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THE CONSTRUCTION OF ALE SPACES
AS HYPER-KAHLER QUOTIENTS

P. B. KRONHEIMER

1. Introduction

According to the definition given by Calabi [4], a Riemannian manifold
(X, g) is hyper-Kάhler if it is equipped with three automorphisms /, J, K of
the tangent bundle which satisfy the relations of the quaternion algebra H
and are covariant constant with respect to the Levi-Civita connection:

J 2 = J2 = K2 = - 1 , IJ = -JI = K, VI = VJ = VK = 0.

These conditions imply in particular that each of /, J and K defines an inte-
grable complex structure on X and that the metric g is Kahler with respect
to all three; the three Kahler forms CJI,CJ2>^3 are therefore closed, giving
three symplectic structures to X. In dimension 4, a simply-connected Rie-
mannian manifold admits such a hyper-Kahler structure precisely when the
Riemann curvature tensor is either self-dual or anti-self-dual. A complete,
hyper-Kahler 4-manifold is therefore a self-dual, positive-definite solution to
Einstein's equations in vacuum (a self-dual gravitational instanton), and it is
with examples of such manifolds that we are concerned.

This paper describes the construction of a particular family of hyper-Kahler
4-manifolds, the so-called ALE spaces [6]. ALE stands for asymptotically lo-
cally Euclidean and describes a Riemannian 4-manifold with just one end
which at infinity resembles a quotient R4/Γ of Euclidean space R 4 by a finite
group Γ of identifications. The Riemannian metric g is required to approxi-
mate the Euclidean metric up to O(r~4),

with appropriate decay in the derivatives of gtJ. A large class of such ALE
spaces was discovered by Gibbons and Hawking [7]. For each integer k > 2,
they constructed a family of spaces, depending on 3A: — 6 parameters, which
had self-dual curvature and resembled at infinity a quotient of R4 by a cyclic
group Γ of order k. These Cmulti-Eguchi-Hanson' metrics were obtained also
by Hitchin [8], who derived them by an application of Penrose's nonlinear

Received June 12, 1987 and, in revised form, January 29, 1988.



666 P. B. KRONHEIMER

graviton construction. Hitchin's approach pointed to a close relationship
with the deformation theory of the complex quotient singularities C2/Γ and
strongly suggested the existence of other families of ALE gravitational in-
stantons associated with the other finite subgroups Γ C SU(2)—the binary
dihedral, tetrahedral, octahedral and icosahedral groups. These conjectured
ALE spaces should be similarly related to the quotient singularities C2/Γ, the
so-called Kleinian singularities, or rational double points. The construction
we describe confirms this conjecture.

The following theorem (our main result) has been announced in [12]. Let Γ

be a finite subgroup of SU(2), let C2/Γ —• C2/Γ be the minimal resolution of

the quotient singularity^and let X be the smooth 4-manifold which underlies

the complex surface C2/Γ.

Theorem 1.1. Let three coholomogy classes αi,α2>α3 € ίΓ2(X;R) be
given which satisfy the nondegeneracy condition

for each Σ G H2{X; Z)with Σ Σ = -2, there exists

ie{l

Then there exists on X an ALE hyper-Kάhler structure for which the coho-
mology classes of the Kάhler forms [ω{] are the given α .̂

The proof of this result is a direct application of a procedure which is al-
ready known to produce a wide variety of hyper-Kahler manifolds, including
the multi-Eguchi-Hanson spaces. This is the hyper-Kάhler quotient construc-
tion of Hitchin et al. [9], a modification of the symplectic quotient, or reduced
phase space, familiar in symplectic geometry. We review this construction in
§2 and then apply it in a particular case to produce a family of hyper-Kahler
4-manifolds. In §3 we show that these manifolds are diίfeomorphic to C2/Γ
and that their metrics are ALE. The proof of Theorem 1.1 is completed in
§4 where we calculate the cohomology classes of the Kahler forms on each
member of the family.

In a later paper [13] we shall show that the construction presented here is
complete: every ALE hyper-Kahler 4-manifold (and therefore every simply-
connected, ALE solution to the self-dual Einstein equations) is isometric to
a member of one of the families produced in §2. These results, obtained by
twistor methods, may be summarized as follows.

Theorem 1.2. Every ALE hyper-Kάhler 4-manifold is diffeomorphic to
the minimal resolution of C2/Γ for some Γ C SU(2), and the cohomology
classes of the Kahler forms on such a manifold must satisfy condition (*).



ALE SPACES AS HYPER-KAHLER QUOTIENTS 667

Theorem 1.3. // X\ and X2 are two ALE hyper-Kάhler 1-manifolds,
and there is a diffeomorphism Xι —• X2 under which the cohomology classes
of the Kάhler forms agree, then Xι and X2 are isometric.

