NONTRIVIAL COBORDISMS WITH GEOMETRICALLY FINITE HYPERBOLIC STRUCTURES

B. N. APANASOV \& A. V. TETENOV

Abstract

This paper establishes a new four-dimensional phenomenon: there exist nontrivial (but homologically trivial) four-dimensional cobordisms which are hyperbolic manifolds with geometrically finite structure, i.e. those obtained by identifying the sides of a finite-sided convex polyhedron in the hyperbolic space H^{n}. In the three-dimensional case analogous cobordisms are trivial: they coincide with the product $S_{g} \times[0,1]$. The present construction is based on the investigation of geometrically finite Kleinian groups in space, and on the construction of the above groups with a wild sphere as the limit set.

1. Formulation of the problem

It is well known (Marden [11]) that a three-dimensional manifold $M(G)=$ $\left(H^{3} \cup O(G)\right) / G$ uniformized by a geometrically finite Kleinian group G with an invariant contractible component O_{0} of the discontinuity set $O(G)$ is organized as follows:
(i) if the manifold $M(G)$ is compact, then it is a surface layer, i.e., the product $S_{0} \times[0,1]$ where a surface $S_{0}=O_{0} / G$;
(ii) if $M(G)$ is noncompact, then it is obtained from the surface layer $S_{0} \times$ $[0,1]$ by attaching a finite number of collars homeomorphic to $S^{1} \times[0,1] \times[0,1)$. In this case the surface $S_{0}=O_{0} / G$ may be obtained from a compact surface by a finite number of punctures.

A question arises: To what extent holds the analogy with the surface layer for the manifold $M(G)$ in higher dimensions, at least in compact case?

We can consider analogies of the ($n+1$)-dimensional layer ($n \geq 3$) with various degrees of generality:
(a) the product of an n-manifold $M_{0}=O_{0} / G$ by the segment;
(b) a manifold M whose boundary bd M consists of two components N_{0} and N_{1} and such that the triple $\left(M ; N_{0}, N_{1}\right)$ is an h-cobordism;
(c) the manifold M with the boundary components N_{0} and N_{1} which is a homologically trivial cobordism:

$$
H_{*}\left(M, N_{0}\right)=H_{*}\left(M, N_{1}\right)=0
$$

In all these cases the answer to the above question may be as follows: the manifold $M(G)=\left(H^{n+1} \cup O(G)\right) / G$ is a "surface layer"
(1) in the sense of (a) if the group $G \subset \mathrm{Möb}_{n}$ is a quasiconformal conjugation of some Fuchsian group in $\bar{R}^{n}=\mathrm{bd} H^{n+1}$;
(2) in the sense of (b) if the group $G \subset \mathrm{Möb}_{n}$ has two invariant contractible components $O_{0}, O_{1} \subset(G) \subset \bar{R}^{n}$ (Theorem 3.4);
(3) in the sense of (c) if the group $G \subset$ Möb $_{n}$ has an invariant contractible component $O_{0} \subset O(G)$ (Theorem 3.2 and Corollary 3.3).

Moreover, and this is the main result of the present paper (Theorem 5.1), there exist four-dimensional manifolds $M(G)$ (whose interior H^{4} / G has geometrically finite hyperbolic structure) which are homologically trivial cobordisms (realizing (3)) but without the properties of h-cobordism, i.e. not satisfying (b).

To prove this, in $\S 4$ we construct a geometrically finite Kleinian group G in \bar{R}^{3} whose limit set $L(G)$ is a sphere wildly imbedded into R^{3} sphere which divides the discontinuity set $O(G)$ into two invariant components O_{0} and O_{1}, one of them being contractible.

Note the following question which is a special case of S. P. Novikov's conjecture on h-cobordisms of the type $K(\pi, 1)$, and still is open (see also Remark 5.3):

Is the h-cobordism ($\left.M(G) ; O_{0} / G, O_{1} / G\right)$ trivial if it corresponds to case (2), i.e. to the group $G \subset \operatorname{Möb}_{n}$ with two G-invariant contractible components $O_{0}, O_{1} \subset O(G)$?

We would like to thank O. Ya. Viro for a helpful conversation concerning the present work.

2. Preliminaries

Let $\mathrm{Möb}_{n}$ be the group of all Möbius transformations (preserving orientation) in the space $\bar{R}^{n}=R^{n} \cup\{\infty\}$, and let G be its Kleinian subgroup, i.e. the discrete group whose limit set $L(G)$ does not coincide with \bar{R}^{n} (the discontinuity set $O(G)=\bar{R}^{n}-L(G) \neq \varnothing$. The group Möb $_{n}$ acts isometrically in the hyperbolic $(n+1)$-space H^{n+1} which is $R_{+}^{n+1}=\left(x \in R^{n+1}: x_{n+1}>0\right)$ with the metric $d s^{2}=|d x|^{2} / x_{n+1}^{2}$.

A fundamental polyhedron $P \subset H^{n+1}$ of a discrete group $G \subset$ Möb $_{n}$ is a polyhedron whose images $G(P)$ yield a locally finite covering of H^{n+1} such
that $g(\operatorname{int} P) \cap \operatorname{int} P=\varnothing$ for every $g \in G, g \neq$ id. A group $G \subset \operatorname{Möb}_{n}$ is geometrically finite iff a finite-sided fundamental polyhedron $P \subset H^{n+1}$ exists for it.

