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THE SYMPLECTIC STRUCTURE OF KAHLER
MANIFOLDS OF NONPOSITIVE CURVATURE

DUSA McDUFF

Abstract

In this note we show that the Kahler form on a simply connected com-
plete Kahler manifold W of nonpositive curvature is diffeomorphic to
the standard symplectic form on R n . This means in particular that the
symplectic structure on a Hermitian symmetric space of noncompact
type is standard. We also show that if L is a totally geodesic proper,
connected Lagrangian submanifold of a complete Kahler manifold W
of nonpositive curvature, then W is symplectomorphic to the cotangent
bundle T* L with its usual symplectic structure provided that the funda-
mental group τri (W, L) vanishes. The proofs use a comparison theorem
due to Greene & Wu and Siu & Yau.

1. Introduction

Let W be a Kahler manifold with a pole, i.e., a point p at which the
exponential map is a diffeomorphism from the tangent space Wv onto W.
Following [2], we will call a 2-dimensional subspace of the tangent space Wx

a radial plane, if either x = p or the subspace contains the tangent to the
unique geodesic from p through x. The radial curvature of (W,p) is then the
restriction of the sectional curvature function to the radial planes. Our first
result is

Theorem 1. Let (W,p) be a Kahler manifold with a pole such that the
radial curvature is nonpositive. Then there is a diffeomorphism from W to
R n which takes the Kahler form ω onW to the standard symplectic form on
Rn.

Note that any simply connected, complete Kahler manifold with nonposi-
tive curvature satisfies the hypotheses. There are many such manifolds (see [1]
for example). Observe also that the symplectomorphism which we construct
from W to R n is not in general holomorphic, for if it were it would preserve
the Kahler metric.

Now suppose that L is a totally geodesic, connected and properly embedded
Lagrangian submanifold of a complete Kahler manifold (VF, ω) of nonpositive
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sectional curvature. If TΓI (W, L) = 0, the exponential map induces an isomor-
phism from the normal bundle vL onto W. (This may be seen by passing to
the universal covers L —• W.) Thus, identifying T*L with VL via the sym-
plectic form ω, we get a diffeomorphism ψ: T*L —• W. Let ω c a n denote the
canonical symplectic form on T*L.

Theorem 2. Under the conditions, ψ is isotopic to a symplectomorphism

Corollary. // (V,ω) is a compact Kάhler manifold of nonpositive cur-
vature with fundamental group Γ, then its cotangent bundle (T*V,ωcaiL) is
symplectomorphic to (V x F/Γ,ωθ —ώ), where V is the universal cover ofV
and Γ acts diagonally.

Proof of Corollary. Apply Theorem 2 to the image L of the diagonal in
VxV/Γ. q.e.d.

As noted by Sikorav [6], this corollary allows one to establish Arnold's fixed
point conjecture for (V,ω).

Theorems 1 and 2 are proved by replacing the given Kahler forms by other
equivalent forms for which the results are easy to prove. These new Kahler
forms arise from the Levi forms of certain plurisubharmonic functions: for
Theorem 1 we consider the function whose value at x is the distance of x from
the pole p, and for Theorem 2 we consider the distance of x from L. The key
step in the proofs is a comparison theorem which estimates the Levi forms of
these functions in terms of the original Kahler metrics.

We will prove Theorem 1 in §2, and Theorem 2 in §3. I wish to thank the
many mathematicians with whom I have had useful discussions about these
results, and, in particular, J. D'Atri, C. Fefferman, F. Laudenbach, C. LeBrun,
J.-C. Sikorav, R. Spatzier, and A. Weinstein.

2. Proof of Theorem 1

We begin by stating the comparison theorem which we will use. Given a
real-valued function / on W, Lf will denote its Levi form. For convenience,
we will use "real" rather than "complex" notation, and so will define Lf to
be the symmetric form on the tangent bundle TW of W given by

Lf(X,Y) = -dJdf{X,JY),

where J is the canonical almost complex structure on TW. Note that the
symmetry of Lf is equivalent to the identity

dJdf{X, Y) = dJdf{JX, JY)

for the corresponding 2-form.
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Lemma 2.1 [2, Proposition 2.24]. Let {W,p) be a Kάhler manifold with
a pole, G the Kάhler metric on W, and r(x), the distance of x from p. If the
radial curvature ofW is nonpositive, then L(r2) > 4G.