2. A family of hyper-Kahler manifolds

We now review the Kahler and hyper-Kahler quotient constructions. Let
M be a simply-connected Kahler manifold, and F a compact Lie group acting
on M so as to preserve the metric g and the complex structure /: TM —• TM.
Let f be the Lie algebra of F, and for each ζ G f let Vξ be the vector field
on M which the action of ζ generates. According to the familiar definition
from symplectic geometry, a moment map for the action of F on M is an
F-equivariant map

with the property that, for each ζ G f, the function μ f: M —• R satisfies

Under our assumption that M is simply-connected, a moment map always
exists and is unique to within the addition of a constant ζ G Z C f*, where Z
is the space of F-invariant elements essentially the dual of the centre of f. If
μ is a moment map and ζ G Z, then μ~λ{ζ) C M is invariant under F. The
quotient space X = μ~λ(ς)/F is the Kahler quotient of M by F. Note that
if the center of F is nontrivial, then the Kahler quotient is not unique, for an
element ς G Z must be chosen.

Now suppose that M is hyper-Kahler and that F acts so as to preserve g
as well as all three complex structures. There are then three moment maps
(one for each of /, J and K) which one puts together to form the hyper-Kahler
moment map

Following Hitchin et al. [9], after choosing ( G R 3 0 2 , one defines the hyper-
Kάhler quotient as

The following proposition gives the properties of Kahler (resp. hyper-Kahler)
quotients which are proved in [9].

Proposition 2.1. Suppose that F acts freely on μ~ι(ζ). Then
(i) dμ has full rank at all points of μ~ι(ζ), so that X is a nonsingular

manifold of dimension dimM - 2dimF (resp. dimM - 4dimF),
(ii) the metric g and complex structures I (resp. /, J, K) descend to X, and

equipped with these, X is Kahler (resp. hyper-Kahler).
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We make a particular application of this hyper-Kahler quotient construc-
tion. Let Γ be a finite subgroup of SU(2), let R be its regular representation
and Q its canonical 2-dimensional representation, and put

Define M = Pτ', the space of Γ-invariant elements in P. We make P and
M into right modules over H as follows. First, we regard Q as a rank-1 H-
module in such a way that SU(2) coincides with the symplectic group Sp(<2)
of H-linear isometries of Q. Next, a choice of invariant hermitian metric
on R gives End(i?) a real structure, the antilinear involution a κ-> a*. As
the tensor product of an H-module and a real space, P then inherits an H-
module structure. Explicitly, if we choose an orthonormal basis for Q so as
to represent an element of P as a pair of endomorphisms (α, /?), the action of
J is given by

J(a,β) = (-/?*, α*), <*,/?€ End(Λ).

The action of Γ on P is H-linear and the subspace M is therefore an H-
submodule. Explicitly again, a pair (α, β) lies in M if it satisfies the condition
that, for each 7 = ( _ϋ \) € Γ we have

(2.2) R{η-χ)aR(η) = ua + vβ, i?^" 1 )/?^) = -va + ΰβ.

Identifying each tangent space to M with M itself, we regard this linear space
as a flat hyper-Kahler manifold.

Let U(i?) be the group of unitary transformations of R and let F c U(i2)
be the subgroup consisting of those elements which commute with the action
of Γ on R. The natural action of F on P given by

(a,β)^(faf-1Jβf-1), feF,

is H-linear and preserves the subspace M. As the circle subgroup T of scalars
acts trivially, we therefore have an action of F/T on M which preserves /, J,
and/ί.

The moment map for this action is easily written down: if one identifies
(f/t)* with the traceless elements of f C End(i2), then the three components
of μ are given by

(2.3)

We have picked out the preferred moment map which vanishes at the origin.
Applying the quotient construction, we choose a triple ς = (ft, &, &)
where Z C (f/t)* is the center, and set

Xς = μ-\ς)/F.
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Our claim is that, as ς varies, we obtain in the family of spaces Xς all the

ALE spaces whose existence is asserted by Theorem 1.1.

In order to give a different description of the space M and the group F,

a short digression is necessary. Let i2o,#i, * >#r be the irreducible repre-

sentation of Γ with RQ the trivial representation, let Q be the 2-dimensional

representation as before, and let

be the decomposition of Q®Rχ into irreducibles. McKay [15] observed that the

matrix A = (α^), whose entries are all either 0 or 1, is the adjacency matrix

of a simply-laced extended Dynkin diagram Δ(Γ); equivalently, C = 2/ - A

is an extended Cartan matrix. The trivial representation RQ corresponds to

the extra vertex of the extended diagram, and the representations i?i, ^Rr

therefore correspond to a set of simple roots θi, , θr for the associated root

system. We write ΘQ for the negative of the highest root and note that, as

McKay further observed, if

ΘQ = —

1

is the expression for ΘQ in terms of the simple roots, then the coefficient

Ui is precisely the dimension of R{. The assignment of Δ(Γ) to Γ sets up

a one-to-one correspondence between the finite subgroups of SU(2) and the

simply-laced diagrams Aτ,Dr,E§,Eη and E%.

