2} \leq \frac{1}{6400 n^{10}} c\left(n, \gamma, \delta, T, \tilde{g}_{i j}\right) \quad \text { on } B\left(x_{0}, \gamma+\delta / 2\right) \times[0, T],
$$

which completes the proof of Lemma 4.1.
The function $\xi(x)$ defined in (38) may not be smooth at some points of M, but as $\mathrm{P} . \mathrm{Li}$ and S . T. Yau mentioned in their paper [5], this does not affect our using the maximal principle on $\xi(x) \psi(x, t)$.

Lemma 4.2. Under the assumptions in Lemma 4.1, for any integer $m \geq 0$, there exist constants $c\left(n, m, \gamma, \delta, T, \tilde{g}_{i j}\right)>0$ depending only on n, m, γ, δ, T, and $\tilde{g}_{i j}$ such that

$$
\begin{equation*}
\left|\widetilde{\nabla}^{m} g_{i j}(x, t)\right|^{2} \leq c\left(n, m, \gamma, \delta, T, \tilde{g}_{i j}\right) \tag{66}
\end{equation*}
$$

for all $(x, t) \in B\left(x_{0}, \gamma+\delta /(m+1)\right) \times[0, T]$, where the norm in (66) is with respect to the metric $\tilde{g}_{i j}(x)$.

Proof. We prove this lemma by induction. If $m=0$, using (7) we have

$$
\begin{equation*}
\left|g_{i j}(x, t)\right|^{2} \leq 4 n \tag{67}
\end{equation*}
$$

for all $(x, t) \in B\left(x_{0}, \gamma+\delta\right) \times[0, T]$. Therefore the lemma is true for the case $m=0$.

If $m=1$, from Lemma 4.1 we know that (66) is also true.
Suppose for $R=0,1,2, \cdots, m-1$ we have

$$
\begin{equation*}
\left|\tilde{\nabla}^{\ell} g_{i j}(x, t)\right|^{2} \leq c\left(k, n, \gamma, \delta, T, \tilde{g}_{i j}\right) \tag{68}
\end{equation*}
$$

for all $(x, t) \in B\left(x_{0}, \gamma+\delta /(\beta+1)\right) \times[0, T]$.
Now we consider the case $k=m$ and assume $m \geq 2$. First, differentiating the equation in Lemma 2.1 m times, we get

$$
\begin{align*}
& \frac{\partial}{\partial t} \tilde{\nabla}^{m} g_{i j}=g^{\alpha \beta} \tilde{\nabla}_{c} \tilde{\nabla}_{\beta}\left(\tilde{\nabla}^{m} g_{i j}\right) \\
& \quad+\sum_{\substack{0 \leq k_{1}, k_{2}, \cdots, k_{m+2} \leq m+1 \\
k_{1}+k_{2}+\cdots+k_{m+2} \leq m+2}} \widetilde{\nabla}^{k_{1}} g * \tilde{\nabla}^{k_{2}} g * \cdots * \widetilde{\nabla}^{k_{m+2}} g * P_{k_{1} k_{2} \cdots k_{m+2}}, \tag{69}
\end{align*}
$$

where

$$
P_{k_{1} k_{2} \cdots k_{m+2}}=P_{k_{1} k_{2} \cdots k_{m+2}}\left(g, g^{-1}, \widetilde{\mathbf{R}} \mathrm{~m}, \tilde{\nabla} \tilde{\mathbf{R}} \mathrm{~m}, \tilde{\nabla}^{2} \tilde{\mathbf{R}} \mathrm{~m}, \cdots, \tilde{\nabla}^{m} \widetilde{\mathbf{R}} \mathrm{~m}\right)
$$

is a polynomial of $g, g^{-1}, \tilde{R} m, \tilde{\nabla} \tilde{R} m, \tilde{\nabla}^{2} \tilde{R} m, \cdots, \tilde{\nabla}^{m} \tilde{R} m$.
From (69) we get

$$
\begin{align*}
& \frac{\partial}{\partial t}\left|\widetilde{\nabla}^{m} g_{i j}\right|^{2}=g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta}\left|\widetilde{\nabla}^{m} g_{i j}\right|^{2}-2 g^{\alpha \beta} \widetilde{\nabla}_{\alpha}\left(\widetilde{\nabla}^{m} g_{i j}\right) \cdot \widetilde{\nabla}_{\beta}\left(\widetilde{\nabla}^{m} g_{i j}\right) \\
& +\sum_{\substack{0 \leq k_{1}, \cdots, k_{m+2} \leq m+1 \\
k_{1}+\cdots+k_{m+2} \leq m+2}} \widetilde{\nabla}^{k_{1}} g * \cdots * \widetilde{\nabla}^{k_{m+2}} g * \widetilde{\nabla}^{m} g * P_{k_{1} k_{2} \cdots k_{m+2}} . \tag{70}
\end{align*}
$$

Since the closure $\overline{B\left(x_{0}, \gamma+\delta\right)}$ is compact, there exist constants $c\left(h, \tilde{g}_{i j}\right)>$ 0 such that

$$
\begin{equation*}
\left|\widetilde{\nabla}^{k} \widetilde{\mathrm{R}} \mathrm{~m}\right|^{2} \leq c\left(h, \tilde{g}_{i j}\right) \quad \text { on } \overline{B\left(x_{0}, \gamma+\delta\right)} \tag{71}
\end{equation*}
$$

for all integers $k=0,1,2, \cdots$.
From (7) and (71) we get

$$
\begin{gather*}
\left|P_{k_{1} k_{2} \cdots k_{m+2}}\right| \leq c\left(m, n, \tilde{g}_{i j}\right) \quad \text { on } B\left(x_{0}, \gamma+\delta\right) \times[0, T], \tag{72}\\
g^{\alpha \beta} \widetilde{\nabla}_{\alpha}\left(\widetilde{\nabla}^{m} g_{i j}\right) \cdot \widetilde{\nabla}_{\beta}\left(\widetilde{\nabla}^{m} g_{i j}\right) \geq \frac{1}{2}\left|\widetilde{\nabla}^{m+1} g_{i j}\right|^{2} \tag{73}
\end{gather*}
$$

Substituting (68), (72), and (73) into (70) yields

$$
\begin{align*}
\frac{\partial}{\partial t}\left|\widetilde{\nabla}^{m} g_{i j}\right|^{2} \leq & g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta}\left|\widetilde{\nabla}^{m} g_{i j}\right|^{2}-\left|\widetilde{\nabla}^{m+1} g_{i j}\right|^{2} \\
& +c_{0}\left(m, n, \gamma, \delta, T, \tilde{g}_{i j}\right)\left[\left|\widetilde{\nabla}^{m} g\right| \cdot\left|\widetilde{\nabla}^{m+1} g\right| \cdot(1+|\widetilde{\nabla} g|)\right. \tag{74}\\
& \left.+\left|\widetilde{\nabla}^{m} g\right|^{2} \cdot\left(1+|\widetilde{\nabla} g|^{2}+\left|\widetilde{\nabla}^{2} g\right|\right)+\left|\widetilde{\nabla}^{m} g\right|\right]
\end{align*}
$$

on $B\left(x_{0}, \gamma+\delta / m\right) \times[0, T]$, where $c_{0}\left(m, n, \gamma, \delta, T, \tilde{g}_{i j}\right)>0$ means some constant depending only on m, n, γ, δ, T, and $\tilde{g}_{i j}$.

Since $m \geq 2$, for $m=2$ from (68) and (74) we get

$$
\begin{align*}
\frac{\partial}{\partial t}\left|\widetilde{\nabla}^{2} g\right|^{2} \leq & g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta}\left|\widetilde{\nabla}^{2} g\right|^{2}-\left|\widetilde{\nabla}^{3} g\right|^{2} \\
& +c_{0}\left(\left|\widetilde{\nabla}^{2} g\right| \cdot\left|\tilde{\nabla}^{3} g\right|+\left|\widetilde{\nabla}^{2} g\right|^{2}+\left|\widetilde{\nabla}^{2} g\right|^{3}+\left|\widetilde{\nabla}^{2} g\right|\right) \tag{75}\\
\frac{\partial}{\partial t}\left|\widetilde{\nabla}^{2} g\right|^{2} \leq & g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta}\left|\tilde{\nabla}^{2} g\right|^{2}-\frac{1}{2}\left|\tilde{\nabla}^{3} g\right|^{2}+c_{0}\left|\widetilde{\nabla}^{2} g\right|^{3}+c_{0}
\end{align*}
$$

on $B\left(x_{0}, \gamma+\delta / 2\right) \times[0, T]$.
If $m \geq 3$, from (68) and (74) we get

$$
\begin{equation*}
\frac{\partial}{\partial t}\left|\widetilde{\nabla}^{m} g\right|^{2} \leq g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta}\left|\widetilde{\nabla}^{m} g\right|^{2}-\frac{1}{2}\left|\widetilde{\nabla}^{m+1} g\right|^{2}+c_{0}\left|\widetilde{\nabla}^{m} g\right|^{2}+c_{0} \tag{76}
\end{equation*}
$$

on $B\left(x_{0}, \gamma+\delta / m\right) \times[0, T]$.
By combining (75) and (76), for $m \geq 2$ we always have

$$
\begin{equation*}
\frac{\partial}{\partial t}\left|\widetilde{\nabla}^{m} g\right|^{2} \leq g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta}\left|\widetilde{\nabla}^{m} g\right|^{2}-\frac{1}{2}\left|\widetilde{\nabla}^{m+1} g\right|^{2}+c_{0}\left|\widetilde{\nabla}^{m} g\right|^{3}+c_{0} \tag{77}
\end{equation*}
$$

on $B\left(x_{0}, \gamma+\delta / m\right) \times[0, T]$. If we replace m by $m-1$ in (74) and use (68), we get
(78) $\frac{\partial}{\partial t}\left|\tilde{\nabla}^{m-1} g\right|^{2} \leq g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta}\left|\widetilde{\nabla}^{m-1} g\right|^{2}-\left|\widetilde{\nabla}^{m} g\right|^{2}+c_{0}\left(\left|\widetilde{\nabla}^{m} g\right|+\left|\widetilde{\nabla}^{2} g\right|+1\right)$
on $B\left(x_{0}, \gamma+\delta / m-1\right) \times[0, T]$. Since $m \geq 2$, from (78) we get

$$
\begin{equation*}
\frac{\partial}{\partial t}\left|\widetilde{\nabla}^{m-1} g\right|^{2} \leq g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta}\left|\widetilde{\nabla}^{m-1} g\right|^{2}-\frac{1}{2}\left|\widetilde{\nabla}^{m} g\right|^{2}+c_{0} \tag{79}
\end{equation*}
$$

on $B\left(x_{0}, \gamma+\delta /(m-1)\right) \times[0, T]$.

We define a function

$$
\begin{equation*}
\psi(x, t)=\left(a+\left|\widetilde{\nabla}^{m-1} g\right|^{2}\right) \cdot\left|\widetilde{\nabla}^{m} g\right|^{2} \tag{80}
\end{equation*}
$$

where $a>0$ is a constant to be determined later. Then from (77) and (79) we have

$$
\begin{align*}
\frac{\partial \psi}{\partial t}= & {\left[a+\left|\widetilde{\nabla}^{m-1} g\right|^{2}\right] \frac{\partial}{\partial t}\left|\widetilde{\nabla}^{m} g\right|^{2}+\left|\widetilde{\nabla}^{m} g\right|^{2} \frac{\partial}{\partial t}\left|\widetilde{\nabla}^{m-1} g\right|^{2}, } \\
\frac{\partial \psi}{\partial t} \leq & g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} \psi-2 g^{\alpha \beta} \widetilde{\nabla}_{\alpha}\left|\widetilde{\nabla}^{m-1} g\right|^{2} \cdot \widetilde{\nabla}_{\beta}\left|\widetilde{\nabla}^{m} g\right|^{2} \tag{81}\\
& -\frac{1}{2}\left(a+\left|\widetilde{\nabla}^{m-1} g\right|^{2}\right)\left|\widetilde{\nabla}^{m+1} g\right|^{2}+c_{0}\left(a+\left|\widetilde{\nabla}^{m-1} g\right|^{2}\right)\left|\widetilde{\nabla}^{m} g\right|^{3} \\
& +c_{0}\left(a+\left|\widetilde{\nabla}^{m-1} g\right|^{2}\right)-\frac{1}{2}\left|\widetilde{\nabla}^{m} g\right|^{4}+c_{0}\left|\widetilde{\nabla}^{m} g\right|^{2}
\end{align*}
$$

on $B\left(x_{0}, \gamma+\delta / m\right) \times[0, T]$.
On the other hand from (68) it follows that

$$
\begin{equation*}
a \leq a+\left|\widetilde{\nabla}^{m-1} g\right|^{2} \leq a+c\left(m-1, n, \gamma, \delta, T, \tilde{g}_{i j}\right) \tag{82}
\end{equation*}
$$

on $B\left(x_{0}, \gamma+\delta / m\right) \times[0, T]$. Thus from (81) we know that

$$
\begin{aligned}
\frac{\partial \psi}{\partial t} \leq & g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} \psi-2 g^{\alpha \beta} \widetilde{\nabla}_{\alpha}\left|\widetilde{\nabla}^{m-1} g\right|^{2} \cdot \widetilde{\nabla}_{\beta}\left|\widetilde{\nabla}^{m} g\right|^{2}-\frac{1}{2}\left|\widetilde{\nabla}^{m} g\right|^{4} \\
& -\frac{1}{2}\left(a+\left|\widetilde{\nabla}^{m-1} g\right|^{2}\right)\left|\widetilde{\nabla}^{m+1} g\right|^{2}+c_{0}\left|\widetilde{\nabla}^{m} g\right|^{3}+c_{0}
\end{aligned}
$$

where we have used (82), and therefore that

$$
\begin{gather*}
\frac{\partial \psi}{\partial t} \leq g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} \psi-2 g^{\alpha \beta} \widetilde{\nabla}_{\alpha}\left|\widetilde{\nabla}^{m-1} g\right|^{2} \cdot \widetilde{\nabla}_{\beta}\left|\widetilde{\nabla}^{m} g\right|^{2}-\frac{1}{4}\left|\widetilde{\nabla}^{m} g\right|^{4} \\
-\frac{1}{2}\left(a+\left|\widetilde{\nabla}^{m-1} g\right|^{2}\right)\left|\widetilde{\nabla}^{m+1} g\right|^{2}+c_{0}\left(a, m, n, \gamma, \delta, T, \tilde{g}_{i j}\right) \tag{83}\\
\text { on } B\left(x_{0}, \gamma+\delta / m\right) \times[0, T] \\
-2 g^{\alpha \beta} \widetilde{\nabla}_{\alpha}\left|\widetilde{\nabla}^{m-1} g\right|^{2} \cdot \widetilde{\nabla}_{\beta}\left|\widetilde{\nabla}^{m} g\right|^{2} \\
=-8 g^{-1} * \widetilde{\nabla}^{m-1} g * \tilde{\nabla}^{m} g * \widetilde{\nabla}^{m} g * \widetilde{\nabla}^{m+1} g, \\
-2 g^{\alpha \beta} \widetilde{\nabla}_{\alpha}\left|\widetilde{\nabla}^{m-1} g\right|^{2} \cdot \widetilde{\nabla}_{\beta}\left|\widetilde{\nabla}^{m} g\right|^{2} \\
\leq 16 \cdot\left|\widetilde{\nabla}^{m-1} g\right| \cdot\left|\widetilde{\nabla}^{m} g\right|^{2} \cdot\left|\widetilde{\nabla}^{m+1} g\right| .
\end{gather*}
$$

Using induction hypothesis (68) and (84) we get

$$
\begin{align*}
& -2 g^{\alpha \beta} \widetilde{\nabla}_{\alpha}\left|\widetilde{\nabla}^{m-1} g\right|^{2} \cdot \widetilde{\nabla}_{\beta}\left|\widetilde{\nabla}^{m} g\right|^{2} \\
& \quad \leq \tilde{c}_{0}\left(m, n, \gamma, \delta, T, \tilde{g}_{i j}\right) \cdot\left|\widetilde{\nabla}^{m} g\right|^{2}\left|\widetilde{\nabla}^{m+1} g\right| \tag{85}\\
& \quad \leq \frac{1}{2} a\left|\widetilde{\nabla}^{m+1} g\right|^{2}+\frac{1}{2 a} \tilde{c}_{0}\left(m, n, \gamma, \delta, T, \tilde{g}_{i j}\right)^{2}\left|\widetilde{\nabla}^{m} g\right|^{4}
\end{align*}
$$

Substituting (85) into (83) yields

$$
\begin{align*}
\frac{\partial \psi}{\partial t} \leq & g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} \psi+\frac{1}{2 a} \tilde{c}_{0}\left(m, n, \gamma, \delta, T, \tilde{g}_{i j}\right)^{2}\left|\widetilde{\nabla}^{m} g\right|^{4} \\
& -\frac{1}{4}\left|\widetilde{\nabla}^{m} g\right|^{4}+c_{0}\left(a, m, n, \gamma, \delta, T, \tilde{g}_{i j}\right) . \tag{86}
\end{align*}
$$

If we choose

$$
\begin{equation*}
a=4\left[\tilde{c}_{0}\left(m, n, \gamma, \delta, T, \tilde{g}_{i j}\right)^{2}+1\right], \tag{87}
\end{equation*}
$$

then by (86) we get

$$
\begin{equation*}
\frac{\partial \psi}{\partial t} \leq g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} \psi-\frac{1}{8}\left|\widetilde{\nabla}^{m} g\right|^{4}+c_{0} \tag{88}
\end{equation*}
$$

on $B\left(x_{0}, \gamma+\delta / m\right) \times[0, T]$,

$$
\begin{equation*}
\frac{\partial \psi}{\partial t} \leq g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} \psi-\frac{\psi^{2}}{8\left[a+\left|\widetilde{\nabla}^{m-1} g\right|^{2}\right]^{2}}+c_{0} \tag{89}
\end{equation*}
$$

From (82) it follows that there exists a constant $c_{1}>0$ depending only on m, n, γ, δ, T, and $\tilde{g}_{i j}$ such that

$$
\begin{equation*}
\frac{\partial \psi}{\partial t} \leq g^{\alpha \beta} \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} \psi-c_{1} \psi^{2}+c_{0}\left(m, n, \gamma, \delta, T, \tilde{g}_{i j}\right) \tag{90}
\end{equation*}
$$

on $B\left(x_{0}, \gamma+\delta / m\right) \times[0, T]$.
By means of the maximal principle on (90) and the same reasoning as we used for (33)-(65) we know that there exists a constant $c_{2}\left(m, n, \gamma, \delta, T, \tilde{g}_{i j}\right)$ >0 such that

$$
\begin{equation*}
\psi(x, t) \leq c_{2}\left(m, n, \gamma, \delta, T, \tilde{g}_{i j}\right) \quad \text { on } B\left(x_{0}, \gamma+\delta /(m+1)\right) \times[0, T] \tag{91}
\end{equation*}
$$

From (80) and (87) it follows that

$$
\begin{equation*}
\psi(x, t) \geq a\left|\tilde{\nabla}^{m} g\right|^{2} \geq 4\left|\tilde{\nabla}^{m} g\right|^{2} \tag{92}
\end{equation*}
$$

which together with (91) implies

$$
\left|\widetilde{\nabla}^{m} g\right|^{2} \leq \frac{1}{4} c_{2}\left(m, n, \gamma, \delta, T, \tilde{g}_{i j}\right) \quad \text { on } B\left(x_{0}, \gamma+\delta /(m+1)\right) \times[0, T] .
$$

Thus Lemma 4.2 is true for the case $k=m$ and hence for all integers $m \geq 0$ by induction.

Now we are going to construct the solution of the modified evolution equation (1) on the whole manifold M. Fix a point $x_{0} \in M$ and choose a family of domains $\left\{D_{\ell} \mid \mathcal{R}=1,2,3, \cdots\right\}$ on M such that for each $R, \partial D_{\ell}$ is a compact $C^{\infty},(n-1)$-dimensional submanifold of M and

$$
\begin{align*}
& \bar{D}_{\ell}=D_{\ell} \cup \partial D_{\ell} \text { is a compact subset of } M, \\
& B\left(x_{0}, \neq\right) \subseteq D_{\ell}, \tag{93}
\end{align*}
$$

where ∂D_{ℓ} is not necessarily connected.
Using Theorem 3.2 and Theorem 2.5 we know that there exists a constant $T\left(n, k_{0}\right)>0$ depending only on n and k_{0} such that the system

$$
\begin{align*}
& \frac{\partial}{\partial t} g_{i j}(\not, x, x, t)=-2 R_{i j}(\not, x, t)+\nabla_{i} V_{j}+\nabla_{j} V_{i}, \quad x \in D_{\ell} \\
& g_{i j}(\ell, x, 0)=\tilde{g}_{i j}(x), \quad x \in D_{\ell} \tag{94}\\
& g_{i j}(\not, x, x) \equiv \tilde{g}_{i j}(x), \quad x \in \partial D_{\ell}, 0 \leq t \leq T
\end{align*}
$$

has an unique smooth solution $g_{i j}(\beta, x, t)>0$ on the time interval $0 \leq$ $t \leq T\left(n, k_{0}\right)$ for each R. We still have

$$
\begin{equation*}
\left(1-\frac{1}{256000 n^{10}}\right) \tilde{g}_{i j}(x) \leq g_{i j}(\not /, x, t) \leq\left(1+\frac{1}{256000 n^{10}}\right) \tilde{g}_{i j}(x) \tag{95}
\end{equation*}
$$

for all $(x, t) \in D_{\ell} \times\left[0, T\left(n, k_{0}\right)\right]$ and all integers $\not Z \geq 1$ by Theorem 2.5.
For any integer $q \geq 1$, from (93) it follows that

$$
\begin{array}{ll}
B\left(x_{0}, q\right) \subseteq D_{\mathscr{K}} & \text { if } k \geq q \\
B\left(x_{0}, q+1\right) \subseteq D_{\ell} & \text { if } k \geq q+1 \tag{96}
\end{array}
$$

Using Lemma 4.2 and (95) we know that for any integer $m \geq 0$ there exist constants $c\left(m, n, q, k_{0}, \tilde{g}_{i j}\right)>0$ depending only on m, n, q, k_{0}, and $\tilde{g}_{i j}$ such that

$$
\begin{equation*}
\left|\tilde{\nabla}^{m} g_{i j}(h, x, t)\right|^{2} \leq c\left(m, n, q, k_{0}, \tilde{g}_{i j}\right) \tag{97}
\end{equation*}
$$

for all $(x, t) \in B\left(x_{0}, q\right) \times\left[0, T\left(n, k_{0}\right)\right]$ and $k \geq q+1$.
Also from (93) we have

$$
\begin{equation*}
M=\bigcup_{\ell=1}^{\infty} D_{\ell} \tag{98}
\end{equation*}
$$

Since the constants $c\left(m, n, q, k_{0}, \tilde{g}_{i j}\right)$ in (97) are independent of k, by (97) the derivatives of $g_{i j}(\boldsymbol{\beta}, x, t)$ are uniformly bounded on any compact subset of M. Let $k \rightarrow+\infty$. From (97) and (98) it follows that there exists a smooth metric $g_{i j}(x, t)>0$ on $M \times\left[0, T\left(n, k_{0}\right)\right]$ such that

$$
\begin{equation*}
g_{i j}(h, x, t) \xrightarrow{C^{\infty}} g_{i j}(x, t) \quad \text { as } h \rightarrow+\infty . \tag{99}
\end{equation*}
$$

This means the metrics $g_{i j}(k, x, t)$ and all of their derivatives converge uniformly to the metric $g_{i j}(x, t)$ and its derivatives respectively on any compact subset of M as $k \rightarrow+\infty$. Thus from (94) and (95) we get the following theorem.