The determining properties of geometrically finite Möbius groups may be formulated as follows (for $n \geq 3$ see [4], [5]):

Theorem 2.1. For a discrete torsion-free group $G \subset$ Möb $_{n}$ the following properties are equivalent:
(1) G is geometrically finite;
(2) the limit set $L(G)$ consists of approximation points and parabolic cusps;
(3) for some (any) $r>0$ the r-neighborhood $U_{r}\left(M_{G}\right) \subset M(G)$ of the minimal convex retract $M_{G} \subset H^{n+1} / G$ of the manifold $M(G)$ has finite volume;
(4) the submanifold $\left(M_{G}\right)_{[r, \infty)}$ obtained from M_{G} by cutting off its r-thin parts is compact.

Note that the above-mentioned minimal convex retract M_{G} of the manifold $M(G)$ may be characterized as the minimal convex submanifold M_{G} of the hyperbolic manifold $H^{n+1} / G=\operatorname{int} M(G)$ for which the imbedding $M_{G} \subset$ $M(G)$ induces the isomorphism of fundamental groups.

An isomorphism $i: G \rightarrow G^{\prime}$ of two discrete Möbius groups G and G^{\prime} is said to be type-preserving if it carries parabolic elements of G bijectively onto parabolic elements of G^{\prime}. If $A, A^{\prime} \subset \bar{R}^{n} \cup H^{n+1}$ are some invariant sets corresponding to groups G and G^{\prime}, we say that a map $f: A \rightarrow A^{\prime}$ induces i if $f(g(x))=i(g)(f(x))$ for every $g \in G$ and $x \in A$; we say also that f is G-compatible (or, if $G=G^{\prime}$ and $i=\mathrm{id}, f$ is said to be a G-equivariant map).

We formulate the properties of isomorphisms of geometrically finite groups in \bar{R}^{n} which are necessary below in the following statement, which is a partial case of more general statements of P. Tukia (see [15, Theorem 3.3 and Lemma 3.7]):

Theorem 2.2. Let G and G^{\prime} be geometrically finite Möbius groups in \bar{R}^{n} and let $i: G \rightarrow G^{\prime}$ be a type-preserving isomorphism. Then:
(1) there is a homeomorphism $f_{i}: L(G) \rightarrow L\left(G^{\prime}\right)$ of the limit sets (the unique one if G is a nonelementary group), inducing the isomorphism i;
(2) if $A \subset O(G)$ is a G-invariant set with the compact factor A / G and if $f: A \rightarrow O\left(G^{\prime}\right)$ is a continuous map inducing i, then f and the map f_{i} define together a continuous map $\hat{f}: L(G) \cup A \rightarrow \bar{R}^{n}$ which is an imbedding if f is.

Let M be some compact ($n+1$)-dimensional manifold whose boundary bd M consists of two disjoint connected closed n-manifolds N_{0} and $N_{1}, N_{0} \cap$ $N_{1}=\varnothing$. Then the triple $\left(M ; N_{0}, N_{1}\right)$ is called a homologically trivial cobordism if all the relative homology groups are trivial:

$$
\begin{equation*}
H_{*}\left(M, N_{0}\right)=H_{*}\left(M, N_{1}\right)=0 . \tag{2.1}
\end{equation*}
$$

The triple ($M ; N_{0}, N_{1}$) of compact manifolds with boundaries is called a homologically trivial cobordism with boundary if $N_{0}, N_{1} \subset$ bd $M, N_{0} \cap N_{1}=\varnothing$, and for the boundary $d M=\operatorname{bd} M-\left(N_{0} \cup N_{1}\right)$ the equality

$$
\begin{equation*}
H_{*}\left(M, N_{0}\right)=H_{*}\left(M, N_{1}\right)=H_{*}\left(d M, \operatorname{bd} N_{0}\right)=H_{*}\left(d M, \operatorname{bd} N_{1}\right)=0 \tag{2.2}
\end{equation*}
$$

is valid. (If in these definitions equalities (2.1) and (2.2) are replaced by the requirement of triviality of relative homotopic groups, then the triple ($M ; N_{0}, N_{1}$) is said to be an h-cobordism or h-cobordism with boundary.)

3. Invariant components of Kleinian groups and cobordisms

It is well known that geometrically finite nonelementary Kleinian groups on the plane whose discontinuity set $O(G)$ contains a contractible G-invariant component O_{0} may be one of the following two kinds (see [1], [2]):

They are either quasi-Fuchsian groups whose discontinuity set consists of two invariant contractible components, or nondegenerate B-groups whose discontinuity set, besides the above component O_{0}, contains an infinite number of components O_{i}. All these additional components are noninvariant, but form a finite number of classes of G-equivalent components.

In both cases the three-manifold $M(G)=\left(H^{3} \cup O(G)\right) / G$ uniformized by such groups has the following structure (see Marden [11]):

In the former case $M(G)$ is homeomorphic to the product of the surface $N_{0}=O_{0} / G$ by the closed segment $I=[0,1]$. In the latter case the manifold $M(G)$ also, in a certain sense, looks like the product N_{0} by I. Namely, there exists the compactification \hat{M} of the manifold $M(G)$ which is homeomorphic to the product \hat{N}_{0} by I (where \hat{N}_{0} is the compactification of the surface $N_{0}=O_{0} / G$ preserving the fundamental group $\left.\pi_{1}\left(N_{0}\right)=\pi_{1}\left(\hat{N}_{0}\right)\right)$ and the difference $\hat{M}-M(G)$ is the union of the finite number of cylinders $S^{1} \times I$.