The regular representation of Γ decomposes as

Accordingly, M may be written

M = EomT{R,Q®R)

and, by McKay's observation, this description may be rephrased as

M = 0Hom(Cn%Cn>),

where the sum is taken over all edges of Δ(Γ), and each edge appears twice in

the sum, once with each orientation. The group F can be similarly described
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in terms of Δ(Γ): it is a product of unitary groups

(2.5) F

with one factor for each vertex of Δ(Γ), and it acts on M in the obvious way.
Using these descriptions, we compute

dimR M =

(2.6) =

The center of the Lie algebra f is spanned by the elements >/=ϊτrt, where
π t is the projection π»: R —* Cn < <8> R% {i = 0, , r). Writing h for the real
Cartan algebra associated to the Dynkin diagram, we define a linear map p
from the center of f to h* by

p: \f—

The kernel of p is the one-dimensional subalgebra t C f, so that on the dual
spaces, p induces an isomorphism

(2.7) τ:Z^h.

For each root θ (not necessarily simple), we write ΌQ = Ker(0or) C Z. Thus
we identify Z with the Cartan algebra, and the hyperplanes DΘ are the walls
of the Weyl chambers.

Proposition 2.8. If F/T does not act freely on μ~1{ζ)J then ς lies in
one of the codimesion-3 subspaces R 3 (8) DΘ C R 3 ® Z, where θ is a root.

Proof Suppose that (α, β) € μ~ι(ς) is fixed by an element f eF-T. We
can decompose R into the eigenspace of / and obtain at least two Γ-invariant
parts

R = R1 Θ Λ".

These will be preserved by a and /?, and the pair (α, β) therefore defines an
element of the quaternion module

M1 = HomΓ{R\Q®R').

Denote by F' the group of those unitary transformations of R' which commute
with Γ and let V be the scalar subgroup. We may take it that F1 jT acts
freely on (α, /?), for if it did not then we could further decompose #', just as
we decomposed Λ, until this condition was met.
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The condition that F'/Tr acts freely on the orbit of (α, β) means that the
hyper-Kahler quotient of M' by F'/T* is a nonsingular manifold at at least
one point. Prom the formula for the dimension of a hyper-Kahler quotient
(Proposition 2.1), we deduce the inequality 4dimR(F//T/) < dimR,(M'), or
in other words

(2.9) 2 dime EndΓ(β') - dim c HomΓ(Λ', Q®R')< 2.

If the decomposition of R! into irreducibles is R' = 0 n ^ , then (2.9) can be
written

o r Σij cijnin'j — 2, where C = (c^) is the extended Cartan matrix. Now let
θ be defined by

0

This θ is nonzero and the inequality above says that \\θ\\2 < 2, where the norm
is defined by the Cartan matrix. Amongst all integer linear combinations of
roots, the roots themselves are characterized by just this inequality, and we
conclude that θ is a root.

If π: R —* R' is the projection, then the element y/^ϊπ E f acts trivially
on (α,/?) and it follows from the formulas (2.3) for the moment maps that
^(V^TTΓ) = 0 when we regard ς as a map f —> R 3 . By the definition of the
isomorphism r, this relation means that ^ E R 3 ® ^ , which is just what the
proposition asserts.

Let (R3 (8) Z)° denote the "good" set, i.e., let

(R3 ® Z)° = (R3 0 Z)\ | J ( R 3 0 D$).
θ

Corollary 2.10. Ifς G (R3(g>Z)°, then Xς is a nonsingular hyper-Kahler
4-manifold.

Proof. This now follows from Proposition 2.1. For the dimension of Xς

we have

= dimM - 4dim(F/Γ) = 4|Γ| - 4(|Γ| - 1) = 4.

3. Properties of the manifolds

By its definition, the regular representation has an orthonormal basis {eΊ}
indexed by η E Γ with the property that R(δ)eΊ = esΊ for all η,δ € Γ. Let
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L C M consist of all (α, b) G M for which a and b are diagonal matrices with
respect to this basis of R. Thus if (α, 6) G L, then there exists, for each 7 G Γ,
a pair (aΊ, bΊ) G C 2 such that

α e*γ = α^e^, b - eΊ = bΊeΊ.

Because of the relations (2.2), the set of pairs {(aΊ,bΊ) \η G Γ} must be an
orbit of Γ in C 2 and we can identify L with C 2 by the assignment (α, b) »-•
(αi,6i). The space L then inherits from C 2 an action of Γ.

