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Introduction

The term geography is used to describe the distribution of Chern num-
bers of algebraic manifolds of general type. The term was introduced
by Persson [73], where he studied the question for algebraic surfaces of
general type. Although the Chern numbers are quite rough invariants of
manifolds, they are in general easily calculated, and are perhaps the only
such invariants for algebraic manifolds of general type. Furthermore, there
seem to be in general certain bounds on these Chern numbers, so the nat-
ural question arises as to whether there exists an algebraic manifold Y for
every given set of numbers fulfilling the bounds, such that Y has precisely
those Chern numbers. In the second part of this paper, which is mainly
expository, we study these questions for algebraic 3-folds. To put this in
its proper perspective, in the first part we review most of the constructions
used to get the known results in the surface case. This subject has a history
going back at least to about 1950.

About that time Thorn created his cobordism theory [86] by which the
set of cobordism classes of differentiable manifolds became a ring under
the operations of cartesian product and disjoint sum, each class being char-
acterized by its Pontrajagin numbers. The signature theorem, proven in
1953 [24], showed that the Pontrajagin numbers could not be arbitrary:
there are integrality conditions which the Pontrajagin numbers of smooth
manifolds had to fulfill. A complex analogue was developed by Milnor
[61], and the Riemann-Roch theorem, proven in 1954 [24], showed that
also the Chern numbers of (almost) complex manifolds had to fulfill cer-
tain integrality relations (which were classically known in (complex) di-
mensions 1 and 2). Milnor was then able to show that these integrality
conditions are essentially all the conditions which must be fulfilled in the
complex cobordism ring. Hirzebruch suggested then that if one restricts
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consideration to connected manifolds, the Chern numbers should probably
fulfill certain inequalities [23, 7(3)].

The examples of algebraic surfaces known then were mainly the ones
found lying around in nature—the complete intersections. Complete in-
tersection surfaces do indeed fulfill an inequality: c\ < 2c2 (if they are of
general type). Zappa conjectured that this inequality might hold for all
surfaces of general type. By the signature theorem, c\ - 2c2 = τ, the signa-
ture, so the conjecture took the form: general type surfaces have negative
signature. Then in 1955 Hirzebruch proved the famous proportionality
principle [22], which implies that a compact, smooth quotient of the 2-
ball B2 = {(x,y) € C2\ \x\2 + \y\2 < 1}, if one exists, is a surface of general
type with c\ = 3c2. While such a ball quotient would have disproven
the conjecture above, this result suggested another natural candidate for
a bound. The existence of such quotients (i.e., the existence of discrete
subgroups Γ c SU(2,1) acting properly discontinuously and freely on B2)
was soon shown. With this the search for minimal surfaces of general type
with positive index began.

It was also known by about 1957 that the signature behaves multiplica-
tively in fiber bundles, provided the fundamental group of the base acts
trivially on the homology of the fiber [9]. Since the signature of any curve
is, by definition, zero, this implies that surfaces fibering to curves neces-
sarily have zero signature, provided the fundamental group of the base
curve acts trivially. One therefore thought of constructing surfaces fiber-
ing onto curves, but where the fundamental group acts nontrivially on the
fibers. Examples of general type surfaces with positive index (signature)
were constructed in this manner by K. Kodaira [57]. But still for some
time to come examples of positive index surfaces were quite scarce.

In the meantime progress had been made in proving the inequality above
for general type surfaces. Van de Ven [91], [92] used algebraic-geometric
methods to prove c\ < 8c2. These methods were improved upon by Bo-
gomolov, who was able to prove c\ < 4c2 [79]. Then, in 1977, Miyaoka,
improving on Bogomolov's method, proved the inequality c\ < 3c2 for all
general type surfaces [62]. In the same year, using difficult methods of dif-
ferential geometry and partial differential equations, Yau solved Calabi's
conjecture [92], and as a corollary could prove the famous inequality for
the Chern numbers of varieties V of dimension N with Kv ample:

(-1)V(P) < (-l
with equality holding if and only if V is a smooth, compact quotient of the
N-ball [91]. The solution of Calabi's conjecture implies the existence of a
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unique Kahler-Einstein metric on V under the assumption Kv ample, and
the inequality above had been known earlier for Kahler-Einstein metrics
[54]. The most stunning thing of this result is its generality; ball quotients
are extreme in all dimensions. Also, the result is stronger than just the
converse of Hirzebruch proportionality.

Today it is known that the complete set of inequalities, which the Chern
numbers of a minimal surface S of general type fulfill, is [4]:

(i) c ? > 0 , C 2 > o ,

(ii) c? + c2 = 0(12),

(\\\) r 2 > ί ^ / 5 - 3 6 / 5 ,

(iv) c?<3c 2 .

We already eluded to (ii) and (iv) above; (i) and (iii) are classical, (iii) is
Noethers inequality, which was originally formulated in the more concep-
tual form:

(iii)' c\ > 2pg - 4, pg = geometric genus of S.

This inequality states roughly "many holomorphic 2-forms drive c\ up",
and in this sense can be expected to have an analogue in any dimension.
This kind of inequality, however, will not be expressible solely in terms of
Chern numbers, as in the case of surfaces.

For surface researchers, the work was clearly cut out: find surfaces "fill-
ing in" the area of possible Chern numbers delineated by (i)-(iv) above.
Refined methods of construction were needed. One method of construc-
tion which had been known for some time, although not yet sufficiently
utilized, was ramified coverings of known spaces. The late 70's and early
80's saw a flurry of activity in this direction ([72], [58], [65], [26], [33],
[27], [73], [74], [46], [8], [84], [60]). Its systematic use started more or
less with the work of Persson which culminated in his famous Compositio
paper [73]. The strategy laid out there has been reutilized and refined ever
since. This is our point of departure for Part I of this paper.

In all of Part I we concentrate on giving as complete descriptions as
feasible of all constructions utilized. §0 is included for the benefit of
those not familiar with the theory of algebraic surfaces. §0.3 in particular
motivates what follows. In § 1 we review Persson's original construction
and subsequent generalizations of it. The main result is

Theorem 1. Let ( X J ) G Z X Z such that \y - f < x < 2y and x φ
2y - 3k, where k e {2,1,3, , 15,19}. Then there exists a minimal genus
twofibration S — C with c}{S) = x, c2(S) = y.
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This pretty much "fills" the area \c2 - f < c\ < 2c2. In §§1.4 and
1.5 we present some generalizations. The result of §1.4 is on the Picard
number of surfaces with fixed (CpC2):

Theorem 2. If X is a Horikawa surface {see §0.3 for definition) with
χ(X) = 0 (6), then there is a deformation ofX with maximal Picard num-
ber.

This theorem, although in appearance quite different than Theorem 1,
is actually proven in a similar manner. The difference lies in the type of
singularities one allows the branch locus of a double cover to have. In § 1.5
we describe a construction due to Xiao. This construction yields a proof
of

Theorem 3. Let (JC, y) G Z x Z such that x is sufficiently large and

Then there exists a simply connected surface X of general type with

Although not as precise as Theorem 1 this is stronger in two ways:
first, the ratio c\jcι is asymptotically 18644/6904 = 2.7, and second, the
constructed surfaces are simply connected.

In §2 we turn to somewhat different construction, due to Miyaoka. The
main result here is

Theorem 4. Every surface S cPN has a Galois covering X -> S such
that X has positive signature (i.e., c\ > 2c2).

§3 describes the beautiful theory of Picard Modular Surfaces, researched
by Holzapfel and his students in Berlin, Hauptstadt der DDR. This yields
examples of general type surfaces with c\jc2 near 3. In §3.1 we describe
the logarithmic Chern numbers used for such noncompact quotients.

In §4 we describe most of the constructions known to us which yield
examples of (compact or not) ball quotients. These are arranged more or
less in chronological ordering. In §4.1 we describe covers of the elliptic
modular surfaces, branched along a union of sections of the fibration, con-
structed by Livne [58] and independently by Inoue [44]. These examples
turn up again in relation with the examples constructed in the following
three sections. Finally, in §4.5 we describe the generalization of the Yau
inequality, due to Miyaoka [63] and R. Kobayashi [52], [53], which ac-
commodates both actions with fixed points and noncompact quotients.

We end the first part with a description of A. Sommese's result [84].
If one considers the quotient c]jc2 instead of the pair (cf,c2), then the
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bounds (i), (iii) and (iv) above can be wrapped up in a single statement:

(*) asymptotically c\/c2 € [3,3].

Viewing things this way leads to
Problem. Which p/q e [5,3] are accumulation points for a series of

minimal surfaces of general type?
Sommese considers this problem, and using an elegant construction (by

simply taking fiber products) he proves
Theorem 5. Every p/q e [5,3] is an accumulation point for a series of

minimal surfaces of general type. In fact, for each p/q e [5,3], there is a
minimal surface S of general type with tf(S)/c2(S) = p/q.

Remark. Of course considering just the quotient c\/c2 is much weaker
than considering pairs (c2,C2)> i.e., given p/q, there are infinitely many
possible values for (c2,C2) with c\/c2 = p/q. Such pairs are, however,
bounded in one direction since c\ > 0, c2 > 0 (condition (i) stated above).

This result pretty much completes the picture of surface geography.
Moving on to dimension 3 there are new difficulties all along the way.

First of all, there is no corresponding theory of minimal models in dimen-
sion 3. Because of this we have a good theory of geography only if we
restrict the class of 3-folds. We discuss these matters in §§6.5 and 7.1. It
turns out we get a good theory for 3-folds X with ample canonical bundle,
and also for minimal models which are smooth. More generally, we get a
'rational' theory for general minimal models. This point must always be
in the back of our heads when doing 3-fold geography.

The next problem in dimension 3 is that we have three numbers, or
two ratios to consider. An algebraic 3-fold Y (Y smooth and minimal) of
general type determines a point

in the rational projective plane P2(Q) with homogeneous coordinates
[xo : X\ : JC2]. Thus we consider only the two ratios from the start. Of
course, just as above, this is a weaker condition than considering triples
[c\,C\Cι9ci\, but this formulation turns out to be tractable with current
methods. In this set-up, looking for bounds on the Chern numbers of Y is
like looking for some curves in P2(Q) bounding some (probably convex)
finite area D c P2(Q) of possible Chern numbers for algebraic 3-folds Y
(with Kγ ample, say). Then comes the question as to whether each x e D
is really the Chern numbers of an actual 3-fold Y.

However the curves bounding D are not known, and therefore it is
desirable to "fill in" as much area with known examples, perhaps shedding
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light as to the whereabouts of the aforementioned curves in P2(Q). It is
this philosophy we pursue in Part II of this paper.

The known bounds on the Chern numbers of 3-folds Y, where we now
assume Kγ ample, can be summarized as follows:

(i) c?(Γ)<0; clc2(Y)<0,
(ii) CXC2(Y) = O(24)9

(iii) -cl(Y)<$(-clC2(Y)).

Under further assumptions on Y other bounds can be shown to hold. For
example, under certain assumptions on the canonical map M. Reid and his
student Fletcher have shown K^ > 2pg-A to hold, an inequality which cor-
responds to the Noether inequality for surfaces. This inequality, however,
can only be expressed in terms of Chern numbers under restrictive assump-
tions, i.e. if g2 = g\ (gi = A°(Y,Ωz

r)), this becomes -c\ > -C\C2/12 - 2.
But notice that nothing is said about the Euler number c^(Y), and as a
substantial difference to the surface case

(i)' c${Y) may be <, > or = 0.

Van de Ven suggested the following procedure to get an inequality contain-
ing c?>{Y). Suppose /: X c P^ is the canonical embedding and is smooth

). Let

/ : X->G(N+19Λ)
x ι-» tangent plane to X at x

be the Gauss mapping. There is the usual bundle sequence on G(N+ 1,4):

O^S^ CN+ι -> Q -> 0,

where 5 is the universal bundle (see [18, Chapter I, section on Grassman-

nians]), which pulls back to an exact sequence on X

—* J b —* J ^ —y J {s —̂  "

On the other hand we have the usual exact sequence on P^:

0 -+ ffipN -+ (ffipN(l))N+l -4 Γp^ -4 0,

which gives

which can be pulled back to X:

o - r^(-i) - r^.+1 -, rτM-i)
In addition we have the adjunction sequence on X:

0^Tx-> rτpN -* NpNX -> 0,
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which gives

0 -> Tχ(-l) -> i'Tp^(-l) -+ NP*X(-l) -> 0.

These three sequences fit together in a diagram

0 0

I I
^ fS . 7i(-l)

'' 1 1 X χ

0 > j ^ ( - i ) •

1 1
0 0

which factorizes like the dotted line yielding the sequence

0 - ffix(-Kχ) - /*5 - Tx(-Kx) -+ 0.

It is well known that Ci(f*S) = f*c$(S) < 0, so using the formula

c(f*S) = C ( ^ ( - ^ ) ) C ( Γ Λ T ( - ^ ) )

for the total Chern class this turns into an inequality:

Ci(f*S) = c3(Tχ(-Kx)) - Kx c2(Tx(-Kχ)) < 0,

c3 - c2 - ^ + c! . ^ - ^ 1 - Kx (3ΛΓi + 2 - ^ + c2) < 0,

or
c\

C\C2 C{C2

Similar reasoning applied to the m-canonical map yields an even weaker
inequality, much too weak to be useful. But this does give us perhaps an
idea of what to expect in general

We now outline the contents of Part II of this paper. In §6 we describe
for each arrangement of planes Sf c P3 a corresponding branched covering
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X -+ P 3 , branched along &. X may be singular, with a desingularization
Y which is a branched covering of P 3 , some blow-up of P 3 :

i i
p3 > p3

where the horizontal arrows are birational maps and the vertical ones
branched coverings. We call Y the Fermat cover associated to the ar-
rangement S?. (The name stems from the fact that X may be viewed as a
singular complete intersection of Fermat hypersurfaces. This is explained
in detail in [41].)

We then use specific interesting examples to get an idea where the
bounds of D are. In §7.2 we discuss different parts of P2(Q) and to or-
ganize things, we break the area where D must exist into different zones.
We are convinced that one zone which we discuss, the Zone E in the map,
belongs to the complement of D. We describe a curve which seems to be
a likely candidate for a border of D. This curve looks like a polynomial
branch. In §7.3 we give detailed examples of several Fermat covers of
general type (and even Ky ample) which have positive Euler number. In
§7.4, which is independent of the rest of the paper, we briefly discuss an
interesting phenomenon which has no surface analogue.

§8 contains the only theorems in this paper, which give 3-dimensional
analogues (albeit very weak results) of Persson's and Sommese's work. We
prove the following:

Theorem. Let [a : β : γ] be a point (in homogeneous coordinates on
P2(Q)) in one of the triangles A ABC or ACDE with vertices

A = [12 : l l : 1], B = [6 : 5 : 3], C = [42 : 33 : 19],

C = [5 : 5 : - 2 ] , D = [3 : 3 : 2], E = [96 : 87 : 55].

Then there exists an algebraic 3-fold of general type Y with [tf(Y) :c\Cι{Y):
c3(Y)] = [a:β:γ].

Theset two triangles are drawn on the map in the appendix. It is seen that
this result is but a small start in the right direction. Much work remains
to be done.

In §9, which is somewhat independent of §8, we study the relationship
between the combinatorial data of an arrangement 3* and the ratios of the
Chern numbers of the corresponding Fermat covers. It is of independent
interest.
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Finally, the appendix is the map of 3-fold geography. We have done
our best to give a first understanding into this very complex topic by con-
sidering as many interesting examples as possible.

I would like to thank A. J. Sommese both for the inspiration of his
paper [84], which got this work going, and for his encouragement during
my stay at the Max-Planck Institut fur Mathematik in Bonn. And of course
the idea of Fermat covers was Hirzebruch's, without which none of these
interesting examples would be known.1 It is my pleasure to thank him for
his interest in this work as it progressed. It is also my pleasure to thank
the referee for an incredibly meticulous job of looking through the text,
finding small errors, inconsistencies and suggesting several improvements.
Finally, I would like to thank S.-T. Yau for his interest in the original
preprint of what is now Part II, and his suggestion of expanding the paper
to include what is now Part I.
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PART I. CONSTRUCTIONS OF SURFACE GEOGRAPHY

0. Families of surfaces of general type

0.1. Basic results. Let I b e a compact, complex, analytic manifold
of dimension n. For the classification of X two notions are particularly
important.

Definition 0.1.1. Let Kx = /\n T*X be the canonical bundle, and

the pluricanonical map. The Kodaira dimension of X is

_ Γ maxw dim W if \mK\ Φ 0 for some m,
K[ ]:~ \ - oo if \mK\ = 0 for all m.

Here \mK\ is the linear system of all effective divisors linearly equiva-
lent to mK, and \mK\ = 0 for all m means there are no effective divisors
linearly equivalent to mK for any m. Examples of this are given by pro-
jective space.

Definition 0.1.2. The algebraic dimension of X is

where K{X) is the field of rational (meromorphic) functions on X.
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It follows immediately from the definitions that

κ{X) <a{X)<n = dimX.

If κ(X) = n, X is said to be of general type. If a(X) = n, X is called
Moishezon. In this case Λf has the function field of a projective algebraic
variety, and Moishezon X is Kahler if and only if it is projective algebraic.
By the inequality above, any X of general type is Moishezon.

Now let X be a compact, complex analytic surface. There is a strength-
ening of the above, due to Kodaira and Chow:

Theorem 0.1.3. Ifa(X) = 2, then X is projective algebraic.
Therefore, if X is of general type, it is automatically projective algebraic.

Surface geography is the study of general type surfaces, so from now on
we may assume X to be projective algebraic.

Every algebraic surface with κ(X) > 0 has a unique minimal model [4,
p. 79], an old result due to Zariski. (A smooth surface is called minimal
if there are no rational curves with self-intersection (-1) (so-called excep-
tional curves of the first kind) lying on it.) Therefore, in studying surface
geography it is sufficient to restrict attention to minimal surfaces.

There are lots of invariants of algebraic surfaces, i.e. Hodge and Betti
numbers, π\ (X), signature, etc. The basic invariants for surfaces of general
type however are just the Chern numbers c\(X) and £2 W of the tangent
bundle of X. The Chern numbers are not birational invariants, but since
we may assume X to be minimal we get a well-defined map

ί minimal
{ surfaces X of > -> Z θ Z

(° L 4 ) I general type J

The minimal surfaces of general type can be parametrized in a satisfactory
way, a theorem due to Gieseker [17, p. 236]:

Theorem 0.1.5. There exists a quasi-projective coarse moduli scheme for
the minimal surfaces of general type X with fixed Chern numbers c\ and
c2.

This theorem implies that the inverse image of fixed {cj,C2) G Z θ Z
under the map (0.1.4) is a countable number of quasiprojective families.

Actually, just the existence of the Hubert scheme implies that by desin-
gularization of 2-dimensional irreducible varieties of given degree in a
fixed P^ there can be at most finitely many diffeomorphism types, and so
the fact that for N > 5, the iV-canonical map ΨNK is a birational morphism
onto a normal 2-dimensional subvariety of degree N2c\(X) in some P^ (N
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depending only on c\ and c2) implies that for given c\ and c2 there are only
finitely many diffeomorphism types of surfaces with given (c\, c2) G Z φ Z .
Gieseker's theorem says these are nicely parametrized.

The point of this discussion is that surface geography can (without re-
stricting the generality) be reduced to the following questions:

(a) For which ( X J ) G Z Θ Z is the inverse image of (0.1.4) not empty?

(b) For {x,y) E Z φ Z with nonempty inverse image, how many different
surfaces (up to deformations) are there, and what are their properties? (A
favorite question here: how many are simply connected?)

The necessary conditions on (x,y) e Z θ Z to be nonempty were stated
in the introduction. Using these, there is a region in the plane Z 2 where
the possible Chern numbers lie. This is seen in the following diagram.
(0.1.6)

The region D = D\ u D2 is where the Chern numbers of general type X
must lie. These are delineated by three lines:

(0.1.7)

L\ = line given by Noether-inequality,

L2 = {c\ = 2c2},

U = {cj = 3c2}.

0.2. Hirzebruch proportionality. To understand the importance of the
lines L2 and L3 in (0.1.6) we state the Hirzebruch proportionality theorem
for surfaces. Let U be a hermitian symmetric domain in dimension 2, i.e.,
either ί/ = B 1 x B 1 o r f / = B2, where the complex TV-ball is defined by

BN = {(*!,- Σi < 1}•
Let Γ be a discrete subgroup of Aut( U) acting properly discontinuously on
U with compact quotient X = Γ\U.

Theorem 0.2.1 [22, Satz 3]. IfU = B1 x B1 then c}{X) = 2c2(X). If
U = B2 then c\{X) = 3c2{X).
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From this we see that the lines L2 and L 3 in (0.1.6) are quite natural
boundaries of the "domains" D\ and D2. We also point out the following
significance: The signature of the intersection form on the free part of
H2(X,Z) for a compact, complex surface X, τ(X), can be expressed in
terms of the Chern numbers c\{X) and c2(X): τ(X) = c2(X) - 2c2{X). So
A = {(c2(X),c2(X))\τ(*) > 0} and D2 = {(c2(X),c2(X))\τ(X) < 0}.

The proportionality principle also holds for noncompact quotients if the
right Chern numbers are assigned to the noncompact X. These turn out
to be logarithmic Chern numbers of a compactification of X. This notion
was introduced and the proportionality theorem was proved by Mumford
[69].

Let X = X U D be a smooth compactification of a noncompact quotient
Γ\B2 = X with D a disjoint union of smooth elliptic curves. The logarith-
mic Chern numbers of (X,D) are denoted c\(X,D), c2(X,D). (See §3.1
for more details on logarithmic Chern numbers.)

Theorem 0.2.2 [69, Theorem 3.2 and Proposition 3.4.a]. Suppose X —
XϋDas above. Then c2{X,D) = 3c2(X,D).

0.3. Horikawa surfaces. Let X —• Y be a double cover of surfaces with
Y smooth and X normal, and let B c Y be the branch locus. X is singular
only at singular points of B.

Definition 0.3.1. X has simple singularities (rational double points,
negligible singularities), if B has the following singularities:

An\ j c 2 + y Λ + 1 = 0 ( Λ > 1 ) ,

Dn: y(x2+yn~2) = 0 (n > 4),
E6: j c 3 + y 4 = 0,
EΊ: χ ( χ 2 i

Let Σn be the Hirzebruch surface, i.e., the unique rational ruled surface
with section Sn of self-intersection -n = S2. Let F be the class of a fiber
(for more on Σn see [18], [21], [73], or §1.2 below).

Definition 0.3.2. A divisor D on Σn homologous to aSn + bF is called
a divisor of type (a, b).

We consider surfaces lying on the line L\ introduced in the last section.
These have been thoroughly studied by Horikawa ([39], [40]). He proves:

Theorem 0.3.3. Let Xbea minimal surface of general type with c\ even
and c\ = 2pg - 4 (= \c2 - ^ ) . Then the l-canonical map φκ is a double
cover of a surface Y of degree pg-2 in Pp*~{ (C). The minimal resolution of
Y, Y' is either P2C or a Hirzebruch surface Σn. X is the minimal resolution
of a double covering π: X1 -• Y', branched along a curve of type (6,*) //
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Y' = Σn or a plane curve of degree 8 or 10 ifY' = P2(C), with simple
singularities only.