As expected, for large $n \geq 3$ the situation proves to be more complicated. This is shown by examples constructed by A. V. Tetenov (see [12], [10]) of infinitely generated Kleinian groups in $\bar{R}^{n}, n \geq 3$, whose discontinuity set $O(G)$ can consist of any number of invariant components, even simply connected ones. However, despite these examples the analogy with the two-dimensional case (for geometrically finite groups) is strong enough. Namely, the following statements (for proofs, see [13], [14]) are valid.

Theorem 3.1. Let G be a geometrically finite nonelementary Kleinian group in $\bar{R}^{n}, n \geq 2$, with a contractible invariant component O_{0} of the discontinuity set $O(G)$. Then $O(G)$ consists of either two invariant components O_{0} and O_{1} or O_{0} and an infinite number of noninvariant components O_{i}.

Theorem 3.2. Let G be a geometrically finite Kleinian torsion free group in $\bar{R}^{n}, n \geq 2$, having invariant contractible component $O_{0} \subset O(G)$, and let $N_{0}=O_{0} / G$. Then in the manifold $M(G)=\left(H^{n+1} \cup O(G)\right) / G$ there exists a compact $(n+1)$-dimensional submanifold M^{\prime} with the following properties:
(i) M is obtained from M^{\prime} by attaching an open collar $d M^{\prime} \times[0,1)$ to the boundary $d M^{\prime}=\operatorname{bd} M^{\prime}-\operatorname{bd} M$ of the submanifold M^{\prime} in M;
(ii) connected components of the collar $d M^{\prime} \times[0,1)$ are homeomorphic to the cylinders

$$
T^{n-k} \times B^{k} \times[0,1), \quad 1 \leq k \leq n-1
$$

(here B^{k} is a closed k-dimensional ball, $T^{n-k}=S^{1} \times \cdots \times S^{1}$);
(iii) the boundary bd M contains connected disjoint n-dimensional manifolds with boundary N_{0}^{\prime} and N_{1}^{\prime}, such that

$$
\pi_{*}\left(M^{\prime}, N_{0}^{\prime}\right)=0 \quad \text { and } \quad H_{*}\left(M^{\prime}, N_{1}^{\prime}\right)=0
$$

and the cobordism with boundary ($M^{\prime} ; N_{0}^{\prime}, N_{1}^{\prime}$) is homologically trivial. In this case,

$$
\begin{aligned}
& N_{0}^{\prime}=N_{0} \cap M^{\prime}, \quad N_{1}^{\prime} \supset M^{\prime} \cap\left(\operatorname{bd} M-N_{0}\right), \\
& \operatorname{bd} N_{0}^{\prime} \approx \operatorname{bd} N_{1}^{\prime}, \quad \operatorname{bd} M^{\prime}=N_{0}^{\prime} \cup N_{1}^{\prime} \cup\left(\operatorname{bd} N_{0}^{\prime} \times[0,1]\right) .
\end{aligned}
$$

Directly from this fact and from Theorem 2.1 we obtain
Corollary 3.3. Let a Kleinian group G from Theorem 3.2 have no parabolic elements. Then the compact manifold $M(G)$ has two boundary components $N_{0}=O_{0} / G$ and $N_{1}=\left(O(G)-O_{0}\right) / G$, and the triple $\left(M(G) ; N_{0}, N_{1}\right)$ is a homologically trivial cobordism.

This result may be strengthened if we neglect the condition of geometric finiteness of the group G :

Theorem 3.4. Let G be a Kleinian group in $\bar{R}^{n}, n \geq 2$, having two invariant contractible components $O_{0}, O_{1} \subset O(G)$ with compact factormanifolds $N_{0}=O_{0} / G$ and $N_{1}=O_{1} / G$. Then the manifold $M(G)$ is also compact, the group G is geometrically finite, $O(G)=O_{0} \cup O_{1}$, and the triple $\left(M(G) ; N_{0}, N_{1}\right)$ is an h-cobordism.

We shall briefly outline a direct proof of Corollary 3.3, since it is essential for the proof of our main result in $\S 5$.

Proof of Corollary 3.3. The group G has no parabolic elements; therefore, by Theorem 2.1, the minimal convex retract M_{G} of the manifold $M(G)$ (and hence, the manifold $M(G)$) is compact.

