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ON THE SHAPE OF CANTOR SETS

DARYL COOPER k THEA PIGNATARO

There has been much interest recently in sets which have a self-similar,

fractal nature. As a prototype of a more general problem, we study a class

of Cantor sets on the line from the point of view of bi-Lipschitz geometry,

i.e., quasi-isometry. These investigations reveal a surprising general prin-

ciple: A quasi-isometry between such objects is essentially the same thing

as a map which is linear on the level of measure theory, i.e., has constant

Radon-Nikodym derivative with respect to Hausdorff measure. This principle

provides new invariants which enable us to classify generic Cantor sets of the

type we consider.

Motivated by a question of Dennis Sullivan, we begin the classification of

certain types of Cantor sets on the line. These Cantor sets each arise as the

maximal invariant set of a map to the line defined on a neighborhood of the

Cantor set. The middle third Cantor set arises in this way: Let J\ = [0,1/3],

J 2 = [2/3,1] and J = [0,1], and define r: Jx U J 2 -> J by

( 3x ϊΐxeJu
r(x) = {

I 3 x - 2 if xe J 2 ;

then C — τ~°°(J) is the middle third Cantor set. The ultimate goal is to un-

derstand the structure of C when τ is a locally expanding map. In this paper

we consider the case when r is defined on a finite number of disjoint closed

intervals J\, , Jq contained in an interval J and r maps each J; affinely

onto J. The topological and C 1 classifications of such sets are trivial, how-

ever the classification up to quasi-isometry (= order preserving bi-Lipschitz

homeomorphism) gives a rich theory. The basic result is that a quasi-isometry

can always be replaced by a quasi-isometry, possibly no longer surjective, with

constant Radon-Nikodym derivative. The measure involved is the Hausdorff

measure on the Cantor set, which is positive in its Hausdorff dimension. This

result alone gives a powerful new invariant; previously the only known invari-

ant was the Hausdorff dimension. These Cantor sets are homogeneous in the

sense that any two points x, y have arbitrarily small affinely isomorphic neigh-

borhoods in the Cantor set, although the isomorphism need not map x to y.
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A similarity point can be described as a point, z, of the Cantor set which has
a neighborhood in the Cantor set which is homeomorphic to a proper subset
by an affine map fixing x. Measure preserving quasi-isometries preserve these
points, together with a numerical invariant assigned to each such point. These
numbers are related to the invariants of any dynamical system producing the
Cantor set.

The classification is completely understood in the generic case in which
the ratios of the masses (using Hausdorff measure) of J2, , Jq to the mass
of J\ are algebraically independent over Q. In this case any aίfinely gener-
ated Cantor set of the type we are considering which is quasi-isometric to a
generic example can only be generated by affine maps defined on intervals
J[, , J'r which are obtained from the intervals J\, , Jq by two geometric
operations called splitting and sliding. In this case, the gap invariant of §2 is a
complete invariant. In the nongeneric case, splitting and sliding still produce
quasi-isometric Cantor sets, but there are quasi-isometric Cantor sets not re-
lated by these operations. For some of these examples, the gap invariant is
not a complete invariant, the extra information comes from the self-similarity
invariant. The middle third set is a nongeneric example for which the clas-
sification is worked out in §4. A gap remains in our knowledge of what the
classification is for some cases.

1. Definitions

The Cantor sets we study have a self-similarity structure arising from some
dynamical system which produces the set. This structure is not unique, but
it is convenient to utilize some specific decomposition of the Cantor set de-
termined by a choice of dynamical system r. This decomposition is called a
clone structure and is defined below. At various times it is useful to be able to
consider alternative clone structures, just as it is useful to be able to change
coordinate systems in a manifold.