For each fixed c\, there are finitely many possibilities for Y' and a finite
number of possibilities for the type of branch curve. Conversely, starting
from Y' and a divisor of type (6, *) if Y' = Σn or a plane curve of degree
8 or 10 if Y' = P2(C) with only simple singularities as listed in 0.3.1, the
minimal resolution of the double cover X1 —• Y' is a minimal surface of
general type with c\ = 2pg - 4.

Similar statements are true also for the case of c\ odd, described in [39]
and [40] as well as in [4].

Discussion 0.3.4. These theorems give as a dictionary (let B denote the
branch curve on Y')

- 4 1 f d a,a r , type I

so that fixing c\ = k on the line L\ of (0.1.6), the set of all X minimal
general type with c\{X) = k, cι{X) = 5k + 36 is a finite set parametrized
by the data: {Y'9 the pair (6,*) or the degree 8 or 10 as the case may
be, and the singularities as in 0.3.1 which the branch locus B c Y' has}.
The correspondence is given by the 1-canonical map, which turns out to
be a double cover. The utility of this method is immediately apparent: by
varying the data {Y'9 type (6, *) or degree, singularity types} on the right-
hand side we may be able to vary the constants (c?,C2) on the left-hand
side of the dictionary.

Examples 0.3.5. Before proceeding further we give two examples of
Horikawa surface which are easy to describe.

A. Let B c P 2 be a smooth octic curve and X - i P 2 the corresponding
double cover. Then cx{X) = τ*(3[H] - \\H\) = τ*(-H)9 so

c\{X) = 2H2 = 2.

An elementary calculation (C2{X) = Euler-Poincare characteristic) shows
that

c2(X) = 2 ( 3 - i ( - 4 0 ) ) = 4 6 ,

sopg(X) = χ(X,0χ) + q - 1 = (c2 + c2)/12 - 1 = 3.
It follows that π: X —• P 2 is the 1-canonical map,

) :ω2(x): ω3(x)]9

where ω7 is a base of holomorphic 2-forms.
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B. Let Q c P 3 be a quintic hypersurface. By adjunction

where [H] is the hyperplane class in P 3 . It follows that

c?(β) = [-tf]fβ = 5,

while by adjunction

C2(Q) = c2(P3)lQ - c i (β) | β = 6 5 - ( - 5 5) = 55,

so pg = 4 and it is readily seen that

β c P 3

x h-> [ωi(x): ω2{x): ω 3 (x) : ω4{x)]

is the 1-canonical map (which may have rational double points).

1. Persson's construction and generalizations

1.1. Double coverings. We start with some general remarks on the sin-
gularities of double coverings, which will be applied to construct surfaces
with desired Chern numbers. Let X -^ Y be a double cover with branch
locus B c Y. The covering π is necessarily Galois with Galois group Z2;
X has an involution, and the ramification locus R c X is its fix point set.
Set theoretically we have π~ι(B) = R. X is nonsingular if and only if B
is nonsingular; if B has a singularity given locally by f(x,y) = 0 at p e 5,
then X has a singular point with equation w2 + f(x,y) = 0 at π~ι(p) e R.

Definition 1.1.1. A singular point q e R of the double cover X -+
Y is called a simple (inessential) singularity if for Xf the resolution of
singularities

X1 —£—> X

-i i
r —^—+ r

induced by the resolution Y' —> 7 of the branch locus 5 c 7 we have

c?(*') = {π (cx(Y) - \[B])}\ c2(X') = π*(c2(7) - 1^(5)),

that is, with no additional corrections to c\ and c2 induced by the singular
point q € R C X.

Persson has proven this to be equivalent to the earlier used definition.
More precisely:
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Proposition 1.1.2. Re X has only inessential singularities iff.

(a) p = π(q) e B is a double point {or arbitrarily high order) or a triple
point, not all three branches of which are tangent

(b) the corresponding surface singularity is a rational double point.

The following table gives the translation between (a)^(b):

singularity of B equation name resolving graph on X

x

>K

+ y 2 n

+ χy3

E8

2n - 1 dots

In dots

n dots

n + 1 dots

~T

—T

The simplest type of nonsimple (essential) singularity is an infinitely
near triple point, which corresponds to a singularity of B of the following
kind:
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x3 + y3 E6 simple elliptic o - 1

elliptic curve.

Proposition 1.1.3. Let X —> X be the minimal resolution of singu-
larities of a branched cover X —> Y with one infinitely near triple point
The Chern numbers of X are easily related to those of X {where C\(X) =
π*(cι(Y) - \[B\), c2(X) = π*(c2(Y) - fa(B))) [73, Proposition 1.11];

2 = c2(X)-l, c2(X) = c2(X)-U.

Thus introducing infinitely near triple points into the branch locus gives
us a tool for changing the ratio c\jc2. (The fact that c2 changes by 11 is
due to the fact that the smallest possible change for c\ + c2 is 12.)

1.2. Ruled surfaces. The surface Y to be used in the upcoming con-
structions will be a ruled surface. We begin by reviewing the necessary
facts. (See also [18], [21], [73].)

A. Rational ruled surfaces Σn (Hirzebruch surface). A (geometrically)

ruled surface is a surface Y with a projection morphism π: Y —> C onto a
curve C, such that π~ι (x) is a rational curve for all x € C, and no fiber has
self-intersection (-1). Y is called rationally ruled if C = P1 is a projective
line. Rationally ruled surfaces are characterized by a natural number n,
such that there is a unique section Sn of Σn —• P 1 with S» = -n (the infinite
section). The corresponding surface is called the Hirzebruch surface Σn. If
F denotes the homology class of a fiber, then Sn and F generate the divisor
group modulo linear equivalence. The zero section of Σn —> P 1 (which is
not unique) has class So = Srκ+rt F,S() = S2+2nSn F + n2F2 = -n+2n =
n. A divisor D cY which has class D = aSn + bF is called of type (a, b).

ΣH is a two-fold cover of Σ2χ branched over So and S2N on Σ2N. To
describe this neatly we change notation: SQ, S^ are the curves denoted
So and S# above on Σ#. Then we have

π : Σ^v —• Σ27V,

The factor \ is because π*(50

2iV) - 2S0", so (7r*(S0

2"))2 = 2 • (S™)2 -
4(S0")2.

B. Irrational ruled surfaces. The notation Σ"n

+ι will be used for an ir-
rational ruled surface Σ£+l -» C, where C is a curve with genus q, and
a section S of Σq

n

+ι -> C has 5 2 = «. We say a curve A c ϊ ' with
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Δ ~ aS + bF has class (a, b) (note the difference of the type on a rational
ruled surface).

1.3. Theorems on geography.
1.3.1. Strategy. Persson's results are proven in two steps.

Step 1. Construct double covers X -> 7, Y = Σq

N, with branch lo-
cus D = (2a, 2b) a smooth divisor on Y. We get a family of surfaces
X(q,N,a,b) depending on the constants q, N, a and b, such that the
Chern numbers c\(X(q,N,a,b)), c2(X(q,N,a,b)) are sufficiently spread
out in the Z2-plane.

Step 2. Introduce infinitely near triple points to D, while leaving it in
the same class, to "fill in" the gaps left in Step 1.

Theorem 1.3.2 [73, Theorem 2]. Let (x,y) e Z 2 be in the region D2 of
(0.1.6), \y- ψ <x < 2y, and x φ 2y - 3k, k e {2,1,3,- ,13,15,19}.
Then there exists a minimal surface X of general type, such that

cj(X)=x, c2(X)=y.

X may be taken to be a genus two fibration.

Proof Idea. We outline the proof utilizing Steps 1 and 2 as above.

Step 1. X*b is defined to be the double cover of Σ^, branched along a
smooth, irreducible D c X with D « 6S + 2bF. (Because a = 3, we are a
priori constructing genus two fibrations.) X^b has Chern numbers

c2

{(Xq

N

b) = 8 ( * - l ) + 4b + 6N,

Here, c\ = 2c2 - 36b - 54N = 2c2 - 18(26 + 3ΛQ so any (x,y) e Z2,
y = 2x - 18p, y > \x - ψ, is realized as the Chern numbers of the genus
two fibration X^b, p = 2b + 3N. This completes Step 1.

Step 2. Suppose we introduce k infinitely near triple points into the
branch locus D. Then [73, Lemma 4.1.5]:

c\ = 2c2- 18/?+ 7A:,

that is, each singularity raises c\ by 7. Of course, the question as to whether
such singular D exists is far from trivial. But to finish the proof of Theorem
1.3.2, the following result suffices:

Lemma 1.3.3 [73, 4.1.6]. For sufficiently large b (2b + 3N > 21 suffices)
and any k, 1 < k < 5, there exists a D of class (6,2b) with exactly k
infinitely close triple points and no other essential singularities.
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Proof of1.3.3. Let C -> P 1 be a double covering branched at 2(q + 1)
points, so C is a curve of genus #. Consider the following diagram:

I 1
C > P 1

where Σ^ is the Hirzebruch surface (1.2), and Σg

2N -+ Σ v is the fiber
product. Let So = π*(S0) and S^ = π*(SΌo) be the pullbacks of the
zero and infinite section,2 respectively. Since SΌo ~ So - 2NF, the union
SQO U So ~ 2SΌ - 2NF is even, and there is a double cover (for the precise
statement see §4.1.2)

_/

branched at So and SΌo We can now construct the divisor D on Σ^ as
π*π*{B) for an appropriate B c Σ#. This is done as follows: choose an
irreducible class SΊ on Σ# of type (1, c) intersecting SO and SΌo transversely.
SΊ intersects SO in c + N distinct points, and it intersects SΌo and N points,
no two of which are in the same fiber of Σ# —• P 1 . Let S2 be a (reducible)
class of type (l,c), such that

(i) if k < c, S2 is the union {a section S not passing through any of the
intersection points SΊ nSΌ}U{/c fibers through intersections SΊ nSΌo}U{c-k
generic fibers}.

(ii) if k > c, S2 is the union {SΌo} U {/c - c fibers through any of the
intersection points S\ Π So} U {2c + N - k generic fibers}.

SΊ and S2 generate a pencil (one-dimensional linear system) of divisors
of type (1, c) with exactly k basepoints (every divisor in the pencil passes
through these points) on the union of SO and SΌo. Choose three distinct
generic curves C\, Cι and C3 in this pencil; the union B = C\ u Cι U C3
has exactly k ordinary triple points, i.e.,

2Henceforth, Soo will denote the curve S^ (infinite section,
(with 52 = N) of 1.2.A above.

= -N), and So the curve
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lifting Ci, C2 and C3 to Σq

2N, we get three curves which have 2k ordinary
triple points, all of which lie on the branch locus of

A local calculation shows that π*π*(B) = D is now a union of three curves
which have Ik infinitely near triple points (an ordinary triple point on the
branch locus becomes an infinitely near one on the double cover, compare
[73, 1.2.2]), and D has class (6,2c).

This can be further modified to yield divisors D of class (6,2b) with an
odd number of infinitely near triple points [73, p. 40 bottom].

Thus we get examples of surfaces with c\ = 2cι~k, with the exception of
k = 2,6,10,14,1, ,15,19,23,27 or 31. The cases k = 6,10,14,23,27
or 31 are constructed by ad-hoc methods in [73]. This completes the proof
of 1.3.2.

Simple connectivity. As mentioned above, after answering the question
above it is natural to ask which properties (other than given Chern invari-
ants) the constructed surfaces have. In particular, one would like to know
if, for given (x,y) e Z 2 there exists a simply connected minimal surface of
general type X with c\(X) = x, cι{X) = y. In this respect, Persson states
the following conjecture, due to Bogomolov [73, p. 6]:

Conjecture 1.3.4. If X is simply connected, then c\ < 2c2.
As we will see below, this conjecture is false, as was first proven by

Moishezon, who showed that one of Miyaoka's examples below (§2) with
c\ > 2c2 is simply connected.

Persson's main result about simply connected surfaces is:
Theorem 1.3.5 [73, Theorem 3, p. 45]. Let (x9y) e N 2 with

y-24<2x, x<2y- ^

Then there exists a simply connected minimal surface of general type X,
with c\{X) = x, c2(X) = y.

Before going into the construction used we first state the basic result
which is used to show simple connectivity of the surfaces, a result well
known to topologists.

Lemma 1.3.6 [73, Lemma 3.20]. Let X be a real 4-dimensional man-
ifold with a fibration π: X —• B onto a real two-dimensional simply con-
nected manifold, with path connected fibers. Assume that there are no mul-
tiple fibers, and that there exists at least one simply connected fiber. Then
X is simply connected.

Proof Idea of \ .3.5. Once again the proof follows the two steps de-
scribed above.
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Step 1. We construct a family of surfaces X(a,c,d) as follows: Let
Dx c P1 x P1 and D2 C P1 x P1 be two divisors of types (2a, 2) and
(2c, 2d), respectively, let

πx: y — P 1 x P 1

be the double cover branched along Du and let π: X(a,c9d) -• Γ be the
double cover branched along π*(D2). The Chern numbers are given by
[73, Proposition 1.28]:

(13 7) c? = 8((
c2 = 4((β + c) - 2)(d - 1) + 12(crf + α).

Without loss of generality we may assume D2 to contain fibers, so X(a, c, d)
will be simply connected by 1.3.6.

Before proceeding to Step 2, we briefly explain how to determine the
set of (x,y) eZφZ which can be obtained by means of (1.3.7). Fix d\
then (1.3.7) for c\ and c2 becomes linear in a and c, yielding a linear map

The (<z, c)-lattice is mapped to a sublattice of the (c ,̂C2)-lattice. In fact,
[73, p. 45] the image of φ^ is a sublattice of co-area S(d - I)2, and (x,y)
in the (c2, C2)-lattice is in the image of the first quadrant if and only if [73,
4.2.2]

(1.3.8)

d-\ 2 4 ( r f - ! ) ( < / + ! ) < / - !
4 r f Γ y ( 4 r f l ) " " d + 2 y2 y d + 2

Step 2. Now add infinitely near triple points to π*(D2).

Lemma 1.3.9 [73, 4.2.3]. On π\(D2) c Y we can introduce exactly k
infinitely near triple points (and no other essential singularities) forO<k <
%(d-\)2,if

This is done in the same way as in 1.3.3, utilizing the composition

X _£> Y li+ pi x pi

of double covers. Find D c P1 xP1 with k triple points, linearly equivalent
to Z>2, with all triple points lying on the branch locus of π\. The inequalities
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of 1.3.9 are sufficient to construct such a D. Take D to consist of three
disjoint curves of class (cι,dι) with k triple points, where 2c-2 < 3c1 +1 <
2c and 2d - 2 < 3d1 < 2d, plus a sufficient number of horizontal and
vertical fibers (at least one vertical fiber) to give it the right class. We have
to show that the branch locus of π\ can be chosen to pass through the
k triple points of D, then π*(D) will have k infinitely near triple points.
Under the assumptions of the lemma such a branch divisor S c P 1 x P 1

of class (2a, 2) can be found passing through the k triple points by [73,
4.2.9].

Now Y fibers over P 1 with fiber a curve C which is a double cover of
P 1 branched over 2a points, and n\(D) contains fibral components. It
follows that X(a, b, d)^ just constructed fibers over P 1 with at least one
simply connected fiber, so by 1.3.6, it is simply connected.

What remains is to determine which (x,y) in the (c2,C2) lattice are
covered by this construction. Studying (1.3.7) and (1.3.8) yields the in-
equalities stated in 1.3.5 [73, p. 47].

1.4. Theorems on the Picard number. In the next two sections we
present generalizations of Persson's original work, constructions aimed
at yielding different results. In this section we discuss the construction
of Persson [74] designed to study the Picard number of double coverings.
In the final section we discuss a construction due to G. Xiao, described
in [8], which gives many examples of simply connected minimal surfaces
of general type with positive index, thus yielding counterexamples to the
conjecture 1.3.4. Both of these generalizations use the same strategy as in
§1.3, but concentrate on different types of singularities of the branch locus.

The Picard number. The Picard number p of an algebraic variety is a
subtle arithmetic invariant, defined to be the Q-rank of the Neron-Severi
group NS = {divisors modulo numerical equivalence} <g> Q. By the Hodge
decomposition for an algebraic surface S

H2(S,C) = H2>°(S) Θ HlΛ(S) Θ

so if pg(S) = 0 then H2(S,C) = Hι>ι(S) and p = b2, the second Betti
number, and is a topological invariant. But when pg(S) > 0, p is not
constant in deformation families, due to the existence of transcendental
cycles. This suggests:

Problem 1.4.1. Given a family of surfaces, find members of the family
with maximal Picard number p -hXΛ.
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There is in general no solution to 1.4.1; easy counterexamples are the
ball quotients constructed by Livne [58] and discussed in §4.1 below. They
have p < h1'1, while ball quotients are rigid [7], i.e., have no deformations
at all.

The following two theorems are proved in [74].

Theorem 1.4.2. Let X be a Horikawa surface {i.e., c\ — 2pg - 4). If
c\ + C2φO (72), then X has a deformation with maximal Picard number.

Theorem 1.4.3. For every even integer m = In there exists a plane
curve of degree m such that the {minimal resolution) of the double cover
has maximal Picard number.

This gives a solution to the problem for these two (very special) fami-
lies of surfaces. The idea of proof is now slightly different than in §1.3.
Whereas there we disregarded simple singularities and concentrated on in-
finitely near triple points (driving the ratio c\jcι up), we now wish to fix
c\ and C2, and studying simple singularities yields results on p. In fact

1.4.4. A χn singularity (χ = A, D or E) of the branch curve yields
a rational double point upstairs, whose resolution contributes exactly n
(independent) cycles to the Neron-Severi group of the covering.

Let C be a curve on Y with singularities of type A9 D or E as above,
and let σ{C) = Σ r a , , where the singularities of C are of types χmr As-
sume E\, , En is a collection of numerically independent rational curves,
disjoint from the branch locus, such that the restriction of the intersec-
tion form on their span is negative definite. Then [74, Proposition 1.5]:
p{X) > p{Y) + σ{C) + n, where X is the minimal resolution of singularities
of the double cover X -> Y, branched along C. The following then makes
sense:

Definition 1.4.5. A curve C c Y with only χm-singularities is called
maximizing o σ{C) = hXΛ{X) - ρ{Y) - n.

If C is maximizing, then the desingularization X of the double cover X
has maximal Picard number.

We set Y = P 2 (n = 0); Theorem 1.4.3 above is then an immediate

consequence of

Lemma 1.4.6. For every even integer m = In there is a maximizing
curve Cm c P 2 with degree m.

Proof We use the following construction, which is a universal one for
constructing hypersurfaces in P" with special kinds (and lots) of singular-
ities. Let [xo : : xn] be a set of homogeneous coordinates on P", and
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φd : P" - P"

be the canonical nth power map. A hyperplane H in P n given by
h anZn = 0 is covered under φd by a Fermat hypersurface of degree d:

aox$ + •- + anx
d

n = 0.

Since H meets the coordinate axi transversely, φJι(H) will be smooth,
tangent (to order d) at the inverse images of the intersections of H and
the coordinate axis.

Now consider the following arrangements of lines in P 2 :

Let a, b, c, denote the 2-fold points of this arrangement, and let C be
the conic tangent to the coordinate axis at a, b and c, as pictured. Let

Fd = φ-\D) = χ*xd

2) = 0}.

Fd has 3d Ad_ { singularities, arranged d by d on the coordinate axis, which
are the inverse images of a, b, and c on C. (If C is given locally near a
by y - x2 = 0, then on Fd it has the form yd - x2 = 0.) Now add two
coordinate planes:

Cd := x0 - xxFd = xO'Xχ{{x$ + xf + *f )2 -

Claim. Q
(i) 1 Au

(ϋ) 2rf Dd+2,
(iii) rf y4^_i, singularities, i.e.,

σ(Cd) = 1 + 2d(d + 2)



COMPLEX MANIFOLD GEOGRAPHY IN DIMENSION 2 AND 3 75

Proof, The A^-\ singularity of Fd is a Dj+2 of Q if it lies on XQ = 0
or JCI = 0, while it remains an Ad-\ if it lies on x2 = 0. The A\ singularity
is the point χo = x{ = 0.

To show that Q is maximizing, we must calculate A1*1 {Xd), where Xd -*
Xd is the desingularization of the double cover of P 2 branched along Q .
Since Xd only has rational double points, by 1.1.1, the invariants c\ and
c2 of Xd will be the same as for a double cover branched along a smooth
curve of degree 2n = 2{d + 1). hι>ι{Xd) can be calculated from these, and
by the method used in example 0.3.5.A, one gets

c\{Xd) = 2(n - 3)2,

c2(Xd) = An1 - 6n + 6,

It follows that σ(Cd) = ln(n + 1) + 1 = hι-ι(Xd) - /?(P2), i.e., Cd is
maximizing.

We now turn to the result on Horikawa surfaces, 1.4.2. First note that
for a Horikawa surface, since c\ = 2pg - 4 and c2 - 2 - Aq + 2pg + Λ1'1,
Noether's formula 12χ = c\ -h c2 yields

^ = 8/+ 6. (χ(S) = pg(S)-q(S) + l is the arithmetic genus.) The
method of construction differs with the modality of / . As an example, we
describe the construction for χ = 1 (2).

Theorem 1.4.7. IfX is a Horikawa surface with χ(X) = 1 (2), there is
a deformation ofX with maximal Picard number.

Sketch of Proof On P 1 x P 1 consider the following configuration of
curves:
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where E{ is of type (1,0), F( is of type (0,1) and Q is of type (1,1). Set
C = Cι\jC2UEoUEι\jE2UE3. C has a D6 and 6 Ax singularities. Take
the fiber product

pl x pi > pi x pi

where φκ: E$ —• £Q, φκ(xo : X\) = (xξ : x*) is the natural /cth power
map on the projective line £Ό Cκ := ^ ^ ( C ) is a curve of type (6,2K:)

on P 1 x P 1 with K Dβ singularities, 4 A2κ-\ and 2κ A\-singularities. In
other words, σ(Cκ) = 6κ + 4(2κ - 1) + 2κ = 16/c - 4 while Λ 1 1 ^ ) =
8(2κ: - 1) + 6 = 16/c - 2, where X —• X is the desingularization of the
double cover X —• P 1 x P 1 branched along Cκ. It follows that Cκ is
maximizing.

The two other cases to be considered are χ ψ 0 (3) and χ = 3 (4) [74,
Propositions 4.6.-4.7].

1.5. Xiao's generalization. We now discuss a generalization of Pers-
son's Theorem 1.3.5 above, a construction method due to G. Xiao and
described in [8] by Zhijie Chen. The main result is Theorem 1.5.16, which
yields examples of minimal general type surfaces of positive index which
are simply connected. This construction uses several types of essential
singularities. We begin with a brief discussion of these.

Essential singularities. Let X —• Y be a double cover with branch
locus B c Y. Let p\, ,ps be the set of singular points of B. There is
a canonical resolution of singularities (which need not equal the minimal
resolution) induced by resolving the branch locus B in Y, Ϋ —• Y, taking
the fiber product

X > X

i I
Ϋ > Y

and then normalizing. Let d\ =multiplicity of Pi c B and let m, = [di/2]
be the greatest integer not exceeding di/2. Formulas for the Chern numbers
of X are easily calculated to be

c]{X) = 2 (Cι(Y) - {[B])2 - 2^2(mi - I)2,

c2(X) = 2 {c2(Y) - \cx(B)) -2Σ(mt - l)(2mf + 1),

where [B] is the fundamental class of B c Y.
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Definition 1.5.1. The specialization vector of the singularity at P, is

(a,b) = ( 2 £ ( i n , - l ) 2 , 2 β m / - l)(2m, + 1)) .