The manifold $M(G)$ and the component $N_{0}=O_{0} / G$ of its boundary are both the spaces of type $K(G, 1)$. The inclusion $N_{0} \subset M(G)$ induces the isomorphism of the fundamental group

$$
\pi_{1}\left(N_{0}\right) \rightarrow \pi_{1}(M(G))
$$

and thus it is a homotopy equivalence, which implies

$$
\begin{equation*}
H_{*}\left(M, N_{0}\right)=0 . \tag{3.1}
\end{equation*}
$$

Then, using Poincare duality, we obtain that

$$
\begin{equation*}
H_{*}\left(M, \operatorname{bd} M-N_{0}\right)=0, \tag{3.2}
\end{equation*}
$$

too.
Property (3.2) implies that $H_{0}\left(\operatorname{bd} M-N_{0}\right)=Z$, i.e. bd $M-N_{0}$ consists of only one component $N_{1}, N_{1}=\left(O(G)-O_{0}\right) / G$, where

$$
\begin{equation*}
H_{*}\left(M, N_{1}\right)=0 . \tag{3.3}
\end{equation*}
$$

By (3.1) and (3.3) the proof is complete.

4. Wild spheres as the limit sets of geometrically finite groups

We base our construction of geometrically finite Kleinian groups $G \subset$ Möb $_{n}$, whose limit set $L(G)$ is a wild sphere, on an idea of periodicity of knotting used by the first author for the construction of the wildly knotted curve $L(G)$ [3], [10].

Figure 1
Let us consider the Fox-Artin arc $d \subset \bar{R}^{3}$ (knotted periodically; see [8]) with endpoints x and y (see Figure 1). By "periodically" we mean that d is invariant for the action of some cyclic group, generated by a hyperbolic transformation $h \in \operatorname{Möb}_{3}$, such that $h(x)=x$ and $h(y)=y$. Moreover, if $I(h)=(x:|D h(x)|=1)$ and $I\left(h^{-1}\right)$ are the isometric spheres of $h, h(\operatorname{ext} I(h))=\operatorname{int} I\left(h^{-1}\right)$, then $I(h) \cap d=\left(x_{1}, x_{2}, x_{3}\right)$ and $I\left(h^{-1}\right) \cap d=$ ($x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$) where $h\left(x_{i}\right)=x_{i}^{\prime}$ and these points x_{i} and x_{i}^{\prime} are placed on d in the following order:

$$
x_{1}, x_{2}, x_{3}, x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}
$$

The intersection d_{h} of the arc d and ext $I(h) \cap \operatorname{ext} I\left(h^{-1}\right)$ consists of three $\operatorname{arcs}\left(x_{1}, x_{2}\right),\left(x_{3}, x_{1}^{\prime}\right),\left(x_{2}^{\prime}, x_{3}^{\prime}\right)$ and forms the period of d, shown in Figures 2 and 3 .

Figure 2

Figure 3
Now we take a neighborhood U_{h} of the three arcs of d_{h} in ext $I(h) \cap$ ext $I\left(h^{-1}\right)$ consisting of three disjoint tubes shown in Figure 3. For our further needs we can form this neighborhood of a finite number of consequently overlapping balls B_{i}, in accordance with the established periodicity of d, manifested here by the fact that if $x_{k} \in B_{i} \cap I(h)$ and $x_{k}^{\prime} \in B_{j} \cap I\left(h^{-1}\right)$ then $h\left(B_{i} \cap I(h)\right)=B_{j} \cap I\left(h^{-1}\right)$.

It is easy to see that the closure of the union of spherical annuli

$$
X_{i}=\operatorname{bd} B_{i}-\left(\bigcup_{j \neq i} B_{j} \cup \operatorname{int} I(h) \cup \operatorname{int} I\left(h^{-1}\right)\right)
$$

and their h^{m}-images, $m \in Z$, is the boundary of the fattening $U(d)=$ $\bigcup\left(h^{m}\left(\bar{U}_{h}\right): m \in Z\right) \cup\{x, y\}$ of the arc d, and is a wild sphere S^{*} in R^{3} (see Figure 4).

Figure 4
Now we can form a finite family C of spheres S_{j} (contained in some regular neighborhood of the boundary of the three tubes), possessing the following properties:

1. The union of the annuli X_{i} is covered by interiors of S_{j}.
2. For each i, j either $S_{j} \cap B_{i}=\varnothing$ or S_{j} is orthogonal to bd B_{i}; this also holds for $I(h)$ and $I\left(h^{-1}\right)$ taken instead of B_{i}.
3. If $S_{i} \cap S_{j} \neq \varnothing$ then the dihedral angle between them is $\pi / m, m \in N$.
4. If $S_{j} \cap S_{k}$ is nonempty then there is a common annulus X_{i} for which $S_{j} \cap X_{i} \neq \varnothing$ and $S_{k} \cap X_{i} \neq \varnothing$.
5. There is one-to-one correspondence between spheres $S_{j} \in C$ crossing $I(h)$ and spheres $S_{j}^{\prime} \in C$ crossing $I\left(h^{-1}\right)$ so that $h\left(S_{j}\right)=S_{j}^{\prime}$.

In other words, we form a finite "bubble cover" of bd U_{h} with good angles between the bubbles and right angles between the bubbles and $\mathrm{bd} B_{i}$, and respecting the periodicity. One can see easily that the freedom of choice of the balls B_{i} (so as d and h) permits us to vary moduli of spherical annuli X_{i} and thus obtain such a family C.

Indeed, taking into account the rigidity of circular coverings of a sphere (which is connected with the rigidity of hyperbolic polyhedra and hyperbolic space forms), we will, besides the above-mentioned arguments of existence, give a construction of such a covering C for the chosen type of a wild knot.

