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CAUSTICS AND EVOLUTES
FOR CONVEX PLANAR DOMAINS

EDOH AMIRAN

Abstract

The caustics for the billiard ball map on an ellipse satisfy a certain
evolution property. An operator relating the curvature of a caustic to
the curvature of the boundary is defined for the billiard ball map in
smooth convex planar domains and is used to derive an equation which
characterizes those curves satisfying the evolution property as ellipses.

1. Introduction

Many dynamical systems have been modeled by a billiard ball travelling
in a bounded domain in the plane. In considering this problem the objects of
interest are periodic orbits—points on the boundary of the region to which a
billiard ball returns after a fixed number of reflections—and invariant curves
(caustics for optical reflection).

In an elliptic domain, a billiard ball whose trajectory is tangent to an ellipse
confocal with the boundary returns to the inside ellipse and its trajectory is
again tangential to the inside ellipse, so confocal ellipses define invariant curves
and the billiard system on an ellipse is integrable. Birkhoff conjectured that
the only integrable convex planar regions with smooth boundaries are ellipses.
Seemingly in contrast, it was shown by Moser that in any planar region with
a sufficiently smooth boundary, the billiard ball map has enough invariant
curves so that the Lebesgue measure of their associated rotation numbers is
positive [6] (see also [3]).

What seems to distinguish ellipses from other smooth curves is the evolution
property—the caustics for an elliptic region are themselves integrable and
share their caustics with the elliptic boundary. This property is perhaps
easier to see from the point of view of a caustic. If a curve inside a domain
is a caustic for the billiard ball map on the domain's boundary, we call the
domain's boundary the evolute of the curve. In plane geometry (see Lemma
1), if we loop a string around a closed curve, lean a pen against the string,
and draw, then we describe the evolute of the curve. The evolution property
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says that the evolute of an evolute of a curve is also the evolute of the original
curve. Said in yet another way, if the caustics for the billiard ball map on
B have the evolution property, then when C is a caustic for the billiard ball
map on B, any evolute of C is a caustic for the billiard ball map on B.

In order to make use of this evolution property, when the billiard ball
map in a region has a caustic we consider the boundary of the region the
evolute of the caustic and obtain an operator that relates the curvature of the
boundary to the curvature of the caustic. We then use this operator to restate
the evolution property in analytic terms and find an equation that must be
satisfied by the curvature of curves with the evolution property. This results
in our main

Theorem. The only strictly convex smooth closed planar curve with the
property that an evolute of its evolute is an evolute of the original curve is an
ellipse.

The author wishes to thank Richard Melrose for many discussions and for
suggesting an improvement of the calculation of the curvature relating opera-
tor, and Victor Guillemin and David Jerison for closely reading a preliminary
version of this paper.

The sections which follow discuss invariant curves and caustics, evolutes
and the evolution property, the curvature relating operator, the evolute's cur-
vature, and an equation for the evolution property. The main theorem is
proved in the last section.

2. Invariant curves and caustics

Given a strictly convex planar domain Ω, with smooth boundary dΩ, the
billiard ball map on <9Ω,

β: B*dΩ^B*dΩ,

is defined as follows. Let S*R2 denote the unit cotangent bundle, and set
B*dΩ = {ξ e T*dΩ: \ξ\ < 1}. We will view B*dΩ as being embedded in
T*R2, and S*R2 as being embedded in T*R2 (we want to be able to use
geodesic flow in R2). Let φt denote geodesic flow in i?2, and π: T*R2 —• R2

the projection.

There is an inward orientation, i(p) G SPR
2 (the unit tangent bundle's

fiber at p) for p G dΩ. (If B C R2 is any set bounding Ω, ζ G S*R2 satisfies
ξ{i{p)) > 0, and π(φtξ) G ΘB, then t > min{t > 0\π(φtζ) G dΩ}.)