Thus, L(r2) is a Kahler metric on W. Let ωr = —dJd(r2) be the corre-
sponding Kahler form. We first show

Proposition 2.2. (W,ωr) is symplectomorphic to R 2 n with its standard
symplectic form CJO

Next we use Moser's stability theorem [4] to prove

Proposition 2.3. {W,ω) is symplectomorphic to (W,ωr).
Clearly, these two propositions constitute a proof of Theorem 1.

Proof of Proposition 2.2. Let || ||o be the Kahler norm on TW and || | | r

the norm induced by L(r2). Then Lemma 2.1 implies that ||X|| r > 4||X||o
for all tangent vectors X. Correspondingly, 4\\η\\r < \\η\\o on cotangent
vectors η.

Consider the vector field ξ given by

(•) ξJωr = -Jd(r2).

Then d{r2)(X) = J(ξ_\ωr){X) = ωr{ξ,JX) = (ξ,X)r. Thus ξ is just the
gradient of r 2 with respect to the inner product { , ) r , and ξ is everywhere
transverse to the spheres r = const. Further,

Hίllo < llfllr = \\Jd(r2)\\r by (*)

Therefore, because W is complete with respect to || ||o, ξ integrates up to a
family gt of diffeomorphisms of W.

Now consider the radial vector field ξ0 = \^ixid/dx% on R 2 n . Observe
that d(ξo Jωo) = ωo We claim that when ξ is expressed with respect to
suitable coordinates, its 1-jet at p agrees with that of fo at 0. In fact, if
the complex coordinates (x1 + ix2, , x2n~x + ix2n) are normal at p for the
original Kahler metric G on W, then G = ΣGjkdx3dxk, where the 1-jet of
{Gjk} at p equals {δjk}. Hence, if r 0 denotes the Euclidean distance function
ro(x) = (Σ(z*) 2) 1 / 2, then

An easy calculation now shows that the 1-jet of ξ is claimed.

Therefore, by [7], ξ is conjugate to ξo near p. In view of the nature of the
flows of ζ and ξo, this local conjugacy may be extended to a diffeomorphism
from W to R 2 n which pushes ξ forward to ξo Thus ωr is pushed forward to
a form ω' such that ξo Jω' = u/, and it remains to observe
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Lemma 2.4. Any symplectic form ω' on R 2 n such that d(ζo Ju/) = ωf',
is diffeomorphic to OJQ.

Proof. Because <2ξo(α/) = d(ξ0 Jω') = <*Λ the flow gt of ξo is such that
9t(ω') = et(jJ'- B u t 9t is just the multiplication by e*/2. Therefore, if ω' =
Σdjkdx3 Λdxk, the functions α ^ are constant along the rays through 0. Since
ω' is continuous at 0, the a^ are constant. Thus ω' is linear, and the desired
result follows, q.e.d.

This completes the proof of Proposition 2.2.
Proof of Proposition 2.3. Let τt = (1 - t)ω + tωr, 0 < t < 1. Then rt

is a symplectic form for each ί, and by Lemma 2.1 the norm || \\t given by
\\X\\* = τt{X,JX) satisfies

||X||t > H-XΊIo for all ί.

We want to find a family gt of diffeomorphisms of W such that gϊ(τt) = ω.
According to [4], this may be done by letting gt be the flow of a family of
vector fields Xt, and observing that the equation

is satisfied if Xt Jτt + λt = 0, where λf is a 1-form such that ft = ^ {τt) = dλt.
To make the method work, one must check that the flow of Xt is complete,
i.e., that the gt are indeed diffeomorphisms.

In our case, we may take Xt = —Jd(r2) + λ, where λ is some solution of
dλ = ω. The latter equation can be solved by integrating ω along the geodesic
rays from the pole p. It follows from Rauch's comparison theorem that the
resulting 1-form λ satisfies ||λ||o = O(r). (Details of this calculation are given
in [3].) Hence

M o < Pftllt = llλtUt < ||λt||o < | | Jd(r 2 ) | | 0 + ||λ||o = O(r).

Because W is complete with respect to || ||o, this implies that the gt are
diffeomorphisms, as required.

3. Proof of Theorem 2

We will begin the proof of Theorem 2 by establishing the necessary com-
parison theorem. In the situation of Theorem 2, define p(x), for x G VF, to be
the distance from x to L, and let Gp be the Levi form of the function p2. We
write G for the original Kahler metric on W.