Theorem 4.3. There exists a constant $T\left(n, k_{0}\right)>0$ depending only on n and k_{0} such that the modified evolution equation

$$
\begin{align*}
& \frac{\partial}{\partial t} g_{i j}(x, t)=-2 R_{i j}(x, t)+\nabla_{i} V_{j}+\nabla_{j} V_{i}, \quad x \in M \tag{100}\\
& g_{i j}(x, 0)=\tilde{g}_{i j}(x), \quad x \in M
\end{align*}
$$

has a smooth solution $g_{i j}(x, t)>0$ on $0 \leq t \leq T\left(n, k_{0}\right)$, and satisfies the estimate

$$
\begin{equation*}
\left(1-\frac{1}{256000 n^{10}}\right) \tilde{g}_{i j}(x) \leq g_{i j}(x, t) \leq\left(1+\frac{1}{256000 n^{10}}\right) \tilde{g}_{i j}(x) \tag{101}
\end{equation*}
$$

for all $(x, t) \in M \times\left[0, T\left(n, k_{0}\right)\right]$.

5. First derivative estimate

Suppose $g_{i j}(x, t)>0$ is the smooth solution obtained in Theorem 4.3 on $M \times\left[0, T\left(n, k_{0}\right)\right]$. In this section we are going to estimate the first covariant derivatives of $g_{i j}$ with respect to the metric $\tilde{g}_{i j}$ on the whole manifold M.

If we choose $T\left(n, k_{0}\right)>0$ small enough, then from Theorem 2.5 it follows that

$$
\begin{equation*}
\left[1-\delta\left(n, k_{0}\right)\right] \tilde{g}_{i j}(x) \leq g_{i j}(x, t) \leq\left[1+\delta\left(n, k_{0}\right)\right] \tilde{g}_{i j}(x) \tag{1}
\end{equation*}
$$

for all $(x, t) \in M \times\left[0, T\left(n, k_{0}\right)\right]$, where $\delta\left(n, k_{0}\right)>0$ is the constant in Lemma 3.1. Actually (1) comes from Theorem 2.5 and (99) in $\S 4$.

Using the notation of $\S 3$, let

$$
\begin{equation*}
h_{i j}(x, t)=g_{i j}(x, t)-\tilde{g}_{i j}(x), \quad H_{i j}(x, t)=\frac{1}{\delta} h_{i j}(x, t) \tag{2}
\end{equation*}
$$

Then we have

$$
\begin{align*}
& \frac{\partial}{\partial t} H_{i j}=g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} H_{i j}+B_{i j} \quad \text { on } M \times\left[0, T\left(n, k_{0}\right)\right] \tag{3}\\
& H_{i j}(x, 0) \equiv 0 \quad \forall x \in M
\end{align*}
$$

where $B_{i j}=\frac{1}{\delta} A_{i j}$ was defined in (4) of $\S 3$. From (11) of $\S 3$ it follows

$$
\begin{align*}
& -\left(\frac{8 n \sqrt{k_{0}}}{\delta}+20 \delta\left|\widetilde{\nabla}_{\alpha} H_{\beta \gamma}\right|^{2}\right) \tilde{g}_{i j}(x) \leq B_{i j}(x, t) \tag{4}\\
& \quad \leq\left(\frac{8 n \sqrt{k_{0}}}{\delta}+20 \delta\left|\widetilde{\nabla}_{\alpha} H_{\beta \gamma}\right|^{2}\right) \tilde{g}_{i j}(x) \quad \forall(x, t) \in M \times\left[0, T\left(n, k_{0}\right)\right]
\end{align*}
$$

By using (12), (13) and (14) of $\S 3$ we still have

$$
\begin{align*}
-\tilde{g}_{i j}(x) & \leq H_{i j}(x, t) \leq \tilde{g}_{i j}(x), \\
\frac{1}{1+\delta} \tilde{g}^{\alpha \beta}(x) & \leq g^{\alpha \beta}(x, t) \leq \frac{1}{1-\delta} \tilde{g}^{\alpha \beta}(x), \tag{5}\\
\left|\widetilde{\nabla}_{i} g^{\alpha \beta}\right|^{2} & \leq \frac{\delta^{2}}{(1-\delta)^{4}}\left|\widetilde{\nabla}_{i} H_{k l}\right|^{2}
\end{align*}
$$

on $M \times\left[0, T\left(n, k_{0}\right)\right]$. Let $\gamma_{0}=\frac{1}{8}\left(1 / k_{0}\right)^{1 / 4}$. If the injectivity radius of M at some fixed point $x_{0} \in M$ satisfies

$$
\begin{equation*}
\operatorname{inj}\left(x_{0}\right) \geq \pi\left(1 / k_{0}\right)^{1 / 4} \tag{6}
\end{equation*}
$$

then the geodesic ball $B\left(x_{0}, \gamma_{0}\right) \subseteq M$ is roughly the same as a ball in the Euclidean space \mathbf{R}^{n}. Thus using (3)-(6) and the same arguments as in the proof of Theorem 6.1 in [4, $\S 6$, Chapter VII] we know that if $\delta\left(n, k_{0}\right)>0$ is small enough compared to n and k_{0}, then we can find a constant $\tilde{c}\left(n, k_{0}\right)>$ 0 depending only on n and k_{0} such that

$$
\begin{equation*}
\sup _{(x, t) \in B\left(x_{0}, \gamma_{0}\right) \times\left[0, T\left(n, k_{0}\right)\right]}\left|\widetilde{\nabla} H_{i j}(x, t)\right|^{2} \leq \tilde{c}\left(n, k_{0}\right) . \tag{7}
\end{equation*}
$$

We need condition (6) to prove (7) since in the proof one needs to use the Poincare inequality, the Sobolev inequality and integral estimates. The constants in these inequalities depend on the injectivity radius.

If (6) is not true at x_{0}, we consider the ball

$$
\begin{equation*}
\widehat{B}\left(0, \pi\left(1 / k_{0}\right)^{1 / 4}\right) \subseteq T_{x_{0}} M \tag{8}
\end{equation*}
$$

of radius $\pi\left(1 / k_{0}\right)^{1 / 4}$ in the tangent space at $x_{0} \in M$. Since $\left|\tilde{R}_{i j k l}\right|^{2} \leq k_{0}$, using the comparison theorem we know that

$$
\begin{equation*}
\exp _{x_{0}}: \widehat{B}\left(0, \pi\left(1 / k_{0}\right)^{1 / 4}\right) \rightarrow M \tag{9}
\end{equation*}
$$

is nonsingular; therefore we can use this exponential map to pull everything back from M to $\widehat{B}\left(0, \pi\left(1 / k_{0}\right)^{1 / 4}\right)$ and do the analysis on $\widehat{B}\left(0, \pi\left(1 / k_{0}\right)^{1 / 4}\right)$. For the ball $\widehat{\boldsymbol{B}}\left(0, \gamma_{0}\right) \subseteq T_{x_{0}} M$ of radius $\gamma_{0}=\frac{1}{8}\left(1 / k_{0}\right)^{1 / 4}$ by the same reason as (7) we get

$$
\begin{equation*}
\sup _{(x, t) \in \hat{B}\left(0, \gamma_{0}\right) \times\left[0, T\left(n, k_{0}\right)\right]}\left|\tilde{\nabla} H_{i j}(x, t)\right|^{2} \leq \tilde{c}\left(n, k_{0}\right) . \tag{10}
\end{equation*}
$$

Pushing back to M from (10) we know that (7) is also true for the case when (6) does not hold.

Since $x_{0} \in M$ is arbitrary, from (7) it follows that

$$
\begin{equation*}
\sup _{(x, t) \in M \times\left[0, T\left(n, k_{0}\right)\right]}\left|\tilde{\nabla} H_{i j}(x, t)\right|^{2} \leq \tilde{c}\left(n, k_{0}\right) . \tag{11}
\end{equation*}
$$

Using (2) and (8) we hence have
Theorem 5.1. There exists a constant $T\left(n, k_{0}\right)>0$ depending only on n and k_{0} such that

$$
\begin{equation*}
\sup _{(x, t) \in M \times\left[0, T\left(n, k_{0}\right)\right]}\left|\tilde{\nabla} g_{i j}(x, t)\right|^{2} \leq c\left(n, k_{0}\right) \tag{12}
\end{equation*}
$$

where $c\left(n, k_{0}\right)>0$ depending only on n and k_{0}.

Note. Theorem 5.1 is true only for the solution $g_{i j}(x, t)>0$ constructed in Theorem 4.3, and not for all of the solutions of the modified evolution equation. For the general solution of the modified evolution equation, (1) may not be true.

6. Second derivative estimate

In $\S \S 4$ and 5 we obtained a smooth solution $g_{i j}(x, t)>0$ on $M \times$ [$0, T\left(n, k_{0}\right)$] of the modified evolution equation

$$
\begin{align*}
& \frac{\partial}{\partial t} g_{i j}(x, t)=-2 R_{i j}(x, t)+\nabla_{i} V_{j}+\nabla_{j} V_{i} \tag{1}\\
& g_{i j}(x, 0)=\tilde{g}_{i j}(x) \quad \forall x \in M
\end{align*}
$$

satisfying the following inequalities:

$$
\begin{array}{cl}
\frac{1}{2} \tilde{g}_{i j}(x) \leq g_{i j}(x, t) \leq 2 \tilde{g}_{i j}(x) & \\
& \text { on } M \times\left[0, T\left(n, k_{0}\right)\right] . \tag{2}
\end{array}
$$

In this section we want to estimate the second covariant derivative $\tilde{\nabla} \widetilde{\nabla} g_{i j}$ on M; usually the upper bound of the whole second derivative $\left|\widetilde{\nabla} \widetilde{\nabla} g_{i j}\right|^{2}$ depends not only on n and k_{0}, but also on the first derivative $\widetilde{\nabla} \tilde{R}_{i j k l}$ of the curvature tensor of the initial metric $\tilde{g}_{i j}$. Therefore instead of estimating $\left|\tilde{\nabla} \tilde{\nabla} g_{i j}\right|^{2}$, we want to estimate $\left|R_{i j k l}\right|^{2}$ and $\left|\nabla_{i} V_{j}\right|^{2}$ in terms of n and k_{0}. First, we want to find the evolution equation for $R_{i j k l}$ and $\nabla_{i} V_{j}$.

If we define $y(x, t)=\varphi_{t}(x)$ by the equation

$$
\begin{equation*}
\frac{\partial y^{\alpha}}{\partial t}=\frac{\partial y^{\alpha}}{\partial x^{k}} g^{\beta \gamma}\left(\Gamma_{\beta \gamma}^{k}-\widetilde{\Gamma}_{\beta \gamma}^{k}\right), \quad y^{\alpha}(x, 0)=x^{\alpha} \tag{3}
\end{equation*}
$$

then $\varphi_{t}: M \rightarrow M$ is a family of diffeomorphism (at least locally). Let

$$
\begin{equation*}
g_{i j}(x, t)=\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \hat{g}_{\alpha \beta}(y, t), \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
d \hat{s}_{t}^{2}=\hat{g}_{i j}(x, t) d x^{i} d x^{j}>0, \quad d s_{t}^{2}=g_{i j}(x, t) d x^{i} d x^{j}>0 . \tag{5}
\end{equation*}
$$

Then from (5), (7), (8), (9), (11), (30) and (35) of $\S 2$ it follows that

$$
\begin{equation*}
d s_{t}^{2}=\varphi_{t}^{*} d \hat{s}_{t}^{2} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial}{\partial t} \hat{g}_{i j}(x, t)=-2 \hat{R}_{i j}(x, t), \quad \hat{g}_{i j}(x, 0)=\tilde{g}_{i j}(x) . \tag{7}
\end{equation*}
$$

By (6) we have

$$
\begin{equation*}
R_{i j k l}(x, t)=\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial x^{k}} \frac{\partial y^{\delta}}{\partial x^{l}} \widehat{R}_{\alpha \beta \gamma \delta}(y, t) \tag{8}
\end{equation*}
$$

and therefore

$$
\begin{align*}
\frac{\partial}{\partial t} R_{i j k l}(x, t)= & \frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial x^{k}} \frac{\partial y^{\delta}}{\partial x^{l}} \frac{d}{d t} \widehat{R}_{\alpha \beta \gamma \delta}(y, t) \\
& +\frac{\partial}{\partial t}\left(\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial x^{k}} \frac{\partial y^{\delta}}{\partial x^{l}}\right) \cdot \widehat{R}_{\alpha \beta \gamma \delta}(y, t) \\
= & \frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial x^{k}} \frac{\partial y^{\delta}}{\partial x^{l}} \frac{\partial}{\partial t} \widehat{R}_{\alpha \beta \gamma \delta}(y, t) \tag{9}\\
& +\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial x^{k}} \frac{\partial y^{\delta}}{\partial x^{l}} \frac{\partial y^{\theta}}{\partial t} \frac{\partial}{\partial y^{\theta}} \widehat{R}_{\alpha \beta \gamma \delta}(y, t) \\
& +\frac{\partial}{\partial t}\left(\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial x^{k}} \frac{\partial y^{\delta}}{\partial x^{l}}\right) \cdot \widehat{R}_{\alpha \beta \gamma \delta}(y, t) .
\end{align*}
$$

From Theorem 7.1 of [3] it follows that

$$
\begin{equation*}
\frac{\partial}{\partial t} \widehat{R}_{i j k l}=\hat{g}^{\alpha \beta} \widehat{\nabla}_{\alpha} \widehat{\nabla}_{\beta} \widehat{R}_{i j k l}+\hat{\psi}_{i j k l} \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
\hat{\psi}_{i j k l}= & 2\left(\hat{B}_{i j k l}-\hat{B}_{i j l k}-\hat{B}_{i l j k}+\hat{B}_{i k j l}\right) \\
& -\hat{g}^{p q}\left(\widehat{R}_{p j k l} \widehat{R}_{q i}+\widehat{R}_{i p k l} \widehat{R}_{q j}+\widehat{R}_{i j p l} \widehat{R}_{q k}+\widehat{R}_{i j k p} \widehat{R}_{q l}\right), \\
\widehat{B}_{i j k l}= & \hat{g}^{p \gamma} \hat{g}^{q s} \widehat{R}_{p i q j} \widehat{R}_{\gamma k s l} .
\end{aligned}
$$

Thus

$$
\begin{align*}
& \frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial x^{k}} \frac{\partial y^{\delta}}{\partial x^{l}} \frac{\partial}{\partial t} \widehat{R}_{\alpha \beta \gamma \delta}(y, t) \tag{11}\\
& \quad=\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial x^{k}} \frac{\partial y^{\delta}}{\partial x^{l}}\left(\hat{g}^{\lambda \eta} \widehat{\nabla}_{\lambda} \widehat{\nabla}_{\eta} \widehat{R}_{\alpha \beta \gamma \delta}+\hat{\psi}_{\alpha \beta r \delta}\right)
\end{align*}
$$

By (6) we have

$$
\begin{equation*}
\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial x^{k}} \frac{\partial y^{\delta}}{\partial x^{l}} \hat{g}^{\lambda \eta} \widehat{\nabla}_{\lambda} \widehat{\nabla}_{\eta} \widehat{R}_{\alpha \beta \gamma \delta}=g^{p q} \nabla_{p} \nabla_{q} R_{i j k l} \tag{12}
\end{equation*}
$$

If we let $\Delta=g^{p q} \nabla_{p} \nabla_{q}$ be the Laplacian operator of the metric $g_{i j}$, then from (11) and (12) it follows that

$$
\begin{equation*}
\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial x^{k}} \frac{\partial y^{\delta}}{\partial x^{l}} \frac{\partial}{\partial t} \widehat{R}_{\alpha \beta \gamma \delta}(y, t)=\Delta R_{i j k l}+\psi_{i j k l} \tag{13}
\end{equation*}
$$

where

$$
\begin{align*}
\psi_{i j k l}= & 2\left(B_{i j k l}-B_{i j l k}-B_{i l j k}+B_{i k j l}\right) \\
& -g^{p q}\left(R_{p j k l} R_{q i}+R_{i p k l} R_{q j}+R_{i j p l} R_{q k}+R_{i j k p} R_{q l}\right), \tag{14}\\
B_{i j k l}= & g^{p \gamma} g^{q s} R_{p i q j} R_{\gamma k s l} .
\end{align*}
$$

Since

$$
\frac{\partial}{\partial y^{\theta}} \widehat{R}_{\alpha \beta \gamma \delta}(y, t)=\frac{\partial x^{p}}{\partial y^{\theta}} \frac{\partial}{\partial x^{p}} \widehat{R}_{\alpha \beta \gamma \delta}(y, t),
$$

we have

$$
\begin{align*}
& \frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial x^{k}} \frac{\partial y^{\delta}}{\partial x^{l}} \frac{\partial y^{\theta}}{\partial t} \frac{\partial}{\partial y^{\theta}} \widehat{R}_{\alpha \beta \gamma \delta}(y, t) \\
& \quad=\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial x^{k}} \frac{\partial y^{\delta}}{\partial x^{l}} \frac{\partial y^{\theta}}{\partial t} \frac{\partial x^{p}}{\partial y^{\theta}} \frac{\partial}{\partial x^{p}} \widehat{R}_{\alpha \beta \gamma \delta}(y, t) \\
& \quad=\frac{\partial y^{\theta}}{\partial t} \frac{\partial x^{p}}{\partial y^{\theta}} \frac{\partial}{\partial x^{p}}\left(\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial x^{k}} \frac{\partial y^{\delta}}{\partial x^{l}} \widehat{R}_{\alpha \beta \gamma \delta}(y, t)\right) \tag{15}\\
& \quad-\frac{\partial y^{\theta}}{\partial t} \frac{\partial x^{p}}{\partial y^{\theta}} \frac{\partial}{\partial x^{p}}\left(\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial x^{k}} \frac{\partial y^{\delta}}{\partial x^{l}}\right) \cdot \widehat{R}_{\alpha \beta \gamma \delta}(y, t) .
\end{align*}
$$

By (3) and the definition of V_{i},

$$
\begin{equation*}
V_{i}=g_{i j} g^{\beta \gamma}\left(\Gamma_{\beta \gamma}^{j}-\widetilde{\Gamma}_{\beta \gamma}^{j}\right), \tag{16}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{\partial y^{\alpha}}{\partial t}=\frac{\partial y^{\alpha}}{\partial x^{k}} V_{l} \cdot g^{k l} \tag{17}
\end{equation*}
$$

thus

$$
\begin{equation*}
\frac{\partial y^{\theta}}{\partial t} \frac{\partial x^{p}}{\partial y^{\theta}}=g^{p q} V_{q} . \tag{18}
\end{equation*}
$$

From (8), (15), and (18) it follows that

$$
\begin{aligned}
& \frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial x^{k}} \frac{\partial y^{\delta}}{\partial x^{l}} \frac{\partial y^{\theta}}{\partial t} \frac{\partial}{\partial y^{\theta}} \widehat{R}_{\alpha \beta r \delta}(y, t) \\
& \quad=g^{p q} V_{q} \cdot \frac{\partial}{\partial x^{p}} R_{i j k l}-g^{p q} \cdot V_{q} \frac{\partial}{\partial x^{p}}\left(\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial x^{k}} \frac{\partial y^{\delta}}{\partial x^{l}}\right) \cdot \widehat{R}_{\alpha \beta \gamma \delta} .
\end{aligned}
$$

Using (8) again, we get

$$
\begin{align*}
& \frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial x^{k}} \frac{\partial y^{\delta}}{\partial x^{l}} \frac{\partial y^{\theta}}{\partial t} \frac{\partial}{\partial y \theta} \widehat{R}_{\alpha \beta \gamma \delta}(y, t)=g^{p q} V_{q} \cdot \frac{\partial}{\partial x^{p}} R_{i j k l} \tag{19}\\
& \quad-g^{p q} V_{q}\left(\frac{\partial^{2} y^{\alpha}}{\partial x^{p} \partial x^{i}} \frac{\partial x^{s}}{\partial y^{\alpha}} R_{s j k l}+\frac{\partial^{2} y^{\beta}}{\partial x^{p} \partial x^{j}} \frac{\partial x^{s}}{\partial y^{\beta}} R_{i s k l}\right. \\
& \left.\quad+\frac{\partial^{2} y^{\gamma}}{\partial x^{p} \partial x^{k}} \frac{\partial x^{s}}{\partial y^{\gamma}} R_{i j s l}+\frac{\partial^{2} y^{\delta}}{\partial x^{p} \partial x^{l}} \frac{\partial x^{s}}{\partial y^{\delta}} R_{i j k s}\right), \\
& \frac{\partial}{\partial t}\left(\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial x^{k}} \frac{\partial y^{\delta}}{\partial x^{l}}\right) \cdot \hat{R}_{\alpha \beta \gamma \delta}(y, t) \\
& \quad=\frac{\partial}{\partial x^{i}}\left(\frac{\partial y^{\alpha}}{\partial t}\right) \cdot \frac{\partial x^{s}}{\partial y^{\alpha}} R_{s j k l}+\frac{\partial}{\partial x^{j}}\left(\frac{\partial y^{\beta}}{\partial t}\right) \cdot \frac{\partial x^{s}}{\partial y^{\beta}} R_{i s k l} \\
& \quad+\frac{\partial}{\partial x^{k}}\left(\frac{\partial y^{\gamma}}{\partial t}\right) \cdot \frac{\partial x^{s}}{\partial y^{\gamma}} R_{i j s l}+\frac{\partial}{\partial x^{l}}\left(\frac{\partial y^{\delta}}{\partial t}\right) \cdot \frac{\partial x^{s}}{\partial y^{\delta}} R_{i j k s .} .
\end{align*}
$$

By means of (17) we obtain

$$
\begin{align*}
& \frac{\partial}{\partial t}\left(\frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} \frac{\partial y^{\gamma}}{\partial x^{k}} \frac{\partial y^{\delta}}{\partial x^{l}}\right) \cdot \hat{R}_{\alpha \beta \gamma \delta}(y, t) \\
&=g^{p q} V_{q}\left(\frac{\partial^{2} y^{\alpha}}{\partial x^{i} \partial x^{p}}\right. \frac{\partial x^{s}}{\partial y^{\alpha}} R_{s j k l}+\frac{\partial^{2} y^{\beta}}{\partial x^{j} \partial x^{p}} \frac{\partial x^{s}}{\partial y^{\beta}} R_{i s k l} \\
&\left.+\frac{\partial^{2} y^{\gamma}}{\partial x^{k} \partial x^{p}} \frac{\partial x^{s}}{\partial y^{\gamma}} R_{i j s l}+\frac{\partial^{2} y^{\delta}}{\partial x^{l} \partial x^{p}} \frac{\partial x^{s}}{\partial y^{\delta}} R_{i j k s}\right) \tag{20}\\
&+R_{p j k l} \frac{\partial}{\partial x^{i}}\left(g^{p q} V_{q}\right)+R_{i p k l} \frac{\partial}{\partial x^{j}}\left(g^{p q} V_{q}\right) \\
&+R_{i j p l} \frac{\partial}{\partial x^{k}}\left(g^{p q} V_{q}\right)+R_{i j k p} \frac{\partial}{\partial x^{l}}\left(g^{p q} V_{q}\right) .
\end{align*}
$$

Substituting (13), (19), and (20) into (9) yields

$$
\begin{align*}
\frac{\partial}{\partial t} R_{i j k l}= & \Delta R_{i j k l}+\psi_{i j k l}+g^{p q} V_{q} \cdot \frac{\partial}{\partial x^{p}} R_{i j k l} \\
& +R_{p j k l} \frac{\partial}{\partial x^{i}}\left(g^{p q} V_{q}\right)+R_{i p k l} \frac{\partial}{\partial x^{j}}\left(g^{p q} V_{q}\right) \tag{21}\\
& +R_{i j p l} \frac{\partial}{\partial x^{k}}\left(g^{p q} V_{q}\right)+R_{i j k p} \frac{\partial}{\partial x^{l}}\left(g^{p q} V_{q}\right) .
\end{align*}
$$