Lemma 3.1. Each orbit of F in μ~λ{0) meets L in one orbit ofΓ.
Proof. Take (α,/ϊ) G μ " 1 ^ ) . According to (2.3) we have [α,/?] = 0 and

[α, a*] -f [/?, /?*] = 0; and manipulating these two equations we obtain

or {A*A + B*B)(a*) = 0, where A = ad(α) and £ = ad(/?). The positivity of
A*A and 5*5 now implies that A*A(a*) = 0, and hence [α, α*] = [/?, /?*] = 0.
So α and β are commuting normal linear transformations, and so they cannot
be nilpotent unless they are zero. Let us assume that a and β are not both
zero.

Since they commute, a and β have a simultaneous unit eigenvector υ\ G R
with

a vι — aivi, β - v\ = 61V1.

Since α and β are not both nilpotent, we may take it that (01,61) φ (0,0). If
we define vΊ = R(η) v1? then (2.2) ensures that

a vΊ = aΊvΊ, β - υΊ — bΊvΊ,

where {(aΊ,bΊ) \η G Γ} is an orbit of Γ. The points (aΊ,bΊ) G C 2 are all
distinct and the vectors υΊ are therefore independent and even mutually or-
thogonal, since a and β are normal. The transformation of R which sends
eΊ to vΊ is therefore an element of F which carries (α, β) into L. Thus each
orbit of F in //~1(0) meets L. The proof of the lemma is completed by the
observation that two points of L lie in the same orbit of F if and only if they
lie in the same orbit of Γ.

Corollary 3.2. When ζ = 0 G R 3 ® Z, the space Xo is isometric to
C2/Γ.

Proof The lemma provides a bijection XQ —• L/Γ. The important point
is that the subspace L c M i s everywhere orthogonal to the orbits of F. This
point is easy to verify: a tangent vector to the F-orbit at (α, β) G L is a
pair of matrices ([ξ,α], [ξ,β]) for some f G f; these matrices are zero on the
diagonal, when expressed in terms of the basis {e7}, and so are orthogonal
to L. The quotient metric on XQ at a nonsingular point is obtained from the
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orthogonal complement to the tangent space of an F-orbit in μ~1(0); and it

now follows that the bijection Xo —• L/T is an isometry when L is given the

metric it inherits as a subspace of M, namely the Euclidean metric.

Now consider some ς other than 0. Let Wς C μ~1(ζ) be the union of the free

orbits of F/T in μ~ι(ζ) and let Uζ = Wς/F be the image of Wς in the quotient

Xζ. By Proposition 2.1, the space Xς is nonsingular and 4-dimensional at all

points of Uζ. The following lemma shows that the complement Xζ\Uς consists

of isolated singularities.

Lemma 3.3. // ς ^ 0 and x G Xς\Uς, then a neighborhood of x in Xς is

homeomorphic to a neighborhood of 0 in C2/f, where f C SU(2) is a group

with fewer elements than Γ.

Proof Let m = (α,/J) G μ~ι{ζ) be a representative of x and let F C F

be the stabilizer of m. The assumptions of the lemma mean that F is a

proper subgroup of F which is strictly larger than T. Let V C TmM be the

tangent space to the F-orbit of m, and let M be the orthogonal complement

in TmM to the H-submodule V 4- IV + JV + KV. The space M is itself

an H-module, and the group F acts on it preserving this structure. We can

therefore introduce the hyper-Kahler quotient /i~1(0)/F; we take μ to be the

unique hyper-Kahler moment map on M which vanishes at the origin. As a

first step in the proof of the lemma, we shall show that a neighborhood of x

in Xζ is homeomorphic to a neighborhood of zero in μ~1(0)/F.

If we decompose the Lie algebra f into linear subspaces f Θ f"1, then μ is

just the component of μ in the f* direction: we can write

μ{m + ε) = ς + μ{ε) + i/(ε)

for some v\ M —• R 3 0 (f"1")*; here we identify TM with M. Every F-orbit

sufficiently close to m meets V1- in one orbit of F; so a neighborhood of x in

μ~1(ς)/F is homeomorphic to a neighborhood of x in

Since the derivative of v at ε = 0 has full rank, we can replace this second

space by

{V±nμ-1{0)ΠKev{diy))/F.

Finally, noting that V1- ΠKeτ(diy) is just M, we have the desired conclusion: a

neighborhood of x in Xς is homeomorphic to a neighborhood of 0 in μ" 1 (0)/F.

We shall finish the proof of Lemma 3.3 by showing that μ~1(0)/F is C2/Γ

for some f C SU(2).