Given ξ G B*dΩ, there is a unique inward pointing w G S*R2 (w(i(p)) > 0)
with ξ(υ) = w{v) for v G TpdΩ <-+ TPR

2.
Define p: S£nR

2 -> B*dΩ by p(w) = ξ if ξ(v) = w{υ) for all υ G TpdΩ,
p = π(w). We have just shown that, given an inward pointing orientation of
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dΩ, p has an inverse. If w is not tangent to dΩ, then there is a unique t > 0

with φtw G SQΩR2 and

If w is tangent to dΩ, then we set β(ξ) — ξ.

Definition 2.1. An invariant curve for the billiard ball map on dΩ, /?, is a

smooth section, Ξ, of £*dΩ -• dΩ, such that if £ G Ξ(dΩ), then/?(£) G Ξ(dΩ).

Definition 2.2. A caustic for the billiard ball map on dΩ is a simple

closed curve C C Ω such that if ξ G S*C and t(ξ) is the least t > 0 with

π(0 t f) G dΩ, then there is a ξ' G S*C (and a £(£'), the least ί > 0 with

π{φtζ') G dΩ) with β(pφt{ξ)ξ) = pφt(ξ')ζ'

We may view ρ~1(Ξ(dΩ)) C SQΩR2 as a (one-parameter) family of lines

(parametrized by any parametrization of dΩ). To ζ G p~1(Ξ(dΩ)) we asso-

ciate the line {πφtζ\t G i?}, where φt is geodesic flow, and π is projection (see

Figure 1).

3Ω

F I G U R E l

The correspondence of Ξ to a family of lines

The role played by the curvature in this setting is clarified if we assume (as

we always can near any fixed s G dΩ) that the lines (corresponding to Ξ(s),

s G dΩ) are given by y = y(s) + m(s)x in the x — y plane near a fixed line

y — y(so) + ra(so)z (we may assume that m(s) < oo for s near so) Then the

intersection of y = y(s) + m(s)x and j/ = 2/(5O) + m(so)x is given by

2/(̂ o) -yis)
m(s) - m(s0)'

Both numerator and denominator approach zero as s approaches s0, so this

has a unique solution when k(s0) = -^m(s0) φ 0 (k is the curvature). So if
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the curvature is never zero (and hence positive if the curve is closed), there
is a well-defined smooth convex caustic corresponding to Ξ. Finally, if Ξ is
(C2) near the boundary—which is itself an invariant curve in B*dΩ—then
k(s) > 0 for any s.

The construction of the caustic C for a strictly convex Ω shows that the
tangent to C at c (when c = c(ξ) this is {πφtp~1(ζ)\t G R}) does not intersect
C near c. Since C is closed, this implies that C is convex.

Conversely, it is clear that if C is a smooth strictly convex curve inside Ω
then its tangents define a smooth section of B*dΩ. Hence we have shown that
given a strictly convex planar domain Ω with a smooth boundary <9Ω, there
is a one-to-one correspondence between invariant curves for the billiard ball
map on dΩ in a neighborhood of the boundary and strictly convex smooth
caustics for the billiard ball map on dΩ in a neighborhood of dΩ. (Note. If Ω
were not convex and there were a caustic sufficiently close to the boundary,
the corresponding "invariant curve" would be discontinuous.)

For completeness we include
Definition 2.3. The billiard ball map on dΩ is integrable if there is a

neighborhood N of S*dΩ in B*dΩ which is included in the images of integral
curves for the billiard ball map on dΩ, that is, for each ξ G N there is a
p G dΩ and an integral curve Ξ with ξ — Ξ(p).

3. Evolutes and the evolution property

Let Ω be a strictly convex planar domain with a smooth boundary, and
let C be a caustic for the billiard ball map on dΩ. We wish to define return
points of points in C. Orient C, that is, split S*C into a disjoint union S*C =
FS*C U BS*C. Fix a point p G C and take ξ+(p) e FS*C, f_(p) G BS C
(there is exactly one choice for each of these). Then we define the points
q+,q~ G C which are, respectively, the forward and backward return points of
p. The point q+ is such that there are £-(<?+) G BS*+C, £(£_(<?+)) > 0, and
*(£+(p)) > 0 with

P(Φ«ξ-(q+))ζ-(q+)) = -p{Φnξ+(P))ζ+{p)) G B*dΩ,

and q- G C is such that there are £+(<?_) G FS*_C, ί(f+(g_)) > 0, and
t{ξ-{p)) > 0 with

P(Φt(ί+(q-))ζ+{Q-)) = -p(Φt(ξ-(P))ξ-(p)) G B*dΩ.