If we choose a coordinate system $\left\{x^{i}\right\}$ such that at one point

$$
\begin{equation*}
\frac{\partial g_{i j}}{\partial x^{k}}=0 \tag{22}
\end{equation*}
$$

then from (21) we get
(23)

$$
\begin{aligned}
\frac{\partial}{\partial t} R_{i j k l}= & \Delta R_{i j k l}+\psi_{i j k l}+g^{p q} V_{q} \cdot \nabla_{p} R_{i j k l} \\
& +g^{p q}\left(R_{p j k l} \nabla_{i} V_{q}+R_{i p k l} \nabla_{j} V_{q}+R_{i j p l} \nabla_{k} V_{q}+R_{i j k p} \nabla_{l} V_{q}\right)
\end{aligned}
$$

where $\psi_{i j k l}$ was defined by (14).
From (22) it follows that at one point $\Gamma_{i j}^{k}=0$, and therefore that

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\Gamma_{k l}^{p}-\tilde{\Gamma}_{k l}^{p}\right)= & \frac{\partial}{\partial t} \Gamma_{k l}^{p}=\frac{1}{2} \frac{\partial}{\partial t}\left[g^{p q}\left(\frac{\partial g_{q k}}{\partial x^{l}}+\frac{\partial g_{q l}}{\partial x^{k}}-\frac{\partial g_{k l}}{\partial x^{q}}\right)\right] \\
= & \frac{1}{2} g^{p q}\left[\frac{\partial}{\partial x^{l}}\left(\frac{\partial}{\partial t} g_{q k}\right)+\frac{\partial}{\partial x^{k}}\left(\frac{\partial}{\partial t} g_{q l}\right)-\frac{\partial}{\partial x^{q}}\left(\frac{\partial}{\partial t} g_{k l}\right)\right] \\
= & \frac{1}{2} g^{p q}\left[\nabla_{l}\left(\frac{\partial}{\partial t} g_{q k}\right)+\nabla_{k}\left(\frac{\partial}{\partial t} g_{q l}\right)-\nabla_{q}\left(\frac{\partial}{\partial t} g_{k l}\right)\right] \\
= & \frac{1}{2} g^{p q}\left[\nabla_{l}\left(-2 R_{q k}+\nabla_{q} V_{k}+\nabla_{k} V_{q}\right)\right. \\
& \quad+\nabla_{k}\left(-2 R_{q l}+\nabla_{q} V_{l}+\nabla_{l} V_{q}\right) \\
& \left.\left.\quad-\nabla_{q}\left(-2 R_{k l}+\nabla_{k} V_{l}+\nabla_{l} V_{k}\right]\right)\right] \\
(24) & g^{p q}\left(\nabla_{q} R_{k l}-\nabla_{k} R_{q l}-\nabla_{l} R_{q k}\right) \\
& +\frac{1}{2} g^{p q}\left(\nabla_{l} \nabla_{q} V_{k}\right. \\
& \left.+\nabla_{l} \nabla_{k} V_{q}+\nabla_{k} \nabla_{l} V_{q}+\nabla_{k} \nabla_{q} V_{l}-\nabla_{q} \nabla_{k} V_{l}-\nabla_{q} \nabla_{l} V_{k}\right) \\
g^{k l} g_{i p} \frac{\partial}{\partial t}\left(\Gamma_{k l}^{p}-\tilde{\Gamma}_{k l}^{p}\right)= & g^{k l}\left(\nabla_{i} R_{k l}-\nabla_{k} R_{i l}-\nabla_{l} R_{i k}\right) \\
& +\frac{1}{2} g^{k l}\left(\nabla_{l} \nabla_{i} V_{k}+\nabla_{l} \nabla_{k} V_{i}+\nabla_{k} \nabla_{l} V_{i}+\nabla_{k} \nabla_{i} V_{l}\right. \\
& \left.-\nabla_{i} \nabla_{k} V_{l}-\nabla_{i} \nabla_{l} V_{k}\right) .
\end{aligned}
$$

From the Bianchi identity we have

$$
g^{k l} \nabla_{i} R_{k l}=\nabla_{i} R, \quad g^{k l} \nabla_{k} R_{i l}=\frac{1}{2} \nabla_{i} R, \quad g^{k l} \nabla_{l} R_{i k}=\frac{1}{2} \nabla_{i} R,
$$

and therefore

$$
\begin{equation*}
g^{k l}\left(\nabla_{i} R_{k l}-\nabla_{k} R_{i l}-\nabla_{l} R_{i k}\right)=0 \tag{25}
\end{equation*}
$$

The following formulas are well known:

$$
\begin{align*}
& \nabla_{k} \nabla_{i} V_{l}-\nabla_{i} \nabla_{k} V_{l}=g^{p q} R_{k i l p} V_{q}, \\
& \nabla_{l} \nabla_{i} V_{k}-\nabla_{i} \nabla_{l} V_{k}=g^{p q} R_{l i k p} V_{q} . \tag{26}
\end{align*}
$$

Substituting (25) and (26) into (24) gives

$$
\begin{equation*}
g^{k l} g_{i p} \frac{\partial}{\partial t}\left(\Gamma_{k l}^{p}-\tilde{\Gamma}_{k l}^{p}\right)=g^{k l} \nabla_{k} \nabla_{l} V_{i}+g^{p q} R_{i p} V_{q}, \tag{27}
\end{equation*}
$$

$$
\begin{aligned}
\frac{\partial}{\partial t} V_{i}= & \frac{\partial}{\partial t}\left[g^{k l} g_{i p}\left(\Gamma_{k l}^{p}-\tilde{\Gamma}_{k l}^{p}\right)\right] \\
= & g^{k l} g_{i p} \frac{\partial}{\partial t}\left(\Gamma_{k l}^{p}-\tilde{\Gamma}_{k l}^{p}\right)+g^{k l}\left(\frac{\partial}{\partial t} g_{i p}\right) \cdot\left(\Gamma_{k l}^{p}-\tilde{\Gamma}_{k l}^{p}\right) \\
& +\left(\frac{\partial}{\partial t} g^{k l}\right) \cdot g_{i p}\left(\Gamma_{k l}^{p}-\tilde{\Gamma}_{k l}^{p}\right) \\
= & g^{k l} \nabla_{k} \nabla_{l} V_{i}+g^{k l} R_{i k} V_{l}+\left(\frac{\partial}{\partial t} g_{i p}\right) \cdot g^{k l}\left(\Gamma_{k l}^{p}-\tilde{\Gamma}_{k l}^{p}\right) \\
& +\left(\frac{\partial}{\partial t} g^{k l}\right) \cdot g_{i p}\left(\Gamma_{k l}^{p}-\tilde{\Gamma}_{k l}^{p}\right) .
\end{aligned}
$$

Since $g^{k l} \nabla_{k} \nabla_{l} V_{i}=\Delta V_{i}$ and $g^{k l}\left(\Gamma_{k l}^{p}-\tilde{\Gamma}_{k l}^{p}\right)=g^{p q} V_{q}$,

$$
\begin{align*}
\frac{\partial}{\partial t} V_{i}= & \Delta V_{i}+g^{k l} R_{i k} V_{l}+\left(\frac{\partial}{\partial t} g_{i p}\right) \cdot g^{p q} V_{q} \tag{28}\\
& +\left(\frac{\partial}{\partial t} g^{k l}\right) \cdot g_{i p}\left(\Gamma_{k l}^{p}-\tilde{\Gamma}_{k l}^{p}\right)
\end{align*}
$$

We still use $g, g^{-1}, \mathrm{Rm}, \nabla^{k} \mathrm{Rm}$, and $*$ to denote, respectively, the tensors $g_{i j}, g^{i j}, R_{i j k l}$, the k th covariant derivative of Rm , and the tensor product.
Let
$g^{2}=g * g, g^{3}=g * g * g, \cdots, g^{-2}=g^{-1} * g^{-1}, g^{-3}=g^{-1} * g^{-1} * g^{-1}, \cdots$.
Since $R_{i j}=g^{k l} R_{i k j l}$, Ricci curvature can be denoted as $g^{-1} * \mathrm{Rm}$.
Since $\frac{\partial}{\partial t} g^{i j}=-g^{i k} g^{j l} \frac{\partial}{\partial t} g_{k l}$, we have

$$
\begin{equation*}
\frac{\partial}{\partial t} g^{-1}=g^{-2} * \frac{\partial}{\partial t} g \tag{30}
\end{equation*}
$$

From (1) it follows that

$$
\begin{equation*}
\frac{\partial}{\partial t} g=g^{-1} * \mathrm{Rm}+\nabla V \tag{31}
\end{equation*}
$$

where V denotes the tensor $\left\{V_{i}\right\}$. From (39) of $\S 2$ and (14) we know that

$$
\begin{gather*}
V=g^{-1} * \tilde{\nabla} g \tag{32}\\
\psi_{i j k l}=g^{-2} * \mathrm{Rm} * \mathrm{Rm} \tag{33}
\end{gather*}
$$

Thus using (23) we get

$$
\begin{align*}
\frac{\partial}{\partial t} R_{i j k l}= & \Delta R_{i j k l}+g^{-2} * \mathrm{Rm} * \mathrm{Rm}+g^{-2} * V * \nabla \mathrm{Rm} \tag{34}\\
& +g^{-1} * \mathrm{Rm} * \nabla V
\end{align*}
$$

From (28) it follows that

$$
\begin{align*}
\frac{\partial}{\partial t} V_{i}= & \Delta V_{i}+g^{-2} * \mathrm{Rm} * V+g^{-1} * V * \frac{\partial g}{\partial t} \\
& +g^{-1} * \tilde{\nabla} g * \frac{\partial}{\partial t} g^{-1} * g . \tag{35}
\end{align*}
$$

Substituting (30), (31), and (32) into (35) hence yields
Lemma 6.1. The following equations hold:

$$
\begin{align*}
\frac{\partial}{\partial t} R_{i j k l}= & \Delta R_{i j k l}+g^{-2} * \mathrm{Rm} * \mathrm{Rm}+g^{-1} * V * \nabla \mathrm{Rm} \tag{36}\\
& +g^{-1} * \mathrm{Rm} * \nabla V \\
\frac{\partial}{\partial t} V_{i}= & \Delta V_{i}+g^{-3} * \tilde{\nabla} g * \mathrm{Rm}+g^{-2} * \tilde{\nabla} g * \nabla V \tag{37}
\end{align*}
$$

To estimate the curvature $R_{i j k l}$ and $\nabla_{i} V_{j}$ we need the integral estimate of them. Define the volume element

$$
\begin{equation*}
d w_{t}=\sqrt{\operatorname{det}\left(g_{i j}(x, t)\right)} d x^{1} d x^{2} \cdots d x^{n} \tag{38}
\end{equation*}
$$

Then

$$
\begin{align*}
\frac{\partial}{\partial t} d w_{t} & =\frac{1}{2 \sqrt{\operatorname{det}\left(g_{i j}\right)}} \cdot \operatorname{det}\left(g_{i j}\right) \cdot g^{i j} \cdot\left(\frac{\partial}{\partial t} g_{i j}\right) \cdot d x^{1} d x^{2} \cdots d x^{n} \\
& =\frac{1}{2}\left(g^{i j} \frac{\partial}{\partial t} g_{i j}\right) d w_{t}=\frac{1}{2}\left(-2 R_{i j}+\nabla_{i} V_{j}+\nabla_{j} V_{i}\right) \cdot g^{i j} \cdot d w_{t} \tag{39}\\
\frac{\partial}{\partial t} d w_{t} & =\left(-R+g^{i j} \nabla_{i} V_{j}\right) d w_{t} .
\end{align*}
$$

In this section we use $\left.\left|\left.\right|^{2}\right.$ and $|\right|_{0} ^{2}$ to denote the norms with respect to the metrics $g_{i j}(x, t)$ and $\tilde{g}_{i j}(x)$ respectively. Using (2) we know that these two norms are equivalent to each other.

For any point $x_{0} \in M$, we denote by $B\left(x_{0}, \gamma\right)$ the geodesic ball, centered at x_{0}, of radius γ with respect to the metric $\tilde{g}_{i j}$. Let $T=T\left(n, k_{0}\right)$ be the number in (2). Then we have the following lemma.

Lemma 6.2. For any $x_{0} \in M$ and $0<\gamma<+\infty$ we have

$$
\int_{0}^{T} \int_{B\left(x_{0}, \gamma\right)}\left|\tilde{\nabla} \tilde{\nabla} g_{i j}(x, t)\right|_{0}^{2} d w_{0} d t \leq c_{0}\left(n, k_{0}, \gamma\right)
$$

where $0<c_{0}\left(n, k_{0}, \gamma\right)<+\infty$ is some constant depending only on n, k_{0}, and γ.

Proof. Similar to (39) and (40) of $\S 4$, using the mollifier technique we can find a function $\xi(x) \in C_{0}^{\infty}(M)$ such that

$$
\begin{equation*}
|\widetilde{\nabla} \xi(x)|_{0} \leq 8, \quad x \in M \tag{40}
\end{equation*}
$$

$$
\begin{array}{ll}
\xi(x) \equiv 1, & x \in B\left(x_{0}, \gamma\right), \\
\xi(x) \equiv 0, & x \in M \backslash B\left(x_{0}, \gamma+\frac{1}{2}\right) \\
0 \leq \xi(x) \leq 1, & x \in M . \tag{41}
\end{array}
$$

Let

$$
\begin{equation*}
\Omega=B\left(x_{0}, \gamma+1\right) \tag{42}
\end{equation*}
$$

From Lemma 2.1 we have

$$
\begin{align*}
\frac{\partial}{\partial t} \widetilde{\nabla}_{k} g_{i j} & =g^{\alpha \beta} \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta}\left(\widetilde{\nabla}_{k} g_{i j}\right)+g^{-1} * g * \widetilde{\nabla} \tilde{\mathrm{R}} \mathrm{~m} \\
& +g^{-2} * g * \widetilde{\nabla} g * \widetilde{\mathrm{R}} \mathrm{~m}+g^{-2} * \widetilde{\nabla} g * \widetilde{\nabla} \widetilde{\nabla} g \tag{43}\\
& +g^{-3} * \widetilde{\nabla} g * \widetilde{\nabla} g * \widetilde{\nabla} g
\end{align*}
$$

and therefore

$$
\begin{align*}
& \frac{\partial}{\partial t} \int_{\Omega}\left|\widetilde{\nabla}_{k} g_{i j}(x, t)\right|_{0}^{2} \xi(x)^{2} d w_{0} \\
& \quad=2 \int_{\Omega} \widetilde{\nabla}_{k} g_{i j} \cdot \frac{\partial}{\partial t} \widetilde{\nabla}_{k} g_{i j} \cdot \xi(x)^{2} d w_{0} \\
& =2 \int_{\Omega} \widetilde{\nabla}_{k} g_{i j} \cdot g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta}\left(\widetilde{\nabla}_{k} g_{i j}\right) \cdot \xi(x)^{2} d w_{0} \tag{44}\\
& \quad+\int_{\Omega} g^{-1} * g * \widetilde{\nabla} g * \widetilde{\nabla} \widetilde{\mathrm{R}} m \cdot \xi(x)^{2} d w_{0} \\
& \quad+\int_{\Omega} \tilde{\nabla} g *\left[g^{-2} * g * \widetilde{\nabla} g * \widetilde{\mathrm{R}} \mathrm{~m}+g^{-2} * \widetilde{\nabla} g * \widetilde{\nabla} \widetilde{\nabla} g\right. \\
& \left.\quad+g^{-3} * \widetilde{\nabla} g * \widetilde{\nabla} g * \widetilde{\nabla} g\right] \xi(x)^{2} d w_{0}
\end{align*}
$$

Using (2) we have

$$
\begin{equation*}
\frac{1}{2} \tilde{g} \leq g \leq 2 \tilde{g}, \quad|\widetilde{\nabla} g|_{0}^{2} \leq c\left(n, k_{0}\right) \quad \text { on } M \times[0, T] \tag{45}
\end{equation*}
$$

using (45) and the condition $|\widetilde{\mathrm{R}} \mathrm{m}|_{0}^{2} \leq k_{0}$ we get
$\tilde{\nabla} g *\left(g^{-2} * g * \tilde{\nabla} g * \widetilde{\mathrm{R}} \mathrm{m}+g^{-2} * \widetilde{\nabla} g * \tilde{\nabla} \widetilde{\nabla} g+g^{-3} * \tilde{\nabla} g * \widetilde{\nabla} g * \widetilde{\nabla} g\right)$
$\leq c_{0}+c_{0}|\tilde{\nabla} \tilde{\nabla} g|_{0}$,

$$
\begin{align*}
\int_{\Omega} \tilde{\nabla} g *\left(g^{-2}\right. & * g * \tilde{\nabla} g * \widetilde{\mathrm{R}} \mathrm{~m}+g^{-2} * \tilde{\nabla} g * \tilde{\nabla} \tilde{\nabla} g \tag{46}\\
+ & \left.g^{-3} * \widetilde{\nabla} g * \widetilde{\nabla} g * \widetilde{\nabla} g\right) \xi(x)^{2} d w_{0} \\
& \leq c_{0} \int_{\Omega}\left(1+|\widetilde{\nabla} \widetilde{\nabla} g|_{0}\right) \xi(x)^{2} d w_{0}
\end{align*}
$$

On the other hand, a use of (41), (42) and the assumption $|\widetilde{R} m|_{0}^{2} \leq k_{0}$ gives

$$
\begin{equation*}
\int_{\Omega} \xi(x)^{2} d w_{0} \leq \int_{\Omega} d w_{0}=\int_{B\left(x_{0}, \gamma+1\right)} d w_{0} \leq c_{0}\left(k_{0}, \gamma\right) \tag{47}
\end{equation*}
$$

Combining (46) and (47) we have

$$
\begin{align*}
& \int_{\Omega} \widetilde{\nabla} g *\left(g^{-2} * g * \widetilde{\nabla} g * \widetilde{\mathrm{R}} \mathrm{~m}+g^{-2} * \widetilde{\nabla} g * \widetilde{\nabla} \widetilde{\nabla} g\right. \\
& \left.\quad+g^{-3} * \widetilde{\nabla} g * \widetilde{\nabla} g * \widetilde{\nabla} g\right) \xi(x)^{2} d w_{0} \\
& \quad \leq c_{0}+c_{0} \int_{\Omega}|\widetilde{\nabla} \widetilde{\nabla} g|_{0} \xi(x)^{2} d w_{0} \tag{48}
\end{align*}
$$

where c_{0} means some constant depending only on n, k_{0}, and γ; they may not be the same as each other.

By integration by parts, we get

$$
\begin{align*}
2 \int_{\Omega} & \tilde{\nabla}_{k} g_{i j} \cdot g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta}\left(\tilde{\nabla}_{k} g_{i j}\right) \cdot \xi(x)^{2} d w_{0} \\
= & -2 \int_{\Omega} \tilde{\nabla}_{\beta}\left(\widetilde{\nabla}_{k} g_{i j}\right) \cdot \widetilde{\nabla}_{\alpha}\left[g^{\alpha \beta} \cdot \tilde{\nabla}_{k} g_{i j} \cdot \xi(x)^{2}\right] d w_{0} \\
= & -2 \int_{\Omega} g^{\alpha \beta} \tilde{\nabla}_{\beta} \tilde{\nabla}_{k} g_{i j} \cdot \tilde{\nabla}_{\alpha} \widetilde{\nabla}_{k} g_{i j} \cdot \xi(x)^{2} d w_{0} \tag{49}\\
& +\int_{\Omega} \tilde{\nabla} \tilde{\nabla} g * \widetilde{\nabla} g^{-1} * \widetilde{\nabla} g \cdot \xi(x)^{2} d w_{0} \\
& +\int_{\Omega} g^{-1} * \widetilde{\nabla} \tilde{\nabla} g * \xi(x) * \tilde{\nabla} \xi * \widetilde{\nabla} g \cdot d w_{0}
\end{align*}
$$

On the other hand, using (40), (41), and (45) we have

$$
\begin{align*}
& \int_{\Omega} g^{-1} * \tilde{\nabla} \tilde{\nabla} g * \xi(x) * \tilde{\nabla} \xi * \tilde{\nabla} g \cdot d w_{0} \tag{50}\\
& \quad \leq c_{0} \int_{\Omega}|\tilde{\nabla} \tilde{\nabla} g|_{0} \xi(x) d w_{0}
\end{align*}
$$

Since $\tilde{\nabla} g^{-1}=g^{-2} * \tilde{\nabla} g$, from (45) it follows that

$$
\begin{equation*}
\left|\tilde{\nabla} g^{-1}\right|_{0}^{2} \leq c_{0} \tag{51}
\end{equation*}
$$

thus

$$
\begin{align*}
& \int_{\Omega} \tilde{\nabla} \tilde{\nabla} g * \tilde{\nabla} g^{-1} * \tilde{\nabla} g * \xi(x)^{2} d w_{0} \tag{52}\\
& \quad \leq c_{0} \int_{\Omega}|\tilde{\nabla} \tilde{\nabla} g|_{0} \cdot \xi(x)^{2} d w_{0} \leq c_{0} \int_{\Omega}|\tilde{\nabla} \tilde{\nabla} g|_{0} \cdot \xi(x) d w_{0}
\end{align*}
$$

From (45) we know that

$$
\begin{equation*}
g^{\alpha \beta} \widetilde{\nabla}_{\beta} \tilde{\nabla}_{k} g_{i j} \cdot \tilde{\nabla}_{\alpha} \tilde{\nabla}_{k} g_{i j} \geq \frac{1}{2}|\tilde{\nabla} \tilde{\nabla} g|_{0}^{2} . \tag{53}
\end{equation*}
$$

A use of (49), (50), (52), and (53) yields

$$
\begin{align*}
& 2 \int_{\Omega} \tilde{\nabla}_{k} g_{i j} \cdot g^{\alpha \beta} \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta}\left(\tilde{\nabla}_{k} g_{i j}\right) \cdot \xi(x)^{2} d w_{0} \\
& \quad \leq-\int_{\Omega}|\tilde{\nabla} \widetilde{\nabla} g|_{0}^{2} \xi(x)^{2} d w_{0}+c_{0} \int_{\Omega}|\tilde{\nabla} \widetilde{\nabla} g|_{0} \cdot \xi(x) d w_{0} \tag{54}\\
& \quad \leq-\frac{1}{2} \int_{\Omega}|\tilde{\nabla} \tilde{\nabla} g|_{0}^{2} \xi(x)^{2} d w_{0}+c_{0}
\end{align*}
$$

By using integration by parts again, we have

$$
\begin{align*}
& \int_{\Omega} g^{-1} * g * \widetilde{\nabla} g * \tilde{\nabla} \tilde{\mathrm{R}} \mathrm{~m} \cdot \xi(x)^{2} d w_{0} \tag{55}\\
& \quad=-\int_{\Omega} \tilde{\mathrm{R}} \mathrm{~m} * \tilde{\nabla}\left(g^{-1} * g * \tilde{\nabla} g * \xi(x)^{2}\right) d w_{0} \\
& \quad=\int_{\Omega} \widetilde{\mathrm{R}} \mathrm{~m} *\left[\widetilde{\nabla} g^{-1} * g * \widetilde{\nabla} g * \xi(x)+g^{-1} * \widetilde{\nabla} g * \widetilde{\nabla} g * \xi(x)\right. \\
& \left.\quad+g^{-1} * g * \widetilde{\nabla} \tilde{\nabla} g * \xi(x)+g^{-1} * g * \widetilde{\nabla} g * \widetilde{\nabla} \xi\right] \xi(x) d w_{0}
\end{align*}
$$

Using $|\widetilde{R} m|_{0}^{2} \leq k_{0}$ and (40), (41), (45), and (51) we get

$$
\begin{align*}
\tilde{\mathrm{R}} \mathrm{~m} * & \left(\widetilde{\nabla} g^{-1} * g * \tilde{\nabla} g * \xi(x)+g^{-1} * \tilde{\nabla} g * \tilde{\nabla} g * \xi(x)\right. \\
& \left.+g^{-1} * g * \widetilde{\nabla} \tilde{\nabla} g * \xi(x)+g^{-1} * g * \widetilde{\nabla} g * \tilde{\nabla} \xi\right) \tag{56}\\
\leq & c_{0}+c_{0}|\tilde{\nabla} \tilde{\nabla} g|_{0} .
\end{align*}
$$

Substituting (56) into (55) gives

$$
\begin{align*}
& \int_{\Omega} g^{-1} * g * \tilde{\nabla} g * \tilde{\nabla} \tilde{\mathrm{R}} \mathrm{~m} \cdot \xi(x)^{2} d w_{0} \tag{57}\\
& \quad \leq c_{0} \int_{\Omega} \xi(x) d w_{0}+c_{0} \int_{\Omega}|\tilde{\nabla} \tilde{\nabla} g|_{0} \xi(x) d w_{0}
\end{align*}
$$

which together with (47) implies
(58) $\int_{\Omega} g^{-1} * g * \widetilde{\nabla} g * \tilde{\nabla} \widetilde{\mathrm{R}} \mathrm{m} \cdot \xi(x)^{2} d w_{0} \leq c_{0}+c_{0} \int_{\Omega}|\tilde{\nabla} \widetilde{\nabla} g|_{0} \cdot \xi(x) d w_{0}$.