Since the stabilizer of m is larger than T, we can follow the proof of Propo-

sition 2.8 and decompose R into orthogonal Γ-invariant parts

(3.4) R = RfθR'Θ R"' Θ ,
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which are preserved by a and β. As was shown in Proposition 2.8, we may
take it that the subgroup U(i?') C U(#) meets the stabilizer F only in the
scalar subgroup V:

(3.5) U(i? /)ΠF = T / cU(i? / );

and from this follows the equality

(3.6) 2dim c End Γ (β / ) - d i m c H o m Γ ί β ' ^ Θ Λ 7 ) = 2.

By further decomposing R" etc., we can arrange that (3.5) and (3.6) hold
for all the summands in the decomposition (3.4). Define now an equivalence
relation on these summands by declaring that R' ~ R" if and only if there
is a Γ-invariant isometry R' —• R" which commutes with a and β. Such an
isometry, when it exists, is unique to within a scalar multiple because of (3.5).
Grouping together equivalent summands, we rewrite the decomposition (3.4)
in the form

where R^ / R^ unless i = j , and hi is the number of summands equivalent
toRW.

We now have the following expressions for M and F:

(3.7) M =

where α^ = dim c (M Π H o m Γ ( # w , Q ® Λ ϋ ) )) . The matrix A = (ά^) is
symmetric and from (3.6) we have άa = 0 for all i. The same dimension-
counting as was used in Proposition 2.8 shows that 2/ — A is positive semi-
define and that the null space of 2/ — A is spanned by the vector (ή\, n2, )•
This information is enough for us to conclude that A is the adjacency matrix
of an extended simply-laced Dynkin diagram associated to some Γ C SU(2),
and the lemma now follows from Corollary 3.2, for the decompositions of M
and F given in (3.7) are of just the same form as the decompositions of M
and F given in (2.4) and (2.5).

We wish to regard the singular members of the family Xζ as singular alge-
braic varieties. For this purpose, let us choose just one of the complex struc-
tures, say /, and suppose for the moment that TV c M is any affine subvariety
(with respect to /) which is invariant under F. In this situation there are two
quotients of N one can consider. First there is the affine algebro-geometric
quotient N//Fc of N by the reductive group Fc, the complexification of F.
Secondly, there is the Kahler quotient (NΠμ'[ι(0))/F. The result we require
is that these two are the same: the inclusion (7VΠ/if1(0)) —• TV and the quo-
tient map N -> N//Fc together give a map (N Π μjf 1(0))/F -> N//Fc which
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is a homeomorphism when N//Fc is given the usual (complex) topology. This
result is proved in [11] for the more involved case of projective varieties. The
affine case is easily deduced from the proof given there.

It is noted in [9] that if the second two components μ<ι and μ$ of a hyper-
Kahler moment map are combined into one map μc = μ<ι + iμ3,

(3.8) / i c : M - ^ f ®C,

then this complex moment map is holomorphic with respect to /. In our case
indeed, we have μc{ot, β) = [α, /?]. It follows that the level sets of μc are affine
subvarieties of M. We deduce:

Lemma 3.9. // the first component ft of ζ is zero, then Xζ has the
structure of an affine variety with respect to I.

Proof. By its definition,

and by the equivalence of Kahler and algebro-geometric quotients, this is the
same as μ~ι(ζ2 + iζs)//Fc.

In particular, Xo is an affine variety. The identification of Xo with C2/Γ
which we made in Corollary 3.2 can be put in algebraic terms, showing that, at
least if Xo is given its reduced structure, there is an isomorphism of varieties
XQ = C2/Γ. When ft is nonzero, Xζ will still be quasiprojective variety, but
need not be affine.

Suppose now that ς = (0,£2,ft) as in Lemma 3.9 and let ξ = (ζi,ζ2,&)>
where ft is so chosen that ζ does not lie in one of the subspaces R 3 <g) D$.
By Corollary 2.10, the quotient Xξ is a manifold. The inclusion μ~ι(ζ) —•
μ~x(^2 + iζz) and the algebro-geometric quotient map μ^x(ζ2 + *&) "• Xς
together give a map λ: Xξ —• Xς which is holomorphic with respect to I.

Proposition 3.10. The map λ: Xξ —> Xς is a minimal resolution of
singularities.

Proof. Let us first show that λ is proper. Let C C Xς be compact and
let B be the preimage of λ""1(C) in μ~1{ς). On the set B, the spectral radii
σ(a) and σ(β) are bounded, for these functions are bounded on C and are
constant on the orbits of the complex group Fc. The compactness of B (and
the properness of λ) therefore follows from:

Lemma 3.11. Let B C M be a closed set on which the following func-
tions are bounded:

(i) the spectral radii σ(a) and σ(β);

(ii) the norm \μ\ of the moment.
Then B is compact.
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Proof. In the proof of Lemma 3.1 it was shown that if α, β were nilpotent
and μ(α, β) = 0, then a — β — 0. So the functions (i) and (ii) are simulta-
neously zero only at the origin. From this and the homogeneity of the two
functions, the lemma follows.