Let us consider a right prism P in R^{3} with height 13 , whose base is a polygon which is a union of 28 equal regular hexagons with unit sides. Here the centers of the extremal hexagons are the vertices of a regular triangle with side equal to $6 \sqrt{3}$ (see Figure 5). Let us enumerate all the hexagons as shown in the picture, so that the three extremal hexagons have the numbers 1,7 and 28 , and central one has the number 16.

Divide the prism P into (28×13) small hexagonal prisms $P(k, n)$ of unit height enumerated by pairs (k, n) where $k, 1 \leq k \leq 13$, is the "floor" of the large prism P containing $P(k, n)$ and $n, 1 \leq n \leq 28$, is the number of a small hexagon which is a projection of $P(k, n)$ to the base of P.

Now we shall put in correspondence to the three tubes forming the neighborhood U_{h} of the link $d_{h}=\left(x_{1}, x_{2}\right) \cup\left(x_{2}^{\prime}, x_{3}^{\prime}\right) \cup\left(x_{3}, x_{1}^{\prime}\right)$ three disjoint domains

Figure 5
$D\left(x_{1}, x_{2}\right), D\left(x_{2}^{\prime}, x_{3}^{\prime}\right)$ and $D\left(x_{3}, x_{1}^{\prime}\right)$, obtained as a union of a number of some small prisms $P(k, n)$ with the numbers from the following sets of pairs:

$(10,14),(10,15),(10,16),(10,17),(10,18)$		
$(9,14)$	$(9,18)$	
$(8,14)$	$(8,18)$	
$(7,14)$	$(7,18)$	
$(6,14)$	$(6,18)$	
$(5,14)$	$(5,18)$	
$(4,14),(4,8),(4,1)$	$(4,18)$	
$(3,1)$	$(3,18)$	
$(2,1)$	$(2,18)$	
$(1,10),(1,3),(1,2),(1,1)$	$(1,18),(1,17)$	
$(13,10),(13,3)$	$(13,28),(13,26),(13,23),(13,20)$	
$(12,3)$	$(12,28)$	
$(11,3)$	$(11,28)$	
$(10,3)$	$(10,28),(10,27),(10,25)$	
$(9,3)$	$(9,25)$	
$(8,3)$	$(8,25)$	
$(7,3)$	$(7,25)$	
$(6,3)$	$(6,25)$	
$(5,3)$	$(5,25)$	
$(4,3),(4,10),(4,16),(4,21),(4,25)$		

$(7,23),(7,20),(7,16),(7,11),(7,5),(7,6),(7,7)$
$(1,23),(1,20)$
It is essential to remark that we distinguish three square sides on each of the two prisms $P(1,16)$ and $P(13,16)$ which are connected by the domains $D\left(x_{i}, x_{j}\right)$ constructed above.

Now let S_{i} be the spheres of radii $\sqrt{3} / 3$ with the centers in vertices of prisms $P(k, n)$ forming the domains $D\left(x_{i}, x_{j}\right)$. If such spheres S_{i} and S_{j} intersect, then their centers are the adjacent vertices of some prism $P(k, n)$ and their angle of intersection if $\pi / 3$.

Denote by $B(k, n)$ the ball with the center in the center of the prism $P(k, n)$ and of radius $\sqrt{11 / 12}$. Its boundary sphere $S(k, n)$ is orthogonal to each of the spheres S_{i} whose centers are the vertices of $P(k, n)$. After that we may regard the balls B_{i} whose union is the three components of U_{h} as the balls $B(k, n)$ corresponding to prisms $P(k, n)$ from the domains $D(*, *)$. Here the isometric spheres $I(h)$ and $I\left(h^{-1}\right)$ are the spheres $S(1,16)$ and $S(13,16)$ correspondingly and points x_{i} and $x_{i}^{\prime}, h\left(x_{i}\right)=x_{i}^{\prime}, 1 \leq i \leq 3$, are the points on these spheres which project along the radii to the centers of distinguished sides of prisms $P(1,16), P(13,16)$, i.e. $\left(x_{1}, x_{2}\right) \subset D\left(x_{1}, x_{2}\right),\left(x_{2}^{\prime}, x_{3}^{\prime}\right) \subset D\left(x_{2}^{\prime}, x_{3}^{\prime}\right)$, $\left(x_{3}, x_{1}^{\prime}\right) \subset D\left(x_{3}, x_{1}^{\prime}\right)$.

The interiors of the spheres S_{i} do not cover the whole boundary $\operatorname{bd} U_{h}$, i.e. do not cover all the spherical annuli $X_{i} \subset S(k, n)$. Still uncovered are the hexagonal and quadrangular domains on these annuli, corresponding to sides of prisms $P(k, n)$. Each of these quadrangular domains on $S(k, n)$ we shall cover by the interiors of five spheres, orthogonal to the sphere $S(k, n)$, four of them being also orthogonal to the spheres S_{i}, having equal radii and crossing each other at the angle $\pi / 3$, and the fifth sphere will cross the previous four orthogonally and will not cross the spheres S_{i} (see Figure 6).

Each hexagonal domain on $S(k, n)$ we shall, in its turn, cover by the interiors of seven spheres, orthogonal to the sphere $S(k, n)$. Six of them will be

Figure 6
of equal radii, orthogonal to the spheres S_{i} and cross each other at the angle of $\pi / 3$; the seventh sphere will cross the six others orthogonally and not cross the spheres S_{i} (see Figure 7).