Let Ji, J2, , Jq be disjoint closed intervals contained in a closed interval
J (which we will always assume is the unit interval [0,1]) and ordered from
left to right. Thus Ji is to the left of J»+i. We further assume that J\
contains the left-hand endpoint of J, and that Jq contains the right-hand
endpoint of J. This ensures that the endpoints of J will be in the Cantor set.
Let T{: J{ —• J be the unique order preserving affine map of J2 onto J. Set
r = {Jτi' \JJi -> J; then the Cantor set C{τ), or just C, is f|Γ=i τ~n(J)
The components of τ~n(J) are called the level-n clones of C. Thus Ji, , Jq

are the level-1 clones. We also think of a clone as the subset of C contained
in the clone. If A is a level-n clone, then τn\A maps A aίfinely onto J,
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and so the subset of the Cantor set contained in A is just a linearly scaled

down copy of C. τn\A is a leυel-n clone map and may be written uniquely

as an n-fold composition Ti1 o rt 2 o o nn, 1 < ij < </, of level-1 clone

maps. We say that C is affinely generated by the maps ri, , r ς. Notice

that C is uniquely determined by the collection of intervals J i , , Jq. A

gap, G, is a component of J — G, and G is at leυel-n if G is a component of

[J - T~n(J)] - [J - r 1 " n ( J ) ] . Thus there are q - 1 level-1 gaps, which we

label from left to right, Gi, , Gq-\. Suppose G is a level-n gap, then there

is a unique level- (n — 1) clone map sending G to a level-1 gap Gi for some

1 < z < qr — 1. The name of G is the integer i. Suppose A is a level-m clone,

and B C A is a level-(ra-hn) clone, then 5 has level-n relative to A Similarly

a gap G C A at level-(m + n) has level-n relative to A. By a clopen we mean

a subset of G which is both open and closed as a subset of C. Note that every

clopen is a union of finitely many disjoint clones. A co-gap is a particular type

of clopen, it is the interval between two gaps in C. Alternatively we think of

it as the subset of C contained in that interval. The following is obvious.

Lemma (1-1). Let A C J be an interval, and let B be the smallest clone

containing A. Then there is a gap G at levelΛ relative to B such that AπG

The Hausdorff dimension of C is that d G (0,1) satisfying the equation

Σ ^ = i \Jj\d — U\d a n d t n e associated Hausdorff measure μc gives, for every

clone A, μc{A) = \A\d. We will assume that J is the unit interval [0,1] and

that μc has been normalized to be a probability measure on C. (See [2] for

more information about the Hausdorff measure on G.) Let £ be a point in

J; the measure (or mass) coordinate of x is μc([0,x]). If x and y are two

points of J which have the same measure coordinate, then there are no points

z with x < z < y and z G C. Thus if x,y G C have the same measure

coordinate, then they are endpoints of the same gap. We are interested in the

classification of Cantor sets up to order preserving bi-Lipschitz maps. This

means we are considering maps φ: R —• R for which there is a (bi-Lipschitz)

c o n s t a n t K > 0 s u c h t h a t V x , y G R, K'1 < \φ(x) - φ(y)\/\x - y \ < K . W e

call such a map a quasi-isometry. If C\ and C2 are quasi-isometric Cantor

sets we write C\ ~ G2.

2. General results

The main result of this section is that the classification of affinely generated

Cantor sets is the same for the relations of quasi-isometric bijections and mea-

sure linear quasi-isometric injections (measure linear means constant Radon-
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Nikodym derivative). This result provides two new invariants of affinely gen-

erated Cantor sets. The first is the gap invariant which is the countable subset

of [0,1] consisting of the mass coordinates of the gaps. The second invariant

comprises real numbers assigned to each of the countable set of similarity

points defined below. These numbers are scale factors so that if a neighbor-

hood of a similarity point is contracted by its scale factor, the neighborhood

and its contraction appear identical. It is convenient, and in keeping with

the philosophy of this paper, to measure the size of objects using Hausdorff

measure instead of Euclidean length. Thus the scale factor measures the en-

largement of mass, not distance, at a similarity point. In Sullivan's work [3]

on the classification of the dynamical systems producing these Cantor sets,

an important set of invariants are the eigenvalues of periodic points of the

dynamical system. These eigenvalues are closely related to the scale factors.