Definition 3.1. For α, b G C denote by \a <— b\ the length of the arc
segment of C between a and b. With this and the notation above, we set

- \q+ - p|,
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which we call the forward reflected distance of C from <9Ω at p, and

BQ(p,C,dΏ) = \p^q_\- t{ζ+(q-)) - f(ξ-(p)),

called the backward reflected distance of C from <9Ω at p (see Figure 2).

349

FIGURE 2

The reflected distance of C from dC at p

Note that we could define the "reflected distance" for any curve C inside
Ω (not necessarily a caustic) by replacing p and —p above by π, and B*dΩ
by 5Ω, but this seems to be special to two dimensions.

Lemma 1. If C is a caustic for the billiard ball map on dΩ (Ω a strictly
convex planar domain with a smooth boundary) then the forward reflected dis-
tance, FQ(p,C, dΩ), is independent of the point p, as is the backward reflected
distance.

Proof Consider FQ(p,c,dΩ). Fix p,p' G C, and let q,q' G C be their
forward return points. Let / C C be the arc segment between p and p', and
let b C C be the arc segment between q and q'. Recall our orientation of C,
S*C = FS*C U BS*C, and for ζ G S*C let t{ζ) denote the first t > 0 with
φtζ G SQQR2. Consider the forward and backward flowout submanifolds F,
B C S*R2 given by

F = {φtξ\ξ G FS*(7, 0 < t < ί(f), τr(O G /},

and

£ = {φtξ\ζ G 5S*C, 0 < t < t(ζ), τr(O G 6}.

We define a map τ: F,B -+ B*dΩ. If f G F or f G 5, then ξ = 0 ^ ^ for
some t* > 0 and £* G S*C, and we set τ(ζ) = pΦt{^)-tΛ ( t m s i s geodesic
translation to dΩ followed by projection to B*dΩ).

The forward and backward flowouts, F and B above, are Lagrangian with
respect to the pullback τ*ω of the cannonical two-form on B*dΩ because
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FIGURE 3

The forward and backward flowouts

/ and b are curves and τ*ω is invariant under geodesic flow. Using Stoke's
theorem we obtain

ι(ζ)ω and 0 = / ω = / ι{ξ)ω.
JB JξedB

To conclude the lemma for the forward reflected distance observe that

0= ί ω=
JF

[
dF

ι(ξ)ω+ [
dB

JpeA
where A denotes the arc segment π(B) ΠdΩ = π(F) Π 3Ω, ξ+{P) G Fp and
ξ-{P) G BP. When C is a caustic, \p(ζ+(P))\ = |p(ξ_(P))|, so the integral
on the right side of (*) is zero (as are those on the left) and FQ(p,C,dΩ) =
FQ(p',C,dΩ).

For the backward reflected distance the proof is the same with the signs
and roles of p and q (and of p' and q') reversed.

In fact, if C C Ω is a smooth curve and the reflected distance of C from
dΩ is constant, it follows from (*) that C is a caustic for the billiard ball map
ondΩ.

Let Ω be a strictly convex planar domain with a smooth boundary for
which the billiard ball map is integrable. In light of the lemma there is a
relation between dΩ and each of the caustics for the billiard ball map on <9Ω,
which invites the following

Definition 3.2. For Q e R and C C Ω a caustic for the billiard ball map
on dΩ, we say that dΩ is the Q-evolute of C if Q > 0 and FQ(p, C, dΩ) = Q
for p e C or if Q < 0 and BQ(p, C, dΩ) = Q for p e C.