Figure 7

The direct computation shows that the obtained covering of the boundary of U_{h} by interiors of spheres has all the properties of the family C with the only exception that the spheres S_{i} whose centers are the vertices of disjoint prisms

$$
P(1,10), P(1,17), P(1,20) \quad \text { and } \quad P(13,10), P(13,17), P(13,20)
$$

cross each other instead of the fact that their interiors cover disjoint spherical annuli $X_{i} \subset \operatorname{bd} U_{h}$. Nevertheless, we can subdivide our hexagonal prisms
to the finer ones, keeping the prisms $P(1,16)$ and $P(13,16)$ without change. Then the covering, obtained for the corresponding (finer) domains $D(*, *)$ together with the spheres $I(h)$ and $I\left(h^{-1}\right)$ (almost unchanged) will already possess all of the properties 1-5.

We have to remark here that properties 2 and 4 (2 in the case $S_{j} \cap B_{i} \neq \varnothing$ and $S_{j} \cap B_{k} \neq \varnothing$ means S_{j} is orthogonal to $\left.\operatorname{bd}\left(B_{i}\right) \cap \operatorname{bd}\left(B_{k}\right)\right)$ give us the possibility of "bending" of cylinders bd U_{h} and, hence, of the whole surface S^{*} along the circles which bound the annuli $h^{m}\left(X_{i}\right), i \in I, m \in Z$, without changing their moduli i, i.e. without changing the dihedral angles between spheres S_{j} (and their h^{m}-images).

Let H be a Möbius group generated by the hyperbolic transformation h and by reflections I_{j} in spheres $S_{j} \in C$. Property 3 of C leads to discreteness of the group H, while the finiteness of the family C proves its geometrical finiteness. Let F_{1} denote the unbounded (in R^{3}) component of spherical polyhedron

$$
\begin{equation*}
\operatorname{ext} I(h) \cap \operatorname{ext} I\left(h^{-1}\right) \cap\left(\operatorname{ext} S_{j}: S_{j} \in C\right) \tag{4.1}
\end{equation*}
$$

Let the family C be divided into two subsets:

$$
\begin{aligned}
& C_{1}=\left(S_{j} \in C: S_{j} \cap B_{i} \neq \varnothing \text { for some } B_{i}, B_{i} \cap\left(x_{1}, x_{2}\right) \neq \varnothing\right), \\
& C_{0}=C-C_{1} .
\end{aligned}
$$

Denote by F_{0} a spherical polyhedron bounded in R^{3}, obtained by joining the two bounded components of the polyhedron (4.1), having their sides on spheres of the subfamily C_{0}, with the h-image of the third bounded component of the polyhedron (4.1) whose sides are placed on spheres of the subfamily C_{1}. It is clear that F_{0} is a connected polyhedron containing the segment $\left(x_{3}, x_{3}^{\prime}\right)$ of the arc d. Its union with F_{1} gives a polyhedron $F=F_{0} \cup F_{1}$ which is a fundamental (unconnected) polyhedron for the group H. As for any group generated by reflections (see [3, Lemma 3.3]), the domains

$$
O_{0}=\bigcup\left(g\left(\bar{F}_{0}\right): g \in H\right) \quad \text { and } \quad O_{1}=\bigcup\left(g\left(\bar{F}_{1}\right): g \in H\right)
$$

are the invariant components for the group H and, since F is a fundamental polyhedron for $H, O(H)=O_{0} \cup O_{1}$.

Let G be the group of finite index in H without elements of finite order and consisting of orientation preserving transformations. For the Kleinian group $G \subset$ Möb $_{3}$, clearly:

$$
O(G)=O(H) \quad \text { and } \quad L(G)=L(H)
$$

Theorem 4.1. The limit set $L(G)$ of the constructed geometrically finite Kleinian group $G \subset \mathrm{Möb}_{3}$ is a wild sphere in R^{3} dividing the discontinuity set $O(G)$ into two G-invariant components, one of them being a K-quasiconformal ball.

Proof. For the proof of the theorem it is enough to construct a homeomorphism $\hat{f}: \bar{O}_{0}=O_{0} \cup L(G) \rightarrow \bar{B}$ of the closure of the component O_{0} onto a closed ball $\bar{B} \subset R^{3}$, which is quasiconformal in O_{0} and compatible with the group H, and therefore, with the group $G \subset H$.

We shall suppose from now that the family C of spheres is the union of subfamilies C_{0} and $h\left(C_{1}\right)$ where C_{0} and C_{1} were defined above. The (new) family C, thus bounds (together with spheres $I(h)$ and $I\left(h^{-1}\right)$) a connected polyhedron F_{0} which is a fundamental one for the group H in the domain O_{0}.