However, the notions are distinct because there are always many different

dynamical systems generating any given affinely generated Cantor set.

There are two simple ways of producing affinely generated Cantor sets

quasi-isometric to a given one. These methods are the operations of splitting

and sliding. Let C be a Cantor set determined by a set of disjoint closed

intervals J i , , Jq contained in an interval J , and T{\ J{ —> J the associated

affine maps. Let G', J{, , J^ C J ' , and τ[\ J[ —> J' be another such

set. If q = r, \J\ = \J'\ and \J{\ = |J t ' | for each i, then we say that the

intervals {J[} are obtained from the intervals {Ji} by sliding (see Figure 1).

Note that according to the conventions of §1, the sequence of J i , , Jq is

from left to right on J and this is also the sequence of </{,-•• , Jq on J'.

Thus the {J^} differ from the {Ji} only by their relative positions on Jf

and J respectively. There is a natural quasi-isometry φ: J —• J ' defined

as follows. Let Gχ, , GQ_i be the level-1 gaps of G, and G' l5 ••• ,G/

q_1

the level-1 gaps of C. φ is defined so that it preserves the name and level

of gaps, i.e., φ{Gi) — G[ for 1 < i < q — 1 and if G is the level-n gap

{τi1o-Ότin)-1Gi, then φ(G) = {τ'iχ o O ^ ) - 1 G ; . Since TJ and rj have the

same derivative, it follows that |0(G) |/ |G| = |G'J/|Gi| so φ has bi-Lipschitz

constant maxi<t< g _i{ |GJ|/ |Gt|, |Gt |/ |GJ|}. Note that φ is measure preserving

because it preserves the length, and hence mass, of clones, φ is called the slide

map. Another operation called splitting also produces quasi-isometric Cantor

sets. In this case r = 2q — 1 and

for some fixed 1 <i < q (see Figure 2). Thus the level-1 clones of C consist

of the level-2 clones of C contained in J2, together with the level-1 clones of

C other than Ji. We say that J2 has been split. More generally, let J[, , J'r



ON THE SHAPE OF CANTOR SETS 207

(r = q + n(q — 1)) be any collection of disjoint clones of C whose union
contains C. Then we say that these clones are obtained by splitting from
those defining C. It is an elementary fact that such a collection of clones can
always be obtained from {J{} by a sequence of single splits, a single split being
the replacement of a level-p clone by the level-(p + 1) clones it contains. The
Cantor set Cf determined by these intervals is quasi-isometric to C by the
identity map. What has happened is that a new dynamical system generating
the same Cantor set has been defined. Alternatively, we have changed the
clone structure of C. Finite sequences of splitting and sliding generate an
equivalence relation on affinely generated Cantor sets. In §3 we show that
for generic affine Cantor sets this is the same equivalence relation as quasi-
isometry.

J J'

iί ikik

FIGURE I. Sliding; q = 3.

J '

FIGURE 2. Splitting; q = 3, i = 3.

Example. This is an example of a quasi-isometry φ of the unit interval
which maps the middle third Cantor set onto itself. The map φ is given by
the formula:

!

x/3, 0 < x < 2/3,

x - 4/9, 2/3 < x < 7/9,

3x - 2, 7/9 < x < 1.
A more instructive description of φ is obtained by labelling the level-2 clones
of C from left to right as Ji, J 2, Jz, and J4, each of which has length 1/9.
Then φ maps J\ U J2 linearly onto J\, maps J3 linearly onto J2 and maps J4
linearly onto J3 U J4.

Definition. Suppose (X,μχ) and (Y,μγ) are measure spaces. A map
φ: X —• Y is measure linear if there is a constant λ > 0 such that for all
μx-measurable sets B C X, φB is //y-measureable and μγ(φB) = λμx(B).
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Theorem (2.1). Suppose that C and C are affinely generated Cantor
sets and that φ is a quasi-isometry of the line with φ(C) C C'. Then there is
a clone A C C such that φ\A is measure linear with respect to the Hausdorff
measures μc and μc> on C and C respectively.