There are cases in which the caustics for the billiard ball map have an
additional property: For the circle, parametrized by arclength s, and with
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(s, θ) G S^R2, the billiard ball map can be represented as β(s, θ) = (s+20,0).
Hence, caustics for the billiard ball map on the circle are concentric circles, so
the billiard ball map on any given caustic is itself integrable and the caustics
for the billiard ball map on a caustic are also caustics for the billiard ball map
on the boundary.

Definition 3.3. We say that the caustics for the billiard ball map satisfy
the evolution property if the evolute of the evolute of a given caustic is also
the evolute of that same caustic.

The caustics for the billiard ball map in an elliptic region which are near the
region's boundary also satisfy the evolution property and, indeed, if ellipses
are the only integrable planar curves (as conjectured by G. D. Birkhoίf), then
so do the caustics of all integrable planar domains.

4. The curvature relating operator

We identify smooth strictly convex curves in R2 by their curvature (see,
for example, [4]). That is, to each closed curve we associate its curvature
when the curve is parametrized by tangent angle, and to each positive k E
C°°{R/2ITZ-R), with

2 π

C O s m — - Γ\m(t) dt

we associate the curve with coordinates

In this setting we have

Definition 4.1. The curvature relating operator is

L : R x C°°{Sι ΈL) -> C 0 0 ^ 1 ; ! * ) ,

which takes (Q, k) to v, the curvature of the Q-evolute of the curve whose
curvature is k.

Proposition 2. In the setting of Definition 4.1, L(—Q, k) = L(Q, k).

Proof. If we change the orientation of the curve C with curvature fc, we do
not change the curvature of the evolute. But FQ(p, C, dϊϊ) = -BQ(q, C, 3Ω),
where q is the forward return point of p, and C is C with the reversed orien-
tation.

We would like to examine the curvature relating operator more closely. Let
a be a simple closed strictly convex smooth planar curve given by its tangent
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angle (0 < 0 < 2τr) and its curvature {k{θ) > 0):

Let b be the Q-evolute of a (Q > 0), given by its tangent angle φ and
curvature v. Then for some 0i, ίi, 02, and t2

6(0) = α(0i) + ί 1 (cos0i,sin0i) = α(02) - *2(cos02,sin02),
and

Q = t1+t2-{s{θ2)-s{θ1)),
where s is the arclength along α, s(θ) = fQ k~1(t)dt. Since a is assumed to
be an invariant curve for the billiard ball map on 6, φ = (θι + 02)/2. As well,

[sin 02 cos t — cos 02 sin t

sin t —!

where A = θ2-φ = φ-θχ. Thus

1 /*Δ

Q= / cos(u)k~1(φ
cosΔ y

The right side of the equation above is clearly smooth in Δ near zero, and
it turns out to vanish to third order in Δ as we will see in the next section
where we continue the computation. In fact, Q = Δ 3/(Δ) where / is smooth
in Δ near zero and /(0) = (12k)~x. With this observation we can show

Proposition 3. L(Q,k) is a differential operator (in k) which is smooth
in Q2IZ for sufficiently small Q.

Proof. As noted above, Q = Δ 3 /(Δ), and since /(0) = (12A;(0))-1 > 0 on
the entire (compact) curve C, by the implicit function theorem, Δ is smooth
in Q1/3.

The curvature relating operator L is smooth in Δ because b is smooth in
t\ (and in 0), and

rφ+A

1 fA 1 fA

— —-—— / sm(u)k~1(φ + u)du + — / o,os(u)k~ι(φ + u)du,
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while

/ sin(u)AΓx(0 + u) du ~ sinAfA;-1^ + Δ) + k~\φ - Δ)] + O(Δ 2),
J-A

so t\ is smooth in Δ (Δ near 0). Hence the curvature relating operator is

smooth in Q1/3.

However, L(Q, k) = L(-Q, k) as shown in Proposition 2, and Q and Q 1 / 3

have the same sign, proving that L is smooth in Q2!3.