Let us take any pair of adjacent balls B_{i} and B_{j} from those of which we formed the neighborhood U_{h}, with $S_{i j}=\mathrm{bd} B_{i} \cap \mathrm{bd} B_{j}$. We define a quasiconformal homeomorphism $f_{i j}$ of $B_{i} \cup B_{j}$ onto the ball B_{i}, conformal in a neighborhood of spherical disks ($\mathrm{bd} B_{i}-\bar{B}_{j}$) and ($\mathrm{bd} B_{j}-\bar{B}_{i}$), in the following way. Consider B_{i} and B_{j} as a pair of half-spaces whose boundary planes contain the third coordinate axis ($x \in R^{3}: x_{1}=x_{2}=0$) and let the dihedral angle between them be $w, 0<w<\pi$. Moreover, regard the plane $\left(x: x_{3}=0\right)$ as a complex plane $\mathbf{C}=\left(z=x_{1}+i x_{2}:\left(x_{1}, x_{2}\right) \in R^{2}\right)$ and fix a number v such that $0<v<\pi / 2,0<w<\pi-2 v$. Then the quasiconformal homeomorphism $f_{i j}$ is described by its projection on the plane $\mathbf{C}=R^{2}$ where

$$
f_{i j}^{-1}(z)=\left\{\begin{array}{lr}
z, & |\arg z| \geq \pi-v \tag{4.2}\\
z \cdot \exp (i w), & |\arg z| \leq v \\
z \cdot \exp (i w(1-(\arg (z)-v) /(\pi-2 v))) \\
z \cdot \exp (i w(1+(\arg z<\pi-v)+v) /(\pi-2 v))) \\
v-\pi<\arg z<-v
\end{array}\right.
$$

Figure 8
Taking the composition of all such quasiconformal homeomorphisms $f_{i j}$ (running over all the neighboring B_{i} and B_{j}, finite in their number), we obtain a quasiconformal homeomorphism f_{0} of the polyhedron F_{0} into a ball B, and
sending the sides of F_{0} to the sides of some polyhedron $F_{0}^{\prime}=f_{0}\left(F_{0}\right)$ which lay on spheres, orthogonal to the sphere bd B (if $I(h)$ or $I\left(h^{-1}\right)$ intersect with some B_{i}, then it is orthogonal bd B_{i}). Since the homeomorphisms $f_{i j}$ are conformal in the neighborhoods of disks $\left(\operatorname{bd} B_{i}-\bar{B}_{j}\right)$ and $\left(\operatorname{bd} B_{j}-\bar{B}_{i}\right)$, we obtain, taking into account properties 2 and 4 of the family C, that all the corresponding dihedral angles W and $f_{0}(W)$ on the boundaries of F_{0} and $f_{0}\left(F_{0}\right)$ are equal. This proves the following fact:

Let H^{\prime} be a Möbius group generated by a hyperbolic transformation $h^{*}=$ $f_{0}^{*}(h)$, which maps exterior of the sphere containing $f_{0}(I(h))$ onto interior of the sphere containing $f_{0}\left(I\left(h^{-1}\right)\right)$, and by reflections in spheres containing the sides of the polyhedron $f_{0}\left(F_{0}\right)$. Then H^{\prime} is a discrete group (see [6]) acting on a ball B with a compact factor B / H^{\prime}, and H^{\prime} is isomorphic to the group H.

Extending the map f_{0} to the images $H\left(\bar{F}_{0}\right)$ of the polyhedron \bar{F}_{0}, we obtain an H-compatible K-quasiconformal map $f: O_{0} \rightarrow B$ which conjugates the groups H and H^{\prime}.

Now it remains to show that f extends continuously to a homeomorphism \hat{f} of closed domains. We obtain that using Tukia's Theorem 2.2.

To finish the proof, we have to demonstrate that the topology sphere $L(G)=\hat{f}^{-1}(\mathrm{bd} B)$ is a wild sphere. For that it suffices to show that the fundamental group $\pi_{1}\left(O_{1}\right) \neq 0$.

Consider a simple loop 1 in the component $O_{1} \subset O(H)=O(G)$ shown in Figures 3 and 1 and suppose that it is contractible in O_{1}. Then by Dehn's lemma (see, for example, [5 , Theorem 8.4]), there is a disk $D \subset O_{1}$ such that $\mathrm{bd} D=1$. Since D is compact it is covered by a finite number of polyhedra $h_{i}\left(\bar{F}_{1}\right), h_{i} \in H$. At the same time the nontriviality of 1 in the complement $\bar{R}^{3}-d$ implies that $D \cap d \neq \varnothing$. Therefore, there is an $h_{i} \in H$ such that $h_{i}\left(F_{1}\right) \cap d \neq \varnothing$. The obtained contradiction finishes the proof.

Remark 4.2. The set of points $z \in L(G)$, where the sphere $L(G)$ is wildly knotted, is a dense subset of $L(G)$. It follows from the density in the limit set $L(G)$ of the group G of the G-orbit of the points x and y (the endpoints of d, fixed by the hyperbolic transformation $h \in G$): compare [5], Lemma 3.16.

Remark 4.3. Our construction of a quasiconformal homeomorphism in the proof of Theorem 4.1 and Remark 4.2 prove the existence of a quasiconformal embedding f of a ball $B^{3} \hookrightarrow R^{3}$ into R^{3} which is extended up to an embedding $D \subsetneq R^{3}$ of no open domain D containing the ball B^{3} (see also [7]).

5. The topology of the manifold $M(G)$

Now we state and prove the main result of this paper:
Theorem 5.1. There exist four-dimensional manifolds $M(G)=$ $\left(H^{4} \cup O(G)\right) / G$ (with int $M(G)$ provided by the geometrically finite hyperbolic structure) which are homologically trivial cobordisms, but not h-cobordisms.