Substituting (48), (54), and (58) into (44), we get

$$
\begin{aligned}
& \frac{\partial}{\partial t} \int_{\Omega}\left|\tilde{\nabla}_{k} g_{i j}(x, t)\right|_{0}^{2} \xi(x)^{2} d w_{0} \\
& \leq-\frac{1}{2} \int_{\Omega}|\tilde{\nabla} \tilde{\nabla} g|_{0}^{2} \xi(x)^{2} d w_{0} \\
&+c_{0} \int_{0}|\tilde{\nabla} \tilde{\nabla} g|_{0} \cdot \xi(x) d w_{0}+c_{0} \int_{\Omega}|\tilde{\nabla} \tilde{\nabla} g|_{0} \xi(x)^{2} d w_{0}+c_{0} \\
& \quad \leq-\frac{1}{2} \int_{\Omega}|\tilde{\nabla} \tilde{\nabla} g|_{0}^{2} \xi(x)^{2} d w_{0}+c_{0} \int_{\Omega}|\tilde{\nabla} \tilde{\nabla} g|_{0} \xi(x) d w_{0}+c_{0}
\end{aligned}
$$

(59) $\frac{\partial}{\partial t} \int_{\Omega}\left|\widetilde{\nabla}_{k} g_{i j}(x, t)\right|_{0}^{2} \xi(x)^{2} d w_{0} \leq-\frac{1}{4} \int_{\Omega}|\tilde{\nabla} \widetilde{\nabla} g|_{0}^{2} \xi(x)^{2} d w_{0}+c_{0}$.

Since

$$
\begin{equation*}
\int_{\Omega}\left|\widetilde{\nabla}_{k} g_{i j}(x, 0)\right|_{0}^{2} \xi(x)^{2} d w_{0}=0 \tag{60}
\end{equation*}
$$

integrating (59) from 0 to T yields

$$
\begin{aligned}
& \int_{\Omega}\left|\widetilde{\nabla}_{k} g_{i j}(x, T)\right|_{0}^{2} \xi(x)^{2} d w_{0}+\frac{1}{4} \int_{0}^{T} \int_{\Omega}|\tilde{\nabla} \widetilde{\nabla} g|_{0}^{2} \xi(x)^{2} d w_{0} d t \leq c_{0} \\
& \int_{0}^{T} \int_{\Omega}|\tilde{\nabla} \tilde{\nabla} g|_{0}^{2} \xi(x)^{2} d w_{0} d t \leq c_{0}
\end{aligned}
$$

But on $B\left(x_{0}, \gamma\right), \xi(x) \equiv 1$; thus

$$
\begin{equation*}
\int_{0}^{T} \int_{B\left(x_{0}, y\right)}|\tilde{\nabla} \tilde{\nabla} g|_{0}^{2} d w_{0} d t \leq c_{0} \tag{61}
\end{equation*}
$$

which completes the proof of the lemma.
Lemma 6.3. We still have the following inequalities:

$$
\begin{align*}
& \int_{0}^{T} \int_{B\left(x_{0}, \gamma\right)}|\tilde{\nabla} \tilde{\nabla} g|^{2} d w_{t} d t \leq c_{0}\left(n, k_{0}, \gamma\right) \tag{62}\\
& \int_{0}^{T} \int_{B\left(x_{0}, \gamma\right)}|\nabla \tilde{\nabla} g|^{2} d w_{t} d t \leq c_{0}\left(n, k_{0}, \gamma\right) \tag{63}
\end{align*}
$$

Proof. Using (45) we get

$$
\begin{align*}
& |\tilde{\nabla} \tilde{\nabla} g|^{2} \leq 16|\tilde{\nabla} \tilde{\nabla} g|_{0}^{2} \quad \text { on } M \times[0, T] \tag{64}\\
& d w_{t} \leq 2^{n / 2} d w_{0}
\end{align*}
$$

thus

$$
\int_{0}^{T} \int_{B\left(x_{0}, y^{\prime}\right)}|\tilde{\nabla} \tilde{\nabla} g|^{2} d w_{t} d t \leq 2^{n / 2+4} \int_{0}^{T} \int_{B\left(x_{0}, y^{\prime}\right)}|\tilde{\nabla} \tilde{\nabla} g|_{0}^{2} d w_{0} d t
$$

From (61) we know that (62) is true. But one has

$$
\begin{gather*}
\nabla \tilde{\nabla} g=\tilde{\nabla} \tilde{\nabla} g+g^{-1} * \tilde{\nabla} g * \tilde{\nabla} g, \\
|\nabla \tilde{\nabla} g|^{2} \leq 2|\tilde{\nabla} \widetilde{\nabla} g|^{2}+2\left|g^{-1} * \tilde{\nabla} g * \tilde{\nabla} g\right|^{2} \tag{65}
\end{gather*}
$$

From (45) and (65) we get

$$
\begin{equation*}
|\nabla \widetilde{\nabla} g|^{2} \leq 2|\tilde{\nabla} \tilde{\nabla} g|^{2}+c_{0} \tag{66}
\end{equation*}
$$

which together with (62) shows that (63) is true.
Lemma 6.4. For any $x_{0} \in M, t \in[0, T]$, and $0<\gamma<+\infty$ we have

$$
\int_{B\left(x_{0}, \gamma\right)}\left\{\left|R_{i j k l}(x, t)\right|^{2}+\left|\nabla_{i} V_{j}\right|^{2}\right\} d w_{t} \leq c_{0}\left(n, k_{0}, \gamma\right)
$$

where $0<c_{0}\left(n, k_{0}, \gamma\right)<+\infty$ depends only on n, k_{0}, and γ.
Proof. Suppose $\xi(x) \in C_{0}^{\infty}(M)$ is the function satisfying (40) and (41), and let $\Omega=B\left(x_{0}, \gamma+1\right)$. Since $\left|R_{i j k l}\right|^{2}=g^{i \alpha} g^{j \beta} g^{k \gamma} g^{l \delta} R_{i j k l} R_{\alpha \beta \gamma \delta}$, we have

$$
\begin{equation*}
\frac{\partial}{\partial t}\left|R_{i j k l}\right|^{2}=2 R_{i j k l} \frac{\partial}{\partial t} R_{i j k l}+\mathrm{Rm} * \mathrm{Rm} * \frac{\partial}{\partial t} g^{-1} * g^{-3} \tag{67}
\end{equation*}
$$

where we have assumed $g_{i j}=\delta_{i j}$ at one point. Thus

$$
\begin{align*}
& \int_{\Omega}\left|R_{i j k l}(x, t)\right|^{2} \xi(x)^{2} d w_{t} \tag{68}\\
&= \int_{\Omega}\left|R_{i j k l}(x, 0)\right|_{0}^{2} \xi(x)^{2} d w_{0} \\
&+\int_{0}^{t} \frac{\partial}{\partial t} \int_{\Omega}\left|R_{i j k l}(x, t)\right|^{2} \xi(x)^{2} d w_{t} d t \\
&= \int_{\Omega}\left|\widetilde{R}_{i j k l}(x)\right|_{0}^{2} \xi(x)^{2} d w_{0} \\
&+\int_{0}^{t} \int_{\Omega}\left(2 R_{i j k l} \frac{\partial}{\partial t} R_{i j k l}+g^{-3} * \mathrm{Rm} * \mathrm{Rm} * \frac{\partial}{\partial t} g^{-1}\right) \xi(x)^{2} d w_{t} d t \\
&+\int_{0}^{t} \int_{\Omega}\left|R_{i j k l}\right|^{2} \xi(x)^{2} \cdot \frac{\partial}{\partial t} d w_{t} d t
\end{align*}
$$

Since $\left|\widetilde{R}_{i j k l}(x)\right|_{0}^{2} \leq k_{0}$, we have

$$
\begin{align*}
\int_{\Omega}\left|\widetilde{R}_{i j k l}(x)\right|_{0}^{2} \xi(x)^{2} d w_{0} & \leq k_{0} \int_{\Omega} \xi(x)^{2} d w_{0} \\
& \leq k_{0} \int_{B\left(x_{0}, \gamma+1\right)} d w_{0} \leq c_{0} \tag{69}
\end{align*}
$$

From (39) it follows that

$$
\frac{\partial}{\partial t} d w_{t}=\left(g^{-2} * \mathrm{Rm}+g^{-1} * \nabla V\right) d w_{t}
$$

71)

$$
\begin{aligned}
& \int_{0}^{t} \int_{\Omega}\left|R_{i j k l}\right|^{2} \xi(x)^{2} \cdot \frac{\partial}{\partial t} d w_{t} d t \\
& \quad=\int_{0}^{t} \int_{\Omega} g^{-4} * \mathrm{Rm} * \mathrm{Rm} *\left(g^{-2} * \mathrm{Rm}+g^{-1} * \nabla V\right) \xi(x)^{2} d w_{t} d t
\end{aligned}
$$

Jsing (30), (31) and Lemma 6.1 we get

$$
\frac{\partial}{\partial t} g^{-1}=g^{-3} * \mathrm{Rm}+g^{-2} * \nabla V
$$

73)

$$
\begin{aligned}
& \int_{0}^{t} \int_{\Omega} g^{-3} * \mathrm{Rm} * \mathrm{Rm} * \frac{\partial}{\partial t} g^{-1} \cdot \xi(x)^{2} d w_{t} d t \\
& \quad=\int_{0}^{t} \int_{\Omega} g^{-4} * \mathrm{Rm} * \mathrm{Rm} *\left\{g^{-2} * \mathrm{Rm}+g^{-1} * \nabla V\right\} \xi(x)^{2} d w_{t} d t
\end{aligned}
$$

74) $2 \int_{0}^{t} \int_{\Omega} R_{i j k l} \frac{\partial}{\partial t} R_{i j k l} \cdot \xi(x)^{2} d w_{t} d t$

$$
\begin{aligned}
= & 2 \int_{0}^{t} \int_{\Omega} R_{i j k l} \cdot \Delta R_{i j k l} \cdot \xi(x)^{2} d w_{t} d t \\
& +\int_{0}^{t} \int_{\Omega}\left\{g^{-6} * \operatorname{Rm} * \operatorname{Rm} * \operatorname{Rm}+g^{-5} * \operatorname{Rm} * \operatorname{Rm} * \nabla V\right. \\
& \left.+g^{-5} * V * \operatorname{Rm} * \nabla \mathrm{Rm}\right\} \xi(x)^{2} d w_{t} d t
\end{aligned}
$$

From (68), (69), (71), (73), and (74) it follows that

$$
\begin{align*}
& \int_{\Omega}\left|R_{i j k l}(x, t)\right|^{2} \xi(x)^{2} d w_{t} \\
& \leq \\
& c_{0}+2 \int_{0}^{t} \int_{\Omega} R_{i j k l} \cdot \Delta R_{i j k l} \cdot \xi(x)^{2} d w_{t} d t \\
& \quad+\int_{0}^{t} \int_{\Omega}\left\{g^{-6} * \mathrm{Rm} * \mathrm{Rm} * \mathrm{Rm}+g^{-5} * \mathrm{Rm} * \mathrm{Rm} * \nabla V\right. \\
& \left.\quad+g^{-5} * V * \mathrm{Rm} * \nabla \mathrm{Rm}\right\} \xi(x)^{2} d w_{t} d t
\end{align*}
$$

Integrating by parts yields

$$
\begin{align*}
& 2 \int_{0}^{t} \int_{\Omega} R_{i j k l} \cdot \Delta R_{i j k l} \cdot \xi(x)^{2} d w_{t} d t \\
& \quad=2 \int_{0}^{t} \int_{\Omega} R_{i j k l} \cdot g^{\alpha \beta} \nabla_{\alpha} \nabla_{\beta} R_{i j k l} \cdot \xi(x)^{2} d w_{t} d t \\
& = \tag{76}\\
& =-2 \int_{0}^{t} \int_{\Omega} g^{\alpha \beta} \nabla_{\beta} R_{i j k l} \cdot \nabla_{\alpha}\left[R_{i j k l} \cdot \xi(x)^{2}\right] d w_{t} d t \\
& = \\
& \quad-2 \int_{0}^{t} \int_{\Omega}\left|\nabla R_{i j k l}\right|^{2} \xi(x)^{2} d w_{t} d t \\
& \quad+\int_{0}^{t} \int_{\Omega} g^{-5} * \operatorname{Rm} * \nabla \operatorname{Rm} * \xi(x) * \nabla \xi(x) d w_{t} d t
\end{align*}
$$

But since $\xi(x) \in C_{0}^{\infty}(M)$ is a function, we have

$$
\nabla \xi(x)=\tilde{\nabla} \xi(x)
$$

and by (40),

$$
\begin{align*}
& |\nabla \xi(x)|=|\widetilde{\nabla} \xi(x)| \leq \sqrt{2}|\widetilde{\nabla} \xi(x)|_{0} \leq 12 \\
& \qquad \int_{0}^{t} \int_{\Omega} g^{-5} * \mathrm{Rm} * \nabla \mathrm{Rm} * \xi(x) * \nabla \xi(x) d w_{t} d t \\
& \quad \leq c_{0} \int_{0}^{t} \int_{\Omega}|\mathrm{Rm}| \cdot|\nabla \mathrm{Rm}| \cdot \xi(x) d w_{t} d t \tag{77}\\
& \quad \leq \frac{1}{2} \int_{0}^{t} \int_{\Omega}|\nabla \mathrm{Rm}|^{2} \xi(x)^{2} d w_{t} d t+c_{0} \int_{0}^{t} \int_{\Omega}|\mathrm{Rm}|^{2} d w_{t} d t
\end{align*}
$$

Substituting this into (76) gives

$$
\begin{align*}
& 2 \int_{0}^{t} \int_{\Omega} R_{i j k l} \cdot \Delta R_{i j k l} \cdot \xi(x)^{2} d w_{t} d t \tag{78}\\
& \quad \leq-\frac{3}{2} \int_{0}^{t} \int_{\Omega}|\nabla \mathrm{Rm}|^{2} \xi(x)^{2} d w_{t} d t+c_{0} \int_{0}^{t} \int_{\Omega}|\mathrm{Rm}|^{2} d w_{t} d t
\end{align*}
$$

Now we use (32) and (45) to get

$$
\begin{equation*}
\left|V_{i}\right|_{0}^{2} \leq c_{0}, \quad\left|V_{i}\right|^{2} \leq 2\left|V_{i}\right|_{0}^{2} \leq c_{0}, \quad \text { on } M \times[0, T] \tag{79}
\end{equation*}
$$

so that

$$
\begin{align*}
& \int_{0}^{t} \int_{\Omega} g^{-5} * V * \mathrm{Rm} * \nabla \mathrm{Rm} \cdot \xi(x)^{2} d w_{t} d t \\
& \quad \leq c_{0} \int_{0}^{t} \int_{\Omega}|\mathrm{Rm}| \cdot|\nabla \mathrm{Rm}| \cdot \xi(x)^{2} d w_{t} d t \tag{80}\\
& \quad \leq \frac{1}{4} \int_{0}^{t} \int_{\Omega}|\nabla \mathrm{Rm}|^{2} \xi(x)^{2} d w_{t} d t+c_{0} \int_{0}^{t} \int_{\Omega}|\mathrm{Rm}|^{2} \xi(x)^{2} d w_{t} d t \\
& \quad \leq \frac{1}{4} \int_{0}^{t} \int_{\Omega}|\nabla \mathrm{Rm}|^{2} \xi(x)^{2} d w_{t} d t+c_{0} \int_{0}^{t} \int_{\Omega}|\mathrm{Rm}|^{2} d w_{t} d t
\end{align*}
$$

where we have used (41) and (45) again.
Integrating by parts yields

$$
\begin{aligned}
& \int_{0}^{t} \int_{\Omega} g^{-5} * \mathrm{Rm} * \mathrm{Rm} * \nabla V \cdot \xi(x)^{2} d w_{t} d t \\
& \quad=-\int_{0}^{t} \int_{\Omega} g^{-5} * V * \nabla\left[\mathrm{Rm} * \mathrm{Rm} * \xi(x)^{2}\right] d w_{t} d t \\
& \quad=\int_{0}^{t} \int_{\Omega} g^{-5} * V *\left[\mathrm{Rm} * \nabla \mathrm{Rm} * \xi(x)^{2}\right. \\
& \quad+\mathrm{Rm} * \mathrm{Rm} * \xi(x) * \nabla \xi(x)] d w_{t} d t
\end{aligned}
$$

By (41), (45), (77), and (79) we get

$$
\begin{align*}
& \int_{0}^{t} \int_{\Omega} g^{-5} * \mathrm{Rm} * \mathrm{Rm} * \nabla V \cdot \xi(x)^{2} d w_{t} d t \\
& \leq c_{0} \int_{0}^{t} \int_{\Omega}|\mathrm{Rm}| \cdot|\nabla \mathrm{Rm}| \cdot \xi(x) d w_{t} d t \tag{81}\\
&+c_{0} \int_{0}^{t} \int_{\Omega}|\mathrm{Rm}|^{2} d w_{t} d t \\
& \leq \frac{1}{8} \int_{0}^{t} \int_{\Omega}|\nabla \mathrm{Rm}|^{2} \xi(x)^{2} d w_{t} d t+c_{0} \int_{0}^{t} \int_{\Omega}|\mathrm{Rm}|^{2} d w_{t} d t
\end{align*}
$$

Substituting (78), (80), and (81) into (75) gives

$$
\begin{align*}
\int_{\Omega}\left|R_{i j k l}(x, t)\right|^{2} \xi(x)^{2} d w_{t} \leq & -\frac{9}{8} \int_{0}^{t} \int_{\Omega}|\nabla \mathrm{Rm}|^{2} \xi(x)^{2} d w_{t} d t \tag{82}\\
& +\int_{0}^{t} \int_{\Omega} g^{-6} * \mathrm{Rm} * \mathrm{Rm} * \mathrm{Rm} \cdot \xi(x)^{2} d w_{t} d t \\
& +c_{0} \int_{0}^{t} \int_{\Omega}|\mathrm{Rm}|^{2} d w_{t} d t+c_{0}
\end{align*}
$$

By means of (37) of $\S 2$ it is easy to see that

$$
R_{i j k l}=g_{p i} \tilde{g}^{p q} \tilde{R}_{q j k l}+\tilde{\nabla} \tilde{\nabla} g+g^{-1} * \tilde{\nabla} g * \tilde{\nabla} g
$$

thus

$$
\begin{equation*}
\mathrm{Rm}=\widetilde{\mathrm{R}} \mathrm{~m} * \tilde{g}^{-1} * g+\tilde{\nabla} \tilde{\nabla} \tilde{g}+g^{-1} * \tilde{\nabla} g * \tilde{\nabla} g \tag{83}
\end{equation*}
$$

Since $\nabla \tilde{\nabla} g=\tilde{\nabla} \tilde{\nabla} g+g^{-1} * \tilde{\nabla} g * \widetilde{\nabla} g$, we have

$$
\begin{align*}
& \mathrm{Rm}=\widetilde{\mathrm{R} m} * \tilde{g}^{-1} * g+\nabla \widetilde{\nabla} g+g^{-1} * \widetilde{\nabla} g * \widetilde{\nabla} g \tag{84}\\
& \int_{0}^{t} \int_{\Omega} g^{-6} * \mathrm{Rm} * \mathrm{Rm} * \mathrm{Rm} \cdot \xi(x)^{2} d w_{t} d t \\
& \quad=\int_{0}^{t} \int_{\Omega} g^{-6} * \mathrm{Rm} * \mathrm{Rm} *\left(\widetilde{\mathrm{R} m} * \tilde{g}^{-1} * g+\nabla \widetilde{\nabla} g\right. \tag{85}\\
& \left.\quad+g^{-1} * \widetilde{\nabla} g * \widetilde{\nabla} g\right) \xi(x)^{2} d w_{t} d t .
\end{align*}
$$

By using (41), (45), and $|\widetilde{R} m|_{0}^{2} \leq k_{0}$ we find

$$
\begin{array}{rl}
\int_{0}^{t} \int_{\Omega} g^{-6} * \mathrm{Rm} * \mathrm{Rm} & *\left(\widetilde{\mathrm{R}} \mathrm{~m} * \tilde{g}^{-1} * g+g^{-1} * \tilde{\nabla} g * \tilde{\nabla} g\right) \xi(x)^{2} d w_{t} d t \tag{86}\\
& \leq c_{0} \int_{0}^{t} \int_{\Omega}|\mathrm{Rm}|^{2} d w_{t} d t
\end{array}
$$

Integrating by parts yields

$$
\begin{aligned}
& \int_{0}^{t} \int_{\Omega} g^{-6} * \mathrm{Rm} * \mathrm{Rm} * \nabla \widetilde{\nabla} g \cdot \xi(x)^{2} d w_{t} d t \\
& \quad=-\int_{0}^{t} \int_{\Omega} g^{-6} * \widetilde{\nabla} g * \nabla\left(\mathrm{Rm} * \mathrm{Rm} * \xi(x)^{2}\right) d w_{t} d t \\
& \int_{0}^{t} \int_{\Omega} g^{-6} * \mathrm{Rm} * \mathrm{Rm} * \nabla \widetilde{\nabla} g \cdot \xi(x)^{2} d w_{t} d t \\
& =\int_{0}^{t} \int_{\Omega} g^{-6} * \widetilde{\nabla} g *\left(\mathrm{Rm} * \nabla \mathrm{Rm} * \xi(x)^{2}\right. \\
& \quad+\mathrm{Rm} * \mathrm{Rm} * \xi(x) * \nabla \xi(x)) d w_{t} d t
\end{aligned}
$$

Using (41), (45), and (77) we get

$$
\begin{aligned}
& \int_{0}^{t} \int_{\Omega} g^{-6} * \mathrm{Rm} * \mathrm{Rm} * \nabla \tilde{\nabla} g \cdot \xi(x)^{2} d w_{t} d t \\
& \quad \leq c_{0} \int_{0}^{t} \int_{\Omega}|\mathrm{Rm}| \cdot|\nabla \mathrm{Rm}| \cdot \xi(x) d w_{t} d t+c_{0} \int_{0}^{t} \int_{\Omega}|\mathrm{Rm}|^{2} d w_{t} d t \\
& \quad \leq \frac{1}{8} \int_{0}^{t} \int_{\Omega}|\nabla \mathrm{Rm}|^{2} \xi(x)^{2} d w_{t} d t+c_{0} \int_{0}^{t} \int_{\Omega}|\mathrm{Rm}|^{2} d w_{t} d t
\end{aligned}
$$