5. The evolute's curvature

For a curve whose evolutes satisfy the evolution property, the evolute of an

evolute is an evolute of the original curve. In terms of the curvature relating

operator, for a curvature function, k, corresponding to a caustic which is in a

collection of caustics satisfying the evolution property and for any (sufficiently

small) Q and P, there is an R with

(5.1) L(Q,L(P,k))(ψ) = L(R,k)(ψ) V^G[0,2TΓ].

Differentiating this equation (perhaps several times) and setting Q = P =

0 gives equations that must be satisfied by the curvature function k. We

calculate the first nontrivial equation derived from this procedure by means

of formal Taylor series in P, Q, and R, and show that it is satisfied only by

the curvature functions of ellipses.

Recall that L is smooth in Q2//3, so formally

3=0

We also know that L(0, fc) = k so LQ is the identity.

Fix P, Q > 0, set v = L(P,k) and w = L(Q,v), and assume that w =

L(R,k) for some R > 0. Since k,v,w > 0, i?2//3 is smooth in Q2/3 and in

P 2 / 3 . Also, when P = 0, R = Q and when Q = 0, R = P, so

Λ2/3 = p2/3 + g2/3 + pVSQ2/3G^ p2/SQ2/3^

with G depending on the curvature k (but not on the tangent angle) and

jointly smooth in P 2 / 3 and Q2/3.

For (5.1) to hold, we must have L(Q, L(P, A;)) - L(R, k) or

Lok + LXA:(P2/3 + Q2/3) + L\wokP2/sQ^3 + L2fc(P4/3

L2kR4/3 + O3

+ Q 2 / 3 ) + LifcP2/3Q2/3G(A;,0,0)

O3,
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where O3 represents O(P 2/ 3, Q 2 / 3 ) 3 and L\wok denotes the coefficient of P 2 / 3

in Lχ(k + LikP2/3). The equation of the evolution property is thus

(5.2) L\wok = LifcG(fc,0,0) + 2L2k.

To find L\ and L2 we continue the calculation from the preceding section
{b(φ) with the curvature function υ is the Q-evolute of a(θ) whose curvature
is k). Recall that

1 fA ίA

Q= / cos(u)k~1(φ + u)du- / k~ι(φ + u)du.
cosΔj_Δ j _ Δ

Let g{Δ) = k~1(φ + Δ) + k~1(φ-Δ), and note that g{-Δ) = g(Δ). We have

/ cos(u)k-\φ + u)du = g{0)Δ + -{d2g - g)Δ3

J-A ^!

- 4fc"3(A:/)2 -

Q = ^(-^)Δ 3 + ±(6d2g + g)Δ5 + O7

Δ + O ^ ^ Δ +

where we have used (cosz)"1 = 1 -f z2/2 + x4/24 + O(x6).
With q = Q1/3, we solve for Δ, obtaining

Δ = (§

where A: and its derivatives are evaluated at φ.
With b{φ) = (x(φ),y(φ)), we have

- Δ )

5Γ
Δ j γ

k~1(φ + u)du = g(0) + —c?2^(0)Δ3 + —d4g(O)Δ5 + 0 7 ,
Δ o! o!

O7,

• *! cos(0 - Δ)dφ(φ - Δ) + sin(0 - Δ)dφtu
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(dφx)2 + (dφy)2 = (k-\φ - Δ)(l - dφA) + dφh)2 + t\{\ - dφA)2,

where tι is as in the preceding section (see Proposition 3). Setting A(Δ) =
A r ^ + Δ)-A - ^ - Δ ) , observe that Λ(-Δ) = -A(Δ),

/ sin^/c"1 (0 + u) du = |dΔA(0)Δ3 + {±d\h - ±dAh)Aδ + O7,
J -A

dAh{0) = -2k-2k'{φ), Άndd3

Ah{0) = -2fc-2fc(3)(<A)+12Ar3fc'fc"-12Ar4(fc')3.

Using the previous calculation for the portion involving cosine,

{ μ (f + ̂ AΓ2A;']Δ4 + O5.