Proof. If K is the bi-Lipschitz constant for φ and d is the Hausdorff dimen-
sion of C, then for every μc-measurable B C C, K~d < μc{φB)/μc{B) <
Kd. The mass ratio of B is defined to be MR(B) = μc>{φB)/μc{B). Fix
ε > 0 and choose a clone A of C with MR(A) + ε > sup{MR(B): B a clone
of C} = M. We show that for ε small enough, φ\A is measure linear.

Claim. There is a finite set S C R such that for every clone D of C and
every clone E C D at level-1 relative to D, ρ{E,D) = MR(E)/MR(D) e S.

We remark that S depends only on C, C and K, not on φ. Let F' be the
smallest clone of C containing φ(D) and σ: F' —• C the corresponding clone
map. Because σ is linear, and therefore measure linear,

μcjσoφE) /μcjσoφD)= I= μc(E) I μc{D) •

Let Hi, , Hq-ι be the gaps in D at relative level-1, and set H[ = σ o
φ(Hi). Then H[ is a gap of C By Lemma (1.1), σoφ(D) contains a level-1 gap
of C and so \σoφ(D)\ is bounded below. Now \Hi\ \D\~λ is bounded below
and φ is a if-quasi-isometry; therefore \σoφHi\ Iσo^DI"1 is bounded below.
It follows that \H[\ is bounded below and, since there are only finitely many
gaps in C" with size larger than a given lower bound, there are only finitely
many possibilities for H[. Similarly there are only finitely many possibilities
for the image under σ o φ of the left- and right-hand end points of D. This is
because adjacent to D in C are gaps GL, GR on the left and right of D, and
IGLH-DI"" 1, IG^I'IDI"1 are bounded below (though not above) independently
of the choice of D. Then, arguing as above shows that there are only finitely
many possibilities for σ o Φ{GL) and σ o Φ(GR). Thus there are only finitely
many possibilities for the image under σ o φ of D and its relative level-1 gaps,
and thus there are only finitely many possibilities for the image under σ o φ
of relative level-1 clones of D. Thus there are only finitely many possibilities
for p(E, D) as claimed.

If S = {1}, then φ is measure linear, otherwise S contains a number larger
than 1. This is because

μc{φB)/μc{φC) =
level -p clones

B in C

and so if p(B, C) < 1 for all clones B, then p(B, C) = 1 for all clones.

Define R = min{r G S : r > 1}; in a sense this is the minimum amount of
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nonlinearity which can occur at the measure level for φ. If φ\A is not measure
linear there is a clone B C A with p(B,A) / 1. Choose such a B of the
least depth, i.e. to have level-p with p as small as possible. Then there must
be a level-p clone B' C A with p(B',A) > 1. Let B" be the unique level-
(p — 1) clone containing J3', thus B" C A, and p(B", A) — 1 by choice of
B'. Now p(B',A) = p{B',B")p{B",A) so p(5',Λ) = p(B',B") > 1; hence
p(J3', B") > R and so p(S', A) > R. This implies that MR(J3') > i? MR(A).
Now choose ε small enough that #(M - ε) > M. Then MR(B') > M which
contradicts the definition of M, thus 0|A is measure linear, q.e.d.

As an example of this result, a slide map is measure preserving, thus mea-
sure linear everywhere. The theorem can be rephrased by noting that the
clone, A, is just a linearly scaled copy of the entire Cantor set C, so that
composing φ\A with a linear map from C onto A gives a measure linear quasi-
isometry of C into, but not necessarily onto, C":

Corollary. // C and C are quasi-isometric affinely generated Cantor
sets, then there is a quasi-isometry φ: C —• C which is measure linear but
not necessarily surjective. The image of φ is a co-gap.