Next we show that λ is an isomorphism away from the singular set of Xς.
From Corollary 3.2 we know that the nonsingular points comprise precisely
the set Uς C Xς so we must prove that if x £ Uς, then λ~~1{x) consists of just
one point.

Let x G Uς and let π~1(x) be the preimage of x under the algebraic quotient
map π: μ " 1 ^ + K3) —• Xς- This fiber is invariant under Fc and contains
precisely one F-orbit Ω on which μ\ vanishes. By the general properties of
algebro-geometric quotients, the Fc-orbit FCΠ is closed and is contained in
the closure of every Fc-orbit in π~ι(x). But by definition of Uς, this orbit has
the maximum possible dimension, namely dim(Fc/Tc), and cannot therefore
be contained in the closure of any other. It follows that π~x(x) consists of
just the one Fc-orbit, FCΩ.

Set φ = \μχ — ς\2. By Lemma 3.11, this function is proper on FCΏ and
therefore attains its minimum at some point y. Since F/T acts freely on FCΩ,
any critical point of φ is actually a zero of φ (see [11, p. 35]); so μi(y) = ζι
and μ~1(ζ)Ππ~1(x) is therefore nonempty: it consists of at least one orbit of
F. That μ~1(f) Π π~1(a:) consists of precisely one orbit of GF follows from
the results of [10], and we see that \~λ{x) is a single point as required.

Now we must show that λ~1(C/ς) is dense in Xξ. If it were not, then the
inverse image of Xξ of some singular point would contain a component of the
manifold Xξ] and by the properness already proved, this component would be
compact. We shall show that Xξ has no compact component.

Set ςf = (fi,0,&) and consider the space Xς> as an affine variety with re-
spect to J. Without loss of generality we may assume that Xς* is nonsingular;
see the proof of Corollary 3.12. Just as we defined the 7-holpmorphic map
λ: Xξ —• Xς, so too we can define a J-holomorphic map λ ;: Xξ —• Xς>. Like
λ, the map λ' is an isomorphism away from the singular points, and it follows
that Xξ and Xς> are diffeomorphic. But being an affine variety, Xζ> can have
no compact components of positive dimension. Neither, therefore, can Xξ.

We have now shown that λ: Xξ —• Xζ is a resolution of singularities. The
first Chern class of Xξ is zero because Xξ is hyper-Kahler, and this implies
that Xξ contains no exceptional curves of the first kind. The resolution is
therefore minimal, and this completes the proof of Proposition 3.10.

Corollary 3.12. If ζ € (R3 ® Z)°, then Xς is diffeomorphic to the min-
imal resolution o/C2/Γ.
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Proof. Set

? = (ίi,ί2,?3), V = (fi,f2,0), ξ = (fi,0,0).

We shall assume that ft does not lie in any DQ\ this is a stronger condition
than the hypothesis, but the loss of generality is not serious: by choosing a
new orthonormal basis for R3, we can always arrange that ζι satisfies this
condition.

Consider the four spaces Xς,Xη,Xξ,Xo. By Corollary 2.10 and our as-
sumption about fi, the first three are manifolds, while the fourth, by Corol-
lary 3.2, is C2/Γ. By Proposition 3.10 there are three maps A, A' and A"
which are holomorphic with repsect to K, J and / respectively:

(3.13) Xζ Λ Xη ± Xζ ^U Xo.

Each of these is a minimal resolution ,of singularities; but since Xξ is already
nonsingular, both A and A' are diffeomorphisms. So Xς is diffeomorphic to
the minimal resolution of XQ = C2/Γ.

Next we compare the hyper-Kahler metric on Xς with the Euclidean metric
on Xo = R4/Γ. The composite of the three maps in (3.13) is a map A: Xς —•
R4/Γ, which is bijective away from the singular point. Pulling back the
hyper-Kahler metric on Xς to R4\{0} via the composite

R4\{0} - R4/Γ — Xς

we obtain a metric gς on R4\{0}. Let (xi, X2, £3,24) be standard coordinates
on R4, let (gι

ζ

J) be the components of gς in these coordinates, and let (δtJ)
be the Euclidean metric. Let θ be coordinates on the unit sphere S3, so that
(r, θ) are polar coordinates on R4. The following proposition says that gζ is
ALE.

Proposition 3.14. For any ζ, there is an expansion in powers of r

,-2k

which may be differentiated term by term.
Proof. Consider first the dependence of gς on ς. If one restricts gς to the

unit sphere r = 1 then, since everything is analytic, there will be a power-series
expansion in ς:

where v is a multi-index in the coordinates of ς. Now we exploit the homo-
geneity of the moment map, which is a quadratic function on M. The nonzero
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scalars R* act on M by dilatations and induce a map μ~x{ζ) -* μ~1(t2ς),
from which we deduce

Putting this with the power-series above, we obtain, for each ς, a power series
in r" 2 :

fc>0

where hk = ΣH=kUζ"
To complete the proof we must identify the first two terms hk: we must

show that ΛQ = δ and hi = 0. The first of these two equalities is just the
statement that XQ is isometric to C2/Γ, and this was proved in Corollary 3.2.