Thus,

where symbolically, c\{X) = 2(^(7) - ^[£])2 and c2(X)

2{c2{Y)-\cx{B))
We now list the essential singularities used in Xiao's construction.

1.5,2. List.

Type Name curve resolving specialization
singularities divisor vector

(a)

(b)

(c)

(d)

(e)

infinitely
near
triple point

ordinary
4-fold
point

infinitely
near
4-fold point

infinitely
near 5-
fold point

infinitely
near
6-fold point

o- l
elliptic curve

o-2
elliptic curve

(2,10)

elliptic

-2
(2,10)

curve of^r\ -2
genus g > 1 \-2

- 2

(9,39)

(10,38)

χy{χ4
- 2 - 2

= 0
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1.5.3. Xiao's construction. Let G c Aut(P!) be a finite group acting on
P 1 . This defines a divisor on P 1 x P 1 , D := {(x,γ(x)), γ e G}. D is the
sum of \G\ smooth curves of type (1,1). The fixed points of G on P 1 fall
into three conjugacy classes, with the order of the isotropy group of G at a
fixed point in the z'th conjugacy class = αf as given in the following table:

Dihedral group
Tetrahedral group
Octahedral group
Icosahedral group

(k>2)

P24

^60

\G\
2k
12
24
24

Q\

2
2
2
2

a2

2
3
3
3

a
k
3
4
5

Therefore, if rf, = |(7|/α, , then D has d\ points where a\ components
meet, d\ points where aι components meet, and d\ points where a^ com-
ponents meet. Viewing P 1 x P 1 as a quadric hypersurface Q in P 3 , the
configuration D of curves may be viewed as the intersection of Q with an
arrangement of the appropriate numbers of planes in P 3 . For example, D
for G = 024 is the intersection of Q with A](24), the arrangement defined
by the group G5jβ acting on P 3 , the symmetry group of the regular 24-cell
(in R4). (The intersection being "generic" in the sense that Q does not
meet any of the singular points of A\(24), only singular lines.)

1.5.4. Introducing singularities. As in Step 2 of strategy 1.3.1, but now
more subtle, we add singularities to D, take their lifts under a double cover
and use it as the branch locus of a double cover. The idea is as follows:
if p G D is a A:-fold point of D, lying on the fiber Fx, X G P 1 , then on a
double cover p becomes infinitely near:
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We now describe the construction of a simply connected surface of
general type X{k, n,s, t,r\,r2, r^ r4), or X for short, for integers k, n, s, t,
Π> ?2, >"3, U- X is defined by the following sequence of coverings where
the individual maps are discussed below:

P1

1.5.5. The fiber square (defines dependency onn),

Let D c P 1 x P1 be the configuration discussed above for the group 1$$ of
order 60, and Σ2 C D the set of double points. We convert these 900 double
points into 900« triple points, po: P 1 —• P 1 is an «-fold cover branched at
two generic points (i.e., P\,P2 £ ^{^2)), and let πo: So —• P 1 x P 1 be the
fiber product as in the diagram above. Consider the divisor consisting of
D and one fiber (of σ) through each of the points of Σ2 c D:

P 1 x P 1

Set (JCI, ,X3o) = σ(Σ2)red C P 1 . Therefore, the divisor

/ 30
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is a curve of type (90n, 60) (= (90nSy 6(λF), S = σ*(x), F = <τ2*(/?), pel?1,
generic (where Oι: P 1 x P 1 is the other projection) which has 900w triple
points lying over those in the figure above, as well as 400« triple points
lying over the 400 triple points of D, and I44n 5-fold points lying over
those of D.

1.5.6. The fiber squares (for fixed k G N).

1 1 u=ι> ~>k)
pi Pj ) p i

As above, set {x\, ,^30} = σ(Σ2)red c P 1 , Σ3 € /) is the set of triple
points (400), Σ 5 c D is the set of 5-fold points (144), and {yu ,^20} =
σ(Σ3)red, {z\, • • - , Z12} = <7(Σ5)red. Py: P 1 -> P 1 is a double cover branched
at b[J\ bψ, where b\j) and 6 ^ are two randomly chosen points in

of {bμ\l) < j}- inverse images

πj\ Sj —> Sj-\ is the fiber product (double covers branched along fibers

over b\j) and bψ). This construction converts

(a) 30 triple point to 30 infinitely near triple pts.
if ήj) €/?*_! o . o/?*^!,. . .

(b) 20 triple points to 20 infinitely near triple pts.
( ' ' } i f*ly" )€p;_1o. . .op (y1,...

(c) 12 5-fold points to 12 infinitely near t-ίold pts.

1.5.8. The double cover (introducing dependency on t, r4).

S — ϊ - > Sk

I'
P1

Let Dk<zSk,Dk = n*k°---o π\{D0), and let

j
T = pi o o/7*(cr(Σ3))Γed > divisors on P 1 .

β ί f ( ( Σ ) ) J
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We will now subtract off of D + T + Q the points used as branch loci for
the Pj, to get essential singularities of the desired kind. Set

0=1,2

and subtract off the inverse images of the b\j):

D = D-(DnR), T=T-(TΠR), Q = Q-(QnR).

Set 2q{ = deg(Z) Π R), 2q2 = deg(Γ n R) and 2?3 = deg(β n R). Then it is
easy to see that

( 1 5 9) άQgD = 2" ' 3 ° " 2^ l j d e g T = 2k'2°- 2^
degQ = 2* 12 - 2<?3, ft + q2 + ̂ 3 = 2(2^ - 1).

π: S —• Sjt w iH be the double cover branched over the divisor

where σo, CΓI are sections transversal to p (type (1,0)), and 0 c P 1 is the
divisor defined as follows: D' = {r4 distinct points} c P 1,

where deg£ = 2t + r4, ξ generic. Therefore degθ = 2k 58 + 2t + 4 and
5 c P1 x P1 = Sk is of type (2,2* • 58 + 2*+ 4). We let π: S-+Sn denote
the minimal resolution of singularities, and set

3 = π*{Dk) type(90n, 2* 60).

Since we have subtracted off the fibers of φ: Sk —• P1 lying over the b]P
in 5, the infinitely near points constructed by 1.5.7 above do not lie on the
branch locus, and so are doubly covered as they are. On the other hand,
the other (not infinitely near; transversal) triple points and 5-fold points
lie on the branch locus and are converted to infinitely near triple points
and infinitely near 5-fold points, respectively. The result is summarized
below.
(1.5.10)

on Dk <— o n 2J

Λ f t r ip le po int t Λ Λ •• i ί t r i P l e P o i n t

transversal^ . */ . 1-1 infinitely near< -
\ 5-fold point ^ 5-fold point

. - . t ί triple point Λ t ~ . Λ . . Γ triple points
infinitely near < _ * / . 2-1 2 infinitely near< ^ .

\ 5-fold point ( 5-fold points
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1.5.11. The double cover φ (introducing dependence on s, r l 9 r2,

X sk

P 1

We form the divisor Bφ as follows:

Bφ = 3f + π*(p*(RD + RT + RQ +

where D' = {r4 distinct points} c ΰ a s above, £' is reduced generic points,
and

άegξ' = 2s-r{ -r2-r3-r4,

RD = {/i distinct points} c D,

Rτ = {r2 distinct points} c T,

RQ = {r3 distinct points} c β.

5 0 has the class ofπ*(90nS0+(2k'60+25)F). We define X to be the double
cover branched along Bφ. X will be singular where Bφ has its singularities.
From (1.5.7), (1.5.9) and (1.5.10), the kinds and numbers of singularities
of Bφ can be determined. They are listed in the following table.

1.5.12. Singularities of Bφ.

Singularity
type

(a)
(b)

(c)

(d)

(e)

l o c a t i o n ( o n π~ι(•••))

D',D-D-RD,T,
T-T-Rτ

D-D'

RD,RT

Q,Q-RQ

RQ

number of
singularities

2Λ(1300/i-30)
-(30/i- l)(r 4 + 2r 1)-40/ir 2

2 ( 3 0 Λ - 1 ) Γ 4

2(3OA2- 1)ΓI +40«r 2

2k I44n-24nr3

24nr3

Now applying the standard formula for the Chern numbers of the canonical
resolution of singularities, then minimalizing, one gets

Theorem 1.5.13. X(k, n, s, t, r{,r2,r3, r4) is a minimal surface of general
type, and

c]{X) = 2 / c (18644« - 442) + S(45n - l)(s + 0 - 3(30« - l ) r 4

- 2(30n - l)r, - 40nr2 - 24nr3,

c2(X) = 2k - 6904« + 8 (90n -%)s + 2(90n -h 4)t - 9(30« - l)r4

•f 2(3OA2 - \)r{ + 40nr2 + 24nr3 + 24.
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Lemma 1.5.14. The surface X constructed above is simply connected.

Proof. Since Bφ contains at least one component of the type π* (/?* (pt)),
which is a projective line, Lemma 1.3.6 applies.

Example 1.5.15. Setting s = 1, r, = 0, t = 0 we get a surface X =
X{k,n,l) with

c\ = 2*(18644« - 442) + 8(45« - 1), c2 = 2k- 6904« + 4(180w - 1),

so c\ - 2c2 = 2*(4836« - 442) - 8(135«) > 0 for n > 2, k > 2. This is a
relatively simple example of a simply connected surface with c\ > 2c2. Of
course, to just construct one example this complicated construction would
not have been necessary. But using the parameters k, n, s, t, rx, r2, r3 and
r4, the following theorem can be proved [8, Theorem 1].

Theorem 1.5.16. Let x, y be integers with

and x sufficiently large. Then there exists a simply connected surface X of
general type with

c]{X) =y, χ(X) = x (χ = arithmetic genus).

2. Miyaoka's construction

We review a quite different kind of construction, due to Miyaoka [61],
which also produces lots of examples of surfaces of general type with c\ >
2c2. In fact, he shows that for a given projective surface S, there exists a
finite ramified Galois covering X of S with c\ > 2c2.

2.1. Projections. Let S be an algebraic surface, and S c P ^ a projective
embedding (which we assume is smooth, for simplicity). Let p: S —• P 2 be
a generic projection onto a projective plane. If the degree of the embedding
of S is d, then p is a finite map (branched cover) of degree d. The covering
p: S -• P 2 in general is, however, not Galois. The branching behavior of
p is easy to determine.

Proposition 2.1.1 [61]. The ramification locus R c S is a smooth, irre-
ducible, reduced divisor on S. p maps R birationally onto B c P2, where B
is the branch divisor. The singular locus ofB is a disjoint union £ s i n g = ΓuΔ,
where Γ = ordinary double points ofB and Δ = (2,3) cusps.
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R

i

Remark 2.1.2. The given properties hold for a generic projection, not
for any given projection. The properties of R follow from Bertini's theo-
rem [21, III, 10.9 and Example 11.3], since R moves in a sufficiently large
linear system of divisors.

2.2. Chern numbers of the Galoisization. The covering X —• S is

constructed as the "Galoisization" of the projection p: S -> P 2 , as fol-
lows. Since p: S —• P 2 is a rf-fold cover, we have a natural representation
πi(P 2 -/*)-> Sd, where Sj is the symmetric group. We can form the as-
sociated Galois cover with 15̂ 1 = d\ sheets over P 2 - B. There is a unique
way to compactify (Fox completion [15]) such that π: X —• P 2 ramifies to
degree 2 along B, to degree 22 = 4 at p e Γ, and to degree 2 3 = 6 at the
cusps. (The factor 3 is since the double cover of the cusp has a quotient
singularity of the form C/Z3 over the cusp point.)

To calculate X's Chern invariants, we start with the following observa-
tion. We have on S

p*(cι(P2))-cι(S) = R

[16, 3.2.10] so that degΛ, which is H R (H hyperplane class in P^), by
this equation equals

degΛ = H π*d(P 2) - c,(S) H

= 3d + m (m = H Ks)

= deg5.

Note that R may be viewed as the desingularization of B, so the Plucker
formula gives us [18, p. 280]

(2.2.1)
Cι (R) = -{3d + mf m)
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By the description of the covering above, the Euler number c2{X) is

c2(X) = dl(e(P2 -B) + \e{B - Γ - Δ) + J |Γ +

c2(X) = d\{3- \e(B) - i lJΓ- IJJΔ) (e(B) = c{ (R) -

= (rf!/2) (6 - (-(3d? + m)2 + 3(3rf + m) + JΓ + 2«Δ) - ±jjΓ - f

= (rf!/2) (6 + (3d + m)1 - 3(3d + m) - f»Γ -

An easy computation expressing c^(5) and c2( Sr) in terms of rf, m, J|Δ and
HΓ yields

(2 2 2) " Γ = ^ ( 3 r f + m ) 4 2 ί / 3 O m + C O n S t '
1JΔ= 12rf + 3m + const,

where "const" is an expression involving cj(S) and C2(S) and therefore
independent of the embedding. This yields the formula

(2.2.3) c2(X) = (d\/2) [\(3d + m)2 - {(I9d + 9m) + const].

On the other hand, since C\(X) = π*(c\(P2) - \[B]), the number

(2.2.4) cf (ΛΓ) = d\ [9 - 3(3rf + m) + i(3rf + m)2]

does not depend on the number of singularities, only on the degree, of the
branch curve B.

From (2.2.3) and (2.2.4) it follows that, for d sufficiently large, c\{X) >
2c2(X). This proves

2.2.5. For every projectile algebraic surface S, there exist a Galois cover
X ofS such that X has positive signature.

Remark 2.2.6. Moishezon has studied the fundamental groups of the
surfaces X, and discovered that some surfaces are simply connected. These
were actually the first known examples of simply connected surfaces with
positive signature.

3. Picard modular surfaces

As opposed to branched coverings another standard method of con-
structing examples of complex manifolds is by taking quotients of known
manifolds (in particular Stein spaces) under sufficiently nice group actions.
Quotients of hermitian symmetric domains by discrete subgroups of their
automorphism groups which act properly discontinuously are a prime ob-
ject of study in this respect.
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In dimension 2 there are only two kinds of hermitian symmetric do-
mains: a product of 1-disks, B1 x B1, and the complex 2-ball, B2 =
{(x\,x2) € C2| £ |JC/|2 < 1}. The corresponding compact duals are P1 x P1

and P2, respectively. If Γr c Aut(B! x B1) and Γ> c Aut(B2) are discrete
subgroups which act freely (i.e., have no fixed points, neither in the interior
nor on the boundary of the domain), then, by a theorem of Cartan, the
quotients

X = Bι
 X B V Γ V , 7 = B2/Γy

are compact; in fact algebraic manifolds and Hirzebruch proportionality
([22] and §0.2) tell us

,,nn c2

ι(X) = 2c2(X)i cj(Y) = 3c2(Y),
[XΌΛ) c2(X) = vol(X), c2(Y) = vol(Γ).

More interesting things may occur if we consider actions by groups Γ
which have only parabolic fixed points, that is, fixed points on 9(D), where
D is one of the domains B1 x B1 or B2. As compared with the covering
constructions above, where we looked for families of divisors with certain
properties to act as branching locus, the job now is to find families of
discrete subgroups and to study the invariants of the family of quotients.
Beautiful examples of this are the Hubert modular surfaces corresponding
to the Hubert modular groups SL(&d), d a prime, d = 3 (4), (9^ = ring of
integers in Q(\/d), which were intensively studied by Hirzebruch and his
coworkers in the 1970's. They are noncompact quotients of B1 x B1 by
an irreducible group Γ c Aut(B* x B1) ([25], [29]-[32]). In fact, it turns
out that any irreducible Γ c Aut(B* x B1) (with noncompact quotient) is
commensurable to one of the Hubert modular groups [25, 5.8] so that these
yield essentially "most" examples of quotients for the domain B1 x B1.
However from the point of view of surface geography, they are not of
interest to us since they all have c\ < 2c2 [25, 3.9, and p. 238].

The analogues in Aut(B2) of the Hubert modular groups are the Picard
modular groups and the quotients of B2 by them, intensively studied in
the 1980's by Holzapfel and coworkers ([35]-[38], [12]-[14]). The Pi-
card modular group is Γ(^ = SU((29 1),^L /i^)> where d is a square
free number. Proper compactifications turn out to be surfaces of general
type with ratio c\jc2 arbitrarily close to 3. In the first section we discuss
the compactification of arithmetic ball quotients, and in the following sec-
tion Mumford's proportionality theorem is used to calculate the Chern
numbers. Standard reference here are the original articles listed above, in
particular [35].
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3.1. Compactification. Let Γ c Aut(B2) be a discrete arithmetic group
acting properly discontinuously. By the fundamental work of Baily-Borel
[3], X = Γ\B2 can be embedded in a projective space as an everywhere
dense open subset of X*, where X* is a normal projective variety. Let
Σ = X* - X. Σ is called the set of cusps of X*. The points of Σ are covered
by the parabolic fixed points of Γ on dB2. The picture is as follows.

Since the question of compactification is a local one, it is sufficient to
study a cusp y e π~ι(X) in dB2. To insure that the compactification will
be by a smooth elliptic curve, we will assume from now on that Γ is a neat
subgroup.

Definition 3.1.1. Γ c Aut(B2) is neat, iff for every γ e Γ, the subgroup
(in C*) generated by its eigenvalues has no torsion.

Fixing a cusp Xo = (l>0) € B2 and an embedding C2 —> P2 given by
(X, Y) h-> [X = zi/zo, Y = Z2/Z0,1], we apply the Cayley transform

τ: (Λ,i,i)i-*-τ=(Λ + i , - v z ι i , ι μ - i))

which transforms B2 = {(X, Y)\ \X\2 + \Y\2 < 1} into the Siegel domain
of type II: T = {(u,v) |Imκ> j\v\2}. The point κ0 = (1,0,1) e B2 is
mapped to oo = (1,0,0). The map is biholomorphic and Aut(B2) acts on
y . The full stationary group Poo c Aut(B2) of oo € Ύ is a parabolic
subgroup with unipotent radical LΌo Poo splits:

θ 0
0 θ-2 0 | ; θeU(l)\,

0 0 0.

= [a,r]; αeC,reR|
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Since we assume Γ to be neat, only the factor £/«> will be important for
us. Let K e dB2 be a cusp. Then Γ* = {isotropy group of γ} is conjugate
to a subgroup Γoo c U^, which is a lattice.

The compactification is described very nicely in [35, pp. 214-215], so
we just sketch the argument. Let Ux be a neighborhood of Γ\B2 at the
cusp. Then Ux is the total space of a punctured disk bundle over an elliptic
curve, and the compactification is by adding to zero section. To see this,
let Uκ c π~ι(Uχ) be a neighborhood of the cusp K e dB2 covering the
neighborhood Ux. Then its transform on Ύ* is a set of the form

The action of Γ^ on *V can be extended to C x C.

We "factorize" an element γ = [aγ, rγ] e Γoo c Uoo into its real (rγ) and
complex {aγ) parts:

= {ry e R\[aγ, rγ] e Γoo} for some aγ,

= {cLγ G C\[aγ, rγ] e Γoo} for some rγ.

This defines a diagram:

C x C • Foo = Cx

Foo is a line bundle over the elliptic curve Γoo = 0 x C/Λoo, and
is its compactification. Open sets of the form %/Λoo can be used to
desingularize the cusps on the Baily-Borel compactification.

Lemma 3.1.3. The compactifying torus Tκ has self-intersection number

(Tκ)
2 = -2\Aκ\/qκ,

where Aκ is the area of the lattice Aκ c C, qκ is a generator ofAκ, and the
subscript K means the transform of subscript oo under τ " 1 .

3.2. Calculation of Chern numbers. As discussed above, for a smooth,
compact ball quotient X = Γ\B2 the proportionality c\ - Ί>Cι holds. Mum-
ford has proven a corresponding proportionality [64] for noncompact quo-
tients X = Γ\B2 which can be compactified X c X by a disjoint union of
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elliptic curves. In the noncompact case we must replace the Chern num-
bers c\{X), c2{X) by the logarithmic Chern numbers c^(X,D), c2(X,D) of
X along D = X - X (see [69], [43]). Then Mumford's theorem (0.2.2) is
as follows.

Theorem 3.2.1. Let X c X be the compactίficatίon of a ball quotient
{by an arithmetic group) such that D = X -X is a disjoint union of smooth
elliptic curves. Then

c2(X,D) = 3c2(X,D).

We digress to briefly discuss the logarithmic Chern classes and then
apply them to calculate cj(X), c2{X).

Let Ω^ be the sheaf of holomorphic tf-forms on the compactification
X, and suppose D is given in local coordinates z\9 z2 by z\ = 0. The sheaf
of logarithmic l-forms along D is Ωι

χ{dzι/zχ}, and that of logarithmic 2-
forms along D is Q2

x{dz\ /z\ Λ dz2}. Sections of these sheaves are #-forms
with poles of order < 1 along D. For details see [43, Chapter 11]. The
sheaf is denoted Ω^(logD), and the logarithmic Chern classes are

€i(X,D):=(-l)ici(&x(\ogD)).

These are thought of as "Chern classes of the noncomplete X". In fact,
the sheaves Ω^(logD) do turn out to be intrinsic to X, i.e., independent
of the desingularization [43, Theorem 11.1].

Now assume D consists of disjoint components each of which is a com-
plex torus. To calculate Cj(X,D) use the standard exact sequence

0 -> Ωjf - Ω^logD) -> U@D -+ 0,

where j : D *-> X is the inclusion. Then for the total Chern classes we have

c(Ωjf(logD)) = c(aι

x)c(j.*D) = (1 - ci + c2)(l + D + D2),

so using adjunction

-(D),

This in turn yields for ~c\ {X, D)

~ή(X,D) = (Cι(X) - (D))2 = c2(X) - 2c{(X) (D) + (D)2

= c2(X) - 2(Cι(D) - (D)2) + (D)2 = c2(X) + 3(Z))2.

Putting everything together we get
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Proposition 3.2.2. Assume X c X as above, X an algebraic surface.
Then

c\{X) = 3c2(X) - 3(D)\ c2(X) = c2(X) = vol(X).

3.3. Picard modular groups. It remains to find a suitable family of
discrete subgroups. By the formula above, c\ and c2 will be computed as
soon as we know:

(1) vol(ΛΓ), (2) % cusps, (3) Γ* = -2\Kκ\lqκ.

Let K = Q(>/-*/) be an imaginary quadratic field and (9κ - Z Θ εZ its
ring of integers, where

1 + yf^d , . ,A.
ε = , rf = 3(4),

d being a square-free natural number. The Picard modular group is defined

consisting of matrices in 5Ί7(2,1) with coefficients in ^ . Let a c ^ be
an ideal. The main congruence subgroup Γ(a) of the ideal a is defined by
the exact sequence

If the ideal a = m ^ , where m is a natural number, then Γ(a) =: Γ(m) is
called a natural congruence subgroup.

Lemma 3.3.1 [35, p. 225]. The natural congruence subgroups T^d\m)
are neat for all m > 2.