Remark. This result may be strengthened slightly as follows. The image
of φ is a co-gap, thus a union of clones of C. Let B be the left-most clone in
φ{C). Then φ~ι\B composed with the affine map of C" onto B is a measure
linear quasi-isometry of C into C with φ~1{0) = 0 (recall, 0 is the left most
point of both C and C").

Definition. The gap-invariant, G{C), of a Cantor set, C, is the countable
subset of [0,1]: G(C) = {μc([0, x]): x lies in a gap of C}.

The remark after the corollary implies that if C ^ C are affinely generated
Cantor sets, then there is a linear map θ: R —• IR, θ(z) = az for some fixed
a e (0,1], and Θ{G{C)) = [0,a]Γ\G(C). In §3 for the generic case it is shown
that a = 1 so that G(C) is actually an invariant of quasi-isometry. In general,
however, we can only say it is invariant in the above sense.

Proposition (2.2). Let B be a co-gap of an affinely generated Cantor
set C. Then B ~ C. Equivalently, if m € N, and let mC denote the union
of m affinely isomorphic copies of C contained in pairwise disjoint intervals,
then C ~ mC.

Proof The idea is that C = ooC ~ nC. Let Ji , , Jq be the level-1
clones of C, and define

oo

A = (Λ U • U Jq-i) U U T~n{Jl U U Jq-ι).
7 1 = 1

Then A is a union of disjoint clones, with (q — 1) level-n clones for each
n > 1. Label these clones from left to right as Au A2, thus A{ — Ji for
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1 < i < q — 1, and

Λ[(9_i)n+<] = τ~n(Ji) for n > 1, 1 < i < q - 1.

The co-gap 5 is a union of finitely many disjoint clones of C, call these
clones £?i, , B m . Define AJ• = B{ for 1 < i < ra-1, and now decompose Bm

as above. Formally, let θ: Bm —• C be the clone map, and define ^ + m _ x =
fl"1^') f o r i > L Define φ: B -+ C by 0|AJ maps Â  aίfinely onto A*.
Extend 0 over the remaining gaps of B affinely. We show that φ is the
required quasi-isometry. Let J be the smallest interval containing C and set
D = J — Jq, then D is a fundamental domain for the action of τ~λ on J. Now
θ~x o r~ι o θ acts on B m and has fundamental domain θ~ι{D) on which φ is
piecewise linear with finitely many changes of derivative. From the definition
of φ, we obtain φ~ι o τ~ι o φ\Bm = θ~x o τ~ι o ̂  and so φ takes on this same
finite collection of derivatives on each fundamental domain, thus φ\Bm is a
quasi-isometry. But on B — Bm, φ is piecewise linear with only finitely many
changes of derivative, therefore φ is a quasi-isometry.

Corollary. If C and C are affinely generated Cantor sets and C ~ C,
then there is a quasi-isometry ψ mapping C onto C which is piecewise measure
linear. This means ψ is measure linear on each of a countable set of intervals
whose union contains C.

Proof. By the corollary to (2.1) there is a measure linear quasi-isometry
θ: C -• B, with B a co-gap of C. The map φ: B -+ C constructed in (2.2)
is piecewise linear, so φ o θ: C —• C is piecewise measure linear.

Definition. A (local) similarity of a Cantor set C is an orientation pre-
serving homeomorphism σ defined on an interval U C J with CΠΪnt(U) Φ 0
and such that

(i) σ(U Π C) C C.

(ii) σ has a unique fixed point x, and x € C.

(iii) σ is measure linear.

(iv) Either σ or σ~ι (if σ is expanding) is BD.

A map σ is BD, or has bounded distortion, if the family {σn}n€N is uni-
formly quasi-linear, i.e. there is a constant, K, and affine maps {Ln}nGN of R1

such that each of the maps σnoLn is a if-quasi-isometry. It is well known that
C2 maps satisfying the Renyi condition are BD (see [2] for example). A (local)
similarity point of C is a fixed point of a local similarity. A point x in C is
eventually periodic for r if there are integers m, p > 0 with τm+p(x) = τm(x).
The following result establishes a link between the dynamics of r and the
geometry of C.
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Theorem (2.3). Suppose C is an affinely generated Cantor set generated
by T. Then a point x in C is a local similarity point if and only if x is an
eventually periodic point of τ.