Then it follows that

$$
\begin{align*}
& \int_{0}^{t} \int_{\Omega} g^{-6} * \mathrm{Rm} * \mathrm{Rm} * \mathrm{Rm} \cdot \xi(x)^{2} d w_{t} d t \tag{88}\\
& \quad \leq \frac{1}{8} \int_{0}^{t} \int_{\Omega}|\nabla \mathrm{Rm}|^{2} \xi(x)^{2} d w_{t} d t+c_{0} \int_{0}^{t} \int_{\Omega}|\mathrm{Rm}|^{2} d w_{t} d t
\end{align*}
$$

from (85), (86), and (87), and that

$$
\begin{align*}
\int_{\Omega}\left|R_{i j k l}(x, t)\right|^{2} \xi(x)^{2} d w_{t} \leq & -\int_{0}^{t} \int_{\Omega}|\nabla \mathrm{Rm}|^{2} \xi(x)^{2} d w_{t} d t \tag{89}\\
& +c_{0} \int_{0}^{t} \int_{\Omega}|\mathrm{Rm}|^{2} d w_{t} d t+c_{0}
\end{align*}
$$

from (82) and (88). Using (45), $|\widetilde{R} m|_{0}^{2} \leq k_{0}$, and (84) we get

$$
\begin{equation*}
|\mathrm{Rm}|^{2} \leq c_{0}+|\nabla \tilde{\nabla} g|^{2} \cdot c_{0} \tag{90}
\end{equation*}
$$

thus

$$
\begin{align*}
\int_{0}^{t} \int_{\Omega}|\mathrm{Rm}|^{2} d w_{t} d t \leq & c_{0} \int_{0}^{T} \int_{\Omega} d w_{t} d t \\
& +c_{0} \int_{0}^{T} \int_{\Omega}|\nabla \widetilde{\nabla} g|^{2} d w_{t} d t \tag{91}\\
\leq & c_{0}+c_{0} \int_{0}^{T} \int_{B\left(x_{0}, \gamma+1\right)}|\nabla \widetilde{\nabla} g|^{2} d w_{t} d t .
\end{align*}
$$

Use of Lemma 6.3 with γ replaced by $\gamma+1$ yields

$$
\int_{0}^{T} \int_{B\left(x_{0}, \gamma+1\right)}|\nabla \tilde{\nabla} g|^{2} d w_{t} d t \leq c_{0}
$$

which together with (91) implies

$$
\begin{equation*}
\int_{0}^{t} \int_{\Omega}|\operatorname{Rm}|^{2} d w_{t} d t \leq c_{0} \tag{92}
\end{equation*}
$$

Substituting (92) into (89), we get

$$
\begin{equation*}
\int_{\Omega}\left|R_{i j k l}(x, t)\right|^{2} \xi(x)^{2} d w_{t} \leq-\int_{0}^{t} \int_{\Omega}|\nabla \mathrm{Rm}|^{2} \xi(x)^{2} d w_{t} d t+c_{0} \tag{93}
\end{equation*}
$$

Since

$$
\begin{equation*}
\nabla_{i} V_{j}=\frac{\partial}{\partial x^{i}} V_{j}-\Gamma_{i j}^{k} V_{k} \tag{94}
\end{equation*}
$$

we have

$$
\frac{\partial}{\partial t} \nabla_{i} V_{j}=\frac{\partial}{\partial x^{i}}\left(\frac{\partial}{\partial t} V_{j}\right)-\Gamma_{i j}^{k} \frac{\partial}{\partial t} V_{k}-V_{k} \frac{\partial}{\partial t} \Gamma_{i j}^{k}
$$

Suppose (22) is true at one point. Then

$$
\begin{gather*}
\frac{\partial}{\partial t} \nabla_{i} V_{j}=\nabla_{i}\left(\frac{\partial}{\partial t} V_{j}\right)-V_{k} \frac{\partial}{\partial t} \Gamma_{i j}^{k}, \tag{95}\\
\frac{\partial}{\partial t} \Gamma_{i j}^{k}=\frac{1}{2} g^{k l}\left[\frac{\partial}{\partial x^{i}}\left(\frac{\partial}{\partial t} g_{j l}\right)+\frac{\partial}{\partial x^{j}}\left(\frac{\partial}{\partial t} g_{i l}\right)-\frac{\partial}{\partial x^{l}}\left(\frac{\partial}{\partial t} g_{i j}\right)\right] \\
=\frac{1}{2} g^{k l}\left[\nabla_{i}\left(\frac{\partial}{\partial t} g_{j l}\right)+\nabla_{j}\left(\frac{\partial}{\partial t} g_{i l}\right)-\nabla_{l}\left(\frac{\partial}{\partial t} g_{i j}\right)\right], \tag{96}
\end{gather*}
$$

and therefore

$$
\frac{\partial}{\partial t} \Gamma_{i j}^{k}=g^{-1} * \nabla\left(\frac{\partial g}{\partial t}\right)
$$

From (31) it follows that

$$
\begin{align*}
& \frac{\partial}{\partial t} \Gamma_{i j}^{k}=g^{-1} * \nabla\left(g^{-1} * \mathrm{Rm}+\nabla V\right) \tag{97}\\
& \frac{\partial}{\partial t} \Gamma_{i j}^{k}=g^{-2} * \nabla \mathrm{Rm}+g^{-1} * \nabla \nabla V
\end{align*}
$$

Substituting (97) into (95) yields

$$
\begin{equation*}
\frac{\partial}{\partial t} \nabla_{i} V_{j}=\nabla_{i}\left(\frac{\partial}{\partial t} V_{j}\right)+g^{-2} * V * \nabla \mathrm{Rm}+g^{-1} * V * \nabla \nabla V \tag{98}
\end{equation*}
$$

Using (32) and (37) we know that

$$
\begin{align*}
\frac{\partial}{\partial t} \nabla_{i} V_{j}= & \nabla_{i}\left(\Delta V_{j}+g^{-3} * \widetilde{\nabla} g * \mathrm{Rm}+g^{-2} * \tilde{\nabla} g * \nabla V\right) \\
& +g^{-3} * \tilde{\nabla} g * \nabla \mathrm{Rm}+g^{-2} * \tilde{\nabla} g * \nabla V \\
\frac{\partial}{\partial t} \nabla_{i} V_{j}= & \Delta\left(\nabla_{i} V_{j}\right)+g^{-3} * \nabla \widetilde{\nabla} g * \mathrm{Rm}+g^{-3} * \tilde{\nabla} g * \nabla \mathrm{Rm} \tag{99}\\
& +g^{-2} * \nabla \widetilde{\nabla} g * \nabla V+g^{-2} * \widetilde{\nabla} g * \nabla \nabla V
\end{align*}
$$

where we have used the interchange formula of two covariant derivatives to claim that

$$
\nabla_{i}\left(\Delta V_{j}\right)=\Delta\left(\nabla_{i} V_{j}\right)+g^{-3} * \nabla \tilde{\nabla} g * \mathrm{Rm}+g^{-3} * \tilde{\nabla} g * \nabla \mathrm{Rm}
$$

From the definition we have

$$
\left|\nabla_{i} V_{j}\right|^{2}=g^{-2} * \nabla V * \nabla V
$$

thus

$$
\begin{equation*}
\frac{\partial}{\partial t}\left|\nabla_{i} V_{j}\right|^{2}=2 \nabla_{i} V_{j} \cdot \frac{\partial}{\partial t} \nabla_{i} V_{j}+g^{-1} * \frac{\partial g^{-1}}{\partial t} * \nabla V * \nabla V . \tag{100}
\end{equation*}
$$

Using (30) and (31) we get

$$
\begin{align*}
\frac{\partial}{\partial t}\left|\nabla_{i} V_{j}\right|^{2}= & 2 \nabla_{i} V_{j} \cdot \frac{\partial}{\partial t} \nabla_{i} V_{j}+g^{-4} * \mathrm{Rm} * \nabla V * \nabla V \\
& +g^{-3} * \nabla V * \nabla V * \nabla V \\
\int_{\Omega}\left|\nabla_{i} V_{j}\right|^{2} \xi(x)^{2} d w_{t}= & \int_{\Omega}\left|\nabla_{i} V_{j}\right|_{0}^{2} \xi(x)^{2} d w_{0} \tag{101}\\
& +\int_{0}^{t} \frac{\partial}{\partial t} \int_{\Omega}\left|\nabla_{i} V_{j}\right|^{2} \xi(x)^{2} d w_{t} d t
\end{align*}
$$

Since $\nabla_{i} V_{j} \equiv 0$ at the time $t=0$,

$$
\begin{align*}
\int_{\Omega}\left|\nabla_{i} V_{j}\right|_{0}^{2} \xi(x)^{2} d w_{0}= & 0 \\
\int_{\Omega}\left|\nabla_{i} V_{j}\right|^{2} \xi(x)^{2} d w_{t}= & \int_{0}^{t} \int_{\Omega} \frac{\partial}{\partial t}\left|\nabla_{i} V_{j}\right|^{2} \cdot \xi(x)^{2} d w_{t} d t \tag{102}\\
& +\int_{0}^{t} \int_{\Omega}\left|\nabla_{i} V_{j}\right|^{2} \xi(x)^{2} \cdot \frac{\partial}{\partial t} d w_{t} d t
\end{align*}
$$

Substituting (70), (99), and (101) into (102) gives

$$
\begin{align*}
& \int_{\Omega}\left|\nabla_{i} V_{j}\right|^{2} \xi(x)^{2} d w_{t} \tag{103}\\
& =2 \int_{0}^{t} \int_{\Omega} \nabla_{i} V_{j} \cdot \Delta\left(\nabla_{i} V_{j}\right) \cdot \xi(x)^{2} d w_{t} d t \\
& +\int_{0}^{t} \int_{\Omega}\left(g^{-5} * \nabla \tilde{\nabla} g * \mathrm{Rm} * \nabla V+g^{-5} * \tilde{\nabla} g * \nabla \mathrm{Rm} * \nabla V\right. \\
& +g^{-4} * \nabla \tilde{\nabla} g * \nabla V * \nabla V+g^{-4} * \tilde{\nabla} g * \nabla \nabla V * \nabla V \\
& \left.+g^{-4} * \mathrm{Rm} * \nabla V * \nabla V+g^{-3} * \nabla V * \nabla V * \nabla V\right) \xi(x)^{2} d w_{t} d t .
\end{align*}
$$

By integrating by parts, we get

$$
\begin{aligned}
2 \int_{0}^{t} & \int_{\Omega} \nabla_{i} V_{j} \cdot \Delta\left(\nabla_{i} V_{j}\right) \cdot \xi(x)^{2} d w_{t} d t \\
& =2 \int_{0}^{t} \int_{\Omega} \nabla_{i} V_{j} \cdot g^{\alpha \beta} \nabla_{\alpha} \nabla_{\beta}\left(\nabla_{i} V_{j}\right) \cdot \xi(x)^{2} d w_{t} d t \\
& =-2 \int_{0}^{t} \int_{\Omega} \nabla_{\beta}\left(\nabla_{i} V_{j}\right) \cdot \nabla_{\alpha}\left\{g^{\alpha \beta} \nabla_{i} V_{j} \cdot \xi(x)^{2}\right\} d w_{t} d t \\
= & -2 \int_{0}^{t} \int_{\Omega}|\nabla \nabla V|^{2} \xi(x)^{2} d w_{t} d t \\
& +\int_{0}^{t} \int_{\Omega} g^{-3} * \nabla \nabla V * \nabla V * \xi(x) * \nabla \xi(x) d w_{t} d t
\end{aligned}
$$

Using (77) and (45) yields

$$
\begin{align*}
& 2 \int_{0}^{t} \int_{\Omega} \nabla_{i} V_{j} \cdot \Delta\left(\nabla_{i} V_{j}\right) \cdot \xi(x)^{2} d w_{t} d t \\
& \quad \leq \\
& \quad-2 \int_{0}^{t} \int_{\Omega}|\nabla \nabla V|^{2} \xi(x)^{2} d w_{t} d t \tag{104}\\
& \quad+c_{0} \int_{0}^{t} \int_{\Omega}|\nabla \nabla V| \cdot|\nabla V| \cdot \xi(x) d w_{t} d t
\end{align*}
$$

$$
\begin{aligned}
& 2 \int_{0}^{t} \int_{\Omega} \nabla_{i} V_{j} \cdot \Delta\left(\nabla_{i} V_{j}\right) \cdot \xi(x)^{2} d w_{t} d t \\
& \quad \leq-\frac{15}{8} \int_{0}^{t} \int_{\Omega}|\nabla \nabla V|^{2} \xi(x)^{2} d w_{t} d t \\
& \quad+c_{0} \int_{0}^{t} \int_{\Omega}|\nabla V|^{2} d w_{t} d t,
\end{aligned}
$$

which together with (103) implies
(105)

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla_{i} V_{j}\right|^{2} \xi(x)^{2} d w_{t} \\
& \leq-\frac{15}{8} \int_{0}^{t} \int_{\Omega}|\nabla \nabla V|^{2} \xi(x)^{2} d w_{t} d t \\
&+\int_{0}^{t} \int_{\Omega}\left(g^{-5} * \nabla \widetilde{\nabla} g * \mathrm{Rm} * \nabla V+g^{-5} * \widetilde{\nabla} g * \nabla \mathrm{Rm} * \nabla V\right. \\
&+g^{-4} * \nabla \widetilde{\nabla} g * \nabla V * \nabla V+g^{-4} * \widetilde{\nabla} g * \nabla \nabla V * \nabla V \\
&\left.+g^{-4} * \mathrm{Rm} * \nabla V * \nabla V+g^{-3} * \nabla V * \nabla V * \nabla V\right) \xi(x)^{2} d w_{t} d t \\
&+c_{0} \int_{0}^{t} \int_{\Omega}|\nabla V|^{2} d w_{t} d t .
\end{aligned}
$$

Using (41) and (45) we get
(106)

$$
\begin{aligned}
& \int_{0}^{t} \int_{\Omega}\left(g^{-5} * \tilde{\nabla} g * \nabla \mathrm{Rm} * \nabla V+g^{-4} * \tilde{\nabla} g * \nabla \nabla V * \nabla V\right) \cdot \xi(x)^{2} d w_{t} d t \\
& \leq c_{0} \int_{0}^{t} \int_{\Omega}(|\nabla \mathrm{Rm}| \cdot|\nabla V|+|\nabla \nabla V| \cdot|\nabla V|) \xi(x)^{2} d w_{t} d t \\
& \leq c_{0} \int_{0}^{t} \int_{\Omega}(|\nabla \mathrm{Rm}| \cdot|\nabla V|+|\nabla \nabla V| \cdot|\nabla V|) \xi(x) d w_{t} d t \\
& \leq \frac{1}{8} \int_{0}^{t} \int_{\Omega}\left(|\nabla \mathrm{Rm}|^{2}+|\nabla \nabla V|^{2}\right) \xi(x)^{2} d w_{t} d t \\
&+c_{0} \int_{0}^{t} \int_{\Omega}|\nabla V|^{2} d w_{t} d t
\end{aligned}
$$

Integrating by parts yields

$$
\begin{aligned}
& \int_{0}^{t} \int_{\Omega} g^{-5} * \nabla \tilde{\nabla} g * \mathrm{Rm} * \nabla V \cdot \xi(x)^{2} d w_{t} d t \\
& \quad=-\int_{0}^{t} \int_{\Omega} g^{-5} * \tilde{\nabla} g * \nabla\left[\mathrm{Rm} * \nabla V \cdot \xi(x)^{2}\right] d w_{t} d t \\
& =\int_{0}^{t} \int_{\Omega} g^{-5} * \tilde{\nabla} g *\left[\nabla \mathrm{Rm} * \nabla V * \xi(x)^{2}+\mathrm{Rm} * \nabla \nabla V * \xi(x)^{2}\right. \\
& \quad+\mathrm{Rm} * \nabla V * \xi(x) * \nabla \xi(x)] d w_{t} d t
\end{aligned}
$$

which together with (41), (45) and (77) gives (107)

$$
\begin{aligned}
& \int_{0}^{t} \int_{\Omega} g^{-5} * \nabla \widetilde{\nabla} g * \mathrm{Rm} * \nabla V \cdot \xi(x)^{2} d w_{t} d t \\
& \quad \leq c_{0} \int_{0}^{t} \int_{\Omega}(|\nabla \mathrm{Rm}| \cdot|\nabla V|+|\mathrm{Rm}| \cdot|\nabla \nabla V|+|\mathrm{Rm}| \cdot|\nabla V|) \xi(x) d w_{t} d t \\
& \quad \leq \frac{1}{8} \int_{0}^{t} \int_{\Omega}\left(|\nabla \mathrm{Rm}|^{2}+|\nabla \nabla V|^{2}\right) \xi(x)^{2} d w_{t} d t \\
& \quad+c_{0} \int_{0}^{t} \int_{\Omega}|\nabla V|^{2} d w_{t} d t+c_{0} \int_{0}^{t} \int_{\Omega}|\mathrm{Rm}|^{2} d w_{t} d t
\end{aligned}
$$

From (32) it follows that

$$
\begin{equation*}
\nabla V=g^{-1} * \nabla \tilde{\nabla} g \tag{108}
\end{equation*}
$$

thus $g^{-3} * \nabla V * \nabla V * \nabla V=g^{-4} * \nabla \widetilde{\nabla} g * \nabla V * \nabla V$. Substituting this and (84) into (105) yields

$$
\begin{align*}
\int_{0}^{t} \int_{\Omega}\left(g^{-4} * \nabla \widetilde{\nabla} g * \nabla V * \nabla V\right. & +g^{-4} * \mathrm{Rm} * \nabla V * \nabla V \tag{109}\\
& \left.\quad+g^{-3} * \nabla V * \nabla V * \nabla V\right) \xi(x)^{2} d w_{t} d t
\end{align*} \quad \begin{array}{r}
=\int_{0}^{t} \int_{\Omega}\left(g^{-4} * \nabla \widetilde{\nabla} g * \nabla V * \nabla V+\widetilde{\mathrm{R}} \mathrm{~m} * \tilde{g}^{-1} * g * g^{-4} * \nabla V * \nabla V\right. \\
\\
\left.+g^{-5} * \widetilde{\nabla} g * \widetilde{\nabla} g * \nabla V * \nabla V\right) \xi(x)^{2} d w_{t} d t
\end{array}
$$

Using (41), (45), and $|\widetilde{\mathrm{R}} \mathrm{m}|_{0}^{2} \leq k_{0}$ we get

$$
\begin{align*}
& \int_{0}^{t} \int_{\Omega}\left(\tilde{\mathrm{R}} \mathrm{~m} * \tilde{g}^{-1} * g * g^{-4} * \nabla V * \nabla V\right. \\
& \left.\quad \quad+g^{-5} * \widetilde{\nabla} g * \tilde{\nabla} g * \nabla V * \nabla V\right) \xi(x)^{2} d w_{t} d t \tag{110}\\
& \quad \leq c_{0} \int_{0}^{t} \int_{\Omega}|\nabla V|^{2} d w_{t} d t .
\end{align*}
$$

By integrating by parts, we find

$$
\begin{aligned}
& \int_{0}^{t} \int_{\Omega} g^{-4} * \nabla \tilde{\nabla} g * \nabla V * \nabla V * \xi(x)^{2} d w_{t} d t \\
& \quad=-\int_{0}^{t} \int_{\Omega} g^{-4} * \tilde{\nabla} g * \nabla\left[\nabla V * \nabla V * \xi(x)^{2}\right] d w_{t} d t \\
& \quad=\int_{0}^{t} \int_{\Omega} g^{-4} * \tilde{\nabla} g *\left(\nabla V * \nabla \nabla V * \xi(x)^{2}+\right. \\
& \quad+\nabla V * \nabla V * \xi(x) * \nabla \xi(x)) d w_{t} d t
\end{aligned}
$$

and therefore, in consequence of (41), (45), and (77),

$$
\begin{align*}
& \int_{0}^{t} \int_{\Omega} g^{-4} * \nabla \widetilde{\nabla} g * \nabla V * \nabla V * \xi(x)^{2} d w_{t} d t \\
& \quad \leq c_{0} \int_{0}^{t} \int_{\Omega}\left(|\nabla V| \cdot|\nabla \nabla V|+|\nabla V|^{2}\right) \xi(x) d w_{t} d t \\
& \quad \leq \frac{1}{8} \int_{0}^{t} \int_{\Omega}|\nabla \nabla V|^{2} \xi(x)^{2} d w_{t} d t+c_{0} \int_{0}^{t} \int_{\Omega}|\nabla V|^{2} d w_{t} d t . \tag{111}
\end{align*}
$$

Substituting (110) and (111) into (109) gives

$$
\begin{align*}
& \int_{0}^{t} \int_{\Omega}\left(g^{-4} * \nabla \widetilde{\nabla} g * \nabla V * \nabla V+g^{-4} * \mathrm{Rm} * \nabla V * \nabla V\right. \\
& \left.\quad+g^{-3} * \nabla V * \nabla V * \nabla V\right) \xi(x)^{2} d w_{t} d t \tag{112}\\
& \leq \frac{1}{8} \int_{0}^{t} \int_{\Omega}|\nabla \nabla V|^{2} \xi(x)^{2} d w_{t} d t+c_{0} \int_{0}^{t} \int_{\Omega}|\nabla V|^{2} d w_{t} d t
\end{align*}
$$

and substituting (106), (107), and (112) into (105) gives

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla_{i} V_{j}\right|^{2} \xi(x)^{2} d w_{t} \\
& \leq \\
& -\frac{3}{2} \int_{0}^{t} \int_{\Omega}|\nabla \nabla V|^{2} \xi(x)^{2} d w_{t} d t+\frac{1}{4} \int_{0}^{t} \int_{\Omega}|\nabla \mathrm{Rm}|^{2} \xi(x)^{2} d w_{t} d t \\
& \quad+c_{0} \int_{0}^{t} \int_{\Omega}|\mathrm{Rm}|^{2} d w_{t} d t+c_{0} \int_{0}^{t} \int_{\Omega}|\nabla V|^{2} d w_{t} d t
\end{aligned}
$$

If we replace γ by $\gamma+1$ in Lemma 6.3, from (63) it follows that

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega}|\nabla \widetilde{\nabla} g|^{2} d w_{t} d t \leq c_{0} \tag{114}
\end{equation*}
$$

Using (108) and (114) we know that

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega}|\nabla V|^{2} d w_{t} d t \leq c_{0} \tag{115}
\end{equation*}
$$

Substituting (92) and (115) into (113), we have

$$
\begin{align*}
\int_{\Omega}\left|\nabla_{i} V_{j}\right|^{2} \xi(x)^{2} d w_{t} \leq & -\frac{3}{2} \int_{0}^{t} \int_{\Omega}|\nabla \nabla V|^{2} \xi(x)^{2} d w_{t} d t \tag{116}\\
& +\frac{1}{4} \int_{0}^{t} \int_{\Omega}|\nabla \mathrm{Rm}|^{2} \xi(x)^{2} d w_{t} d t+c_{0}
\end{align*}
$$

which together with (93) yields

$$
\begin{align*}
& \int_{\Omega}\left(\left|R_{i j k l}(x, t)\right|^{2}+\left|\nabla_{i} V_{j}\right|^{2}\right) \xi(x)^{2} d w_{t} \\
& \quad+\frac{3}{4} \int_{0}^{t} \int_{\Omega}\left(|\nabla \mathrm{Rm}|^{2}+|\nabla \nabla V|^{2}\right) \xi(x)^{2} d w_{t} d t \leq c_{0} . \tag{117}
\end{align*}
$$

Since $\xi(x) \equiv 1$ on $B\left(x_{0}, \gamma\right)$, from (117) it follows that

$$
\begin{equation*}
\max _{0 \leq t \leq T} \int_{B\left(x_{0}, \gamma\right)}\left(\left|R_{i j k l}(x, t)\right|^{2}+\left|\nabla_{i} V_{j}\right|^{2}\right) d w_{t} \leq c_{0} \tag{118}
\end{equation*}
$$

and hence Lemma 6.4.
If we let $t=T$, from (117) we get

$$
\begin{equation*}
\int_{0}^{T} \int_{B\left(x_{0}, \gamma\right)}\left\{|\nabla \mathrm{Rm}|^{2}+|\nabla \nabla V|^{2}\right\} d w_{t} d t \leq c_{0}\left(n, k_{0}, \gamma\right) \tag{119}
\end{equation*}
$$

where $0<c_{0}\left(n, k_{0}, \gamma\right)<+\infty$ depends only on n, k_{0}, and γ.
Lemma 6.5. For any $x_{0} \in M, 0<\gamma<+\infty$, and integer $m \geq 1$, we have

$$
\begin{aligned}
& \int_{0}^{T} \int_{B\left(x_{0}, \gamma\right)}\left[\left|R_{i j k l}(x, t)\right|^{2}+\left|\nabla_{i} V_{j}\right|^{2}\right]^{m-1}|\nabla \tilde{\nabla} g|^{2} d w_{t} d t \leq c\left(n, m, k_{0}, \gamma\right), \\
& \max _{0 \leq t \leq T} \int_{B\left(x_{0}, \gamma\right)}\left[\left|R_{i j k l}(x, t)\right|^{2}+\left|\nabla_{i} V_{j}\right|^{2}\right]^{m} d w_{t} \leq c\left(n, m, k_{0}, \gamma\right), \\
& \int_{0}^{T} \int_{B\left(x_{0}, \gamma\right)}\left[\left|R_{i j k l}(x, t)\right|^{2}+\left|\nabla_{i} V_{j}\right|^{2}\right]^{m-1} \cdot\left[|\nabla \mathrm{Rm}|^{2}+|\nabla \nabla V|^{2}\right] d w_{t} d t \\
& \quad \leq c\left(n, m, k_{0}, \gamma\right),
\end{aligned}
$$

where $0<c\left(n, m, k_{0}, \gamma\right)<+\infty$ depends only on n, m, k_{0}, and γ.
Proof. We prove this lemma by induction. In the case $m=1$ from Lemma 6.4, Lemma 6.3 and (119) it follows that Lemma 6.5 is true.