The Td(m) give the desired series of groups. The Euler numbers of the
quotients by the group Γ(ί/) are calculated in [36, V,3.3.7]:

(3.3.2)

where L(s,χκ) is the L-series of the character χκ(k) = {D/k) of the field
K, D is the discriminant of K, and

1 otherwise,

is the order of the intersection of Γ with the center of SU(2,1). Now note
that

(3.3.3)
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(The factor |Z(Γ)| is due to the fact that SU({2,1)^^) does not act
freely.) Let T(m) c B2/Γ(m) denote the whole compactifying curve. Then
the formula

(3.3.4)

is derived, where

= 3(4),d?3,

and h(K) is the class number of the field K. Inserting (3.3.2), (3.3.3) and
(3.3.4) into 3.2.2 yields

Theorem 3.3.5 [35, 4.12]. Let Γ ^ be the Picard modular group of the
field K = Q(V-d) and Γ(m) c Γ^' the natural congruence subgroup, D
the discriminant and χx the character corresponding to (D/k). Then

= [ Γ : T(m)]

c2(B2/Γ(m)) = [Γ: T{m)\

This implies

c?(BVΓ(m)) t \Z(Γ)\-h(K)
( ' c2(W/Γ(m)) yc2(B2/Π")) w2

So for fixed K and m > 3 we have a monotonously increasing sequence

c?(B2/Γ(m))

c2(B2/Γ(/n))'

and more generally

lim S H = 3 forfixedm>2,
\D\-OO (B2/Γ(m))

hm ' ' κ -LL — 3 for fixed Λf.
"J->0° c2(B2/Γ(m))

Remark 3.3.7. Some of these surfaces have been constructed "from the
bottom up", as branched coverings of abelian surfaces, by Hirzebruch [27],
[38].
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4. Constructions yielding ball quotients

In this paragraph we discuss a variety of constructions which have been
used to construct ball quotients "from the bottom up", that is, as coverings
of known surfaces. So in this section we return to the problem of finding
certain special divisors to use as branch locus for a finite morphism.

4.0. The Miyaoka-Yau inequality. Let S be an algebraic surface of
general type. Then its Chern numbers satisfy the inequality

c?(5) < 3c2(S).

An algebro-geometric proof of this is given by Miyaoka in [62]. Further-
more,

tf(S) = 3c2(S) o S is a ball quotient.

A proof of this under the assumption Ks ample as a consequence of his
solution of Calabi's conjecture is given by Yau in [91]. The proof of
Calabi's conjecture is in [92]. Miyaoka [62] proved the general case where
S is of general type, and Ks is not ample.

This is the criterion most often used to check whether a given S is
indeed a ball quotient.

4.1. Coverings of elliptic modular surfaces.
4.1.1. Elliptic modular surfaces. An elliptic surface π: X —> E is a

surface X together with a morphism π onto a curve E, such that the generic
fiber is an elliptic curve. Elliptic surfaces were studied in great detail by
Kodaira in the sixties [55], [56]. A very special class of elliptic surfaces,
with connections to number theory, were considered by Shioda [83], They
can be constructed as follows: Let Γ(N) c SX2(Z) be the main congruence
subgroup of level N > 3 (see [80]), and X(N) = Γ(N)\βT the modular
curve of level N. X(N) is not compact, but can be compactified by adding
a finite number of cusps. Now let

be the semidirect product where Γ(N) c 5X2 (Z) acts in an obvious manner
o n Z θ Z . G acts properly discontinuously on %? x C, as follows:

((y,n,m), (z, w))»-+ (γz, {cz + d)~x(z + nw + m))

where γ € Γ(N) is written V=(α

c

b

d). The quotient

G\JT x C = E(N)

is an elliptic fiber space E(N) -i* Jf(N) of elliptic curves with a level N
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structure. E(N) can be smoothly compactified, ft: E(N) -+ X(N), such
that the fiber π~ι(*) is a Kodaira fiber of type IN [55, §6] for any cusp
* e X(N) - X(N) = Σ. In [2] this is done as an example of the theory of
compactification by means of toroidal embeddings. The compactification
is also the desingularization of quotient singularities on the closure

x C.

The number of exceptional fibers IN on E(N) is equal to the number of
cusps of Γ(N), which is

P\N

The irregularity of E(N) is equal to the genus of X{N) [55, §11], which is

The formula for the canonical divisor is [55, 12.1]

where D c X(N) is a divisor of degree 2g(X(N)) - 2 + χ(E(N)), χ the
arithmetic genus. In fact, as Shioda shows, D can be taken as the divisor
associated to the line bundle of cusp forms of weight 3 with respect to T(N)
[82,1]. Since the self-intersection of a fiber vanishes we get tf(E(N)) = 0
and in addition

d{E(Fr)) = N μ(N).

4.1.2. The cyclic covers. The following basic result will be applied
shortly to construct cyclic coverings of degree d (for cyclic coverings see
[28]). This construction is due to R. Livne [58], which is the basic reference
for the rest of §4.1.

Lemma 4.1.3 [58, §1.3]. Let V be a smooth algebraic variety, d > 2 an
integer, and D a reduced, effective divisor on V divisible by d in Pic(F).
Then the following hold.

(a) There exist cyclic d-sheeted covers πA: JVA -> V, totally branched
along D and nowhere else.

(b) The covers π Δ : WA —• V are in 1-1 correspondence with dth roots of
D, i.e., classes A e Pic(F) with dA = D (linear equivalence).

(c) Letting f e Jt{V) be a rational function with (/) = dA-D, we have
J?(WA) = Jt(V)(i/f). WA is irreducible unless kA = 0e Pic(F) for some
k\d, kφd.
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(d) The Euler number of the covering is given by

e(WA) = de(V) - (d - l)e(D).

(e) WA is smooth <& D is smooth. In this case

where D is the reduced inverse image ofD.
The divisors used to apply this will come from sections of the fibration

ft: E(N) -• ~X(N). The group of sections of ft is isomorphic to (ZN)2:
there are N2 section, each of order N (in the group of sections).

Let D = Σ*ι A be the sum of all N2 sections, and

'FθXj + θxN-h 2iφΉ,
n — ) *€Σ

where Σ = X(N) - X(N) denotes the set of cusps, and θxj the N compo-
nents of the singular fiber over X G Σ .

Lemma 4.1.4 [58, 1.4]. Let K = [N/2], and

N K

Dι = N2D{ + n*(p) - j
ι = l

where p = (N2 - 1) p\, and p\ is the divisor on X(N) of degree Nμ(N)/l2
which is associated to the line bundle of modular forms of weight one, and
D\ is the zero section {identity in the group of sections). Then

(a) Dι « D (linear equivalence).
(b) Dι is divisible by

/N\ ί N, N odd,
n u m — = < -τl-\ 2 ) \ N/2, N even.

This, together with the result stated above on cyclic covers, yields
Theorem 4.1.5 [58, 1.5]. Let d\num(N/2), N > 4. Then there exist

d-fold cyclic branded covers, Sd(N)A, ofE(N) with branch locus the union
of sections. The Chern numbers are given by

= dNμ(N) + (d -

for any Δ fulfilling 4.1.3(b), i.e., dA = D.
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Now among all the Sd(N)& for fixed d there is a unique Δ for which
every automorphism of E(N) lifts to one on Sd(N)A [58, 2.3]. This unique
covering is denoted simply by Sd(N).

Plugging in different TV and d in 4.1.5 it is seen that c\{βd{N)) =
3c2(Sd{N)) for (N,d) = (7,7), (8,4), (9,3) and (12,2), so by Yau's theo-
rem stated in §4.0 these are compact ball quotients. Furthermore, 5s(5)
is nonminimal, and by blowing down the exceptional curves one gets a
minimal surface of general type, which we also denote by S5(5), with
C\(ss(5)) = 3c2(55(5)), and so it is also a ball quotient.

We will be meeting these surfaces again in the sections that follow: 5s(5)
and S3(9) in §§4.2 and 4.3, and S7(7) in §4.4.

4.2. Coverings defined by differential equations. Let M be a connected

complex manifold and Γ a properly discontinuous group acting on M
(holomorphically). If X = M/Γ is the quotient space, a function b: X —> N
is defined by

where Gz is the isotropy group of z e π~ι(x), π: M —> X. b describes the
branching behavior of π. The pair (X, b) is called an orbifold ([93], [90]),
and π: M —• X ramifies along supp(6 - 1) with branching degree given by
b.

Conversely, suppose we are given a pair (X,b), X a normal analytic
space and i I ^ N a function. If there exists a pair (Af, Γ) such that
M/Γ = (X, b) as above, (X, b) is called a uniformizable orbifold. Let (X, b)
be such a uniformizable orbifold, and (Af, Γ) the universal uniformization.
Denote by φ an inverse mapping (many-valued) of π: M —• X. Such a φ
is called a uniformizing map for (X, b). If Γ is a subgroup of some Lie
group (in particular if Af is hermitian symmetric), then by the theory of
Schwarzian derivatives [71], there exists a unique Fuchsian differential
equation (E) (one with regular singular points) such that solutions of (E)
give the uniformizing map. Thus the "Riemann surface" associated to
the many-valued function φ, the solution of a differential equation, is a
branched cover of X.

4.2.1. The hypergeometric differential equation. This was applied a

long time ago by Picard [75] in the case that the differential equation (E)
is the hypergeometric differential equation F\ of Appell ([1], [11, §5]) to
construct discrete subgroups in PSU(2,1). However, the proofs he gave



96 BRUCE HUNT

were not entirely correct, as noted by Mostow, and he [68], Deligne [10]
and Terada [85] recently have given correct proofs of Picard's statements.

AppelΓs hypergeometric function Fι(a,β',β,γ,x,y) is defined for
(x,y) eC2 and a,βf, β, γ e C by the series [11, 5.7.1]

{a)m+n(β)m{β )n ^mΛ,n
x '

(φ)m:=Γ(φ + m)/Γ(φ).

F\ has the integral representation [11, 5.8.2]:

Fx(a,β,β'ty,x,y)

= ^ _ ί Mα-'(1 - uγ-a~\\ - ux)~β(l - uy)-? du,

R e α > 0 , R e ( y - α ) > 0 ,

which gives explicitly the many-valuedness of this function. Also, F\ fulfills
the following system of second order linear partial differential equations
inP 2:

, d2z

APX1 i

dx2 x)jj
'dxdy

+ [γ - ( β + β + 1)JC]|£ - βy&-L - aβz = 0,

2

^ - β'x^- - aβ'z = 0.

This system of equations has three linearly independent solutions ([1,
Chapter III], [11, 5.9]) ω\, ωι, ω-i, each of which is many-valued with
ramification along the singular locus of {AP\), which is the following ar-
rangement of lines in P 2 : L = {xoX\x2{x\ - xi){xo - X\){x2 - Xo) = 0}.

\ l

Projectivizing the solutions ω, defines a many-valued map

φ: P2 — P2

x <-* [ωι(x): ω2(x): ω3(x)]
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which is the uniformizing map of π: M -+ X. The idea is to show that the
lift of φ to the universal cover is bimeromorphic onto the ball B2 c P 2 .
However, there are difficulties at the four triple points of L, so we must
desingularize. Doing this in the usual manner (by blowing up the four
points in question) defines φ on a Del Pezzo surface.

To state the results on φ it is convenient to introduce the following
notation. The proper transform of L together with the four blown up
points is a very symmetric configuration of ten (-1) curves. There is a
unique way to label them: Eij, i9j € {0,1,2,3,4}, such that E^ f)Ekι Φ
Φ*>{ij}n{k,l} = 0.

Let b(D) denote the branching degree of φ along the divisor D c P 2 ,
where P 2 = Del Pezzo surface. The result, proved in [10] and [85], is

Theorem 4.2.2. Set μ\ = β, μι = β', μ$ = 1 - a, μ* = 1 - γ - a,
μ0 = l - γ - 2a. Then φ = (ω\ : ωι : (o^) gives a uniformization, and
(P2, b) is a uniformizable orbifold *>

X> = 2, {i-μi-μj)-ιezυ{oo},

b{Eij) = (1 - μ i - μj)-1 V/,7 e {0,1,2,3,4}.

In these cases the universal uniformization (M, Γ) is the complex 2-ball,
and Γ c PSU(2,1) is discrete and properly discontinuous. If μz + μj = 1,
then Eij is covered by {the compactificatioή) of a parabolic fixed point ofT
on dB2. If μι + μ} > 1 for some i, j , then Eij is covered on M by an elliptic
fixed point ofT on B2.

There are 27 sets of {μ^μ\,μi,μ^μά) which satisfy (1 - μt - μj)~x e
Z u {oo}, Σμi — 2. Of these, seven yield co-compact groups acting freely,
i.e., Γ = Gal(Af -> P2) has a subgroup of finite index Γ1 c Γ which acts
fixed-point freely on B2 with compact quotient Mι, and M —• P 2 factorizes

P : M > P 2

Λ A
where π 1 is an infinite, unramified covering, and π is a finite branched
covering with branch locus the union of the ten exceptional curves. In
11 cases, Γ is co-compact but does not act freely (i.e., it has elliptic fixed
points). This occurs when μ, + μ} > 1 for some /, j . In the other nine
cases, Mι is not a compact quotient, as Γ1 has fixed points on <9B2, yielding
cusps in M{ which are resolved by elliptic curves (see the discussion in §3).
There are even four cases where Γ1 has both elliptic and parabolic fixed
points. Also, some of the groups Γ1 are found to be nonarithmetic (proofs
in [10]), which was actually Mostow's original motivation for constructing
these surfaces [68]. The branching degrees in all cases are listed in [33].
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Remark 4.2.3. As is explained in [33, 4.1.5.6], for the 5-tuple
(|> i> i> i> \) Λe covering Mι —> P 2 turns out to be an abelian variety.
In this case φ is biholomorphic onto C2 c P 2 (see also [10, §14]).

4.3. The constructions of Hirzebruch and Hδfer. One of the examples
of Mostow-Deligne, $4 in their list, with parameter values μ, = § for all
/ e {0,1,2,3,4} has branching degrees

over all ten (-1) curves on the Del Pezzo surface P 2 .
Hirzebruch realized that this surface could be constructed without using

the uniformizing map of the hypergeometric differential equation, and he
generalized this construction to yield an algebraic surface Y(3f, ή) for any
line arrangement ^ c P 2 and any integer n > 2 [26]. In addition to the
example of Mostow, he discovered two other arrangements, Jzζ, J^ , such
that Y{£?2,3), y(-23,5) fulfill c\ = 3c2, and are therefore ball quotients.

4.3.1. The Kummer extension. Let 3? = U/=i A be an arrangement of
lines in P 2 , L, = {//(JC) = 0} for linear forms //. Thus 3* is the zero set
of / i . . . 4 . Since the quotients /,//, are meromorphic functions, one can
adjoin their Λth roots to the function field ^ ( P 2 ) of P 2 :

This is a Kummer extension of the field ^#(P 2) and has Galois group
(Zn)

k~ι. The function field sf defines the birational equivalence class of
a branched cover X(3f, n) —• P 2 , branched of degree n along all k lines of
J ? and singular over all points of 3?, which are not normal crossing, i.e.,
where more than two of the Lz pass.

The singularities of X are resolved by resolving the branch locus. Let
τiP) = ${Li\p E Li). Then blow up P 2 at all points p such that τ(p) > 2.
Denoting this blow-up by P 2 we get a commutative diagram

p2 > p2

where Y —• X is the minimal resolution of singularities of X. Y —• P 2

is branched along the proper transforms of the L/5 as well as along the
exceptional curves Ej c P 2 . The branching degree is n everywhere.

4.3.2. Three bail quotients. Let tr = JJr-fold points= \{p e P2 |τ(p) =
r)l fo = Σr>2 *r> a n d f\ = Σr>2 rtr- T h e Cheπi numbers of Y(&, n) are
easy to calculate in terms of these combinatorial data of Sf ([26], here one
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also finds a complete discussion of the notation and terminology for line
arrangements):

Lemma 4.3.3.

2 ) ) = nk~3[n2(9 -5k + 3/i - 4/0)

+ 4n{k - fx + /o) + /i - /o + k + t2],

9 n)) = nk~3[n2(3 -2k + fi- f0) + 2n(k - /, + /0) + /i - f2].

The reader may verify c\ = 3c2 for the following three arrangements:
I. The simplicial arrangement -41(6) [19] which is the arrangement

associated with the hypergeometric differential equation of the last section,
k = 6, /o = 7, t2 = 3 and for n = 5:

II. The arrangement Jẑ s of the 12 lines of the Hasse pencil, defined by
the reflection group (125 in the Shepard-Todd List [81], k = 12, t2 = 12,
f4 = 9 and for « = 3:

cf(r(^25,3)) = 3c 2(y(^ 2 5,3)).

III. The arrangement A®(3) coming from the nine inflection points of a
smooth cubic by dualizing, k = 9, t?> = 12, and for n = 5:

c?(y(^(3),5)) = 3c2(r(iί§(3),5)).

The first two of these are closely related to the ball quotients constructed
as cyclic coverings by Livne as in §4.1. This was proved by Hirzebruch and
Ishida [45]. The surface Y(A\(6), 5) admits an action of (Z 5) 5. There are
many subgroups G c (Z5)5 of order 25, which operate freely. Dividing Y
by such a subgroup gives a surface with c\ = 3c2 = 225, and G can be cho-
sen in such a way that Y(A\(6)9 5)/G = Ss(5)9 the ball quotient constructed
by Livne. Similarly Y((<2?25,3)) admits an action of (Z3)11, and there are
subgroups G c (Z3)11 of order 35, which operate freely, the quotient being
5"3(9)Δ for the unique Δ e Pic(Γ(9)) such that all automorphisms of Γ(9)
lift to 53(9)Δ [58, §2.3, Theorem 4].

The third example turns out to be just a different realization of the
surface ()24 in the Deligne-Mostow list, as is explained in [33, 5.2.5].

4.3.4. Hδfer's theorem. T. Hόfer, in his doctoral thesis in Bonn [33],
has generalized Hirzebruch's results along the following lines. Let ^ c P 2

and P 2 be as above. Consider a Galois branched cover π: Y —• P 2 such
that the branching degrees of π are Λ, along L, and m ; along Ej. Two
natural questions arise: do such coverings exist?, and if they do, are there
necessary and sufficient conditions (on J?', Λ, , rrij) for the corresponding
Y to be a ball quotient?
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First, assume Y -* P 2 exists with given branching degrees.
Set JC/ = (/!,- - I)//!/, y/ = (-w/ - l)/ntj9 d = degπ. Hofer derives the

following formula:

7 = 1

where A = (Ajj) is the matrix with entries

3σ, - 4, i = 7,{ 3σz

2,= {2, i^j,p = LiΠLj, τ(p) = 2,
i^j9p = LinLj, τ{p)>39

and 07 = #{/? E Li\τ(p) > 3}.

Let τ, = jt{/? G L, |τ(p) > 2}. An arrangement -2* is called homogeneous
if 3τz = Λ: + 3 for all / = 1, , k. Hόfer lists all possible weights n, , m7 for
all known homogeneous arrangements J ? such that the covering Y (if it
exists) is a ball quotient. To state Hόfer's main result, we introduce some
notation. Set

Gi(x,y) = 2{θi - \)Xi +
iφk PjeLi PjELi

Let Li be the reduced divisor in Y covering L, in P 2 , and £} the reduced
divisor covering the exceptional Ej in P 2 . Then [33, 2.5.1]

-e(Li) + 2(I/)
2 = £-Gi(x9y), -e(Ej) + 2(£y)

2 = £-Pj{x,y).
Hi rrij

For a curve C c 7, the expression 2C2 - e(C) has the following impor-
tance. If Y is a ball quotient, and C c Y is totally geodesic, covered by
a disc in B2 under B2 -> 7, then necessarily 2C 2 = e(C) (see [33, 1.2.4]),
which is a relative version of Hirzebruch proportionality. Thus, the ex-
pression 2C 2 - e(C) is the deviation from fulfilling the proportionality.
Hόfer's main result states that this condition, if satisfied for all Z,, , Ej is
also sufficient for Y to be a ball quotient. Using the above formula, a
calculation gives

Theorem 4.3.6 [33, 3.5.2]. Assume Y -• P 2 exists, with Lit Ej cY as
above. Then

( Y is a(compact) ball \ _ , λ n , λ Λ w

*• * ( ** Gi(x9y) = Pj(x,y) = 0 V, , .
quotient J v ^ y JK *} J

By a slight modification, the theorem stays true while accommodating
either elliptic or parabolic fixed points.
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Elliptic: Set m* = -nij.

Parabolic: Set m* = oo.

In the elliptic case, some of the Ej are exceptional curves of the first
kind, and can be blown down (Y was not minimal to begin with). In the
parabolic case, the Ej are elliptic curves, which are the desingularization
of cusps as discussed in §3. Set D =union of Ej which are elliptic curves.
Then plugging m* formally into the formula for Gj(x,y) and Pj(x9y), the
corresponding result is:

Y - D is a noncompact 1 „ . Λ _ , λ _ w

ball quotient } ^^(x,y ) ,P,(x,y ) = 0 V,,,

The proof of this fact uses a result of R. Kobayashi on noncompact ball
quotients (possibly singular) [52] (see also §4.5).

Applying this result to the known homogeneous arrangements yields the
following list of ball quotients (copied from [33, 5.3.3]):

Method
Arrangement k n\s m*3) m*4) m*5) of Const.

(icosahedral)

(Hesse)

15

21

12

2
5

2
3
4

2
3
4

- 4
5

- 4
0 0

8

oo
3
2

0 0

3
2

4
1

(2)
(2)

(2)
(1)
(2)

(1)
(1)
(3)

21 2,2
2,3
3,9
4,2
4,6

0 0

oo
3
2
2

4
2
1
2
1

(2)
(2)
(2)
(2)
(2)

^ 2 7 4 5 2 - 4 oo 4 ( 2 )

Here 0S7 means the arrangement defined by the unitary reflection group
with classification number / in [81], and m*γ) = m* for all y-fold points pj.
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Hόfer proves the existence of all listed coverings Y -> P 2 with the given
branching degrees, utilizing one of the following three methods:

(1) Direct construction as Kummer extension (Hirzebruch's construc-
tion).

(2) Finding a normal subgroup N<π\(P2 -&).
(3) Find a differential equation with uniformization as discussed in §4.2.

Remark 4.3.7. As it turns out, the existence of all of these examples fol-
lows from Kobayashi's Theorem 4.5.2, below, which was however proven
later.

Remark 4.3.8. This theorem can also be used to give a different proof
of the result 4.2.2 above, assuming the existence of a covering say by
Kobayashi's theorem.

4.4. A K2> surface which is a ball quotient. In this section, we describe

a ball quotient Sη which is a covering of an elliptic AΓ3 surface S which has
three fibers of type Iη and three of type I\, due to I. Naruki [70]. Actually
we will work just backward to the way he did. We start by constructing a
double cover S —• P 2 such that S is a K3 surface of the mentioned type.
Then SV is constructed as a branch covering of S and finally S is identified
with a covering of the ball quotient 57(7) constructed by Livne (see §4.1
and [58]).

Let D c P 2 be the singular sextic curve defined by

{x\x2 + *2*3 + x]*\ ~ 3X{X2X3)2 ~ 4.X1X2*3(*1 ~ *2)(*2 ~ *3)(*3 - * l) = 0.