Lemma 3.1. There is a constant e > 0 such that Gp > εG.
Proof. We argue essentially by comparing Gp with the Levi form of the

function r 2 on C n , where r(z) is the distance of z to R n C C n . We will use
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the notation of Greene &ε Wu. In particular, the Hessian D2f of a function /

on W is given by

D2f(X,Y)=X(Yf)-(VxY)f,

where V is the Levi-Civita connection of G. Because G is Kahler, the Levi

form of p2 is related to its Hessian by the formula

(1) GP(X,X) = D2(p2)(X,X) + D2(p2)(JX,JX)

(see [2, Lemma 1.13]). Note also that

(2) D2{p2)

Let d denote the gradient vector field of p with respect to the metric G. Since

d is not defined on L, we will restrict attention from now on to W — L. This is

permissible since it clearly suffices to establish the given inequality on W — L.

Observe that

(3) D2p(d, d) = d(dp) - (Vdd)p = 3(1) = 0,

since Vad = 0 because d is tangent to the normal geodesies from L. Note

also that if the vector field X is perpendicular to d, then

D2p{X, 9) = d(Xp) - {VdX)p = -(VPX,d) since Xp = 0,

= -vfi(x,d) + (x,vdd) = o.

Hence, as in [2, proof of Theorem A], the splitting TXW = span d θd" 1 , which

is G-orthogonal by definition, is also orthogonal with respect to the quadratic

form D2p.

We now claim that

(5) D2p{X, X)>0 for all tangent vectors X on W - L.

By (3) and (4) above, this will follow if we show that

(6) D2p(X, X)>0 for all X ± d.

Consider a tangent vector X which is perpendicular to d at x G W — L,

and let b = p(x). Then X is tangent to the level surface S(b) = {y: p(y) = b}.

Choose a path ζ: [-a,a] -* S(b) which is tangent to X at 0, and let ηs{t),

for 0 < t < b and s near 0, be a family of geodesies from L to S(b) which

are parametrized by arc length and such that ηs{B) = ξ(s) for all s (see

the figure). (Note that these geodesies are all perpendicular to L since the

distance of ξ(s) from L is b.) Define the vector field \Vχ along 70 by
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Then Wχ(b) = X by construction, and Y = Wχ(0) is tangent to L.
Let ' denote d/dt, so that 70 is the tangent vector along 70. We may extend
X, and, correspondingly, \Vχ and Y, to be vector fields. Then the second
variation formula gives

0 = <VχX, 7o> - (VYY, 7O) + / (Wx, Wx) - (R{W, 70 W 70} dt.
Jo

Because L is totally geodesic, VyY is tangent to L, so that (VyY, 70) = 0.
Since the curvature term in R is nonpositive, we have

(VχX,7o}+ / (Wχ,Wχ)dt<0.
Jo

But

D2p{X, X) = X{Xp) - {VχX)p = -(VxX, d) since Xp = 0.

= -~(VχX, 70) since 70 = d along 70.

> 0 as required.Thus D2p{X,X) > /o \\WX\
Next we show that if X is a unit vector at z, which is perpendicular to d

and such that D2p(X,X) < ε/6, where b = p(x), then

(Note that in the model situation on C n , D2r(X,X) = 0 iff X is totally real,

and then Wχ(0) = AT.) To prove this claim, observe first that our hypotheses

on X imply that /Q

6 | | ^ χ | | 2 dt < ε/b. Let Uχ{t) be the parallel translate of X

along 70, and let Y(t) = Wχ{t) - Uχ{t). Then Ϋ(t) = Wχ{t), Y(b) = 0, and

jt\\Y(t)\\ = \\Wχ\
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Therefore,

rb d
Jo Tt

6 \ J/a

\\Wx\\*dt]

Since \\Ux{t)\\ = 1 for all ί, we have \\Wx{0)\\ > 1 - y/ε, as claimed.

We complete the proof by showing that if <2f\\X\\ = 1, then at least one

of D2p2(X,X) and D2p2{JX,JX) is not less than ε. To do this, write X

as μd + XJd + vX1, where X1 is perpendicular to both d and 3d and has

norm 1. If μ2 > ε/2, we find using (2), (4) and (6) that D2p2(X,X) >

D2p2{μd,μd) = 2μ2 > ε. Similarly, λ2 > ε/2 implies that D2p2{JX,JX) >

ε. Therefore, let us suppose that μ2 and λ2 are both less than ε/2. Note

that JX = -λd + μJd + vX" where X" = JX1, and let X' = λJd + vX1

and X" = μJd + vX". It suffices to show that at least one of D2p(X',X')

and D2p(2£",X_") is not less than ε/b. We will suppose not, and derive a

contradiction.