Suppose for $s=1,2, \cdots, m-1$ we have (120)

$$
\begin{aligned}
& \int_{0}^{T} \int_{B\left(x_{0}, \gamma\right)}\left[\left|R_{i j k l}(x, t)\right|^{2}+\left|\nabla_{i} V_{j}\right|^{2}\right]^{s-1}|\nabla \tilde{\nabla} g|^{2} d w_{t} d t \leq c\left(n, s, k_{0}, \gamma\right), \\
& \max _{0 \leq l \leq T} \int_{B\left(x_{0}, \gamma\right)}\left[\left|R_{i j k l}(x, t)\right|^{2}+\left|\nabla_{i} V_{j}\right|^{2}\right]^{s} d w_{t} \leq c\left(n, s, k_{0}, \gamma\right) \\
& \begin{array}{r}
\int_{0}^{T} \int_{B\left(x_{0}, \gamma\right)}\left[\left|R_{i j k l}(x, t)\right|^{2}+\left|\nabla_{i} V_{j}\right|^{2}\right]^{s-1}\left(|\nabla \mathrm{Rm}|^{2}+|\nabla \nabla V|^{2}\right) d w_{t} d t \\
\leq c\left(n, s, k_{0}, \gamma\right)
\end{array}
\end{aligned}
$$

for any $x_{0} \in M$ and $0<\gamma<+\infty$.
In the case $s=m$, suppose $\xi(x) \in C_{0}^{\infty}(M)$ is the function defined by (40) and (41), and let $\Omega=B\left(x_{0}, \gamma+1\right)$.

Using the induction hypothesis (120) and the same arguments as in the proof of Lemma 6.3 and (117) we get

$$
\begin{align*}
& \int_{0}^{T} \int_{\Omega}\left[\left|R_{i j k l}(x, t)\right|^{2}+\left|\nabla_{i} V_{j}\right|^{2}\right]^{m-1}|\nabla \widetilde{\nabla} g|^{2} \xi(x)^{2} d w_{t} d t \leq c\left(n, m, k_{0}, \gamma\right), \tag{121}\\
& \int_{\Omega}\left[\left|R_{i j k l}(x, t)\right|^{2}+\left|\nabla_{i} V_{j}\right|^{2}\right]^{m} \xi(x)^{2} d w_{t} \\
& \quad+\frac{3}{4} \int_{0}^{t} \int_{\Omega}\left[\left|R_{i j k l}(x, t)\right|^{2}+\left|\nabla_{i} V_{j}\right|^{2}\right]^{m-1} \\
& \cdot\left[|\nabla \mathrm{Rm}|^{2}+|\nabla \nabla V|^{2}\right] \xi(x)^{2} d w_{t} d t \leq c\left(n, m, k_{0}, \gamma\right)
\end{align*}
$$

for all $t \in[0, T]$. Since $\xi(x) \equiv 1$ on $B\left(x_{0}, \gamma\right)$, we have

$$
\int_{0}^{T} \int_{B\left(x_{0}, \gamma\right)}\left[\left|R_{i j k l}(x, t)\right|^{2}+\left|\nabla_{i} V_{j}\right|^{2}\right]^{m-1}|\nabla \widetilde{\nabla} g|^{2} d w_{t} d t \leq c\left(n, m, k_{0}, \gamma\right)
$$

$$
\begin{align*}
& \max _{0 \leq t \leq T} \int_{B\left(x_{0}, \gamma\right)}\left[\left|R_{i j k l}(x, t)\right|^{2}+\left|\nabla_{i} V_{j}\right|^{2}\right]^{m} d w_{t} \leq c\left(n, m, k_{0}, \gamma\right), \\
& \int_{0}^{T} \int_{B\left(x_{0}, \gamma\right)}\left[\left|R_{i j k l}(x, t)\right|^{2}+\left|\nabla_{i} V_{j}\right|^{2}\right]^{m-1} \tag{122}\\
& \quad \cdot\left(|\nabla \mathrm{Rm}|^{2}+|\nabla \nabla V|^{2}\right) d w_{t} d t \leq c\left(n, m, k_{0}, \gamma\right) .
\end{align*}
$$

Thus the lemma is also true in the case $s=m$.
Theorem 6.6. There exists a constant $c\left(n, k_{0}\right)>0$ depending only on n and k_{0} such that

$$
\begin{equation*}
\sup _{M \times[0, T]}\left|R_{i j k l}(x, t)\right|^{2} \leq c\left(n, k_{0}\right), \quad \sup _{M \times[0, T]}\left|\nabla_{i} V_{j}\right|^{2} \leq c\left(n, k_{0}\right) . \tag{123}
\end{equation*}
$$

Proof. From Lemma 6.1 we know that

$$
\frac{\partial}{\partial t} R_{i j k l}=\Delta R_{i j k l}+g^{-2} * \mathrm{Rm} * \mathrm{Rm}+g^{-1} * V * \nabla \mathrm{Rm}+g^{-1} * \mathrm{Rm} * \nabla V
$$

Since

$$
\begin{aligned}
& g^{-1} * V * \nabla \mathrm{Rm}=\nabla\left(g^{-1} * V * \mathrm{Rm}\right)-g^{-1} * \mathrm{Rm} * \nabla V \\
& \frac{\partial}{\partial t} R_{i j k l}= \Delta R_{i j k l}+\nabla\left(g^{-1} * V * \mathrm{Rm}\right)+g^{-2} * \mathrm{Rm} * \mathrm{Rm} \\
&+g^{-1} * \mathrm{Rm} * \nabla V
\end{aligned}
$$

which can be written as

$$
\begin{equation*}
\frac{\partial}{\partial t} R_{i j k l}=\Delta R_{i j k l}+\nabla P+Q \tag{124}
\end{equation*}
$$

where $P=g^{-1} * V * \mathrm{Rm}$, and $Q=g^{-2} * \mathrm{Rm} * \mathrm{Rm}+g^{-1} * \mathrm{Rm} * \nabla V$. Using (37) and (98) we get

$$
\begin{align*}
\frac{\partial}{\partial t} \nabla_{i} V_{j}= & \nabla_{i}\left(\Delta V_{j}\right)+\nabla_{i}\left(g^{-3} * \widetilde{\nabla} g * \mathrm{Rm}+g^{-2} * \widetilde{\nabla} g * \nabla V\right) \tag{125}\\
& +g^{-2} * V * \nabla \mathrm{Rm}+g^{-1} * V * \nabla \nabla V
\end{align*}
$$

and

$$
\begin{equation*}
\nabla_{i}\left(\Delta V_{j}\right)=\Delta\left(\nabla_{i} V_{j}\right)+g^{-2} * \mathrm{Rm} * \nabla V+g^{-2} * V * \nabla \mathrm{Rm} \tag{126}
\end{equation*}
$$

by means of the interchange formula of two covariant derivatives. Substituting (126) into (125) yields

$$
\begin{align*}
\frac{\partial}{\partial t} \nabla_{i} V_{j}= & \Delta\left(\nabla_{i} V_{j}\right)+\nabla_{i}\left(g^{-3} * \tilde{\nabla} g * \mathrm{Rm}+g^{-2} * \tilde{\nabla} g * \nabla V\right) \tag{127}\\
& +g^{-2} * V * \nabla \mathrm{Rm}+g^{-1} * V * \nabla \nabla V+g^{-2} * \mathrm{Rm} * \nabla V
\end{align*}
$$

Since

$$
\begin{aligned}
g^{-2} * V * \nabla \mathrm{Rm} & =\nabla\left(g^{-2} * V * \mathrm{Rm}\right)-g^{-2} * \mathrm{Rm} * \nabla V \\
& =\nabla\left(g^{-3} * \widetilde{\nabla} g * \mathrm{Rm}\right)-g^{-2} * \mathrm{Rm} * \nabla V \\
g^{-1} * V * \nabla \nabla V & =\nabla\left(g^{-1} * V * \nabla V\right)-g^{-1} * \nabla V * \nabla V \\
& =\nabla\left(g^{-2} * \widetilde{\nabla} g * \nabla V\right)-g^{-1} * \nabla V * \nabla V
\end{aligned}
$$

from (127) it follows that

$$
\begin{align*}
\frac{\partial}{\partial t} \nabla_{i} V_{j}= & \Delta\left(\nabla_{i} V_{j}\right)+\nabla\left(g^{-3} * \tilde{\nabla} g * \mathrm{Rm}+g^{-2} * \tilde{\nabla} g * \nabla V\right) \tag{128}\\
& +g^{-2} * \mathrm{Rm} * \nabla V+g^{-1} * \nabla V * \nabla V
\end{align*}
$$

which can be written as

$$
\frac{\partial}{\partial t} \nabla_{i} V_{j}=\Delta\left(\nabla_{i} V_{j}\right)+\nabla F+G
$$

where $F=g^{-3} * \widetilde{\nabla} g * \mathrm{Rm}+g^{-2} * \tilde{\nabla} g * \nabla V$ and $G=g^{-2} * \mathrm{Rm} * \nabla V+$ $g^{-1} * \nabla V * \nabla V$.

Let $\gamma_{0}=\frac{1}{8}\left(1 / k_{0}\right)^{1 / 4}$. For any $x_{0} \in M$, from (45), (79), (124), (129), and Lemma 6.5 it follows that for any integer $m \geq 1$ we can find constants $c\left(n, m, k_{0}\right)>0$ depending only on n, m, and k_{0} such that

$$
\begin{align*}
& \max _{0 \leq t \leq T} \int_{B\left(x_{0}, \gamma_{0}\right)}|P|^{m} d w_{t} \leq c\left(n, m, k_{0}\right) \tag{130}\\
& \max _{0 \leq t \leq T} \int_{B\left(x_{0}, \gamma_{0}\right)}|Q|^{m} d w_{t} \leq c\left(n, m, k_{0}\right) \\
& \max _{0 \leq t \leq T} \int_{B\left(x_{0}, \gamma_{0}\right)}|F|^{m} d w_{t} \leq c\left(n, m, k_{0}\right) \tag{131}\\
& \max _{0 \leq t \leq T} \int_{B\left(x_{0}, \gamma_{0}\right)}|G|^{m} d w_{t} \leq c\left(n, m, k_{0}\right)
\end{align*}
$$

If the injectivity radius of M at x_{0} satisfies

$$
\begin{equation*}
\operatorname{inj}\left(x_{0}\right) \geq \pi\left(1 / k_{0}\right)^{1 / 4} \tag{132}
\end{equation*}
$$

then the geodesic ball $B\left(x_{0}, \gamma_{0}\right) \subseteq M$ basically is the same as a ball in Euclidean n-space \mathbb{R}^{n}. Thus using (118), (119), (130), (131), (124), (129), and the same arguments as in the proof of Theorem 8.1 in [4, $\S 8$, Chapter III] we know that there exists a constant $c\left(n, k_{0}\right)>0$ depending only on n and k_{0} such that

$$
\begin{align*}
& \sup _{B\left(x_{0}, \gamma_{0} / 2\right) \times[0, T]}\left|R_{i j k l}(x, t)\right|^{2} \leq c\left(n, k_{0}\right), \\
& \sup _{B\left(x_{0}, \gamma_{0} / 2\right) \times[0, T]}\left|\nabla_{i} V_{j}\right|^{2} \leq c\left(n, k_{0}\right) . \tag{133}
\end{align*}
$$

If (132) is not true at x_{0}, then let

$$
\begin{equation*}
\exp _{x_{0}}: \widehat{B}\left(0, \pi\left(1 / k_{0}\right)^{1 / 4}\right) \rightarrow M \tag{134}
\end{equation*}
$$

be the nonsingular map defined in (9) of $\S 5$; thus we can pull everything back from M to $\widehat{B}\left(0, \pi\left(1 / k_{0}\right)^{1 / 4}\right)$ and do the analysis on $\widehat{B}\left(0, \pi\left(1 / k_{0}\right)^{1 / 4}\right)$.

For any integer $m \geq 1$, similar to Lemma 6.5 we have

$$
\begin{gathered}
\int_{0}^{T} \int_{\widehat{B}\left(x_{0}, \gamma_{0}+\gamma_{0} / m\right)}\left[\left|R_{i j k l}(x, t)\right|^{2}+\left|\nabla_{i} V_{j}\right|^{2}\right]^{m-1}|\nabla \widetilde{\nabla} g|^{2} d w_{t} d t \\
\leq c\left(n, m, k_{0}\right)
\end{gathered}
$$

$$
\begin{gathered}
\max _{0 \leq t \leq T} \int_{\widehat{B}\left(x_{0}, \gamma_{0}+\gamma_{0} / m\right)}\left[\left|R_{i j k l}(x, t)\right|^{2}+\left|\nabla_{i} V_{j}\right|^{2}\right]^{m} d w_{t} \leq c\left(n, m, k_{0}\right), \\
\int_{0}^{T} \int_{\widehat{B}\left(x_{0}, \gamma_{0}+\gamma_{0} / m\right)}\left[\left|R_{i j k l}(x, t)\right|^{2}+\left|\nabla_{i} V_{j}\right|^{2}\right]^{m-1} \\
\cdot\left(|\nabla \mathrm{Rm}|^{2}+|\nabla \nabla V|^{2}\right) d w_{t} d t \leq c\left(n, m, k_{0}\right),
\end{gathered}
$$

where $0<c\left(n, m, k_{0}\right)<+\infty$ depends only on n, m, and k_{0}. Thus (130) and (131) are also true on $\widehat{B}\left(x_{0}, \gamma_{0}\right)$. By the same reason as that for (133) we get

$$
\begin{align*}
& \sup _{\widehat{B}\left(x_{0}, \frac{1}{2} \gamma_{0}\right) \times[0, T]}\left|R_{i j k l}\right|^{2} \leq C\left(n, k_{0}\right), \tag{135}\\
& \sup _{\widehat{B}\left(x_{0}, \frac{1}{2} \gamma_{0}\right) \times[0, T]}\left|\nabla_{i} V_{j}\right|^{2} \leq C\left(n, k_{0}\right) .
\end{align*}
$$

Pushing forward to M from (135) and (136) we know that (133) is also true in the case when (132) does not hold.

But $x_{0} \in M$ is arbitrary, so from (133) we get

$$
\begin{equation*}
\left|R_{i j k l}(x, t)\right|^{2} \leq C\left(n, k_{0}\right), \quad\left|\nabla_{i} V_{j}\right|^{2} \leq C\left(n, k_{0}\right) \quad \text { on } M \times[0, T] \tag{137}
\end{equation*}
$$

thus the theorem is true.
Theorem 6.7. For the constant $T=T\left(n, k_{0}\right)>0$ in (2) the unmodified evolution equation

$$
\begin{align*}
& \frac{\partial}{\partial t} \hat{g}_{i j}(x, t)=-2 \widehat{R}_{i j}(x, t), \tag{138}\\
& \hat{g}_{i j}(x, 0)=\tilde{g}_{i j}(x) \quad \forall x \in M
\end{align*}
$$

has a smooth solution $\hat{g}_{i j}(x, t)>0$ on $M \times[0, T]$ and satisfies the following estimate:

$$
\begin{align*}
& \frac{1}{C_{1}} \tilde{g}_{i j}(x) \leq \hat{g}_{i j}(x, t) \leq C_{1} \tilde{g}_{i j}(x), \tag{139}\\
& \left\|\hat{R}_{i j k l}(x, t)\right\|^{2} \leq C_{2} \text { on } M \times[0, T],
\end{align*}
$$

where $0<c_{1}, c_{2}<+\infty$ are constants depending only on n and k_{0}, and $\left\|\|^{2}\right.$ denotes the norm with respect to the metric $\hat{g}_{i j}(x, t)$.

Proof. Suppose $\hat{g}_{\alpha \beta}(y, t)$ is the metric defined on (4). Then

$$
\begin{equation*}
\hat{g}_{\alpha \beta}(y, t)=\frac{\partial x^{i}}{\partial y^{\alpha}} \frac{\partial x^{j}}{\partial y^{\beta}} g_{i j}(x, t) . \tag{140}
\end{equation*}
$$

From (3) we have

$$
\begin{equation*}
\frac{\partial x^{k}}{\partial y^{\alpha}} \frac{\partial y^{\alpha}}{\partial t}=g^{\beta \gamma}\left[\Gamma_{\beta \gamma}^{l}-\widetilde{\Gamma}_{\beta \gamma}^{k}\right], \quad y^{\alpha}(x, 0)=x^{\alpha} \tag{141}
\end{equation*}
$$

Since by definition

$$
g^{\beta \gamma}\left[\Gamma_{\beta \gamma}^{k}-\widetilde{\Gamma}_{\beta \gamma}^{k}\right]=g^{k l} \cdot V_{l},
$$

from (141) it follows that

$$
\begin{equation*}
\frac{\partial x^{k}}{\partial t}=g^{k l}(x, t) \cdot V_{l}(x, t), \quad y^{\alpha}(x, 0)=x^{\alpha} \tag{142}
\end{equation*}
$$

If we replace x by y and y by x, then from (7), (141), and (142) we know that if we define

$$
\begin{equation*}
\widehat{g}_{\alpha \beta}(x, t)=\frac{\partial y^{i}}{\partial x^{\alpha}} \frac{\partial y^{j}}{\partial x^{\beta}} g_{i j}(y, t) \tag{143}
\end{equation*}
$$

where $y^{k}=y^{k}(x, t)$ satisfies the quasilinear ordinary differential equation

$$
\begin{equation*}
\frac{\partial y^{k}}{\partial t}=g^{k l}(y, t) \cdot V_{l}(y, t), \quad y^{k}(x, 0)=x^{k} \tag{144}
\end{equation*}
$$

then the metric $d \hat{s}^{2}=\hat{g}_{\alpha \beta}(x, t) d x^{\alpha} d x^{\beta}>0$ satisfies the evolution equation

$$
\begin{align*}
& \frac{\partial}{\partial t} \hat{g}_{i j}(x, t)=-2 \widehat{R}_{i j}(x, t) \quad \text { on } M \times[0, T] \tag{145}\\
& \hat{g}_{i j}(x, 0)=\tilde{g}_{i j}(x) \quad \forall x \in M
\end{align*}
$$

Since $w^{k}(x, t)=g^{k l}(x, t) \cdot V_{l}(x, t)$ is a smooth vector field on $M \times[0, T]$, from (79) and Theorem 6.6 it follows that

$$
\begin{equation*}
\left|w^{k}(x, t)\right|^{2} \leq c_{0}\left(n, k_{0}\right), \quad\left|\nabla_{i} w^{k}\right|^{2} \leq c_{0}\left(n, k_{0}\right) \quad \text { on } M \times[0, T] . \tag{146}
\end{equation*}
$$

Thus using the standard theory of ordinary differential equations we know that the system of ordinary differential equations (144) has a unique smooth solution $y^{k}=y^{k}(x, t)$ on $M \times[0, T]$. Therefore by (143), $\hat{g}_{\alpha \beta}(x, t) \in c^{\infty}(M \times[0, T])$ is well defined and satisfies the evolution equation (145).

From (143) we get

$$
\begin{equation*}
\widehat{R}_{\alpha \beta \gamma \delta}(x, t)=\frac{\partial y^{i}}{\partial x^{\alpha}} \frac{\partial y^{j}}{\partial x^{\beta}} \frac{\partial y^{k}}{\partial x^{\gamma}} \frac{\partial y^{l}}{\partial x^{\delta}} R_{i j k l}(y, t) \tag{147}
\end{equation*}
$$

which together with (143) implies

$$
\begin{align*}
\left\|\widehat{R}_{i j k l}(x, t)\right\|^{2} & =\hat{g}^{i \alpha} \hat{g}^{j \beta} \hat{g}^{k \gamma} \hat{g}^{l \delta} \widehat{R}_{i j k l}(x, t) \cdot \widehat{R}_{\alpha \beta \gamma \delta}(x, t) \\
& =g^{i \alpha} g^{j \beta} g^{k \gamma} g^{l \delta} R_{i j k l}(y, t) \cdot R_{\alpha \beta \gamma \delta}(y, t) \tag{148}\\
& =\left|R_{i j k l}(y, t)\right|^{2} .
\end{align*}
$$

A use of Theorem 6.6 gives

$$
\begin{equation*}
\left\|\widehat{R}_{i j k l}(x, t)\right\|^{2} \leq c\left(n, k_{0}\right) \quad \text { on } M \times[0, T] \tag{149}
\end{equation*}
$$

or

$$
\left\|\widehat{R}_{i j}(x, t)\right\|^{2} \leq n^{2} c\left(n, k_{0}\right) \quad \text { on } M \times[0, T],
$$

which together with (145) implies

$$
\begin{equation*}
\left\|\frac{\partial}{\partial t} \hat{g}_{i j}(x, t)\right\|^{2} \leq 4 n^{2} \cdot c\left(n, k_{0}\right) \tag{150}
\end{equation*}
$$

Thus we have

$$
-2 n \sqrt{c} \hat{g}_{i j} \leq \frac{\partial}{\partial t} \hat{g}_{i j} \leq 2 n \sqrt{c} \hat{g}_{i j} \quad \text { on } M \times[0, T]
$$

and therefore

$$
e^{-2 n \sqrt{c} T} \hat{g}_{i j}(x, 0) \leq \hat{g}_{i j}(x, t) \leq e^{2 n \sqrt{c} T} \hat{g}_{i j}(x, 0), \quad 0 \leq t \leq T
$$

Let $c_{1}=e^{2 n \sqrt{c} T}$. Then

$$
\begin{equation*}
\frac{1}{c_{1}} \tilde{g}_{i j}(x) \leq \hat{g}_{i j}(x, t) \leq c_{1} \tilde{g}_{i j}(x) \quad \text { on } M \times[0, T] \tag{151}
\end{equation*}
$$

From (149) and (151) we know that the theorem is true.