It can be checked that this sextic has three singularities of type A4 at the
vertices x, = x}? = 0 (ij e (1,2,3)) and a D4 singularity at (1 : 1 : 1) (of
xx = χ2 = χ3) as drawn:

Let X —• P 2 be the double cover. We resolve singularities in the standard
way. First, blow up (1 : 1 : 1), and let Eo denote the exceptional curve.
Then blow up the three vertices of the triangles four times. Consider for
example the cusp D\. Then the picture is
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Let be the resolution of singularities such that

S • X

I I
p2 _L^ p2

is a fiber square, where p: P 2 —• P 2 is the modification mentioned above.

The cover σ —• 2?o of the exceptional P1 is still a P 1, and S fibers over it:

5 -> P 1 . We claim 5 is an elliptic Λ^3-surface with three 77's and three

7i's. S is obviously elliptic K3, since the sextic has only rational double

points (see [6, §3]), and it remains to spot the singular fibers. The three

7i's are π~{(li) where /,- is a line tangent to D through (1,1,1). There are

class Z) = 6 5 - 4 6 = 6 such lines, the three lines x\ = Xj and three oth-

ers. The lines JC, = Xj are components of the Iη fibers, whereas the other

three, tangent to the branch locus, have a simple node in the covering. At

each ^4-cusp we have after resolution the following curve configuration:

(4.4.1)
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The surface S has seven sections: one totally ramifying along £Ό, and two
each doubly covering the lines JC, = 0, / = 1,2,3. On S we have a config-
uration of 28 (—2) curves, which have a great deal of symmetry. In fact,
Naruki shows that the combinatorial automorphism group is PGL(2,F7),
where U7 is the field of order 7 [70, Proposition 5.1]. We now sketch the
idea of Naruki's proof of the following

Theorem 4.4.2, There exists a Galois cover, of degree Ί5, π: S —• S,
branched of order 1 along all 28 (-2) curves, such that S is a smooth
compact ball quotient, π factors as follows:

π:S > S

where Sη{Ί) —• E(7) is the cyclic cover of the elliptic modular surface of
degree 7 which is a smooth compact ball quotient. Both vertical covering
maps have degree 72.

Remark 4.4.3. A corresponding factorization has been proven for the
surface π: Y(A\(6), 5) —• P 2 constructed by Hirzebruch, in [45].

To describe S, we start with the Hermitian metric for m e N,

Hm(z) := zxzx + z2z2 - (C + 0*3^3, ζ = exp(2π//m),

and the corresponding special unitary group

SUm = {(3x3) matrices of determinant/ = 1, unitary with respect to Hm}.

This group is naturally isomorphic to the standard 5C/(2,1), and the cor-
responding ball

Bm = {zeC2\Hm(z)<0}

is naturally isomorphic to the standard 2-ball B2. The group SUm has a
special discrete subgroup,

Γm = {A G SUm\Ajj is an integer in the cyclotomic field Q(C)}

In [5] it is proved that for m = 5,7,8,12, Tm acts properly discontinuously
on Bm with compact quotient Bm/Γm. We consider some subgroups of Γ7.
The principle ideal generated in Q(ζ) by (1 - ζ) is prime; denote it by <^,
and set

Γ7 = {A G TΊ\A = 1 (mod<^)}, Π7' = {A e TΊ\A = 1 (mod^ 2 ) } .
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The combinatorial automorphism group PGL(2,FΊ) of the 28 (-2)-curves
on S is isomorphic to Γ7/Γ'7.

The surface S which we are looking for is 57/Γ'7', and S itself is isomor-
phic to B7/Γ7, so the Galois group of π: S — S is Γ7/ΓJ. πi(57(7)) is a
discrete subgroup of SU(2,1), and

The proof of the theorem is based on the following exact sequences:

N(7) -> Aut(S7(7)) - 1,

1 -> Z 7 -> Aut(57(7)) -> Aut(£(7)) -> 1,

and the fact that Aut(2s(7)) = (Z 7) 2 x SX(2,F7). There is also a natural
map N(7) —• Aut(is(7)), and Naruki then proves

Lemma 4.4.4. The group F 7 contains the kernel ofN(7) —• Aut(£(7)),
and Tη is a subgroup ofπ\(Sη(7)).

This yields the following sequence of coverings:

5 7 ^ g 7 / Γ y '"""""•'• S7(7) ^ £ ( 7 ) .

nχ(Sη)) — Γ7/π1(57(7)) =

'ΓΊ/T"

Remark 4.4.5. The description of the coverings given shows that U7/Γ7
—> P 2 is a Galois cover, branched over (the proper transform of) a curve
of degree 12 in P 2 , the product of the singular sextic D above with the six
lines of the arrangement ^1(6). Here P 2 means P 2 blown up to resolve
the singularities of the sextic D, as above. Thus we have an example of
a ball quotient which is a Galois cover of P 2 over a curve which is not a
line arrangement, a rare phenomenae. A similar example of a K3 surface
which is the compactification of the ball is described in [38, VI].

4.5. The Miyaoka-Kobayashi inequality. We just mention briefly a gen-
eralization of the Miyaoka-Yau inequality cj(5) < 3c2(S) for S a smooth
surface of general type, the inequality being due to Miyaoka [63], and an
implication (equality => covered by the ball) being due to R. Kobayashi
[52], [53]. The generalization consists in allowing S to be noncompact and
to have quotient singularities.
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A Satake V-manifold is a complex analytic space with at worst isolated
quotient singularities. Let ds2 be a Riemannian metric defined over the
regular (smooth) part of a F-manifold X. ds2 is a V-metric if it can
be defined locally as the quotient of a metric which is smooth on the
uniformization.

Kobayashi's first theorem gives an analogue to the existence of a Kahler-
Einstein metric on a manifold with ample canonical bundle:

Theorem 4.5.1 [53, Theorem 1]. Let X be a minimal V-surface, and
C c X a divisor with at worst normal crossings singularity. Let X —• X
be the minimal resolution of singularities, and E = ΣiEi ^ e exceptional
divisor. Let μ, e Q be defined by the condition that Kχ + X) μ/2?,- is trivial
near E. Assume:

(3) Every (-2)-curve F <jt supp(ls), which meets E, meets it in a compo-
nent Ei which has μz > 0.

Then there exists a unique complete, Ricci-negative Einstein-Kάhler V-
metric on X - C with finite volume.

In this more general setup one also gets a result corresponding to the
famous Yau inequality, i.e., c\{S) < 3^(5) \ϊKs is ample, equality holding
if and only if S is covered by the 2-ball. For smooth, noncompact surfaces
X with compactification X, X = X u D, where D = £)D/ is a disjoint
union of elliptic curves, the inequality

c2(X,D)<3c2(X,D)

is proven in [52], with equality holding if and only if X is covered by
the ball. Here one uses the logarithmic Chern classes, and the result is
formulated precisely as in the noncompact case. The more complicated
F-surface version is proved in [53] as a corollary of the above.

Theorem 4.5.2 [53, Theorem 2]. Let X, C, X, E be as above, fulfilling
(l)-(3) in the above theorem. Then

(KX + + C) <3{e(X)-e(E)-e(C) +

where Gp is the subgroup of U(2) corresponding to p. Moreover, equality
holds if and only if X - C is a quotient of the ball byΓc SU(2,1) which
has isolated fixed points, X - C being the minimal resolution of B2/Γ.

The inequality part of the theorem was proved by Miyaoka, using
algebro-geometric methods [63].
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Examples 4.5.3. This example is due to Hirzebruch. Let X' be the
complete intersection of the two Fermat hypersurfaces

F(x0 : : * ) = £ x f = 0, G(x0:---: x4) = £ x ] 5 = 0.

Then A7 has 50 singularities each of which is resolved in a smooth curve of
genus 6 with self-intersection - 5 , and 1875 ^-singularities. Let pr: X —•
X7 be the resolution of the former 50 singularities and p: X —> X be the
minimal resolution of the A**. Hirzebruch calculated

3c2(X) - c2

x(X) = 27,000,

while the contribution of the A^s is e(Ep) - l/\Gp\ = ^ , so for X the
above inequality becomes

3c2{X) - c2

x{X) < 3 1875 ^ = 27,000,

so X is the quotient of B2 by a discrete group with isolated fixed points.
Our final example is due to Kes Ivinskis [46]. Let Jz^ be the icosahedral

arrangement of 15 lines as in §4.3. Since J^b ^15- [H] (linearly equivalent
to 15 times the hyperplane class), we can take the Nth cyclic cover for any
TV dividing 15. Let X(N) denote the cyclic cover of degree N branched over
the arrangement ̂ 3 . Then X(5) has 30 singularities of the type z\ = z\z->>
and 15 A4 singularities. Ivinskis calculates Cι{X) = 195, c\(X) = 105 and

3c2(X)-c2

{(X)= E p ) ±
' p

so X is covered by the ball. It can be shown that X is a quotient of one
of the examples of Hόfer listed in §4.3.

5. Fiber products

We now come to the easiest, and in one sense most powerful method,
of constructing large families of surfaces described by A. Sommese [84].
Let / : S —• C be a surface together with a holomorphic map onto a curve
C. Denote by Σ c C the singular locus of /, i.e., where rk/ < 2. Let
π: C —• C be a branched Galois covering such that the ramification locus
of π is disjoint from Σ. We then form the fiber product:

S' > S

1 1
c • c
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5.1. Fiber products. The following is well known (or easy to prove).

Lemma 5.1.1 [84, 2.1]. Assume e(S) > 0, and F is a typical fiber of

f: S -> C. Then S' is minimal ifS is, and

__dcl(S)-2pe(F)

c2(S') dc2(S) - pe(F) '

where d and p are the sheet number and ramification number, respectively,
ofC - C.

The sheet number d is the degree of / . The ramification number is
p = Σzec(ez ~~ *)> where ez = degree of ramification of / at z.

5.2. Density results. The idea is now to consider the quotient c\jc2,
instead of the pair {c\, c2). By taking successive fiber products one gets a
family (S')n with very good control on the growth of c\jc2.

Lemma 5.2.1 [84, 2.2]. Assume S, C andF as above. Assume g(F) > 1
and g(C) > 0. The closure of the set of ratios c\{S')lc2{S') as S1 varies over
all branched covers C —• C as above is the interval

[c2

ι(S)/c2(S),2], c\lc2<2,

[2,cf(S)/c2(S)L c\/c2>2.

The proof of this is quite easy. Assume for simplicity c\jc2 > 2. Then

c2(S>)

(2-cj(S)\( -pe(F) \
\ c2(S) )\dc2(S)-pe(F)J-Z>

') _ 2 d{c\{S)-2c2{S)) c\{S)
>) Z + d{S)p{F) -(SY{D Z ό) c2(S>) Z + dc2{S)-pe{F) -c2(S

To prove the density it suffices by (5.2.2) to show that for e\eτyp/q € [0,1],
there exists a d-sheeted covering with branch number p and

-pe(F) _ p
dc2(S)-pe(F) q

In fact, take a d' = -{q - p)e(F)-sheeted unbranched cover C -* C of
C (which is possible since g(C) > 0) and then a double cover C" —• C
branched at p' = 2pc2(S) generic points. Then for the composed cover
C" - C we have d = 2(-(q -p)e(F)), p = 2pc2(S) and
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-pe(F) -2pc2(S)e(F)

dc2{S) - pe(F) 2{-{q - p)e(F)c2(S)) - 2pc2(S)e(F)

= +p =?-
{q-p)+P Q'

5.2.1 yields as a consequence:
Theorem 5.2.4 [84, 2.3]. The closure, R, of the set of ratios cj(S)/c2(S)

of the Chern numbers of minimal models of general type surfaces is[\, 3].
In fact, for any p/q e [̂ , 3], there is a minimal surface of general type with
c\lc2 = p/q.

By 5.2.1 this is proved if we have one example of a surface S with
c\ = 3c2 (i.e., a ball quotient) which fibers holomorphically onto a curve
C of genus > 0, and one example of a minimal surface S' with c\ = \c2,
which fibers holomorphically onto a curve C with g(C) > 0. For S we
can take, for example, the surface jt4 in the [10]-list (i.e., Hirzebruch's
Y(Aχ(6), 5) which is also a Galois cover of Livne's surface S5{5) [45]). A
surface S' as above is easy to construct. (See e.g. [84].)

Remark 5.2.5. It is a generalization of this approach we will apply
below in the 3-dimensional case to prove our density results (§8).

PART II. SOME 3-FOLD GEOGRAPHY

6. Fermat covers

In this section we describe a construction of algebraic three-folds, which
yields as examples 3-dimensional analogues of the algebraic surfaces with
positive index.

6.1. The construction. Corresponding to any arrangement Sf of planes
in P3(C), and any natural numbers n > 2, we construct a singular cover
X(&, n) of P3(C), branched along the given arrangement J& with branch-
ing degree n everywhere. These coverings might best be described as 'it-
erated cyclic coverings'. We prefer to view them as singular complete
intersections of Fermat hypersurfaces (whence the name Fermat covers).
(See [41, §1].)

6.1.1. Combinatorial Data. Let Hu , Hk be k hyperplanes in P3(C),
given by linear forms lu , lk. The arrangement Sf = \j\=x Ht is the zero
set of the product lx lk. Let t\ denote the number of q-fold lines of
the arrangement, i.e., one-dimensional linear subspaces of P3(C) through
which q of the /// pass, and let tp denote the number of p-fold points of
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the arrangement, i.e., points through which exactly p of the /// pass. The
set of all t\*s and tp% q > 2, p > 3, is called the combinatorial data of
the given arrangement 3 . The arrangement 3* is said to be in general
position (in the combinatorial sense) if t\ — 0 for all q > 3 and tp - 0 for
all p > 4. In this case the formulas

will hold. We speak of singular lines and points of 3 if ύq Φ 0 for some
q > 3 and tp Φ 0 for some p > 4, respectively. The following formula for
the t\ will hold:

If there are no singular lines, we get the following formula for the number
of singular points:

If we admit both singular lines and singular points, we must consider
the data tpq: J{intersections of a <?-fold line with a p-fold point}. In this
case we have the following formula for the combinatorial data:

Two arrangements will be considered equivalent if they have the same
combinatorial data, t\, tp and tpq, and we call this equivalence class the
combinatorial type of the arrangement.

6.1.2. The Kummer extension. Let 3* be an arrangement in P 3 given by
the linear forms l\, ,lk. We assume from now on that tx

k = t{

k_{ = tk = 0
holds for the combinatorial data of 3 . The quotients /2//1, , 4/A are
meromorphic functions on P 3, and we can form the algebraic field extension
sf of the function field on P 3 obtained by taking the «th roots:

sf :=C(*,/xo,*2/*o,*3/*o) [{hlh)xl\-- ΛklhΫ"1]
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Here C(xo/*o> Xi/xo> *3/*o) is the function field of P 3 , and j/ isaKummer
extension of this field and defines the function field (birational equivalence
class) of a ramified covering X = X{2?, ή) of P 3 :

π: JT--P 3 .

π has covering degree nk~ι, and X is ramified along the arrangement 3
with branch locus the arrangement 3 and branching degree n along each
plane ///. The Galois group is (Zn)

k~ι. X is smooth except for the loci
lying over the singular lines and singular points of the arrangement 3*.
The singularities of X are as follows:

singularity of 3* singularities ofX lying over those of 3
p-fold point nk~p~x singular points

<7-fold point line nk~q~x singular curves

The singularities of X are orbits of the Galois group acting on X. If the ar-
rangement J ? is in general position, then X{Jϊf, n) is smooth for all n > 2,
and is in fact a smooth complete intersection of k - 4 Fermat hypersurfaces
in P^" 1 . X(<2f, n) is therefore a degeneration of a nonsingular complete
intersection. For details and proof of these statements see [41].

6.2. Resolution of singularities. In this section we describe a resolution
of singularities of X(S?,n) and get a smooth, projective 3-fold Y(J?,n)
which is a branched cover of some blow-up of P3.

6.2.1. Near-pencil singular points. As it turns out, not all singularities
of the arrangement 3 (and hence of X) are on equal footing.

blow-up along L

FIGURE 6.1 FIGURE 6.2
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Definition. Let P be a /?-fold point of the arrangement 3?. P is called a
near-pencil singular points & there is a (p - l)-fold line L passing through
P. The picture is as in Figures 6.1 and 6.2.

The reason these singularities must be treated separately is that in the
process of resolution of singularities (6.2.2), they are resolved "en passant"
in the process of resolving the singular line L passing through P (Figure
6.2).

If we blow up P3 at such a near pencil point, the exceptional divisor is a
P2, and the induced arrangement (i.e., proper transform of all Hi through
P) is of the following type. Such an arrangement of lines in P2 is called a
near-pencil arrangement, which explains the name for these singularities.

FIGURE 6.3

6.2.2. Embedded resolution. To resolve the singularities of X we use
the standard method of resolving the singularities of the branch locus Sf c
P3. This is done in two steps:

Here p\ = blow-up of P3 at all singular points which are not near pencil
singularities, pi = blow-up of P\ along the (proper transforms of) singular
lines of the arrangement. Once this is done we have a new branch locus

P3 D 3* — {proper transforms of 3} U exceptional divisors.

The picture is as in Figure 6.4.
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FIGURE 6.4

Now let Y be the Fox completion (= unique completion with a given
branching behavior, see [ 15]) of the lift of X - sing X making the following
diagram commute:

Y > X

P 3p3

We get a smooth projective 3-fold Y(Jϊf,n) covering P 3 and ramifying
along Si?. The branching degree of π: Y —• P 3 is n along (the proper
transforms of) all /c-planes and along all exceptional divisors.

If we view X as a singular complete intersection of Fermat hypersur-
faces, it is easy to see that this resolution is just the embedded resolution
of X(Jϊ?,n) in P^" 1 , which is the "canonical resolution" in the sense of
toroidal embeddings.

6.2.3. Exceptional divisors. Let P be a p-fold point of the arrangement.
P is resolved by a P 2 . In this P 2 we have an induced line arrangement.
Let P be one of the nk~p~ι singular points of X covering P. Then, as is
easy to see, P is resolved by an exceptional surface S which is a Fermat
cover of P 2 , branched along the induced line arrangement (see [26] and
§4.3 above for details on this the surface case).
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Let L be a <7-fold line of the arrangement. L is resolved by a P 1 x P 1

since the normal bundle of the proper transform of L is 0{\-σ)®0(\-σ),
where σ = (({points blown up on L}. Let L be one of the nn~q~{ singular
curves on X covering L. Then L is resolved by a product

Cx v C-> —• P 1 x P 1

where Ci —> P 1 is a Fermat cover of degree nq~~ι, branched at q points,
and Cι —• P 1 is a Fermat cover of degree w2-"1 branched at Σ = {σ +
((planes which L meets transversally} points.

6.3. Induced fiberings. First consider a p-fold point ^ y of the arrange-

ment L. Blowing up at Pj yields an exceptional P 2 , and Pj = {P3 blown

up at p} fibers over the exceptional P 2 :

p3 > p2

u m
lx ^ x, lx = unique line with segment x at Pj.

We have a commutative diagram (P3 now as in §6.2; blown up at all actual
singularities):

Y _ J L _ + p3

PΊ 1
π~l(p2) , p2

J π,

Corresponding to the composition π} o p: Y —> P 2 we have the Remmert-

Stein factorization Y -^ S -^ P 2 , where 5 is a surface, / has connected
fibers and g is finite-to-one. It is easy to see that g is just a Fermat cover
(the resolving divisor, see §6.2.3), branched along the induced arrangement
in P 2 . Recall that π~ ! (P 2 ) consists of nk~p~x disjoint components. These
are sections of the map /. The generic fiber of / is a covering of P1 = lx,
branched at k - p + 1 points. However, it is important to note that / is in
general not flat. Indeed, if lx is a line in P 3 passing through pj and another
(actual) singular point, then the exceptional divisor (of the other point) lies
in the fibers of Y covering lx. If we wish to have a flat map /, then we only
resolve part of the branch locus (so the covering has singularities in the
fibers, instead of exceptional divisors), and perform some other resolution
of singularities (this is somewhat vague, but we will not need / flat in this
paper).
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Now consider a #-fold line lμ of the arrangement. Blowing up along lμ

with exceptional divisor P 1 x P 1 , P 3 = {P3 blown up along lμ} fibers over
P 1 :

p3 _ _ pi

U 01

Ht H-* t, Ht = (element of) unique plane through
lμ with tangent t there.

Once again, we consider the diagram:

Y — ^ - + P 3

Ί I'
π-'(P ι ) • P1

and the Remmert-Stein factorization of πμ o p:

Here / is flat and has generic fibers which are Fermat coverings of P 2

(= //,), branched along k - q + 1 planes, and g is a Fermat cover of P 1

branched at q points.

Remark. Everything we have done in §§6.1-6.3 can be done in arbitrary
dimension [41].

6.4. Calculation of Chern numbers. The smooth algebraic 3-fold
Y(Jz?,n) has three Chern numbers, c] = -K^, C\Cι = 24χ(Y,<fγ), where
χ(Y90γ) is the arithmetic genus, and c^ = Euler(Y), the Euler-Poincare
characteristic of Y. Using standard methods (basically using adjunction
to determine the classes C\(Y), cι{Y) in the form C\(Y) = π*(cι

γ), c2(Y) =
π*(Cγ) for homology classes Cy, c\ on P 3 , and then using (known) products
on P 3 to calculate c\(Y) = degπ ((4) 3 ) , cxc2{Y) - degπ(c[ c\)\ these
numbers can be calculated for Y{S?, ή) as an expression in the combina-
torial data and the branching degree n. This is done in [41]. Dividing by
nk~4, the result is a cubic polynomial

c3

{/nk-4 = Aι3n
3 + B{3n

2 + Cϊ3n + A3,

c{c2/nk-4 = Ann
3 + Bl2n

2 + Cx2n + D[2,
k 4 3 + B3n

2 + C3n + D3,
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where the coefficients are given by the following formulas:

9>3

- 3(r - k) q)2tq - p)(2 - q)2 tpq

- 3

-qf(q-1

_ k)(2 - q){q -\) + k{2- q)ψq

- q)(q - l ) + (p- 1)(2 - q)2]tpq J

C13 = {3fc2(4 - k) -

- 3

- \)2tp

-l)2 + 2k(2-q)(q-l)]t[

q

ί > 3

<7>3

Σ<
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Bl2={k

9>3

(4-*)

3(1-
ί > 3

- (p - 1) -tPl + (2p - l)tp - Σ{q - \)ttpq

+Σ t q + u + 2(q - 2)t\
p>4

-qtι

g - tg+h<1

- 2(1-

C,2 = Ik

+ (3-/7)

-2(1-9)



118 BRUCE HUNT

Dn={k Ph ~ ιP2 ~ Z^ qtP«
^>3

= 4 - 3A: + 2t\ -

p > 4

3t3 - -\)t\-lYfip-\)tp

p>4

C3 = 2t\ - 3ί3
- 2)tpq -

<7>3

where X) means the summation extended only over those p-fold singular
points which are not near-pencil singular points (see 6.2.1).

6.5. Minimality. In this section we state some results proved in [41]
and needed in the sequel. To state them, we need some preliminaries.