Proof. The proof of the theorem follows from our construction of geometrically finite Kleinian groups $G \subset \mathrm{Möb}_{3}$ in the previous section and from Corollary 3.3 .

Actually, the mentioned group G possesses the following properties:
(1) the manifold $M(G)$ is compact (since the torsion free group G has no parabolic elements);
(2) the boundary bd $M(G)$ consists of two components $N_{0}=O_{0} / G$ and $N_{1}=O_{1} / G$;
(3) O_{0} is a contractible G-invariant component and $O_{1}=O(G)-O_{0}$ is a G-invariant component of $O(G)$ with nontrivial fundamental group $\pi_{1}\left(O_{1}\right)$.

Therefore, using Corollary 3.3, we obtain that the triple ($\left.M(G) ; N_{0}, N_{1}\right)$ is a homologically trivial cobordism:

$$
H_{*}\left(M(G), N_{0}\right)=H_{*}\left(M(G), N_{1}\right)=0
$$

Indeed, since the component O_{1} is not simply-connected and $\pi_{1}\left(H^{4} \cup O_{1}\right)=$ 0 , the kernel of the homomorphism

$$
\pi_{1}\left(N_{1}\right) \rightarrow \pi_{1}(M(G))
$$

induced by the inclusion $N_{1} \subset M(G)$ is not zero. This gives the nontriviality of $\pi_{2}\left(M(G), N_{1}\right)$, and completes the proof.

Remark 5.2. It follows from the construction of the group G that there exists a Fuchsian group $G^{\prime} \subset$ Möb $_{3}$ isomorphic to G such that $M\left(G^{\prime}\right)=$ $M^{3} \times[0,1]$. This shows that supplementary conditions which may guarantee the homotopical triviality of the cobordism $\left(M(G) ; N_{0}, N_{1}\right)$, or moreover its triviality in the usual sense, must have nonalgebraic nature.

Remark 5.3. Moreover, from the isomorphism of $\pi_{1}\left(N_{0}\right) \cong \pi_{1}(M)$ to the fundamental group of a closed hyperbolic 3 -manifold and from the FarrellJones result [9] it follows that the Whitehead group $\mathrm{Wh} G$ is trivial (so as $\mathrm{Wh}_{2} G=0, \tilde{K}_{0}(Z G)=0, K_{-m}(Z G)=0$ for $m>0$ and $\mathrm{Wh}_{m} G \otimes \mathbf{Q}=0$ for all m).

References

[1] R. D. M. Accola, Invariant domains for Kleinian groups, Amer. J. Math. 88 (1966) 329-336.
[2] L. V. Ahlfors, Finitely generated Kleinian groups, Amer. J. Math. 86 (1964) 413-429; 87 (1965) 759.
[3] B. N. Apanasov, Kleinian groups, Teichmüller space, and Mostow's rigidity Theorem, Sibirsk. Mat. Zh. 21 (1980), no. 4, 3-15; English transl., Siberian Math. J. 21 (1980) 483-491.
[4] ___ Geometrically finite hyperbolic structures on manifolds, Ann. Global Anal. Geom. 1 (1983) 1-22.
[5] _ Discrete transformation groups and structures on manifolds, "Nauka", Novosibirsk, 1983; English transl., D. Reidel, to appear.
[6] __, The effect of dimension four in Aleksandrov's problem of filling a space by polyhedra, Ann. Global Anal. Geom. 4 (1986) 243-261.
[7] __, Quasisymmetric embeddings of a closed ball inextensible in its neighbourhoods, to appear.
[8] R. H. Bing, The geometric topology of 3-manifolds, Amer. Math. Soc. Colloq. Publ. Vol. 40, Amer. Math. Soc., Providence, RI, 1983.
[9] F. T. Farrell \& L. E. Jones, Algebraic K-theory of hyperbolic manifolds, Bull. Amer. Math. Soc. (N.S.) 14 (1986) 115-119.
[10] S. L. Krushkal', B. N. Apanasov \& N. A. Gusevskii, Kleinian groups and uniformization in examples and problems, "Nauka", Novosibirsk, 1981; English transl., Transl. Math. Monograph., Vol. 62, Amer. Math. Soc., Providence, RI, 1986.
[11] A. Marden The geometry of finitely generated Kleinian groups, Ann. of Math. (2) 99 (1974) 383-462.
[12] A. V. Tetenov, Infinitely generated Kleinian groups in space, Sibirsk. Mat. Zh. 21 (1980), no. 5, 88-99; English transl., Siberian Math. J. 21 (1980) 709-717.
[13] __, Kleinian groups in space and their invariant domains, Dissertation, Inst. of Math. Siberian Branch of Acad. Sci. USSR, 1983. (Russian)
[14]_, On a number of invariant component for Kleinian group in space, Preprint, Inst. of Math., Siberian Branch of Acad. Sci. USSR, No. 17, 1982.
[15] P. Tukia, On isomorphisms of geometrically finite Möbius groups, Inst. Hautes Etudes Sci. Publ. Math. 61 (1985) 171-214.

Siberian Branch of the USSR Academy of Sciences
Novosibirsk State Training College, USSR