7. Higher derivatives estimate

In this section we use $g_{i j}(x, t)$ to denote $\hat{g}_{i j}(x, t)$, and $\left|\left.\right|^{2}\right.$ to denote $\left\|\|^{2}\right.$, i.e., $g_{i j}(x, t)>0$ is a smooth metric on $M \times[0, T]$ and satisfies the following:

$$
\begin{align*}
& \frac{\partial}{\partial t} g_{i j}(x, t)=-2 R_{i j}(x, t) \quad \text { on } M \times[0, T] \tag{1}\\
& g_{i j}(x, 0)=\tilde{g}_{i j}(x) \quad \forall x \in M
\end{align*}
$$

$$
\begin{align*}
& \frac{1}{c} \tilde{g}_{i j}(x) \leq g_{i j}(x, t) \leq c \tilde{g}_{i j}(x) \tag{2}\\
& \left|R_{i j k l}(x, t)\right|^{2} \leq c_{0} \quad \text { on } M \times[0, T]
\end{align*}
$$

where $T=T\left(n, k_{0}\right)>0$ and $0<c, c_{0}<+\infty$ are constants depending only on n and k_{0}, and $\left|\left.\right|^{2}\right.$ is the norm with respect to $g_{i j}(x, t)$.

From Theorem 6.7 we know that such a solution $g_{i j}(x, t)$ exists; thus to prove Theorem 1.1 we only need to prove the following lemma.

Lemma 7.1. For any integer $m \geq 1$, there exist constants $c_{m}>0$ depending only on n, m, and k_{0} such that

$$
\begin{equation*}
\left|\nabla^{m} R_{i j k l}(x, t)\right|^{2} \leq c_{m} / t^{m} \quad \text { on } M \times[0, T] \tag{3}
\end{equation*}
$$

Proof. From Theorem 7.1 of [3] we have

$$
\begin{aligned}
\frac{\partial}{\partial t} R_{i j k l}= & \Delta R_{i j k l}+2\left(B_{i j k l}-B_{i j l k}-B_{i l j k}+B_{i k j l}\right) \\
& -g^{p q}\left(R_{p j k l} R_{q i}+R_{i p k l} R_{q j}+R_{i j p l} R_{q k}+R_{i j k p} R_{q l}\right)
\end{aligned}
$$

where

$$
B_{i j k l}=g^{p \gamma} g^{q s} R_{p i q j} R_{\gamma k s l} ;
$$

thus

$$
\begin{equation*}
\frac{\partial}{\partial t} R_{i j k l}=\Delta R_{i j k l}+g^{-2} * \mathrm{Rm} * \mathrm{Rm} \tag{4}
\end{equation*}
$$

From (4) it follows that

$$
\begin{align*}
\frac{\partial}{\partial t}\left|R_{i j k l}\right|^{2} & =2 R_{i j k l} \frac{\partial}{\partial t} R_{i j k l}+g^{-3} * \frac{\partial g^{-1}}{\partial t} * \mathrm{Rm} * \mathrm{Rm} \\
& =2 R_{i j k l} \cdot \Delta R_{i j k l}+g^{-6} * \mathrm{Rm} * \mathrm{Rm} * \mathrm{Rm} \tag{5}\\
\frac{\partial}{\partial t}\left|R_{i j k l}\right|^{2} & =\Delta\left|R_{i j k l}\right|^{2}-2\left|\nabla R_{i j k l}\right|^{2}+g^{-6} * \mathrm{Rm} * \mathrm{Rm} * \mathrm{Rm}
\end{align*}
$$

Using (2) we get

$$
\begin{equation*}
\frac{\partial}{\partial t}\left|R_{i j k l}\right|^{2} \leq \Delta\left|R_{i j k l}\right|^{2}-2\left|\nabla R_{i j k l}\right|^{2}+\tilde{c}_{0} \tag{6}
\end{equation*}
$$

where $0<\tilde{c}_{0}<+\infty$ means some constants depending only on n and k_{0}; they may not be the same as each other.

Again by (4) we have

$$
\begin{gather*}
\frac{\partial}{\partial t} \nabla R_{i j k l}=\Delta\left(\nabla R_{i j k l}\right)+g^{-2} * \mathrm{Rm} * \nabla \mathrm{Rm} \tag{7}\\
\frac{\partial}{\partial t}\left|\nabla R_{i j k l}\right|^{2}= \\
 \tag{8}\\
\quad \Delta\left|\nabla R_{i j k l}\right|^{2}-2\left|\nabla^{2} R_{i j k l}\right|^{2} \\
\\
+g^{-7} * \mathrm{Rm} * \nabla \mathrm{Rm} * \nabla \mathrm{Rm} \\
\frac{\partial}{\partial t}\left|\nabla R_{i j k l}\right|^{2} \leq
\end{gather*}
$$

which becomes, in consequence of (2),

$$
\begin{equation*}
\frac{\partial}{\partial t}\left|\nabla R_{i j k l}\right|^{2} \leq \Delta\left|\nabla R_{i j k l}\right|^{2}-2\left|\nabla^{2} R_{i j k l}\right|^{2}+\tilde{c}_{0}|\nabla \mathrm{Rm}|^{2} \tag{9}
\end{equation*}
$$

Suppose $a>0$ is a constant to be determined later. From (6) it follows that

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(a+\left|R_{i j k l}\right|^{2}\right) \leq \Delta\left(a+\left|R_{i j k l}\right|^{2}\right)-2\left|\nabla R_{i j k}\right|^{2}+\tilde{c}_{0} \tag{10}
\end{equation*}
$$

which together with (9) yields

$$
\begin{align*}
\frac{\partial}{\partial t}[(a+ & \left.\left.+\left|R_{i j k l}\right|^{2}\right)\left|\nabla R_{i j k l}\right|^{2}\right] \\
\leq & \Delta\left[\left(a+\left|R_{i j k l}\right|^{2}\right)\left|\nabla R_{i j k l}\right|^{2}\right]-2 \nabla_{p}\left|R_{i j k l}\right|^{2} \cdot \nabla_{p}\left|\nabla R_{i j k l}\right|^{2} \tag{11}\\
& -2\left|\nabla R_{i j k l}\right|^{4}+\tilde{c}_{0}\left|\nabla R_{i j k l}\right|^{2}-2\left(a+\left|R_{i j k l}\right|^{2}\right)\left|\nabla^{2} R_{i j k l}\right|^{2} \\
& +\tilde{c}_{0}\left(a+\left|R_{i j k l}\right|^{2}\right)|\nabla R \mathrm{Rm}|^{2} .
\end{align*}
$$

Since

$$
\begin{aligned}
-2 \nabla_{p}\left|R_{i j k l}\right|^{2} \cdot \nabla_{p}\left|\nabla R_{i j k l}\right|^{2} & =\mathrm{Rm} * \nabla \mathrm{Rm} * \nabla \mathrm{Rm} * \nabla^{2} \mathrm{Rm} \\
& \leq \tilde{c}_{0}|\nabla \mathrm{Rm}|^{2} \cdot\left|\nabla^{2} \mathrm{Rm}\right| \\
& \leq 2 a\left|\nabla^{2} R_{i j k l}\right|^{2}+\frac{\tilde{c}_{0}^{2}}{8 a}\left|\nabla R_{i j k l}\right|^{4},
\end{aligned}
$$

substituting this into (11) we get

$$
\begin{align*}
\frac{\partial}{\partial t}\left[\left(a+\left|R_{i j k l}\right|^{2}\right)\left|\nabla R_{i j k l}\right|^{2}\right] \leq & \Delta\left[\left(a+\left|R_{i j k l}\right|^{2}\right)\left|\nabla R_{i j k l}\right|^{2}\right] \\
& -\left(2-\frac{\tilde{c}_{0}^{2}}{8 a}\right)\left|\nabla R_{i j k l}\right|^{4}+\tilde{c}_{0}|\nabla \mathrm{Rm}|^{2} \tag{12}\\
& +\tilde{c}_{0}\left(a+\left|R_{i j k l}\right|^{2}\right)|\nabla \mathrm{Rm}|^{2}
\end{align*}
$$

If we choose

$$
\begin{equation*}
a=\frac{\tilde{c}_{0}^{2}}{8}+c_{0} \tag{13}
\end{equation*}
$$

where c_{0} is the constant in (2) and \tilde{c}_{0} is the constant in (12), then we have

$$
\begin{equation*}
2-\frac{\tilde{c}_{0}^{2}}{8 a} \geq 1, \quad a \leq a+\left|R_{i j k l}\right|^{2} \leq a+c_{0} \leq 2 a \tag{14}
\end{equation*}
$$

Substituting (14) into (12) gives

$$
\begin{align*}
\frac{\partial}{\partial t}[(a+ & \left.\left.\left|R_{i j k l}\right|^{2}\right)\left|\nabla R_{i j k l}\right|^{2}\right] \\
\leq & \Delta \\
& \left.\quad-\left.\left|\left(a+\left|R_{i j k l}\right|^{2}\right)\right| \nabla R_{i j k l}\right|^{2}\right] \\
\leq & \Delta \tilde{c}_{0}(1+1 / a)\left(a+\left|R_{i j k l}\right|^{2}\right)\left|\nabla R_{i j k l}\right|^{2} \tag{15}\\
& \left.\left.+\left.\tilde{c}_{i j k l}\right|^{2}\right)\left|\nabla R_{i j k l}\right|^{2}\right]-\frac{1}{4 a^{2}}\left(a+\left|R_{i j k l}\right|^{2}\right)^{2}\left|\nabla R_{i j k l}\right|^{4} \\
\leq & \Delta\left[\left(a+\left|R_{i j k l}\right|^{2}\right)\left|\nabla R_{i j k l}\right|^{2}\right]-\frac{1}{8 a^{2}}\left(a+\left|R_{i j k l}\right|^{2}\right)^{2}\left|\nabla R_{i j k l}\right|^{4} \\
& +\tilde{c}_{0}\left(n, k_{0}, a\right) .
\end{align*}
$$

If we let

$$
\begin{equation*}
\varphi(x, t)=\left(a+\left|R_{i j k l}\right|^{2}\right) \cdot\left|\nabla R_{i j k l}\right|^{2} \cdot t \quad \text { on } M \times[0, T], \tag{16}
\end{equation*}
$$

then

$$
\begin{equation*}
\varphi(x, 0) \equiv 0 \quad \forall x \in M \tag{17}
\end{equation*}
$$

From (15) we know that

$$
\begin{align*}
& \frac{\partial \varphi}{\partial t} \leq \Delta \varphi-\frac{1}{8 a^{2} t} \varphi^{2}+\tilde{c}_{0}\left(n, k_{0}, a\right)+\frac{\varphi}{t} \quad \text { on } M \times[0, T] \\
& \frac{\partial \varphi}{\partial t} \leq \Delta \varphi+\frac{\varphi}{t}\left[1+\tilde{c}_{0}\left(n, k_{0}, a\right) T-\frac{\varphi}{8 a^{2}}\right] \tag{18}\\
& \frac{\partial \varphi}{\partial t} \leq \Delta \varphi+\frac{\varphi}{t}\left(\tilde{c}_{1}-\tilde{c}_{2} \varphi\right) \quad \text { on } M \times[0, T]
\end{align*}
$$

where $0<\tilde{c}_{1}, \tilde{c}_{2}<+\infty$ depend only on n, k_{0}, and a.
For any point $x_{0} \in M$, by (39), (40), and (45) of $\S 4$ we can find a function $\xi(x)$ such that

$$
\begin{align*}
& \xi(x) \equiv 1, x \in B\left(x_{0}, 1\right), \\
& \xi(x) \equiv 0, x \in M \backslash B\left(x_{0}, 2\right), \tag{19}\\
& 0 \leq \xi(x) \leq 1, x \in M ; \\
&|\widetilde{\nabla} \xi(x)|_{0}^{2} \leq 4^{2} \xi(x) \forall x \in M, \tag{20}\\
& \tilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} \xi(x) \geq-\tilde{c}_{3}\left(k_{0}\right) \tilde{g}_{\alpha \beta}(x), \quad x \in M,
\end{align*}
$$

where $\left|\left.\right|_{0} ^{2}\right.$ denotes the norm with respect to the metric $\tilde{g}_{\alpha \beta}$. Consider the function

$$
\begin{equation*}
F(x, t)=\xi(x) \varphi(x, t), \quad(x, t) \in M \times[0, T] . \tag{21}
\end{equation*}
$$

Then from (16), (17), and (19) it follows that

$$
\begin{align*}
& F(x, 0) \equiv 0, x \in M \\
& F(x, t) \equiv 0,(x, t) \in\left(M \backslash B\left(x_{0}, 2\right)\right) \times[0, T] \tag{22}\\
& F(x, t) \geq 0,(x, t) \in M \times[0, T]
\end{align*}
$$

If $F(x, t) \not \equiv 0$, by (22) we know that there exists a point $\left(x_{1}, t_{1}\right) \in B\left(x_{0}, 2\right) \times$ $[0, T]$ such that

$$
\begin{equation*}
F\left(x_{1}, t_{1}\right)=\max _{M \times[0, T]} F(x, t)>0 \tag{23}
\end{equation*}
$$

which together with (22) implies that

$$
\begin{equation*}
t_{1}>0 \tag{24}
\end{equation*}
$$

and therefore that

$$
\begin{equation*}
\frac{\partial F}{\partial t}\left(x_{1}, t_{1}\right) \geq 0, \quad \nabla F\left(x_{1}, t_{1}\right)=0, \quad \Delta F\left(x_{1}, t_{1}\right) \leq 0 \tag{25}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\xi\left(x_{1}\right) \frac{\partial \varphi}{\partial t}\left(x_{1}, t_{1}\right) \geq 0 . \tag{26}
\end{equation*}
$$

Since $\xi \geq 0$, from (18) and (26) we get

$$
\begin{equation*}
\xi \Delta \varphi+\frac{\xi \varphi}{t_{1}}\left(\tilde{c}_{1}-\tilde{c}_{2} \varphi\right) \geq 0 \quad \text { at }\left(x_{1}, t_{1}\right) \tag{27}
\end{equation*}
$$

On the other hand, by (25) we have

$$
\begin{equation*}
\xi \Delta \varphi+2 g^{\alpha \beta} \nabla_{\alpha} \xi \cdot \nabla_{\beta} \varphi+\varphi \Delta \xi \leq 0 \quad \text { at }\left(x_{1}, t_{1}\right) \tag{28}
\end{equation*}
$$

which together with (27) gives

$$
\begin{equation*}
\frac{\xi \varphi}{t_{1}}\left(\tilde{c}_{2} \varphi-\tilde{c}_{1}\right) \leq-2 g^{\alpha \beta} \nabla_{\alpha} \xi \cdot \nabla_{\beta} \varphi-\varphi \Delta \xi \tag{29}
\end{equation*}
$$

Since $\nabla F\left(x_{1}, t_{1}\right)=0$, we have

$$
\begin{gather*}
\xi \cdot \nabla_{\beta} \varphi+\varphi \cdot \nabla_{\beta} \xi=0, \\
-2 g^{\alpha \beta} \nabla_{\alpha} \xi \cdot \nabla_{\beta} \varphi=\frac{2 \varphi}{\xi} \cdot g^{\alpha \beta} \nabla_{\alpha} \xi \cdot \nabla_{\beta} \xi \quad \text { at }\left(x_{1}, t_{1}\right) . \tag{30}
\end{gather*}
$$

Using (29) and (30) we get

$$
\begin{equation*}
\frac{\xi \varphi}{t_{1}}\left(\tilde{c}_{2} \varphi-\tilde{c}_{1}\right) \leq \frac{2 \varphi}{\xi} \cdot g^{\alpha \beta} \nabla_{\alpha} \xi \cdot \nabla_{\beta} \xi-\varphi \Delta \xi \tag{31}
\end{equation*}
$$

Since $F\left(x_{1}, t_{1}\right)=\xi\left(x_{1}\right) \cdot \varphi\left(x_{1}, t_{1}\right)>0$, from (19) it follows that

$$
\begin{equation*}
\xi\left(x_{1}\right)>0, \quad \varphi\left(x_{1}, t_{1}\right)>0, \tag{32}
\end{equation*}
$$

and since $\xi(x)$ is a function, we have

$$
\begin{gather*}
\nabla_{\alpha} \xi=\tilde{\nabla}_{\alpha} \xi \\
g^{\alpha \beta} \nabla_{\alpha} \xi \cdot \nabla_{\beta} \xi=g^{\alpha \beta} \cdot \widetilde{\nabla}_{\alpha} \xi \cdot \tilde{\nabla}_{\beta} \xi . \tag{33}
\end{gather*}
$$

Using (2) and (20) we get

$$
\begin{equation*}
g^{\alpha \beta} \nabla_{\alpha} \xi \cdot \nabla_{\beta} \xi \leq 16 c \cdot \xi(x) \tag{34}
\end{equation*}
$$

Substituting (32) and (34) into (31) we find

$$
\begin{equation*}
\frac{\xi \varphi}{t_{1}}\left(\tilde{c}_{2} \varphi-\tilde{c}_{1}\right) \leq 32 c \cdot \varphi-\varphi \Delta \xi \quad \text { at }\left(x_{1}, t_{1}\right) \tag{35}
\end{equation*}
$$

We also have

$$
\begin{align*}
\Delta \xi & =g^{\alpha \beta} \nabla_{\alpha} \nabla_{\beta} \xi=g^{\alpha \beta} \nabla_{\alpha} \tilde{\nabla}_{\beta} \xi \\
& =g^{\alpha \beta}\left[\widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} \xi-\left(\Gamma_{\alpha \beta}^{\gamma}-\widetilde{\Gamma}_{\alpha \beta}^{\gamma}\right) \widetilde{\nabla}_{\gamma} \xi\right] \tag{36}\\
-\Delta \xi & =-g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} \xi+g^{\alpha \beta}\left(\Gamma_{\alpha \beta}^{\gamma}-\widetilde{\Gamma}_{\alpha \beta}^{\gamma}\right) \cdot \tilde{\nabla}_{\gamma} \xi .
\end{align*}
$$

From (20) and (2) it follows respectively that

$$
\begin{gather*}
-g^{\alpha \beta} \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} \xi \leq \tilde{c}_{3} g^{\alpha \beta} \cdot \tilde{g}_{\alpha \beta} \\
-g^{\alpha \beta} \tilde{\nabla}_{\alpha} \tilde{\nabla}_{\beta} \xi \leq n \tilde{c}_{3} \cdot c . \tag{37}
\end{gather*}
$$

Substituting (37) into (36) we get

$$
\begin{equation*}
-\Delta \xi \leq n \tilde{c}_{3} \cdot c+g^{\alpha \beta}\left(\Gamma_{\alpha \beta}^{\gamma}-\tilde{\Gamma}_{\alpha \beta}^{\gamma}\right) \cdot \tilde{\nabla}_{\gamma} \xi \tag{38}
\end{equation*}
$$

Since

$$
\begin{gathered}
\Gamma_{\alpha \beta}^{\gamma}=\frac{1}{2} g^{\gamma \delta}\left(\frac{\partial g_{\alpha \delta}}{\partial x^{\beta}}+\frac{\partial g_{\beta \delta}}{\partial x^{\alpha}}-\frac{\partial g_{\alpha \beta}}{\partial x^{\delta}}\right) \\
\frac{\partial}{\partial t} \Gamma_{\alpha \beta}^{\gamma}=\frac{1}{2} g^{\gamma \delta}\left[\nabla_{\beta}\left(\frac{\partial g_{\alpha \delta}}{\partial t}\right)+\nabla_{\alpha}\left(\frac{\partial g_{\beta \delta}}{\partial t}\right)-\nabla_{\delta}\left(\frac{\partial g_{\alpha \beta}}{\partial t}\right)\right] .
\end{gathered}
$$

Using (1) we have

$$
\begin{equation*}
\frac{\partial}{\partial t} \Gamma_{\alpha \beta}^{\gamma}=g^{\gamma \delta}\left(\nabla_{\delta} R_{\alpha \beta}-\nabla_{\alpha} R_{\beta \delta}-\nabla_{\beta} R_{\alpha \delta}\right) \tag{39}
\end{equation*}
$$

We still have

$$
\begin{equation*}
\left|\nabla R_{i j}\right|^{2} \leq n^{2}\left|\nabla R_{i j k l}\right|^{2} \tag{40}
\end{equation*}
$$

From (14) and (16) it follows that

$$
\left|\nabla R_{i j k l}\right|^{2} \leq \varphi /(a t)
$$

which together with (40) gives

$$
\begin{equation*}
\left|\nabla R_{i j}\right|^{2} \leq \frac{n^{2}}{a t} \varphi \tag{41}
\end{equation*}
$$

Using (39) and (41) we know that

$$
\begin{equation*}
\left|\frac{\partial}{\partial t} \Gamma_{\alpha \beta}^{\gamma}\right| \leq 3\left|\nabla R_{i j}\right| \leq \frac{3 n}{\sqrt{a t}} \varphi^{1 / 2} . \tag{42}
\end{equation*}
$$

From (23) we have

$$
\begin{align*}
\xi\left(x_{1}\right) \varphi\left(x_{1}, t\right) & =F\left(x_{1}, t\right) \leq F\left(x_{1}, t_{1}\right), \quad t \in[0, T] \\
\varphi\left(x_{1}, t\right) & \leq \frac{F\left(x_{1}, t_{1}\right)}{\xi\left(x_{1}\right)}, \quad t \in[0, T] \tag{43}
\end{align*}
$$

which together with (42) yields

$$
\begin{equation*}
\left|\frac{\partial}{\partial t} \Gamma_{\alpha \beta}^{\gamma}\left(x_{1}, t\right)\right| \leq 3 n\left(\frac{F\left(x_{1}, t_{1}\right)}{a \xi\left(x_{1}\right)}\right)^{1 / 2} \cdot \frac{1}{\sqrt{t}}, \quad t \in[0, T] . \tag{44}
\end{equation*}
$$

Thus

$$
\begin{align*}
\Gamma_{\alpha \beta}^{\gamma}\left(x_{1}, t_{1}\right)-\tilde{\Gamma}_{\alpha \beta}^{\gamma}\left(x_{1}\right) & =\Gamma_{\alpha \beta}^{\gamma}\left(x_{1}, t_{1}\right)-\Gamma_{\alpha \beta}^{\gamma}\left(x_{1}, 0\right) \\
& =\int_{0}^{t_{1}} \frac{\partial}{\partial t} \Gamma_{\alpha \beta}^{\gamma}\left(x_{1}, t\right) d t, \\
\left|\Gamma_{\alpha \beta}^{\gamma}\left(x_{1}, t_{1}\right)-\tilde{\Gamma}_{\alpha \beta}^{\gamma}\left(x_{1}\right)\right| & \leq \int_{0}^{t_{1}}\left|\frac{\partial}{\partial t} \Gamma_{\alpha \beta}^{\gamma}\left(x_{1}, t\right)\right| \cdot d t \\
& \left.\leq\left|\int_{0}^{T}\right| \frac{\partial}{\partial t} \Gamma_{\alpha \beta}^{\gamma}\left(x_{1}, t\right) \right\rvert\, \cdot d t \\
& \leq 3 n\left(\frac{F\left(x_{1}, t_{1}\right)}{a \xi\left(x_{1}\right)}\right)^{1 / 2} \int_{0}^{T} \frac{d t}{\sqrt{t}} \\
& \leq 6 n\left(\frac{T}{a}\right)^{1 / 2} \cdot\left(\frac{F\left(x_{1}, t_{1}\right)}{\xi\left(x_{1}\right)}\right)^{1 / 2} . \tag{45}
\end{align*}
$$