6.5.1. For varieties X with certain mild singularities (rational Q-
Gorenstein) it makes sense to define a canonical divisor Kχ as a Q-divisor
(i.e., an element in Όiv(X) ®z Q). This is done as follows. Rational Q-
Gorenstein implies that at any singular point x G X there is a number
r > 0 such that ωty is invertible (a>χ the dualizing sheaf [21, II.6], and
ω[χ] means r-fold tensor product of the double dual; see [76]). The min-
imum such r is called the index of the singular point ([76], [77], [47],
[48], [51] are general references for this material). Then Kx is defined to
be the unique Weil divisor (Q-divisor) with co[£ = &χ{rKχ). So Kx has
denominator r.
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6.5.2. A Weil divisor O c l i s called nefif DC >0 for all effective
curves C c X, A 3-fold X is called a minimal model if X has only rational
Q-Gorenstein singularities and Kx is nef. For more on these concepts see,
in addition to the above mentioned works, [49], [50]. Since Mori solved
the flip conjecture last year the existence of minimal models of 3-folds is
known. But minimal models need not be unique when they exist.

6.5.3. A (Cartier) divisor D c X is called ample if some multiple of it
is a hyperplane section (i.e., some power &k of the line bundle Sf = [D]
corresponding to D embeds X as described in [18, I.I] and [21,11,7]). P.
M. H. Wilson has proved [89] for 3-folds that Kx ample <* Kx C > 0 for
all irreducible curves C. So Kx nef is somewhere between ample and not
numerically effective (as studied by Mori [65]). By definition, Kx ample
implies the pluricanonical map φm is an embedding for some m. The
image of a pluricanonical map such that φm is an embedding is called the
canonical model. It is a smooth, unique minimal model.

6.5.4. If Kx is not ample, the canonical model will have singularities,
perhaps not surprisingly called canonical singularities. These singularities
are studied in [76], [77], [78], [66]. They are characterized roughly as
follows:

(i) terminal, (ii) not terminal.

The terminal singularities have the property that for any resolution X —>
X of the terminal singularity there is a curve C on the exceptional divisor
with Kx C < 0. Since one can not resolve them without losing the nef
property, one just leaves them alone. The nonterminal singularities are
those which can be resolved with Kx nef. Resolve these (there is of course
no unique way of doing this) and we get a minimal model as above.

6.5.5. These things can be (and are in [41]) checked for Fermat covers.
Since Ky can be written in such a convenient form, Kγ = π*(Kγ), Kγ a
rational linear combination of branch divisors, complete results can be ob-
tained. In the following assume the arrangement J ? which Y is associated
with fulfills:

The arrangement contains eight planes,

(1) no more than three of which pass through a line;

(2) no more than five of which pass through a point.

Also assume t\ = tι

k_{ = tι

k_2 = tι

k_3 = 0, where k = number of planes

in & and for n = 2, tι

k_4 = t\_5 = 0.

Theorem 6.5.6. Let Y = Y(<2?, n) be a Fermat cover of degree n, and

assume:
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for n = 2, t4 = t5 = 0,k>S,t\ = 0,

for n = 3, U = 0.

Then Ky is ample.
The proof of the theorem uses the criterion Ky C > 0 for all curves C

of 6.5.3 and the observation that

π(C) Kγ > 0 =• C - Kγ > 0,

where KY = π*(AΓy) for π: Y —• P 2 . The former condition is easily
checked.

Theorem 6.5.7. The canonical singularities which can occur on a Fermat
cover Y are

(i) terminal n = 2,4-yb/rf point,
(ii) /ίctf terminal n = 2,5-fold point, 3-fold line,

n = 3,4-fold point.
Corollary 6.5.8. For Fermat covers Y,

{ Y has no canonical 1 ^ . 7. . . > o KY IS ample,
singularities J

We introduce partial resolutions of the singular Fermat cover X:

Y -> X" -> JΓ; ^ * ,

where ^ —• X resolves all singularities which are not of the types listed
in 6.5.7, X" —> X1 resolves the nonterminal canonical singularities, and
Y —> X" resolves everything (the singularity for n = 2,4-fold point is an
ordinary double point, x2 + >>2 + w2 + z2 - 0, and the resolving divisor
is a quadric surface P ' x P 1 . Y —• X" blows all these quadric surfaces
down). Notice that the construction leading to X" is unique, starting with
the function field of X, a birational invariant. Summing up we have [41,
Theorem 2.4.10].

Fact 6.5.9. X" is a unique minimal model of X. Furthermore,
(i) Ky - C = 0 *> C = P 1 is on the exceptional locus of X" -> X1.

(ii) Kγ - C < 0 o C = P 1 is on the exceptional locus of Y — X".
(iii) #y C > 0 otherwise.

7. Interesting Fermat covers of general type

In this section we introduce our "zoo" of examples we have found by
means of the construction of §6. But before we begin, it is necessary to say
a few words about the birational behavior of Chern numbers of 3-folds.
As opposed to the surface case where there exist unique minimal models,
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in the 3-fold case there is the difficulty of choosing a model (often times
singular) which has certain desired properties. Only if we fix a unique
model in each birational equivalence class does it make sense to speak of
the Chern numbers of the manifold.

7.1. Birational behavior of Chern numbers. Let X be a smooth algebraic
3-fold, p eX a. point and C c l a curve. Let

pp: Xp -• X (pc: Xc -• X)

be the blow-up of X at p (along C, respectively). Then

c\{Xp) = c\{X) - 8, c\{Xc) = \

(7.1.1) CιC2(Xp) = cxc2(X), cxc2{Xc) =

c 3 ( ^ ) = c3 (X) + 2,

Thus the quotient c3/(ciC2) behaves erratically under blow-ups and we
cannot deduce for example, as in the surface case, that a 3-fold (smooth)
with c\ = \c\C2 is automatically (relatively)3 minimal.

7.1.2. As discussed in §6.5.1, if X is Q-Gorenstein, then K\ can be
defined as a rational number. Since χ, the arithmetic genus (= c\C2/24
for smooth X), is a birational invariant, we can define χ(X) = χ(X) for
any nonsingular model X of X. c3(Λr) = e(X) is just the topological Euler
number of X. Thus, on the set of Q-Gorenstein spaces X there is a well-
defined map

(7.1.3) X^[-Kl24χ(X),e(X)].

As remarked by Kawamata, this map is well defined on birational equiva-
lence classes of minimal models: e(X) is invariant under flips, Kx is unique
in codimension one (so K\ is the same for any two minimal models), and
χ is a birational invariant.

7.1.4. For the rest of this paper we shall be discussing 3-fold geography.
By §§6.5.2, 6.5.3 and the remark in §7.1.2, this is a well-defined concept
(with [-Kl,24χ(X),e(X)] e Q3) for any minimal model. Since minimal
models exist, we get a well-defined map

ί birational equivalence classes σf
< minimal models of general type > —• Q 3

( algebraic 3-folds J

which reduces t o l π [c^(X)9CιC2{X)9c^(X)] for any smooth minimal
model (and therefore takes values in Z 3 in that case).

3The adjective "relatively" denotes minimal in the sense of containing nothing which can
be blown down smoothly as opposed to the previously used meaning.
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7.2. Zones. For the remainder of this paper we will be considering the
triple (tf(X),CiC2{X),c3(X)) determined by an algebraic 3-fold X of gen-
eral type, either assuming Kx is ample or X is a smooth minimal model.
Actually we consider only the ratios [c\{X): cxc2(X): c3(X)] as determin-
ing a point in homogeneous coordinates in the rational projective plane
P2(Q). The idea is to determine for which [x0 : x{ : x2] in P2(Q) there
corresponds an actual algebraic 3-fold of general type. To organize the
results somewhat, we introduce in this section different zones. To draw
pictures we will be working in the affine chart C\ c2 = X\ φ 0.

7.2.1. Forbidden zones. Let I be a smooth, minimal model of an
algebraic 3-fold (smooth, minimal models do not in general exist). Then

(7.2.2) χ(X90x) = C^P- < 0, K\> 0.

The second statement is immediate from X general type and Kx nef, and
the first is due to C\ (X) = —Kx which implies

Clc2(X) = -Kx.c2(X)<0,

since Kx is nef and c2(X) is numerically nonnegative [64, 6.6-6.7] un-
der this assumption. Assume Kx c2(X) = 0. Then either c2(X) is rep-
resented via Poincare duality by a curve which maps to a point in the
(pluri-)canonical map, or c2(X) is zero in H4(X,Z). In the former case,
since X is smooth and minimal, the canonical model of X has only canon-
ical singularities which are not terminal.

Now assume Kx is ample. Then the inequality above becomes C\C2 < 0
and (7.2.2) yields c]l{cxc2) < 0. The zone c\l{c\C2) < 0 is forbidden for X
with Kx ample. (The zone c\l(c\C2) < 0 is forbidden for smooth minimal
models.)

Now, again assuming Kx ample, deep results of Yau [92] quoted in the
introduction imply

-c\ < -\cxc2.

So for X with Kx ample, c\l{c\c2) > § is a forbidden zone. Furthermore,
if c\ = \c\c2, then by Yau's theorem X is a ball quotient and by Hirzebruch
proportionality (0.2) C\C2 = 6C3. This describes the forbidden zones in the
C\C2φQ chart. Globally, the strip of allowable [x0 : x{ : x2], 0 < xo/x\ < §,
is bounded by two projective lines which meet at infinity. Our job is to
find where in this strip there correspond actual 3-folds.

7.2.3. Line CP (Cartesian product). Consider any 3-fold of the type
S x C, where both the surface S and the curve C are of general type. The
Chern numbers of such a Cartesian product will lie on the line segment
in P2(Q) joining [9 : 4 : 1] and [3 : 6 : 5]. We call this line CP. It follows
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from the results of Sommese [84] (see §5) that for any rational point on
this line, there is actually an algebraic 3-fold of the type S x C with the
given point as its Chern number ratio. (For more details on this, see §8.)

7.2.4. Zone SCI (smooth complete intersection). Let X c P4 be a
smooth hypersurface of degree n. Using adjunction, it is easy to calcu-
late the Chern classes and Chern numbers of X:

c{(X) = 5(5-n)H\x,

c3(X) = (10 - 10Λ + (5 - n)n2)H3\χ,

where H is a hyperplane in P 4 , and H\χ means H restricted to X. This
yields for the Chern numbers of X:

c\{X) = -n4 + I5n3 - Ί5n + 125w,

cxc2{X) = -n4 + \0n3 - 35n + 50Λ,

c3(X) = -nA + 5n3 - lθn2 + lOn.

Therefore, for n —> oo we have

[ c ? : c i c i : c 3 ] - [ 1 : 1 : 1 ] .

Similar, but more complicated calculations could be made to calculate the
limits of Chern numbers of complete intersections of several hypersur-
faces; alternatively, use the formula for Fermat covers in §6.4 by setting
all singular combinatorial data tp = tq(\) = tpq = 0 for all p > 4, q > 3.
This yields as limits of the Chern numbers of complete intersections of
k - 4 hyperplanes in P^" 1 of degree n, as n —• oo:

c\ > Λi3 = -k3 + 12k2 - 4Sk + 64,
n—» o o

cxc2 • AM = - U 3 + ι-±k2 - 20k + 24,
n—> o o L L

c3 > A3 = - U 3 + \k2 - %k + 4.

In particular,

for A: = 2 [cf: C!C2: c3] -• [4 : 3 : 2],
for fc = 3 [c\: C!C2 : c3] -> [27 : 18 : 10],
for k —• oo [c\: C1C2: C3] —• [6 : 3 : 1].

Notice that the last point is the one in P2(Q) represented by Cartesian
products of the form C\ x C2 x C3 for three curves of general type C\,
C2 and C3. It would appear that all of these limit points lie on a smooth
curve, but I do not know the equation of the curve. Note furthermore that
all nonsingular complete intersections lie in the geometric 3-sided figure
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formed by 1. Line CP, 2. The line c\ = 0 and 3. The above mentioned
curve. We call this zone the SCI zone (see the map in the appendix).

7.2.5. Zone E (empty or exotic). Consider the zone between c\l(c\c2) =
I and the curve mentioned in 2.1.3 above. I know of no examples of
algebraic 3-folds with ratios of Chern number lying here. Furthermore,
calculations show that by introducing singularities to known examples (for
instance to nonsingular complete intersections) we do not get ratios of
Chern numbers lying here (see §10.2.2 below). I conjecture there are none,
which is why I term this the empty zone, or alternatively, if there are any,
they would seem to be exotic.

7.2.6. Zone F (Fermat). I define Zone F to be delineated by c\/(c\Cι) =
f, c3 = 0, and the extension of the curve used in §§7.2.4 and 7.2.5. This
zone is the 3-dimensional analogue of the surface zone c\ > 2cι (surfaces
of positive index). There are lots of Fermat covers in this zone; compare
the examples listed in my thesis [41], and see also §7.5 below.

7.2.7. Zone AC (algebraic cycle). This is the zone c3 > 0, in other
words, C3/C1C2 < 0. Writing down the Euler number as sum of Hodge
numbers,

c3 = 2 - 2b{ + 2*2 - h = 2 - 4Λ1'0 + 2(2A2'0 + hXΛ) - (2A3'° + 2h2Λ)

= 2 - 4A1'0 + 4Λ2'0 - 2Λ3'0 + 2Λ1'1 - 2A2'1,

we get

C3 > 0 o 4χ(&χ) + 2/z1'1 > 2A2'1 4- 2/z3'0 4- 2

Since probably χ and the geometric genus A3'0 will be comparatively
small, we imply as the meaning of this inequality

(*) A1'1 is large compared with Λ21

or in other words, there are lots of algebraic (or transcendental) cycles. We
warn the reader that this conclusion might be quite wrong, but because of
it we call the zone C3 > 0 the 'algebraic cycle' zone.

7.3. Positive Euler number. Actually it was a surprise to the author that
there exist any algebraic 3-folds of general type with positive Euler number.
This was because in analogy to the surface case (where c\ > 0, Cι > 0),
for smooth complete intersection 3-folds c\ < 0, C\C2 < 0 and C3 < 0. It
seemed natural that all Chern numbers in even (odd) dimensions might
be positive (negative). Conclusions of this type are always dangerous.
Examples of positive Euler number will be used in §8.2, so we now discuss
particular examples of Fermat covers with C3 > 0 in more detail.
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Examples 7.3.1. Let 3* be the arrangement in P 3 consisting of the six
facet planes of the cube. This arrangement has four-fold points. The
singularities on X(&, 4) are resolved on Y(J?9 4) by nonsingular quartic
surfaces S (in P3) (see §6.2.3). As discussed in §6.3, Y{^94) fibers over
S:

f:Y-+S.
The generic fiber of / is a Fermat cover of the generic line in P 3 passing
through the 4-fold point S resolved, a Fermat quartic curve (of genus 3).
Kγ is ample (criteria for this are given in §6.5). The Chern numbers of Y
are

c3 = -5 42, c,c2 = -12 42, c3 = 10 42.
To determine the degeneracy locus of the map /, we need only determine
the locus (in the exceptional P 2 in the branch locus 3? in the notation of
§6) of all lines in P 3 which pass through the 4-fold point, and in addition,
through the line in P 3 which is the intersection of the two remaining planes
(i.e., those not passing through the 4-fold point). This is a line on the
exceptional P 2, and it is covered on S by the intersection of S with another
quartic in the P 3 in which S is a hypersurface. However, this intersection
will not be smooth, as is seen as follows. S covers the exceptional P 2 with
branch locus four lines:

FIGURE 7.1

The dotted line indicates the image of the singular locus on the P 2, so its
cover on S has eight singularities which are locally of the form y4+ c4 = 0.
Also, the Euler number is calculated to be 8.

The generic singular fiber of / is the singular quartic in Figure 7.2,
where each component is a rational curve with normal bundle 0® (?(-4).
The singularities in the fibers over the singular points of the degeneracy
locus are resolved by Fermat quartic surfaces.

FIGURE 7.2
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Of course, similar statements will hold for any degree n. For the Fermat
cover Y(<2f9 S) of degree 5 we also have positive Euler number. The Chern
numbers in this case are

c] = -40 52, cιc2 = -48 52, c3 = 6 52.

In this case Y fibers over a quintic surface S, which is a surface of 'special
general type' (low quotient c2/c2), and Ky is again ample.

Example 7.3.2. Let S? be the arrangement consisting of the 12 facet
planes of the dodecahedron. J ? has 15 4-fold points and 12 5-fold points,
and no singular lines. Let Y = Γ(-S*, 2) be the smooth Fermat cover. Y
has two kinds of fiberings corresponding to the 4- and 5-fold points:

Y

fi/ \ /i

where S\ is a quadric surface P 1 x P 1 c P 3 resolving divisor of an ordinary
node, and S2 is a (2,2)-complete intersection in P 4 , which is P 2 blown up
five times. The fibers of f\ are curves of genus 49 and those of fι are
curves of genus 17.

The Chern numbers of Y are

c\ = -79 28, cxc2 = -72 28, c3 = 10 28.

However note that Y is not the minimal model of §6.5; we must blow
down all the quadric surfaces to nodes. This reduces the Euler number by
three per node. There are 15 2 1 2 " 5 = 15 27 such nodes. Let Ϋ denote
the blown down variety. Then Q{Ϋ) = c3(F) - 3 15 27 = -25 27 is no
longer positive. This example illustrates how important it is to specify the
model being used.

Example 7.3.3. Let Sf be the arrangement of eight planes consisting of
the six facet planes of a cube, the plane at infinity and one further plane
passing through three of the corners of the cube. The combinatorial data
of this arrangement are t\ = 28, ί5 = 3, U = 3 and t3 = 14. Let Y be
the Fermat cover for n = 3. Then Y has again two kinds of fiberings
corresponding to the two kinds of singular points (cf. §6.3):

S2 Sx

where S\ is a smooth cubic surface in P 3 and 5*2 is a (3,3) complete in-
tersection in P 4 . 5*2 is again a surface of 'special' general type, meaning
its quotient c\jcι is near the lower bound of 1/5. The generic fibers of f\
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are curves of genus 55, and those of fι are curves of genus 10. The Chern
numbers of Y are

c\ = -40 32, c{c2 = -40 32, c3 = 14 32.

Here again Ky is not ample. However, Ky is nef, so Y is a minimal model.
Example 7.3.4. Now let Sf be the simplicial arrangement A\{\ϋ) con-

sisting of the four facet and six symmetry planes of the tetrahedron. For
more on simplicial arrangements in 3-space see [20] and [41, 2.1.2]. This
arrangement is pictured in Figure 6.4. It is the 3-dimensional arrangement
corresponding to the singular locus of the hypergeometric differential equa-
tion in three variables. For homogeneous coordinates [JCO : X\ : Xι: ^3] on
P 3 ,

- X\)(X2 ~

The Fermat cover Y(J?9 3) is a compactification of a ball quotient, one
of the seven examples of [10] in dimension 3 ([41, 4.6.3], see also §7.6
below). We consider here Y(Jϊ?,2). Y has fiberings

where S is the elliptic modular surface Γ(4), a #3-surface [83]. S is a
Fermat cover of P 2 branched along A\ (6) in the notation of §4.3, which is
AΓ3. The 16 (-2)-curves covering the exceptional P*'s resolving the 3-fold
points of the arrangement are the 42 sections of Γ(4), and the 6 4 = 24
components of the six singular fibers of Γ(4) cover the six lines of A\(G).
The map g has as generic fiber a curve of genus 5, while /, mapping onto
P 1 , has fiber the Fermat cover of P 2 along the following line arrangement
(for n = 2):

This is a surface of general type with c\ = 2 25 and Cι = 4 25 and ratio
c\jc2 = 5. Thus the surface is of 'somewhat special' general type. Y has
the Chern numbers

= - 3 2 6 , — I Δ
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The fiber space g: Y —• S has a beautiful structure which can be described
quite explicitly. The generic fiber, a (Fermat) cover of P 1 branched along
five points, is a curve of genus 5. The singular locus on S is the union of
the six singular fibers and the 16 sections. This is the total inverse image
of the ten (-1) curves on P 2 (after resolution, see §4.2). Studying the
description of the induced fiberings (§6.3) we find in this case: the fiber of
Y —• S over the smooth part of the I4 fibers is an elliptic curve; the fiber
over the 16 sections and the double points of the fibers U are singular
fibers of type I4. Thus, denoting by 0/ one of the components of one of
the I4 fibers of S, we see

is itself an elliptic modular surface Γ(4)! We leave it as an exercise for the
reader to verify the Euler number c?>{Y) using this explicit description of
the fiber space g: Y —> S.

Recently this 3-fold has been identified with the compactification of the
Siegel modular 3-fold of level 4, defined as follows (see [42]): the Siegel
upper half-space of degree (genus) 2 is

Notice that this bounded symmetric domain is isomorphic to the domain
E3 (noncompact dual of the quadric hypersurface in P4) mentioned in
§10.1 below by the exceptional isomorphisms of Lie algebras:

sp(2, R) = so(5), u{2) = su{2) + u{\) = so(3) + so{2).

The Siegel modular group is S/?(2,Z), and the main congruence subgroup
of level N, Γ(N) c S/?(2, Z), is defined by the sequence

1 _> Γ(N) -> Sp(2,Z) -> Sp(2,ZN) -> 1.

Γ(N) acts properly discontinuously and freely for all N > 3. The quo-
tient T{N)\92 can be compactified to a normal algebraic variety with 1-
dimensional singular locus [3]. In 1967, Igusa (Math. Ann. 168, 228-260)
showed that the monoidal transformation along the singular locus desingu-
larizes the singular Baily-Borel compactification. We denote this smooth
3-fold by X(N). Then Y = X(4), where Y is the example discussed above.
We just sketch the argument.

Consider the group Γ(2) c Sp(2, Z). Since - / e Γ(2), PΓ(2) acts on 5^
(with fixed points), the quotient, however, is smooth (also due to Igusa).
It has been known for nearly a century (see for example Lee-Weintraub,
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Topology 24 (1985), 391-410 for some references) that the compactifica-
tion of this modular 3-fo!d is isomorphic to the desingularization of the
Segre Cubic, the cubic 3-fold given in P 5 by the equations

/=0 1=0

(This is the unique cubic 3-fold with ten ordinary double points, the maxi-
mal possible number of such.) On the other hand, it is easy to see that this
desingularization is the same as P 3 above, i.e., P 3 blown up at five points
and along ten lines of the arrangement A\(IO). Since /T(4) c iT(2),
we have a covering X(4) —• P 3 (= X{2))9 branched along the compactifi-
cation divisors of X(2) (= proper transform of the ten planes of A](IO)
together with the five exceptional P2 's of blown-up points) as well as along
Humbert surfaces (= ten exceptional P 1 x P l 9s). The degree of the cover is
d = [PΓ(2): PΓ(4)] = 29; in fact the Galois group is PΓ(2)/PΓ(4) = (Z2)9,
which is the Galois group of Y -> P 3 ! This suffices to see Y = X(4).

This description also explains the appearances of the elliptic modular
surfaces Γ(4) on Y\ they are precisely the compactification divisors which
are not disjoint since Sp(2,R) has rank 2.

Steve Weintraub and Ronnie Lee have calculated the Hodge numbers
of this Seigel variety. The Hodge diamond is

1

0 " 0

6 226 6

15 0 ' 0 15

6 ' 226 ' 6

9 9
1

Furthermore, hXΛ is generated by algebraic cycles (Humbert surfaces and
compactification divisors). Hence this example certainly does support our
supposition that there are lots of algebraic cycles, and is of great impor-
tance in §8 below. Finally we remark that although Ky is not ample, it is
nef, so Y is a minimal model.