To show that hi = 0 is to show that the first variation of gς with respect
to ζ at ζ = 0 is zero. The hyper-Kahler metric gς is entirely determined by its
three Kahler forms ωiiζ (i = 1,2,3); it will be enough therefore to show that

dvωiiζ = 0 at ς = 0, i = 1,2,3,

for every direction V = (Vi, Vb, V3) in R 3 (8) Z. A general formula for the
variation of this 2-form is given in [5] for the case of symplectic quotients. The
argument adapts to the hyper-Kahler case, and we merely state the result.
Away from the singularities, the projection μ~x(ζ) —• μ~x(ζ)/F is a principal
F/T-bundle. The horizontal distribution determined by the metric gives this
bundle a connection whose curvature we denote by Ώς. The formula is then:

(3.15)

The right-hand side denotes the 2-form obtained by pairing Vi € Z c (f/t)*
with Ω € A2 ® (f/t).

Recall from the proof of Corollary 3.2 that L C μ~x{0) meets all the F-
orbits orthogonally. This means that the bundle μ~x{0) -• μ~x(0)/F is flat
and Ωo = 0. So (3.15) shows that the variation is zero at ς = 0, and this is
what was wanted.

4. The period map

The exceptional set in the minimal resolution of C2/Γ is a union of 2-
spheres whose intersection matrix is the negative of a Cartan matrix (see
[17]):

£ = PiU UP r , PiPj = -cij.

The matrix C = (cy) is the same Cartan matrix whose extended version
features in McKay's observation. The second cohomology H2(Xς;Ίl) of each
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nonsingular quotient space can therefore be identified with h, the real Cartan
algebra, while H2(Xζ; Z) is the root lattice. Under this last identification, the
classes Σ with Σ Σ = — 2 are the roots. These identifications can be made
consistently for all ζ G (R3 ® Z)°: there is no monodromy problem, since
(R3 ® Z)° is simply connected.

For ς G (R3®Z)°, let oti{ς) denote the cohomology class of ω» on Xς: these
give maps

At the cohomology level, the formula (3.15) for the variation of ωt shows [5]
that there is a linear map σ: Z —> h with α»(f) = σ(ft). Recall that another
map r: Z —• h was defined using McKay's observation (2.7), and that r
carries the hyperplane Dβ to the kernel of the root θ. Since the nondegeneracy
condition (*) in Theorem 1.1 just says that the α» do not all lie in the kernel
of any one root, that theorem will be completely proved if we can establish
the following two properties of σ:

Proposition 4.1. (i) The map σ: Z —• h is a linear isomorphism.
(ii) // ξ G Z does not lie in any Dβ, then σ(ξ) does not lie in the kernel of

any root.
Proof of (ii). Supposing ζ satisfies this hypothesis, set ς = (ξ,0,0) and

consider Xζ as a complex manifold with respect to /. By Proposition 3.10,
this space is biholomorphic to C2/Γ and therefore contains holomorphic curves
Pi, ,P r whose homology classes form a set of simple roots. Now σ(ξ) is
the cohomology class of ω\ on X, and since a Kahler form is always positive
on a holomorphic curve, we see that σ{ζ) lies in the positive Weyl chamber
with respect to this choice of simple roots. So σ(ξ) does not lie in the kernel
of any root.

The proof of (i) involves a substantial detour and occupies the rest of this
section. Again fix attention on the complex structure / and set

N = μ~ι {Z 0 C) CM, Y = (TV Π μ^1 (0))/F.

Because of the equivalence between Kahler and algebro-geometric quotients,
Y is an affine variety. Since the moment map is equivariant, μc descends to
give a holomorphic map φ:Y—>Z®C

Choose a ξ G Z not lying on any Dβ and set

This space is not an affine variety, but by Proposition 2.8 and 2.1 it is a
nonsingular Kahler manifold. As with F, there is a holomorphic map φ: Y —>
Z(8>C, and this fits into the following commutative diagram, in which λ is
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defined as it was for Proposition 3.10:

(4.2)

For each η = ς2 + iζz G Z ® C, the fiber φ x(η) is the affine variety Xζ

in the case ς = (0, £2^3); while φ~x{η) is the complex manifold Xξ, where
ζ = {ζ,ζ2,ζ3)' Restricted to these fibers, the map λ is precisely the minimal
resolution λ: Xξ —• Xζ of Proposition 3.10. Thus the diagram (4.2) is a
simultaneous resolution of φ.