From (20) we know that

$$
\begin{equation*}
\left|\widetilde{\nabla} \xi\left(x_{1}\right)\right|_{0} \leq 4 \xi\left(x_{1}\right)^{1 / 2} \tag{46}
\end{equation*}
$$

Using (45), (46) and (2) we get

$$
\begin{equation*}
g^{\alpha \beta}\left(\Gamma_{\alpha \beta}^{\gamma}-\tilde{\Gamma}_{\alpha \beta}^{\gamma}\right) \cdot \tilde{\nabla}_{\gamma} \xi \leq 24 n^{2}\left(\frac{T c}{a}\right)^{1 / 2} \cdot F\left(x_{1}, t_{1}\right)^{1 / 2} \tag{47}
\end{equation*}
$$

By means of (38) and (47) we find

$$
\begin{equation*}
-\Delta \xi \leq n \tilde{c}_{3} \cdot c+\tilde{c}_{4} F\left(x_{1}, t_{1}\right)^{1 / 2} \quad \text { at }\left(x_{1}, t_{1}\right) \tag{48}
\end{equation*}
$$

where $\tilde{c}_{4}=24 n^{2}(T c / a)^{1 / 2}$.
Using (32), (35) and (48) we get

$$
\begin{aligned}
& \xi \varphi\left(\tilde{c}_{2} \varphi-\tilde{c}_{1}\right) \leq\left(32 c+n \tilde{c}_{3} c\right) t_{1} \varphi+\tilde{c}_{4} t_{1} \varphi F\left(x_{1}, t_{1}\right)^{1 / 2} \quad \text { at }\left(x_{1}, t_{1}\right) \\
& \leq\left(32 c+n \tilde{c}_{3} c\right) \cdot T \cdot \varphi+\tilde{c}_{4} \cdot T \cdot \varphi F\left(x_{1}, t_{1}\right)^{1 / 2}, \\
& \xi \varphi\left(\tilde{c}_{2} \varphi-\tilde{c}_{1}\right) \leq \tilde{c}_{5} \varphi+\tilde{c}_{6} \varphi F\left(x_{1}, t_{1}\right)^{1 / 2} \quad \text { at }\left(x_{1}, t_{1}\right) .
\end{aligned}
$$

By (32) we have

$$
\tilde{c}_{2}(\xi \varphi)^{2}-\tilde{c}_{1} \xi^{2} \varphi \leq \tilde{c}_{5} \xi \varphi+\tilde{c}_{6} \xi \varphi \cdot F\left(x_{1}, t_{1}\right)^{1 / 2} \quad \text { at }\left(x_{1}, t_{1}\right)
$$

But $\xi \varphi=F\left(x_{1}, t_{1}\right)$, so

$$
\tilde{c}_{2} F\left(x_{1}, t_{1}\right)^{2} \leq\left(\tilde{c}_{1} \xi\left(x_{1}\right)+\tilde{c}_{5}\right) F\left(x_{1}, t_{1}\right)+\tilde{c}_{6} F\left(x_{1}, t_{1}\right)^{3 / 2}
$$

Since $0 \leq \xi\left(x_{1}\right) \leq 1$,

$$
\begin{equation*}
\tilde{c}_{2} F\left(x_{1}, t_{1}\right)^{2} \leq \tilde{c}_{7} F\left(x_{1}, t_{1}\right)+\tilde{c}_{6} F\left(x_{1}, t_{1}\right)^{3 / 2} \tag{49}
\end{equation*}
$$

where $0<\tilde{c}_{3}, \tilde{c}_{4}, \tilde{c}_{5}, \tilde{c}_{6}, \tilde{c}_{7}<+\infty$ are constants depending only on n, k_{0}, and a.

Since $\tilde{c}_{2}>0$, from (49) it follows that

$$
\begin{equation*}
F\left(x_{1}, t_{1}\right) \leq \tilde{c}_{8}\left(n, k_{0}, a\right) \tag{50}
\end{equation*}
$$

which together with (23) gives

$$
\begin{gathered}
F(x, t) \leq \tilde{c}_{8}\left(n, k_{0}, a\right) \quad \text { on } M \times[0, T] \\
\xi(x) \varphi(x, t) \leq \tilde{c}_{8}\left(n, k_{0}, a\right) \quad \text { on } M \times[0, T]
\end{gathered}
$$

Using (19) we get

$$
\varphi(x, t) \leq \tilde{c}_{8}\left(n, k_{0}, a\right) \quad \text { on } B\left(x_{0}, 1\right) \times[0, T]
$$

Since $x_{0} \in M$ is arbitrary,

$$
\begin{equation*}
\varphi(x, t) \leq \tilde{c}_{8}\left(n, k_{0}, a\right) \quad \text { on } M \times[0, T] \tag{51}
\end{equation*}
$$

From (16) and (51) it follows that

$$
\begin{gather*}
a\left|\nabla R_{i j k l}\right|^{2} \cdot t \leq \tilde{c}_{8} \quad \text { on } M \times[0, T] \\
\left|\nabla R_{i j k l}\right|^{2} \leq \tilde{c}_{9} / t \quad \text { on } M \times[0, T] \tag{52}
\end{gather*}
$$

where $0<\tilde{c}_{9}<+\infty$ depends only on n, k_{0}, and a. By (13) we know that a depends only on n and k_{0}, and therefore \tilde{c}_{9} depends only on n and k_{0}. Hence the lemma is true in the case $m=1$.

By induction, suppose for $s=1,2, \ldots, m-1$ we have

$$
\begin{equation*}
\left|\nabla^{s} R_{i j k l}\right|^{2} \leq c_{s}\left(n, k_{0}\right) / t^{s} \quad \text { on } M \times[0, T] \tag{53}
\end{equation*}
$$

In the case $s=m \geq 2$, we define a function

$$
\begin{equation*}
\psi(x, t)=\left(a+t^{m-1}\left|\nabla^{m-1} R_{i j k l}\right|^{2}\right) \cdot\left|\nabla^{m} R_{i j k l}\right|^{2} t^{m} \tag{54}
\end{equation*}
$$

and choose a large enough. Then similarly to (18) we have

$$
\begin{equation*}
\frac{\partial \psi}{\partial t} \leq \Delta \psi+\frac{\psi}{t}\left(\tilde{c}_{10}-\tilde{c}_{11} \psi\right) \quad \text { on } M \times[0, T] \tag{55}
\end{equation*}
$$

where $0<\tilde{c}_{10}, \tilde{c}_{11}<+\infty$ depend only on n, m, and k_{0}.
Let Δ_{t} denote the Laplacian operator of the metric $g_{i j}(x, t)$. Then using (53) and reasoning similar to (48) we can show that

$$
\begin{equation*}
-\Delta_{t} \xi(x) \leq \tilde{c}_{12}\left(n, k_{0}\right) \quad \forall(x, t) \in M \times[0, T] \tag{56}
\end{equation*}
$$

where $\xi(x)$ is the function defined by (19) and (20). Thus similar to (51) from (55) and (56) it follows that

$$
\begin{equation*}
\psi(x, t) \leq \tilde{c}_{13}\left(n, m, k_{0}\right) \quad \text { on } M \times[0, T] \tag{57}
\end{equation*}
$$

which together with (54) implies

$$
\begin{equation*}
\left|\nabla^{m} R_{i j k l}\right|^{2} \leq c_{m}\left(n, k_{0}\right) / t^{m} \quad \text { on } M \times[0, T] \tag{58}
\end{equation*}
$$

This completes the proof of Lemma 7.1, and hence Theorem 1.1 is true.

8. Remark

In this section we want to generalize Theorem 1.2. In Theorem 1.2 we proved that if ($M, d s^{2}$) is a complete noncompact Riemannian manifold with bounded curvature tensor, then one can find a metric $d \tilde{s}^{2}$ on M, which is equivalent to $d s^{2}$ and has bounded curvature tensor and all of the covariant derivatives. Now we want to prove that if the curvature of $d s^{2}$ is not bounded but satisfies some growth condition, we can still get some kind of estimate for the covariant derivative of the curvature of $d \tilde{s}^{2}$.

Suppose ($M, d s^{2}$) is an n-dimensional complete noncompact Riemannian manifold with metric

$$
\begin{equation*}
d s^{2}=g_{i j}(x) d x^{i} d x^{j}>0 \tag{1}
\end{equation*}
$$

and satisfies the curvature growth condition

$$
\begin{equation*}
\left|R_{i j k l}(x)\right| \leq \beta_{0}\left[1+\gamma\left(x, x_{0}\right)\right]^{\alpha} \quad \forall x \in M \tag{2}
\end{equation*}
$$

where $x_{0} \in M$ is a fixed point, $\gamma\left(x, x_{0}\right)$ denotes the distance between x_{0} and x, and $\beta_{0}>0, \alpha \geq 1$ are some constants.

Define a function φ on M as follows:

$$
\begin{equation*}
\varphi(x)=\left[1+\gamma\left(x, x_{0}\right)^{2}\right]^{\alpha / 2}, \quad x \in M \tag{3}
\end{equation*}
$$

Using curvature condition (2) and the comparison theorem in Riemannian geometry we know that at the smooth points of $\gamma\left(x, x_{0}\right)$ one has

$$
\begin{align*}
& \left|\nabla \gamma\left(x, x_{0}\right)\right| \leq 1 \\
& \left|\nabla_{i} \nabla_{j} \gamma\left(x, x_{0}\right)\right| \leq \frac{\beta_{1}}{\gamma\left(x, x_{0}\right)}+\beta_{1}\left[1+\gamma\left(x, x_{0}\right)\right]^{\alpha / 2} \tag{4}
\end{align*}
$$

thus at the smooth points of $\varphi(x)$ we have

$$
\begin{align*}
& \left|\nabla_{i} \varphi(x)\right| \leq \beta_{2}\left[1+\gamma\left(x, x_{0}\right)\right]^{\alpha-1}, \\
& \left|\nabla_{i} \nabla_{j} \varphi(x)\right| \leq \beta_{3}\left[1+\gamma\left(x, x_{0}\right)\right]^{3 \alpha / 2-1} \quad \forall x \in M \tag{5}
\end{align*}
$$

Since $\varphi(x)$ may not be smooth on the whole manifold M, we are going to use the mollifier technique to smooth φ on M. Suppose $\left\{\theta_{k}(x)\right\}$ for $k=1,2,3, \ldots$ is a partition of unity on M :

$$
\begin{array}{ll}
\theta_{k} \in c^{\infty}(M), & \\
0 \leq \theta_{k}(x) \leq 1 & \forall x \in M \\
\theta_{k}(x) \equiv 0 & \text { if } \gamma\left(x, x_{0}\right) \geq 2^{k}+\frac{3}{2} \tag{6}\\
& \text { or } \gamma\left(x, x_{0}\right) \leq 2^{k-1}-\frac{3}{2} \\
\sum_{k=1}^{\infty} \theta_{k}(x) \equiv 1 & \forall x \in M
\end{array}
$$

Then we have

$$
\begin{align*}
& \varphi(x) \equiv \sum_{k=1}^{\infty} \theta_{k}(x) \varphi(x), \\
& \operatorname{supp}\left(\theta_{k} \varphi\right) \subseteq B\left(x_{0}, 2^{k}+\frac{3}{2}\right) \backslash B\left(x_{0}, 2^{k-1}-\frac{3}{2}\right) . \tag{7}
\end{align*}
$$

Since the support of function $\theta_{k} \varphi$ is contained in a compact subset of M and the injectivity radius of M in that compact subset is bounded away from zero, using the mollifier technique we can find a function $\psi_{k} \in c^{\infty}(M)$ such that

$$
\operatorname{supp} \psi_{k} \subseteq B\left(x_{0}, 2^{k}+2\right) \backslash B\left(x_{0}, 2^{k-1}-2\right), \quad k=1,2,3, \ldots,
$$

$$
\begin{aligned}
& \left|\psi_{k}-\theta_{k} \varphi\right| \leq\left(\frac{1}{4}\right)^{k}, \\
& \left|\nabla_{i}\left(\psi_{k}-\theta_{k} \varphi\right)\right| \leq\left(\frac{1}{4}\right)^{k}, \quad k=1,2,3, \ldots, \\
& \left|\nabla_{i} \nabla_{j}\left(\psi_{k}-\theta_{k} \varphi\right)\right| \leq\left(\frac{1}{4}\right)^{k} .
\end{aligned}
$$

Define

$$
\begin{equation*}
\psi(x)=\sum_{k=1}^{\infty} \psi_{k}(x), \quad x \in M \tag{9}
\end{equation*}
$$

Then we have

$$
\begin{align*}
& \psi(x) \in c^{\infty}(M), \\
& \frac{1}{4}\left[1+\gamma\left(x, x_{0}\right)\right]^{\alpha} \leq \psi(x) \leq 4\left[1+\gamma\left(x, x_{0}\right)\right]^{\alpha}, \tag{10}\\
& \left|\nabla_{i} \psi(x)\right| \leq \beta_{4}\left[1+\gamma\left(x, x_{0}\right)\right]^{\alpha-1}, \\
& \left|\nabla_{i} \nabla_{j} \psi(x)\right| \leq \beta_{5}\left[1+\gamma\left(x, x_{0}\right)\right]^{3 \alpha / 2-1} \quad \forall x \in M .
\end{align*}
$$

Now define a new metric $d \tilde{s}^{2}$ on M :

$$
\begin{equation*}
d \tilde{s}^{2}=\psi(x) d s^{2}=\tilde{g}_{i j}(x) d x^{i} d x^{j} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{g}_{i j}(x)=\psi(x) g_{i j}(x) \tag{12}
\end{equation*}
$$

Then the curvature tensor of $d \tilde{s}^{2}$ is

$$
\begin{align*}
\widetilde{R}_{i j k l}= & \psi R_{i j k l}+\frac{1}{2}\left(g_{j k} \nabla_{i} \nabla_{l} \psi-g_{j l} \nabla_{i} \nabla_{k} \psi-g_{i k} \nabla_{j} \nabla_{l} \psi+g_{i l} \nabla_{j} \nabla_{k} \psi\right) \tag{13}\\
& +\frac{3}{4 \psi}\left(g_{i k} \nabla_{j} \psi \cdot \nabla_{l} \psi-g_{j k} \nabla_{i} \psi \cdot \nabla_{l} \psi\right. \\
& \left.+g_{j l} \nabla_{i} \psi \cdot \nabla_{k} \psi-g_{i l} \nabla_{j} \psi \cdot \nabla_{k} \psi\right) \\
& +\frac{1}{4 \psi}\left(g_{j k} g_{i l}-g_{i k} g_{j l}\right) g^{p q} \nabla_{p} \psi \cdot \nabla_{q} \psi
\end{align*}
$$

Using (12) and (13) one gets

$$
\begin{equation*}
\left|\widetilde{R}_{i j k l}\right| \leq \frac{\beta_{6}}{\psi}\left|R_{i j k l}\right|+\frac{\beta_{6}}{\psi^{3}}\left|\nabla_{i} \psi\right|^{2}+\frac{\beta_{6}}{\psi^{2}}\left|\nabla_{i} \nabla_{j} \psi\right| \tag{14}
\end{equation*}
$$

where ∇ denotes the covariant derivative with respect to $d s^{2}$. From (2) and (10) it follows that

$$
\begin{equation*}
\sup _{x \in M}\left|\widetilde{R}_{i j k l}(x)\right| \leq \beta_{7}<+\infty \tag{15}
\end{equation*}
$$

Thus by Theorem 1.2 we know that there exist a constant $\beta_{8}>0$ and a metric $d \hat{s}^{2}$ on M,

$$
\begin{equation*}
d \hat{s}^{2}=\hat{g}_{i j}(x) d x^{i} d x^{j}>0 \tag{16}
\end{equation*}
$$

such that

$$
\begin{align*}
& \frac{1}{\beta_{8}} \tilde{g}_{i j}(x) \leq \hat{g}_{i j}(x) \leq \beta_{8} \tilde{g}_{i j}(x), \quad x \in M \\
& \sup _{x \in M}\left|\widehat{\nabla}^{k} \widehat{\operatorname{Rm}}(x)\right| \leq c_{k}<+\infty, \quad k=0,1,2,3, \ldots \tag{17}
\end{align*}
$$

where $\widehat{\mathrm{Rm}}$ denotes the curvature tensor of $\hat{g}_{i j}, \widehat{\nabla}$ the covariant derivatives with respect to $\hat{g}_{i j}$, and $\hat{\nabla}^{k}$ the k th order covariant derivatives.

Now we define the metric

$$
\begin{equation*}
d s_{*}^{2}=g_{i j}^{*}(x) d x^{i} d x^{j}, \quad g_{i j}^{*}(x)=\frac{1}{\psi(x)} \hat{g}_{i j}(x), \quad x \in M \tag{18}
\end{equation*}
$$

From (12), (17), and (18) one has

$$
\begin{equation*}
\frac{1}{\beta_{8}} g_{i j}(x) \leq g_{i j}^{*}(x) \leq \beta_{8} g_{i j}(x) \tag{19}
\end{equation*}
$$

where Rm^{*} denotes the curvature tensor of $d s_{*}^{2}$. Using the same reasoning as in (14) we get

$$
\begin{equation*}
\left|\mathrm{Rm}^{*}\right| \leq \beta_{9} \psi|\widehat{\mathrm{Rm}}|+\frac{\beta_{9}}{\psi}|\widehat{\nabla} \psi|^{2}+\beta_{9}\left|\widehat{\nabla}_{i} \widehat{\nabla}_{l} \psi\right| . \tag{20}
\end{equation*}
$$

If we differentiate both sides of (13), similar to (14) we get the estimate for the covariant derivatives:

$$
\begin{align*}
\left|\nabla^{*} \mathrm{Rm}^{*}\right| \leq \beta_{10}(& \psi^{3 / 2}|\widehat{\nabla} \widehat{\mathrm{Rm}}|+\psi^{1 / 2}|\widehat{\nabla} \psi|^{2}|\widehat{\mathrm{Rm}}|+\frac{1}{\psi^{3 / 2}}|\widehat{\nabla} \psi|^{3} \\
& \left.+\frac{1}{\psi^{1 / 2}}|\widehat{\nabla} \psi| \cdot\left|\widehat{\nabla}_{i} \widehat{\nabla}_{j} \psi\right|+\psi^{1 / 2}\left|\widehat{\nabla}_{i} \widehat{\nabla}_{j} \widehat{\nabla}_{k} \psi\right|\right) . \tag{21}
\end{align*}
$$

From (10) and (12) it follows that

$$
\begin{equation*}
\left|\tilde{\nabla}_{i} \psi(x)\right|=\frac{1}{\sqrt{\psi}}\left|\nabla_{i} \psi(x)\right| \leq \beta_{11}\left[1+\gamma\left(x, x_{0}\right)\right]^{\alpha / 2-1} \tag{22}
\end{equation*}
$$

where $\tilde{\nabla}$ is the covariant derivative with respect to $d \tilde{s}^{2}$. Using (17) and (22) we get

$$
\begin{equation*}
\left|\widehat{\nabla}_{i} \psi(x)\right| \leq \beta_{12}\left[1+\gamma\left(x, x_{0}\right)\right]^{\alpha / 2-1} . \tag{23}
\end{equation*}
$$

If the second and the third order covariant derivatives of ψ with respect to $d \hat{s}^{2}$ are not well controlled, we can use the heat equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \psi(x, t)=\widehat{\Delta} \psi(x, t), \quad \psi(x, 0)=\psi(x) \tag{24}
\end{equation*}
$$

to deform $\psi(x)$ for a small time interval $[0, \delta]$. Using the estimate arguments derived in the previous sections we can control the second and the third order covariant derivatives of $\psi(x, t)$, and $\psi(x, t)$ still has growth order $\left[1+\gamma\left(x, x_{0}\right)\right]^{\alpha}$. Thus without loss of generality we can assume that

$$
\begin{align*}
& \frac{1}{8}\left[1+\gamma\left(x, x_{0}\right)\right]^{\alpha} \leq \psi(x) \leq 8\left[1+\gamma\left(x, x_{0}\right)\right]^{\alpha}, \\
& \left|\hat{\nabla}_{i} \psi(x)\right| \leq \beta_{13}\left[1+\gamma\left(x, x_{0}\right)\right]^{\alpha}, \\
& \left|\hat{\nabla}_{i} \hat{\nabla}_{j} \psi(x)\right| \leq \beta_{13}\left[1+\gamma\left(x, x_{0}\right)\right]^{\alpha}, \tag{25}\\
& \left|\hat{\nabla}_{i} \hat{\nabla}_{j} \hat{\nabla}_{k} \psi(x)\right| \leq \beta_{13}\left[1+\gamma\left(x, x_{0}\right)\right]^{\alpha} .
\end{align*}
$$

Of course here we have to use (17), and the fact that all of the covariant derivatives for the curvature of $d \hat{s}^{2}$ are bounded on M. Substituting (25) into (20) and (21) and using (17) again we find

$$
\begin{align*}
& \left|\operatorname{Rm}^{*}(x)\right| \leq \beta_{14}\left[1+\gamma\left(x, x_{0}\right)\right]^{\alpha}, \\
& \left|\nabla^{*} \operatorname{Rm}^{*}(x)\right| \leq \beta_{15}\left[1+\gamma\left(x, x_{0}\right)\right]^{3 \times / 2}, \quad x \in M . \tag{26}
\end{align*}
$$

From (19) and (26) we get the following theorem.

Theorem 8.1. Suppose M is an n-dimensional complete noncompact Riemannian manifold with metric

$$
d s^{2}=g_{i j}(x) d x^{i} d x^{j}>0
$$

and satisfies the curvature growth condition

$$
|\operatorname{Rm}(x)| \leq \beta_{0}\left[1+\gamma\left(x, x_{0}\right)\right]^{\alpha}, \quad x \in M .
$$

Then there exists another metric

$$
d s_{*}^{2}=g_{i j}^{*}(x) d x^{i} d x^{j}>0
$$

on M such that

$$
\begin{align*}
& \frac{1}{\beta_{8}} g_{i j}(x) \leq g_{i j}^{*}(x) \leq \beta_{8} g_{i j}(x), \\
& \left|\operatorname{Rm}^{*}(x)\right| \leq \beta_{14}\left[1+\gamma\left(x, x_{0}\right)\right]^{\alpha}, \tag{27}\\
& \left|\nabla^{*} \operatorname{Rm}^{*}(x)\right| \leq \beta_{15}\left[1+\gamma\left(x, x_{0}\right)\right]^{3 \alpha / 2},
\end{align*} \quad x \in M
$$

where $0<\beta_{8}, \beta_{14}, \beta_{15}<+\infty$ are some constants depending only on n, α, and β_{0}.

Similarly one can get a control for the higher order covariant derivatives of $\mathrm{Rm}^{*}(x)$. Furthermore, if the growth of $\mathrm{Rm}(x)$ is larger than $\left[1+\gamma\left(x, x_{0}\right)\right]^{\alpha}$, then one can still get similar results.

References

[1] J. Bemelmans, Min-Oo \& E. A. Ruh, Smoothing Riemannian metrics, Preprint.
[2] J. Cheeger \& D. Ebin, Comparison theorems in Riemannian geometry, North-Holland, Amsterdam, 1975.
[3] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982) 255-306.
[4] O. A. Ladyzenskaja, V. A. Solonnikov \& N. N. Uralceva, Linear and quasilinear equations of parabolic type, Transl. Amer. Math. Soc. 23 (1968).
[5] P. Li \& S. T. Yau, On the parabolic kernel of the Schrodinger operator, Acta Math. 156 (1986) 153-201.

Harvard University