7.3.5. Other examples. There are two other examples of general type
3-folds with positive Euler number, Fermat covers of the arrangements
Ceva3(2) and Ceva3(2,1), respectively (see [41, 2.1.3]), for n = 2. These
are arrangements of 12 and 13 planes respectively. Since we will not use
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these examples, we just list the Chern numbers:

Ceva3(2) Ceva3(2,1)
= -52 28 c] = -92 • 29

8

\ =

c3 = 8 28 c3 = 2 29

To end this section we gather the information of the above examples in
tabular form.

Structure Yau quotient
Example of Fiber \/{CXC2)

1. n =
S K3 surface

S quintic surface

ί Fermat quartic curve
I c P 2 , g = 3
Γ Fermat quintic curve

5/12 = .42

.83

2.

1.09
Si = P ' x P ' , 5 2

del Pezzo surface

3.

'S2 g=lθ
Si cubic surface, 52(3,3) g - 55
complete inter c P4

4.

1.44
1.61

g = 5(πberof/,)
c2jc2 = i(fiber of /2)

S = Γ(4), /Π-surface c?/c2 = ^(fiber of f2)

5. Ceva3(2)
Ceva3(2,1)

7.4. Dual fibering structures. In this section we introduce an interesting
phenomenon, which will not be used, however, in the rest of this paper.
Let Y be an algebraic manifold of dimension n, and D{ c Y and D2 C Y
two subvarieties of dimensions Π\ and Πι, respectively, with n\ + ni = n.
Suppose Y has two structures of fiber space:

D2
D,
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Definition 7.4.1. We say Y has a dualfibering structure if the fiber of
fx is isomorphic to Dι and the fiber of fι is isomorphic to D\, but Y is not
birational to the Cartesian product Dx x D2.

We can prove the existence of many such Y.
Theorem 7.4.2. Given any curve C and surface S which are Fermat

coverings:

each of degree n, there exists a Fermat cover Y —> P 3 of degree n such that
Y has a dualfibering structure.

Proof Let Λ c P 2 be the line arrangement with which the cover S is
associated (as in §4.3). The near-pencil arrangement J ? c P 3 associated
with Λ is defined as follows. Let P 2 c P 3 be any hyperplane in P 3 , and
Λ c P 2 the given line arrangement. Take any point p e P 3 not on the
given P 2 . Sf is defined as the arrangement consisting of (1) the given P 2

and (2) all planes passing through p and a line o f Λ c P 2 . The picture is
as in Figure 7.5.

FIGURE 7.5

Let v be any natural number v > 1. Add any v planes H\, ,Hμ to
J?', all of them through one of the lines of Λ. For any n, let Y be the
Fermat cover associated with the arrangement y u ί / i U U//,;. Y has
two fiberings (see §6.3)

Ά/Y\f2

c s
where S - > P 2 covers the 'pencil-point' p of the arrangement, while C is
a cover of P1 branched at (v + 2) points. It is clear that the fiber of f\
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is isomorphic to S, while the fiber of fι is isomorphic to the curve C. It
remains to show that Y is not birational to the Cartesian product S x C .
To see this, it is sufficient to notice that the fiber of f\ covers S with as
many sheets as it meets the fiber of fz, which is nu+ι times, q.e.d.

It is interesting to note that for growing n the Chern numbers do con-
verge to those of a Cartesian product (see question 10.2.5 in §10 below).

Example 7.4.3. Consider the arrangement drawn in Figure 7.5, the near
pencil arrangement associated with A\(6). Set v = 2 and let Y be the
Fermat cover for n = 2. Then Y has the structure of elliptic 3-fold over
the elliptic modular surface Γ(4), with singular locus a disjoint union of
four components of singular fibers. Here we have fibers of type U once
again. Since the branching locus consists of nine planes, this example is
"honestly elliptic", i.e., κ(Y) = 2.

Example 7.4.4. Take the same arrangement, v - 1 and n = 3. Let Y be
the Fermat cover, and Y —> S be a fiber space over the compactification of a
ball quotient (J2 in the [10]-list), with fiber an elliptic curve (x3+y3+w3 =
0). Y also fibers over an elliptic curve, with fiber this compactification of
a ball quotient. So here once again (by additivity of Kodaira dimension)
κ(Y) = 2.

7.5. Zone F; characteristic ratios. As mentioned above, Fermat covers
yield examples of 3-folds which are in my opinion the 3-dimensional ana-
logue of surfaces with positive signature. These are 3-folds X whose Chern
numbers determine points in the Zone F defined above. The analogy to
surfaces with positive signature is as follows: if τ(S) > 0 for a surface
S, then the quotient c\/c2 is larger than the corresponding quotient for
B1 x B1-quotients. Zone F was defined by c\/(c\C2) > f, which is the cor-
responding value for (compact, smooth) B2 x B1-quotients. In this section
we give some examples.

7.5.1. The characteristic ratios of an arrangement. In §6.4 we have cal-
culated the Chern numbers c*(Y(&,n))9 cxc2{Y(3?,n)) and c3(Y(&,n))
for Y = Y(^f, n) —• P 3 a smooth Fermat cover of degree n associated with
the arrangement Sf c P 3, and given these formula as cubic polynomials
in n. The characteristic ratios of the arrangement & are the ratios of the
leading coefficients A^, An and A^ of these cubic polynomials. Only two
of them are independent:

(7.5.2) Aχl "

γ2:=-L= 1
An n
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Thus, plotting (γx, γ2) in the C\C2 φ 0 chart of P2(Q) will yield accumulation
points of Chern numbers of 3-folds (here Ky will be ample for n > 3 at
least). In [41] these ratios are listed for about all interesting arrangements
known.

Examples 7.5.3. The arrangement for which the ratio γx is highest
known is the arrangement named Ceva3(3) in [41]. This is an arrange-
ment of 18 planes defined by an imprimitive reflection group. Whereas
in Zone F γ{ is large, γ2 will be small. Ceva3(3) has largest known γx and
smallest known γ2. They are

995 90
2 4 0 3 4 ^

The covering Y(J&, 5) is very interesting. The arrangement J ? has 6-fold
points and 9-fold points. The induced arrangements in the exceptional
P2 's are A{(6) and Λ§(3) as described in §4.3.2. Thus for n = 5 all those
exceptional P2 's are covered by ball quotients which lie on Y(&, 5) as
totally geodesic manifolds. The Chern numbers of Y = Y{J?9 5) are

c\{Y) = -63564.514, c{c2(Y) = -24912.514,

c\l{cxc2) = 2.55, c3(Y) = -4542.514.

There is also an interesting coincidence of ratios: the three arrangements
-2* = A*(IO)9 & = A\(\G) = Ceva3(2,4) and & = G2S,92o (see [41, 2.6])
all have

- ^1 - !** _ 1 3 1 7 6 - A - ^_
(7.5.5) γ{ - 2 6 - 2 Q 8 - 5 6 J 6 , γ2 - 2 6 - —
where the three numbers are the leading coefficients for the different ar-
rangements. Other examples can be found in [41, 2.6]. The points in
P2(Q) determined by (7.5.4) and (7.5.5) are drawn below in the atlas.

The single example of Fermat cover with c\l(c\C2) highest is for the
arrangement Ceva(2) = A\{\2) for n = 4. Here c\l{cxc2) = 3564/1380 =
2.58 and c3/(cxc2) = 240/1380 = 4/21 = .19.

7.6. Ball quotients. As in the surface case it is interesting to try to
use our constructions to yield ball quotients. Let Y —• P^ be as above,
B = ΣBi ^ e reduced ramification locus in 7, and 5, the irreducible
components. Let ΰ c f i b e the subset of components which are complex
tori. Assume also the different components of D are pairwise disjoint. The
following higher dimensional analogue of Hόfer's Theorem 4.3.6 above
was proved in [41]:

Theorem 7.6.1. Set Y, B, D as above and N = dim Y. Then, ifN > 3,

Y-Disaballλί Each Bt - D is a
quotient J \ subball quotient

1
J '



134 BRUCE HUNT

Bi is a subball quotient if:

(i) Bi - D is a ball quotient {(N - \)-dimensionaϊ),

(ii) Cj(Y,D)\Bl-D = ( ( # + l)/(N+ l-JVCjiBii

As a corollary we get:
Corollary 7.6.2. There are no Fermat covers Y —> P^, N > 3, such that

Y is a compact ball quotient.

This follows from that for N = 3, if the arrangement has singular lines,
in resolution of singularities we get components in the branch locus of the
type C\ x C2, C, a curve. So by 7.6.1, Y cannot be a ball quotient, since
C\ x Cι is a B1 x B1-quotient. If the arrangement has no singular lines, it
is easy to prove that no covering can be a ball quotient (see [41, 4.6.2]).

The following are, however, two examples of Fermat covers which are
noncompact ball quotients, and have appeared in the [10] list:

n = 3, c 3 = - 1 7 2 3 6 ,

dC2 7 2 3 , Z) = - 6 0 3 6 , so ή(Y,D) = l

& = A\(12)9 n = 3, c\ = -896 38,

cxc2 = - 3 6 0 3 8 , D3 = - 1 9 2 3 8 , so ή{Y,D) =

The first example above has recently been identified with the com-
pactification of the Picard modular 3-fold corresponding to the group
SU((3,1),^Z3(1 - P)2\p = e2^ (see [42]).

Just as in the surface case we can admit more general coverings Y -+PN

with arbitrary branching degrees along the branch divisors. This was done
in [41], and using 7.6.1 the following result was proven (here TV = 3):

Theorem 7.6.4 [41, 4.6.2]. Besides the seven examples of Deligne-
Mostow [10] there is precisely one Galois covering Y —> P 3 ramifying along
a known arrangement and the exceptional divisors introduced in the resolu-
tion of singularities, such that Y is the compactification of a ball quotient.

For the proof we refer the reader to [41]; here we just describe the
new example mentioned. The arrangement is ^43(24); the arrangement
defined in R3 by symmetry planes of the regular 24-cell in R4 [20], or
the arrangement defined in P3(C) by the unitary reflection group of order
576. Λ3(24) may also be described as follows: Start from the cube and the
octahedron inscribed into it, use the six facet planes of the cube, the eight
facet planes of the octahedron, the nine symmetry planes and the plane at
infinity. This is sometimes called the desmic figure. All line arrangements
induced in the 24 planes are A\{\y) in [19]. The arrangement has 3-fold
and 4-fold lines, and 9-fold points.
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Theorem 7.6.5.
branching degrees:

2
2

- 4

Consider the arrangement ^4 (̂24) with the following

The covering Y

24 planes
exceptional P 2 's
exceptional P 1 x P 1 's over 3-fold lines

oo exceptional P 1 x P 1 's over 4-fold lines.

P 3 with these branching degrees has a disjoint union
D = ΣDj of complex tori over the 4-fold lines. Over the 3-fold lines are
P 1 -bundles which are exceptional and may be blown down. Let p: Y —• Ϋ
be this blown-down. Then Ϋ - p(D) is a ball quotient.

Proof By 7.6.1 we must show that the divisors 2Ϊ, covering the 24
branch planes and the exceptional P2 's are subball quotients. This follows
from the following two lemmas.

Lemma 7.6.6. Let Sf be the line arrangement A\{\3) and branching
degrees as stated. . . . ,

branching degree
type (a):

type{c):
type (d):

3-fold pts.:
4-fold pts.:

2
2

4
oo
-4

2

Then there is a covering D -» P 2 which is the compactification of a ball
quotient.

Proof Use the formula (4.3.5). The existence of the covering follows
from 4.5.2.

Lemma 7.6.7. Consider the arrangement A\(9) with branch degrees

lines: 2
3-fold pts.: -4
4-fold pts.: oo

- 4

Then there is a covering D —• P 2 which is the compactification of a ball
quotient.

Proof Same as above. (This is one of the 27 examples in the 2-
dimensional list in [10].) The fact that these divisors are subball quotients
is just as easily checked [41, 4.6.3, Corollary 4.2.4]).
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The existence of this covering follows from the 3-dimensional analogue
of 4.5.2, also due to R. Kobayashi [41, Theorem 3.3.2].

8. Fiber products and density results

In this section we come to the main results of this paper. Our goal, as
mentioned in the introduction, was to give a 3-dimensional generalization
of Sommese's results in [84] (see §5).

8.1. Fiber products. We use the same set-up as in [84]. Let Y be an
algebraic 3-fold possessing a fibering to a curve:

f:Y-+C.

Let π: C —• C be a finite branched cover of degree d and ramification
degree p = Σ(eP ~ 1)> where ep is the degree of π at the point p. Let
Y' = Y χπ C be the fiber product:

γι _Λ_+ Y

Λ I'
c —£-> c

Assume that C —» C is branched away from the degeneracy locus of / .
Let S be a generic fiber.

Lemma 8.1.1. Setπ Y'^Y as above. Then

c]{Y') = dc\{Y)-7,pc\{S),

cxc2{Y') = dcιC2(Y) - p[cϊ(S) + c2(S)],

c3(Y') = dCi(Y) - pc2{S).

Furthermore, Kγ> is ample if Kγ is.
The proof is standard.

In what follows we shall be interested in the ratios c]/{c\C2) and
of Y, resp. Yf. Set for convenience c\ — c\{S) and c^ — ci(S). An easy
calculation gives

Lemma 8.1.2.

c\{Y) /_3£*_ _ c\{Y) \

(Y) \* {Y))

\ (
cιC2(Y>) dc2(Y) \c* + a cxc2{Y))\dcxc2(Y)-p[c\

c3(Y') = c3(Y) ( c2 c3(Y)
=

C\C2(Y') ctc2(Y) \
The practical application of the above formula is

\



COMPLEX MANIFOLD GEOGRAPHY IN DIMENSION 2 AND 3 137

Lemma 8.1.3. Suppose g(C) > 1. Then by taking fiber products cor-
responding to coverings C —• C as above, we can construct an algebraic
3-fold with

c]{Y')lcxc2{Y') = a, c^Y')lcxc2{Y') = β

for any rational pair (a, β) in the interval with endpoints

ί c\{Ύ) c3{Y) \ ( 3c? c2

Proof Exactly as in [84, 2.2] (§5.2 above), it is sufficient to show that
for any rational number p/q G [0,1], we can find a covering π: C -+ C
with d and p such that

-Pic i + c2] =p
dcιc2(Y)-p[c2

ι+c2] q

To do this, set p = -pc\C2(Y), d = (q-p){c\ H- c2). The existence of such
a cover is assured by our assumption that g(C) > 1 (take a d/2-degree
unbranched cover, then a double cover with p branch points), q.e.d.

Notice that the endpoint B = (3cf/(cJ + c2), c2/{c} + c2)) of the line ~AB
always lies on the line segment in the {cj/(c\C2),c^/(c\C2)) plane, which
passes through the points ( | , \) and (2, ̂ ). This is just the line CP dis-
cussed in §7.2.3 above! Thus we have Figure 8.1 (the dashed line indicates
what we get by taking fiber products).

3 '

LINE CP

C3/C1C2

J i !
F I G U R E 8.1
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8.2. Density results. It is our goal to have some area in the
(tf/(c\C2)9C3/(c\C2)) plane dense in the sense of 3-fold geography, that
is, for any rational point (α, β) € D in some designated area D in the
plane, we wish to know that there exists an algebraic 3-fold Y (with ample
Ky ample) such that Y has as its ratios of Chera numbers the given point
(α, β). As it turns out, Fermat covers of P 3 provide just the right structure
to do this.

Consider a Fermat cover Y(J?,n) -> P 3 which has fiberings onto two
different curves (by §6.3 this means the arrangement Sf has two different
types of singular lines l\ and l2, say):

/2A/1

C 2

Let Si be the corresponding fiber of fa.

Claim. Iflx and l2 do not meet {in P3), then S2 and S\ fiber onto C\
and C2 respectively.

Proof. The fiber S2 is the Fermat cover of the generic plane passing
through l2. Since l\ and l2 do not meet, l\ meets the generic plane through
l2 transversally. Figure 8.2 gives the picture for the line arrangement in
the generic plane through /2.

FIGURE 8.2

Thus by [26] or [84], S2 fibers onto the covering of the exceptional fiber
of the P 1 x P 1 = l\ blown-up (as in the resolution of singularities, §6.2),
which is C\. The other case is handled similarly.



COMPLEX MANIFOLD GEOGRAPHY IN DIMENSION 2 AND 3 139

First, we take coverings of C\: π: C[ -• C\. This induces (fiber product)
coverings of Si, as in the following diagrams:

S'2 > S2

The behavior of the Chern numbers of 5^ in this situation by taking all
coverings of C\ is described in §5: c\(S'2)lc2{S'2) -» 2.

The next step is to consider the diagram

I c2

C[

where Y[ is again the fiber product. Y[ fibers over Cι (by composition
fi o π) with fiber S'2. So we can take coverings of Cι and the corresponding
fiber products according to the following diagram:

γ

q . cfh
I
1

Theorem 8.2.1. Let Y be as above.

/ \ g(C2)>U

Then by taking fiber products of coverings π\: C[ —> C\ and π 2 : C'2 —»• C2

ίt/cΛ ίΛαί the branching locus ofπ\, π 2 is disjoint from the degeneracy locus
of f\ and fa, respectively, we can construct an algebraic Z-fold Y with

for any rational pair {a,β) in the triangle AABC with vertices

( c]{Y) c3(Y) \ ( 3c?(5Q c2(5Q \
\cxaWYcMY)) ' \cj(Sι) + c2(Sιycj(Sι) + c2(Sι)J '

c = ( 3cf(52) c2(S2)
\ci(s2) + c2(s2yci(s2) + c2(s
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where S\, S2 are the fibers ofY -* C\ and Y -> C2 respectively.
The proof of this is immediate applying Lemma 8.1.3 to the reasoning

above.

We now apply this result to one example of Fermat cover to get the
density result mentioned in the introduction. Let Y be Example 7.3.4,
i.e., Y -• P 3 ramifying over the arrangement A3

{(l0). Y has the structure
of fiber space

P 1 ,

the two fiberings arising (as in §6.3) from any two of the 3-fold lines, which
we assume do not meet. Here we cannot apply Theorem 8.2.1 directly since
both curves have genus zero (and therefore no unramified covers, whence
the reasoning in the proof of Lemma 8.1.2 does not apply). To remedy
this, let E -* P 1 be a double cover with four branch points so that E is an
elliptic curve. Let Y' be the corresponding fiber product as indicated in
the following diagram:

7' v Y

1 1
E > P 1

Using Lemma 8.1.1 we have

c 3 ( Γ ) = -9 27,

Y' has two fiberings:

Y'

E P 1

and the fiber of π2 is (as discussed above) the fiber product in the following
diagram:

F2 > Ft

1 1
E • P 1

where F\ is the fiber discussed in 8.2. Using Lemma 5.1.1 this yields the
Chern numbers of F2, which is the fiber of π2,

c2ΛF2) = 3 2 6, c2{F2) = 9 2 5 .
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Now we take a double cover of the remaining P 1 , branched at four points,
which we denote by E" -+ P 1 . We now have the following diagram:

\ E"

The fiber F(' of Y» -> E has c? = 7 26, c2 = 19 25, the fiber F" of
7 " -> E" has c? = 3 26, c2 = 9 25, and for the Chern numbers of Y" we
get

c\{Y") = -36 27, cχC2(Y") = -33 27, c3(Y") = - 3 27.

We can now apply Theorem 8.2.1 to

γn

\

E E"

which yields (we formulate the result for simplicity in homogeneous coor-
dinates on P2(Q))

Theorem 8.2.2. Let [a: β :γ]bea point inside the triangle AABC with
vertices

4 = [12: 11 : 1], B = [6 : 5 : 3], C = [42 : 33 : 19].

Then there exists an algebraic 3-fold of general type X with [cf (X): C\C2{X):
c3(X)] = [a:β: γ].

The reader might find it amusing and rewarding to try other examples to
extend the results of Theorem 8.2.2. As it stands, 8.2.2 is only a qualitative
result, not a quantitative one. For example, by taking a different covering
of Y' we can get a result like the above for the triangle AABC with vertices
Λ = [5 : 5 : -2], B = [3 : 3 : 2], C = [96 : 87 : 55]. However, for most
examples of Fermat covers, the procedure above will yield triangles so
small that one would almost need a microscope to see them on the Atlas
below. These triangles would almost always lie in the above two, which is
why we have refrained from giving more results in this direction.

9. Degenerate arrangements

In this section we will be concerned with the following quite general
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Problem. Given an arrangement Sf c P 3 , what can be said about the
relationship between

{
the geographic location of

[c\{Yn): Cχc2(Yn): ci(Yn)] for

Fermat covers Yn —• P 3 of
degree n associated to 3

In my thesis [41] I introduced the notion of degenerate arrangements,
where such a relationship does indeed seem apparent.

9.1. Degenerate arrangements. Arrangements of the following kinds
will be called degenerate.

point arrangement o 3* has only singular points [t\ = 0, q > 3).
line arrangement: o Sf has only singular lines (and of course

near-pencil singular points (see 6.2.1)) but
no other singular points.

An arrangement 3? is both a point arrangement and a line arrangement,
iff it is the general position (in the combinatorial sense).

9.1.1. Point arrangements. In this case the combinatorial data are given
by the following formula:

Interesting examples of point arrangements are given by the facet planes
of any regular polyhedra.

9.1.2. Line arrangements. A line arrangement is characterized by the
following data:

h =

There are s singular lines, through the rth one pass #, planes plus σ ad-
ditional planes in general position with respect to the others. Such an ar-
rangement can always be realized over the reals. Choose one of the lines,
say //. Then the generic plane through /, has the induced arrangement of
k - qt + 1 lines, one #7-fold point for each j Φ i, and each line of the in-
duced arrangement passes through only one line. Such a line arrangement
Λ in P 2 , i.e., one fulfilling the condition

(D) {each line o f Λ c P 2 passes through at most one singular point},
is the 2-dimensional analogue of our 3-dimensional "degenerate arrange-
ments".
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9.2. Fermat covers of degenerate arrangements.
Lemma 9.2.1. Let Λ c P2 be a line arrangement fulfilling (D) above,

which we assume has ̂ -1 = ̂ -2 = 0.

Sn -> P 2 the associated Fermat cover of degree n.

Then
(a) c\{Sn) < 2c2(Sn),
(b) the characteristic quotient γ of A [26, p. 135] fulfills γ < 2.
Proof To show (a) we use Hirzebruch's formula [26, pp. 124-125]

F(Sn) := 2c2(Sn) - c^Sn) = n\k - 3 - f + 2/0) + fi + /o - k - 3ί2,

where /1 = X^r>2 rί r, f0 = Σr>2 ιr T h e condition (D) on the arrangement
implies f\ < 2fo -h k - 3 since we are assuming t^-x = tk-i = 0, so the
leading coefficient is positive. Thus F(Sn) > 0 if F(S2) > 0 (now assume
k > 4) and

( Σ ( ) )
> 0 by the assumption that f\ < 2fo + /c - 3.