Now,

-\k~ιk'k" -\k'}qz+O(q5),

k~ι{φ - Δ) = k~ι{φ) + k~2k'A + \[-k-2k" + 2fc-3(fc')2]Δ2

- 6k-3k'k" + 6fc"4(A;')3]Δ3

8k~3k'kW + 6fc-3(fc")2

- 36fc-4(fc')2fc" + 24fc-5(fc')4]Δ4 + O 5 ,

and

±

\k-zk'k" - \k-\k1)3 + ±k-2k']A3dφA + O5

= k~ι(φ) + (|)2/3[-Ifc-4/3fc" + §fc-7/3(fc')V

^ ) V
+ O(q5).

Also,

_a fc-5/3ife» + Xfc-8/3(fc')2 + lk-2'3\q4 + O6,
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-1((k-1(φ-A)(l-dφA)

(f

and finally,

υ(φ) = k(φ)

,5 31 + (

In fact, we know that v is even in g, so that this equation holds to sixth order.
Equation (5.3) gives L^k, L\k, and Z λ̂; as the coefficients of 1, q2, and q4

(respectively).

6. An equation for the evolution property

We now return to the setting of three curves with curvatures fc, v, and w
as in the beginning of the previous section, and find the equation satisfied by
the curvature k (the curvature of the curve whose evolutes are assumed to
have the evolution property). Using (5.3), we find that

L l V = (| )2/3 [1 fc2/3fc// _ 2^-1/3(^)2 _ 1 fc5/3]

+ (3)1/3^4/3^(4) _ 1 fcl/Sfc/fcO) _ ±k^(k")2 + ^k~2^(kf)2k"

_ lk*/Zk» _ JLfc-5/3(fc/}4 + 11

and (5.2) gives
L\wok-2L2k =

which becomes

(S)l/3[iΛ4/3Λ(4) _ ^Λ1/3Λ/A(3) _ ±k

l/3(k")2 + ^k~2'Z{k')2k"

(6.1) + ̂ / /

Equation (6.1) is the desired evolution property equation, and is satisfied
by the curvature of any ellipse and its rotations. For the ellipse with x2/a2 +
y*/b2 = 1,

k(θ) = (abΓ2 (a2 sin2 θ + b2 cos2 θ)3/2, G = - Ί ^ ( | ) - 1 / 3 ( α 6 ) - 4 / 3 ( α 2 + b2).
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A closer look at this equation shows that
Theorem 4. The only smooth strictly-convex closed planar curves satis-

fying the evolution property (Definition 3.3 and equation (5.1)) are ellipses.
Proof. We need to make some observations about the evolution property

equation that will allow us to conclude that the only positive periodic solutions
are those whose initial conditions agree with those of the curvatures of ellipses.

First note that if we set y = — θ and consider the curvature as a function of y
the equation remains the same (we are describing the same curve). Next note
that since we are only interested in periodic solutions our solution must have
a minimum which we may assume to be at θ = 0 by rotation. Returning to
the equation and using these observations it follows that k^(0) = fc'(O) = 0.

The evolution property equation is also homogeneous—if k satisfies the
equation so does ck for any constant c, and G(ck) = c2//3G(A;). Thus we may
assume that G(k) = — 1.

Finally, notice that we can find an ellipse with curvature E such that
G(E) = - 1 and £"(0) = fc"(0) (at a minimum jfc"(θ) > 0).

We investigate fc(0). If we can choose fc(0) arbitrarily, then there is a
sequence of solutions, fcr, whose first three derivatives (at 0) agree with those
of some (fixed) ellipse but so that fcr(0) —• 0 as r —» 0. But then the fact that
the terms in the equation all remain bounded implies that k' ~ fc5/12 which
contradicts the original equation. (Looking at this geometrically, because the
equation remains unchanged with u — —fc, if fc is allowed to approach 0 then
the corresponding curve must degenerate to a line.)

It is my hope that this result will be helpful in understanding the spectral
properties of ellipses, and that integrable curves can be shown to satisfy the
evolution property thereby proving that the only integrable smooth strictly
convex curves in the plane are ellipses.
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