Let Y(n) denote the normalization of Y. Since Lemma 3.3 shows that Y is
locally irreducible, the underlying topological space \Y^\ is the same as \Y\;
the two analytic spaces differ only in the local rings at their singular points,
if at all.

Lemma 4.3. The map φ:YW -*Z®C is a flat deformation of C 2 /Γ.

Proof. The fibers of φ are a smooth family of complex surfaces in which
the special fiber 0~1(O) is isomorphic to the minimal resolution of C2/Γ.
According to [16], such a family can be blown down fiberwise to produce a
flat deformation φ: Ϋ -> Z® C of C2/Γ; the ring H°(Ϋ;#) is isomorphic to
H°(Y,<f) and there is therefore a diagram:

Ϋ - + y ->y
ΪΦ [Φ ΪΦ

= z®c = z®c

Since λ: Y —• y is proper and birational, the same is true of the map Ϋ —• y.
This map is also finite, and since y is necessarily normal, it follows that Ϋ is
the normalization of Y.

Remark. The author has no evidence against the conjecture that Y is
itself normal and that φ: Y —• Z <g> C is flat. It is only for lack of a direct
proof of this flatness that the results of [16] are needed.

On any hyper-Kahler manifold, the complex-valued 2-form ωc = ω2 + iojz
is nondegenerate and holomorphic with respect to / (see [9]). So away from
the singular locus, ωc gives a holomorphic 2-form on all the fibers φ~ι(η) of
0, depending holomorphically on η € Z ® C. In the sense of [14], the map

> Λ®C

is therefore the period map for this deformation of C2/Γ.
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Let Φ: *y —• Ψ* be the semi-universal deformation of C2/Γ and let s:
C —• 2̂ * be the map by which φ is induced from Φ:

(4.4)

The space Y^ inherits from M an action of the scalars C*, and since μc is
quadratic, the map φ will be equivariant if we make C* act on Z <8>C with
weight 2. Thus φ is a C*-deformation, and if we take Φ to be the C*-semi-
universal deformation (see [17]), then it follows that we may take it that s is
C*-equivariant and globally denned.

At this point we need a result due to Looijenga [14] which implies that a
deformation such as φ is entirely determined by its period map. We shall go
into this a little more carefully than our present situation requires, for we will
have need of the result again in [13].

The first thing is that Φ admits a simultaneous resolution; this implies,
in particular, that the minimal resolution of every fiber is diffeomorphic to
C2/Γ. The construction of this simultaneous resolution is due to Brieskorn
[1], [2], [3], Slodowy [17], and independently to Tjurina [19]; it is a corollary
of Brieskorn's description that the base Ύ' of Φ is naturally identified with
(h<g)C)/W. Under this identification the discriminant locus 31 C 2^, i.e., the
set of v G "V for which Φ~1(?') is singular, is carried onto the branch locus
of the quotient map h <g> C —• (ft <8> C)/W, the projection of the kernels of the
roots. Choosing a base-point vo G cPr\2ί, one obtains a natural monodromy
representation on the second cohomology [14],

This representation was calculated in [18] and shown to coincide with the
standard representation of W on h <S> C.

Away from the singular points, the fibers of Φ carry a holomorphic 2-form
depending holomorphic ally on the base, and one therefore has a period map
PΦ; because of the monodromy, it takes values in (h ® C)/W:

Looijenga's result is that p φ extends across 31 and coincides with the standard
isomorphism between "V and (h <g> C)/W. From this one may deduce the
following.

Proposition 4.5. Let φ: Y —• V be a C*-deformation of C2/Γ whose
generic fiber is nonsingular, and suppose that the only C* -invariant neigh-
borhood of the distinguished point in Y is Y itself. Then φ is determined
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by its period map p: precisely, φ is the pull-back of Φ via the composite

Proof. The hypotheses ensure that φ is the pull-back of Φ by some homo-
geneous map s: V —• Ψ". The pull-back of the 2-form of the fibers of Φ gives
a 2-form on the fibers of 0, and in the presence of the C*-action, this object
is essentially unique. It follows that the period map for φ is the composite of
s and pψ.This proves the proposition.

We can now prove Proposition 4.1(i). From Lemma 3.3 we see that 0~1(O)
is the only fiber of φ which is isomorphic to C2/Γ, and from this it follows
that, in the diagram (4.4), we have s~1(0) = {0}. Proposition 4.5 then implies
that the period map has the same property, that is σ~x(0) = {0}. Since σ is
a linear map between spaces of equal dimension, it must be an isomorphism.

Remark. Having now calculated the period map of </>, we see that this de-
formation is obtained from the semi-universal deformation by lifting through
the Weyl group. The diagram (4.2) is therefore the simultaneous resolution of
the semi-universal deformation constructed by Brieskorn, Slodowy and Tju-
rina.
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