(a) now implies (b). q.e.d.
Using this we can prove a 3-dimensional analogue.
Theorem 9.2.2. Let S? c P3 be a line arrangement as defined above,

and Yn —> P 3 the associated Fermat cover of degree n>3. Then
(a) c\{Yn)lcxc2{Yn) < 2,
(b) An/An < 2.
Proof It is sufficient to prove (a). Here we use a formula developed in

[41,4.6.1]:

F{Yn):=c\{Yn)-2cxc2{Yn)

= Σ*i f(2c2(ff/) " c\(Hi)) - (*'k)Ί - Σμm (L'"\Lltι)\

where //,, Lm denote the reduced ramification loci covering the k planes
Hi of the arrangement and the exceptional P1 x P ι ' s introduced in the
resolution of the singular curves (6.2). We must show F(Yn) > 0. Since
the arrangement has no singular points, (H/.,,,)2 < ° Therefore it suffices
to show that

2c2{Hι)-c\{Hι)>(R'\f1)
2.
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This follows from Lemma 9.2.1 since 2c2(Rt) ~ c\(Ri) > 0 whereas

so if c\ Φ 2c2, the expression in F(Yn) will be positive, q.e.d.
The conclusion is that from the viewpoint of geography, line arrange-

ments are as degenerate as general position (for which exactly the same
inequality will hold). They correspond to the natural boundary

c\l[c\c2) < c\{Vι x P 1 x P1)/(ciC2)(P1 x P 1 x P1) = 2.

Now suppose J ? is a point arrangement. The maximal quotients
c\l{c\Ci) that we know of are the following:

(i) The 20 facet planes of the iosahedron. For all n > 5, c\/{c\c2) > 2,
and A\ι/A\2 = 2.07.

(ii) Special 166-arrangement (see [41, pp. 21-22]). For all n > 8,
c\l(c\C2) > 2, and A{3/A{2 = 2.025.

We notice that for point arrangements c^(Y(^f,n))/(c\C2)(Y(Sp,n)) is
monotone increasing with n, i.e., the characteristic quotient A\z/A\2 is
really the maximal value. Following the general philosophy above, we
wage the

Conjecture 9.2.3. Let 5f be a point arrangement. Then

c\(Yn)l{cxc2){Yn) < I = c\{Y2 x P1)/(c1c2)(P2 x P1)

for any n > 2.
This can be translated into a condition on the combinatorial data of the

arrangement S?, and is equivalent to
Conjecture 9.2.4. For any point arrangement <S? c P3,

40 + 3ί3 + ΊU + 8*5 + 6*6 + tΊ > 13fc + 7*8 + 18*9 + . . . .

Finally we would like to remark that in any dimension N there are as
many kinds of degenerate arrangements as there are partitions of N, which
makes the conjecture above, in an appropriate formulation, plausible in
any dimension. The most degenerate arrangements are probably those
with the following property:

(P)j {each (N - l)-plane passes through only one singular

(N - l)-dim locus}.

They probably will have Fermat covers with c^/c^~2Cι < 2 as is the case
for arrangements in general position. The least degenerate are probably
those arrangements fulfilling

(P)ΛΓ-I {the arrangement has no codim2 singular loci}.
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Here we suspect an arrangement ̂ c P ^ satisfying (P)^_! has associated
Fermat covers for which

cf7cf"2c2 < <f (P"- 1 x P 1)/cf" 2c 2(P^- 1 x P1).

10. An atlas of 3-folds of general type

10.1. Legend. Below is a map of the area in the [tf /(C1C2), c3/\c\C2)]-
plane which corresponds to known 3-folds. We remind the reader of our
conventions of 7.1, that either

(i) Y have ample canonical bundle, or
(ii) Y is a smooth minimal model.
Fermat covers, for example, fulfill (ii) if they have no nodes (see 6.5.7

and the remark following 6.5.8). We now list different points, and their
coordinates, which represent interesting examples.

t) coord. description Example J

1-9 in Zone SCI smooth complete intersections
10 (-.125, .83) desingularization of sing. (5,5)

complete intersection in P 5 (7.3.1)
11 (.08,1.1) desingularization of sing. (6,6)

complete intersection in P 5 (7.3.1)
12 (.16,1.2) desingularization of sing. (7,7)

complete intersection in P 5 (7.3.1)
13 (-2.3,1) Fermat cover of A\{IO) (7.3.4)
14 (-.3,1) fiber product of 13 Y' in (8.2.1)
15 (-.2,1) fiber product of 14
16 (.09,1.1) fiber product of 14 Y" in (8.2.1)
17 (-.35,1) Fermat cover of arrangement (7.3.3)

of 8 planes
18 (-.22,1.4) Fermat cover of Ceva3(2) (7.3.5)
19 (-.04,1.6) Fermat cover of Ceva3(2,1) (7.3.5)
20 (.18,2.55) Fermat cover of Ceva3(3) (7.5.4)
21 (.23,2.35) Characteristic ratios Λ3(10),

A\{\6) and ^ 2 5 9 2 0 (7.5.5)

The following zones were described in §7.2:
Zone AC, c3 > 0.
Zone SCI bounded by: (1) the curve of §7.2.4 where lie the limit points

for d - 00 of the Chern numbers \c\(Jd ) : c{c2{Yd) : c3(Yd)l Yd a
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complete intersection of k hyperplanes (k > 1), (2) the line CP, and (3)

the line c\ = 0 (Smooth Complete Intersections).

Zone E bounded by: (1) the curve of §7.2.4, and (2) the line c\ = § cxc2,

here no examples are known (Empty Zone?).

Zone F bounded by: (1) the line c\ = f c\C2, (2) the line c\ = \cxc2, (3)

the line c3 = 0, and (4) the "continuation" of the curve of §7.2.4 to [c\ :

C1C2 : C3] = [16 : 6 : 1]. Here many examples are given by Fermat covers

of P 3 branched along simplicial arrangements or arrangements defined by

unitary reflection groups.

Line CP passing through [ 9 : 4 : 1 ] and [ 6 : 3 : 1 ] .

Other important landmarks are coordinates corresponding to compact,

smooth quotients of hermitian symmetric domains. In dimension 3 there

are four landmarks:

bounded domain compact dual coordinates

B 3 P 3 [ 1 6 : 6 : 1 ]

B2xB* P 2 χ p ! [9:4:1]
B^B^B 1 P^P'xP 1 [6:3:1]
E 3 Q 3 hyperquadric [27 : 12 : 2]

Finally, the dotted line - i s the line c$l(c\C2) = -2-lc\l{c\C2) which was

mentioned in the introduction as a bound for Y such that Ky = i*&{\)

for a canonical embedding i: Y c P^.

10.2. Some open questions. In this section we state some questions and

problems which in our opinion are relevant to further research in 3-fold

geography.

10.2.1. Do the limit points (γι

k, γ\)9

γι

k = Jim {c\{Yd)l{cxc2)(Yd)\ y\ = \im(c,{Yd)l{cxc2){Yd)),
a—+00

for Yd a complete intersection of k hyperplanes of degree d lie on a smooth

polynomial curve for k > 1?

10.2.2. For all known examples, introducing isolated singularities into

smooth complete intersections moves the coordinates [c] :c\c2: C3] (after

resolving the singularities) "to the left", i.e., in the direction c^l(c\C2) —•

-00. If the singularities have one-dimensional components, then, in addi-

tion c]l(c\C2) seem to grow in magnitude. As an example of this, we can

give the formulas corresponding to introducing a single singular point or

curve into a smooth complete intersection. We use the formula of §6.4.

Consider a smooth complete intersection of k - 4 Fermat hypersurfaces in

P*" 1. The limits of \c\ : C\C2'. cτ>] as the degrees approach 00 are denoted

[Λ13 : A\2 : AT,] (same notation as §6.4). Introducing a single /?-fold point



COMPLEX MANIFOLD GEOGRAPHY IN DIMENSION 2 AND 3 147

{p <k-5) changes the combinatorial data as follows: tp = 1, ί3 = (3) - (?),

= (2) a n d hi = (2)- Pegging this into the formula in §6.4 and letting

^12,^3] denote the corresponding limits in this case yield

Since A\3, A\2 and A$ are all negative, we see that \A\^\ and \A$\ decrease,
whereas \AΪ2\ increases. Thus we get a "specialization vector" something
like

V'

If we add a singular curve instead of point (i.e., a #-fold line (q < k - 4)
of the arrangement), the combinatorial data are:

p > 4,

«»-G)-©
Plugging this into the formula yields

i l 3 = Al3 + 2(2 - qΫ - 3(4 - k)(2 - q)\

Al2 = Al2 + (4 - k) [(q - 1) - (f)] + (2 - q)[k + q - 4],

In this case, |-4i3|, ^12! and | ^ 3 | all decrease, |^413| as -2q3 + 3/c^2, |Λ12|
as | ^ 2 and | ^ 3 | as \q\ A3/A{2 ^ ff, Al3/A{2 - (6fc - 4ί)/fc. We get a
"specialization vector" as follows:

,^12,^3] * ^ .
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Question. Is this true in general, i.e., can it be proven?

10.2.3. Is Zone E really empty? Is the bound really the curve 7.2.4?

10.2.4. If a three-fold Y with Kγ ample has c\l{c\C2) = §, by Yau's
theorem it is a smooth ball quotient. Thus [16 : 6 : 1] is the only possible
coordinate on the line c\ = \c\c2. If the curve describing the bounds on the
Chern numbers is smooth at [16 : 6 : 1], then the line c\ = § C\C2 is tangent
to the area D of possible coordinates. Notice that the compactification of
ball quotients always have c^/(c\c2) = \, so that all lie on a vertical line.
On the other hand, taking fiber products of ball quotients as in §8 leads to
examples with c$l{c\C2) > \.

Problem. Find examples of Y with

c\l{cxc2) > | , c3/(c{c2) < \.

10.2.5. Referring to the characteristic quotients [A^ : A\2 : A3] of
an arrangement described in §7.4 we make the following observation. In
all known examples the characteristic exponents are all near the line CP,
whereas for small n, the ratios [c\ : C\C2 : c3] of all Yn may lie far away.
They all approach, however, the line CP for increasing n. This raises the
following fascinating question:

If Yn is any family of 3-folds of general type depending on a discrete
parameter n eN with χ(Yn,tfγ) —> 00 for n -* 00, is

/>«>:= \im[c\{Yn):cxc2{Yn):c,(Yn)]
n—•(»n—•

a point minimizing the distance to the line CP?

Here by minimizing we mean with finitely many exceptions (low n), P^
is nearest to the line of all [c\{Yn) : C\C2(Yn) : c3(Yn)] in the Euclidean
metric on the affine chart C\ c2 φ 0. This question has an affirmative answer
in the following cases:

(a) Yn is a series obtained by taking fiber products as in §8.

(b) Yn is a series of smooth complete intersections of k hypersurfaces,
k>\.

(c) Yn is a Fermat cover of degree n.

10.2.6. In addition to what has already been mentioned there is the
general problem of finding the bounds which must be satisfied by the co-
ordinates of Γ, say under the assumption Ky ample.





150 BRUCE HUNT

References

[1] Paul Appell & J. Kampe de Feriet, Functions hypergeometriques et hyperspheriques, Poly-
nome dΉermite, Gauthier-Villars, Paris, 1926.

[2] A. Ash, D. Mumford & Y. Tai, Smooth compactification of locally symmetric varieties,
Math. Sci. Press, Brookline, 1975.

[3] W. Baily & A. Borel, Compactification of arithmetic quotients of bounded symmetric
domains, Ann. of Math. (2) 84 (1966) 442-528.

[4] W. Barth, C. Peters & A. van de Ven, Compact complex surfaces, Springer, Berlin, 1984.
[5] A. Borel & Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2)

75(1962)485-535.
[6] E. Brieskorn, Uber die Auflόsung gewisser Singularitόten von holomorphen Abbildungen,

Math. Ann. 166 (1966) 76-102.
[7] E. Calabi & E. Vesentini, On compact, locally symmetric Kάhler manifolds, Ann. of

Math. (2) 71 (1960) 472-507.
[8] Z. Chen, On the geography of surfaces, Math. Ann. 277 (1987) 141-164.
[9] S. Chern, F. Hirzebruch & J.-P. Serre, On the index ofafibered manifold, Proc. Amer.

Math. Soc. 8(1957) 587-596.
[10] P. Deligne & G. Mostow, Monodromy of hypergeometric functions and non-lattice inte-

gral monodromy, Inst. Hautes Etudes Sci. Publ. Math. 63 (1986) 5-89.
[11] A. Erdelyi, W. Magnus, F. Oberhettinger & F. Triconi, Higher transcendental functions,

Vol. I, McGraw-Hill, New York, 1953.
[12] J.-M. Feustel, Die negative K2 -Kontribution der Picardschen Modulflάchen, Math. Nachr.

106(1982) 17-34.
[13] , Zurgroben Klassifikation der Picardschen Modulflάchen, Math. Nachr. 118 (1984)

215-251.
[14] J.-M. Feustel & R.-P. Holzapfel, Symmetry points and Chern invariants ofPicard mod-

ular surfaces, Math. Nachr. I l l (1983) 1-34.
[15] R. H. Fox, Covering spaces with singularities, Lefschetz Symposium, Princeton Univer-

sity Press, Princeton, NJ, 1957.
[16] W. Fulton, Intersection theory, Springer, Berlin, 1984.
[17] D. Gieseker, Global moduli for surfaces of general type, Invent. Math. 43 (1977) 233-282.
[18] P. Griffiths & J. Harris, Principles of algebraic geometry, Wiley, New York, 1978.
[19] B. Grϋnbaum, Arrangement of hyperplanes, Proc. 2nd Louisiana Conf. on Combina-

torics, Louisiana State University, Baton Rouge, LA, 1971, 41-108.
[20] B. Griinbaum & G. C. Shepard, Simplicial arrangements in projective 3-space, Mitt.

Math. Sem. Giessen 166 (1984) 49-101.
[21] R. Hartshorne, Algebraic geometry, Springer, New York, 1977.
[22] F. Hirzebruch, Automorphe formen und der Satz von Riemann-Roch, Unesco. Sympos.

Inter. Top. Alg., 1957.
[23] , Komplexe Mannigfaltigkeiten, Proc. Internat. Congr. Math., Cambridge Univer-

sity Press, Cambridge, 1958.
[24] , New topological methods in algebraic geometry, Springer, Berlin, 1966.
[25] , Hubert modular surfaces, Enseignement Math. 19 (1973) 183-281.
[26] , Arrangements of lines and algebraic surfaces, Arithmetic and Geometry, Vol. II,

Progress in Math., Vol. 36, Plenum Press, Boston, 1983, 113-140.
[27] , On the Chern numbers of algebraic surfaces: an example, Math. Ann. 266 (1984)

351-356.
[28] , On the signature of ramified coverings, Global Analysis, Papers in honor of K.

Kodaira, Princeton University Press, Princeton, 1969.



COMPLEX MANIFOLD GEOGRAPHY IN DIMENSION 2 AND 3 151

[29] F. Hirzebruch & G. van der Geer, Hubert modular surfaces, Presses de ΓUniversite
Montreal, Montreal, 1981.

[30] F. Hirzebruch & A. van de Ven, Hilbert modular surfaces and the classification of alge-
braic surfaces, Invent. Math. 23 (1974) 1-29.

[31] F. Hirzebruch & D. Zagier, Number theory and the Atiyah-Singer index theorems, Publish
or Perish, Boston, 1974.

[32] , Intersection numbers of curves on Hilbert modular surfaces and modular forms of

Nebentypus, Invent. Math. 36 (1976) 57-113.
[33] T. Hόfer, Ballquotienten als verzweigte ύberlageregen der Projektiven Ebene, Ph.D. thesis,

Max-Planck Institut, Bonn, 1986.

[34] R.-P. Holzapfel, A class of minimal surfaces in the unknown region of surface geography,
Math. Nachr. 98 (1980) 211-232.

[35] , Invariants of arithmetic ball quotient surfaces, Math. Nachr. 103 (1981) 117-153.
[36] , Arithmetische Kugelquotienten Flάchen V/VI, Sek. Math., Seminar Berichte der

Humboldt Univ. zu Berlin, 21, 1980.
[37] , Arithmetic curves on ball quotient surfaces, Ann. Global Analysis and Geometry,

1-2(1983)21-90.
[38] , Chern numbers of algebraic surfaces—Hirzebruch's examples are Picard modular

surfaces, Math. Nachr. 126 (1986) 255-273.
[39] E. Horikawa, Algebraic surfaces of general type with small c\, I, II, Ann. of Math. (2)

104(1976).
[40] , On algebraic surfaces with pencils of curves of genus two, Complex Analysis and

Algebraic Geometry, Cambridge University Press, New York, 1977.
[41] B. Hunt, Coverings and ball quotients, Bonner Math., Schriften 174, 1986.
[42] , A Siegel modular It-fold which is a Picard modular 3-fold, Compositio Math.
[43] S. Iitaka, Algebraic geometry, Springer, Berlin, 1982.
[44] M. Inoue, Some surfaces of general type with positive index, Preprint.
[45] M. Ishida, Hirzebruch's examples of surfaces of general type with c\ - 3c2, Algebraic

Geometry, Lecture Notes in Math., Vol. 1016, Springer, Berlin, 412-431, 1983.
[46] K. Ivinskis, Normale Flάchen und die Miyaoka-Kobayashi Ungleichung, Diplomarbeit,

Bonn, 1985.
[47] Y. Kawamata, Elementary contractions of algebraic 3-folds, Ann. of Math. (2) 119 (1984)

95-110.
[48] , The cone of curves of algebraic varieties, Ann. of Math. (2) 119 (1984) 603-633.
[49] , Crepant blowing-ups of 3-dimensional canonical singularities and its application to

degenerations of surfaces, Ann. of Math. 127 (1988), 93-165.
[50] , On the finiteness of generators of a pluricanonical ring for a 3-fold of general type,

Amer. J. Math. 106 (1984) 1503-1512.
[51] Y. Kawamata, K. Matsuda & K. Matsuki, Introduction to the minimal model problem,

Advanced Studies in Math., Vol. 10, Kinokuniya, Tokyo, 283-361.
[52] R. Kobayashi, Einstein-Kάhler metrics on open algebraic surfaces of general type, Tόhoku

Math. J. 37(1985)43-77.
[53] , Einstein-Kάhler V-metrics on open Satake V-surfaces with isolated quotient singu-

larities, Math. Ann. 272 (1985) 385-398.
[54] S. Kobayashi & H. Wu, Complex differential geometry, Birkhauser, Basel, 1983.
[55] K. Kodaira, Compact, complex analytic surfaces, I, II, III, Ann. of Math. (2) 71 (1963)

111-152; 77 (1963) 563-626; 78 (1963) 1-40.
[56] 9 On the structure of compact, complex, analytic surfaces, I-IV, Amer. J. Math. 86

(1964) 751-798; 88 (1966) 682-721; 90 (1968) 55-83; 90 (1968) 1048-1066.
[57] , A certain type of irregular algebraic surfaces, J. Analyse Math. 19 (1967) 207-215.



152 BRUCE HUNT

[58] R. Livne, On certain covers of the universal elliptic curve, thesis, Harvard University,
1981.

[59] J. Milnor, On Ω* and a complex analogue, Amer. J. Math. 82 (1960) 505-521.
[60] R. Miranda, Triple covers in algebraic geometry, Amer. J. Math. 107 (1985) 1123-1159.
[61] Y. Miyaoka, Algebraic surfaces with positive index, Progress in Math., Vol. 39,

Birkhauser, Basel, 1983.
[62] , On the Chern numbers of surfaces of general type, Invent. Math. 42 (1977) 225-

237.
[63] , The maximal number of quotient singularities on surfaces with given numerical

invariants, Math. Ann. 68 (1984) 159-171.
[64] , The Chern classes and Kodaira dimension of a minimal variety, Advanced Studies

in Math., Vol. 10, Kinokuniya, Tokyo, 1987, 449-477.
[65] S. Mori, Three-folds whose canonical bundles are not numerically effective, Ann. of Math.

(2) 116(1982) 133-176.
[66] , On 3-dimensional terminal singularities, Nagoya Math. J. 98 (1985) 43-66.

[67] G. Mostow, Existence of a non-arithmetic lattice in SU{2,1), Proc. Nat. Acad. Sci.

U.S.A. 75(1978) 3029-3033.
[68] , Existence of nonarithmetic monodromy groups, Proc. Nat. Acad. Sci. U.S.A. 78

(1981) 5948-5950.
[69] D. Mumford, Hirzebruch proportionality in the non-compact case, Invent. Math. 42

(1977) 239-272.
[70] I. Naruki, On a K3-surface which is a ball quotient, Preprint, Max-Planck Inst., Bonn,

1986,45-52.
[71] T. Oda, On Schwarzian derivatives in several variables, Kokyuroku, Res. Inst. Math.

Kyoto University, (Japanese), 226 (1974).
[72] U. Persson, Double coverings and surfaces of general type (Proc. Algebraic Geometry,

Norway, 1977), Lecture Notes in Math., Vol. 687, Springer, Berlin, 1978.
[73] , Chern invariants of surfaces of general type, Compos i t io Math. 4 3 (1981) 3 - 5 8 .
[74] , Horikawa surfaces with maximalPicardnumbers, Math. Ann. 259 (1982) 287-312.
[75] E. Picard, Sur les functions hyperfucsiennes provanant des series hypergeometriques de

deux variables, Ann. Ecole Norm. Sup. 62 (1885), 357-384.
[76] M. Reid, Canonical 3-folds, Journees de Geometrie Algebrique d'Angers, Sijthoff and

Noordhoff, Alphen, 1980.
[77] , Minimal models of canonical 3-folds, Advanced Studies in Pure Math., Vol. I,

North-Holland, Amsterdam, 1983.
[78] , Young person's guide to canonical singularities, Algebraic Geometry, Bowdoin,

1985, Proc. Sympos. Pure Math., Vol. 46, Part 1, Amer. Math. Soc, Providence, RI,
1987, 345-416.

[79] , On Bogomolov's theorem c\ < 4c2, International Symposium on Algebraic Geom-
etry, Kyoto University, 1978.

[80] B. Schoeneberg, Elliptic modular functions, Springer, Berlin, 1974.
[81] G. C. Shepard & J. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954)

274-301.
[82] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Math. Soc.

Japan, Iwanami Shoten, and Princeton University Press, Princeton, NJ, 1971.
[83] T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972) 20-59.
[84] A. Sommese, On the density of ratios of Chern numbers of algebraic surfaces, Math. Ann.

268(1984) 207-221.
[85] T. Terada, Functions hypergeometriques F\ et functions automorphes. I, J. Math. Soc.

Japan 35 (1983) 451-475.



COMPLEX MANIFOLD GEOGRAPHY IN DIMENSION 2 AND 3 153

[86] R. Thorn, Quelques proprietes globales des varietes differentiables, Comment. Math. Helv.
28(1954) 17-86.

[87] A. van de Ven, On the Chern numbers of certain complex and almost complex manifolds,
Proc. Nat. Acad. Sci. U.S.A. 55 (1966) 1624-1627.

[88] , On the Chern numbers of surfaces of general type, Invent. Math. 36 (1976) 285-
293.

[89] P. M. H. Wilson, On complex algebraic varieties of general type, Symposia Math., Vol.
26, Academic Press, New York, 1981.

[90] T. Yamazaki & M. Yoshida, On Hirzebruch's examples of surfaces with cj = 3c2, Math.
Ann. 266(1984) 421-431.

[91] S.-T. Yau, Calabi's conjecture and some new results in algebraic geometry, Proc. Nat.
Acad. Sci. U.S.A. 74 (1977), 1798-1799.

[92] , On the Ricci curvature of a compact Kάhler manifold and the complex Monge-
Ampere equation. I, Comm. Pure Appl. Math. 31 (1978) 339-411.

[93] M. Yoshida, Orbifold-uniformizing differential equations, Math. Ann. 267 (1984) 125-
142.

MATHEMATISCHES INSTITUT

GόTTINGEN