By (7), we know that

(8) llWx'WII and ||Wχ"(0)|| are both not less than 1 - y/ε.

By hypothesis on λ and μ, \\JX! ~ X."\\ < y/ε- Because parallel translation

commutes with J, it follows that \\Uχ"{t)-JU2c{t)\\ < y/ε for all t. Therefore

\\Wχ»{0) - JWχ*{0)\\ < \\Wχ»{0) - Uχ»(0)\\ + \Γe

(9) +\\JUχ>(0)-JWχ>(0)\\

< 3y/ε by the proof of (7).

Since Wχ(0) is tangent to the Lagrangian submanifold L for any X, and J

takes TL to TLL, the inequalities (8) and (9) are incompatible when ε is

sufficiently small, q.e.d.

With this lemma in hand, it is an easy matter to prove

Proposition 3.2. (W,ω) is symplectomorphic to (W,ωp).

Proof. This follows by applying Moser's stability theorem as in Proposi-

tion 2.3. One must check that ω may be written as dλ where λ is a 1-form

such that ||λ|| = 0(p). It follows from Rauch's comparison theorem that a

suitable λ may be found by integrating ω along the normal geodesies from L.

Further details are left to the reader, q.e.d.

It remains to show

Proposition 3.3. The forms Ψ* (ωp) and ωcan on T*L are diffeomorphic.

As in the proof of Proposition 2.2, we establish this by considering the

corresponding Liouville vector fields, and replacing Lemma 2.4 by Theorem

3.5 of [5]. Thus, let ζ0 be the canonical vector field on Γ*L, that is, the vector
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field which generates the action of R given by λ X = eλX, and let ζp be the
vector field on W which is defined by the equation ξp Jωp = -3dp2.

As a first step, we show
Lemma 3.4. The 1-jets ofψ*ξo and ξp agree along L.

Proof. Let z3 = x3 + iy3, j = 1, , n, be (Kahler) normal coordinates

about the point p E L, chosen so that TPL = f^kerd^'. Then, if Go =

2Σ{dx3)2 + 2Σ(dy3)2 i s t h e flat metric, we know that

where J* denotes the fcth jet at p. Because the Christoffel symbols Γ^ depend
on the 1-jet of the metric, the geodesic equation xι + Γι

jkx
3xk = 0 implies that

the exponential maps TPW —• W of Go and G have the same 2-jet at p. Hence,
being totally geodesic, L is 2-tangent at p to the submanifold LQ defined by
the equations y3 = 0, j = 1, ,n. Thus there is a local diffeomorphism /
of W, which takes L to LQ and is such that J2(/) = J2(id). It follows easily
that φ has the same 2-jet at p as the composite

T L=zTL — • TLQ • W,

and hence as the map -0o T*L —* W, which is given by the formula above,
except with G replaced by Go- Since /*fo is the canonical vector field of the
bundle TL0 , we have

To calculate J^ (£p), define the function po near p by

Po(q) = Go-distance of q from LQ = yj[^{yj)) near p.

The recipe which gives us ξp from p yields the vector field Σy3d/dy3 when
applied to po Since Jp{ζp) depends on Jp(p2), we just have to show that p2

and PQ have the same 3-jet at p. This would follow if p = po + O(/9Q) near p.
But

p(ς) = G-distance of q from L

= /*G-distance of f(q) from /(L) = Lo,

and, if we define p1 by p'(gf) = Go-distance of f(q) from Lo? it is not hard to
check that both p — p' and p' — po are O(PQ). (For the first step, note that

Proof of Proposition 3.3. Just as with ξ in Proposition 2.2, ξp is the
gradient of p2 with respect to the metric Gp. Therefore ξp is Gp-perpendicular
to the level surfaces p = const and integrates up to a complete flow. Lemma
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3.4 shows that its 1-jet along its zero set L agrees with that of the canonical
homothety of some bundle over L. According to Theorem 3.5 of [5], under
these conditions W has a unique structure as a vector bundle over L for which
ξp is the canonical homothety. Clearly, this vector bundle is isomorphic to
TL = T*L. Moreover, this isomorphism must take ξo to ξp and hence ωcan to
ωp (see Theorem 4.1 in [5]). The desired result follows.
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