Proof. Let σ be a local similarity with fixed point x and choose a clone
A C domain(σ) with x G A. If dσ/dμc > 1, replace σ by σ" 1, so that we may
assume σ is contracting. Thus σA c A. Set Br = σ7 A and define Ar to be
the smallest clone containing Br. Let L be the gap adjacent to A on the left
and R the gap adjacent to A on the right. Since σ is BD, \σrL\ l ^ l " 1 and
|σri?| l^rl" 1 are bounded below independently of r. Then, as in the proof
of (2.1), there are only finitely many possibilities for the way Br is contained
in Ar. More formally, let ψr: Ar —• C be the clone map taking Ar onto C.
Then there are only finitely many possibilities for ψr(Br). Thus, for some
r,s > 0, ψr{Br) = ψr+siBr+s). Define λ = φ~^8 o </v; then XBr = £ r + s .
Now λ and σs are both measure linear and both map Br onto Br+3, therefore
λ\(BrΠC) = σs\(Br DC). Let λi be the clone map ψr(Ar+s) -> C; then
λ = ψ~λ o X~x o ψr. Let m = level(ylr) and p = level(Ar+5) — m; then
ψr = τm\Ar and ψr+9 = τ" m + p |^r+s Now x = σsx = λx and so

rm+Pχ = r m + p o λx = r m + p o ̂ β o φrχ = τmx.

Hence x is an eventually periodic point of r with period p. The converse is
obvious, q.e.d.

It follows from the proof of (2.3) that:
Corollary. // σ is a local similarity of a Cantor set C with fixed point

x, then there are a clone A containing x, and clone maps λ and ψ, and an
integer n> 0 withσn\{AΓ)C) = φ'1 o λ" 1 oφ\(AΓ\C).

This corollary says that given a local similarity map, then, modulo taking
a suitable iterate and restricting to a smaller domain, it is essentially linear,
i.e., linear on C.

Definition. The local similarity group at a point x of C is the group of
germs of local similarity maps fixing x; the maps are considered to be defined
only on a subset of C. This group is written SGX. Because a similarity map
is measure linear, and two germs represent the same element of SG^ if they
agree on C, the map λ: SGX —> R given by λ(σ) = dσ/dμc for σ G SGX is
injective. Thus we may regard SGX as a subgroup of R*, the group of real
numbers under multiplication.

Proposition (2.4). If C is an affinely generated Cantor set, then SGX

is a discrete subgroup ofR*.
Proof The subgroup L of SG^ consisting of germs of affine maps of R is

nontrivial by the corollary to (2.3). It is easy to check that L is discrete and
therefore cyclic. It follows from the corollary to (2.3) that if σ G SG^ then
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σn G L for some n > 1. Therefore if SG^ is not discrete, there is σf G SG^

which is infinitely divisible, i.e., oo = sup{n G N; σ' = σf for some σ\ G SG^}.

Let A be a clone containing x with A C domain (σ'), and let ψ: A —• C be

the corresponding clone map. Then y = -0x is a similarity point, and ψ

induces an isomorphism ψ*: SG^ —• SG^. Therefore it suffices to show SG^

has no infinitely divisible elements. Let σ = φ*(σ') = ψ o σ ' o ^ " 1 ; then

σ is infinitely divisible. By replacing σ by σ " 1 if needed, we may assume

dσ/dμc < 1. Given σi G SG y , then σ\ = (σ~k o σ\ o a f c ) | domain (σi) because

SG^ is abelian. This shows, by choosing k large, that σ\ can be extended

measure linearly over domain(σ) = C. Thus every element of SG y induces a

linear map G(C) —• G(C) fixing the measure coordinate of y. A level-p clone

of C has mass πiiι πii2 πiip for some choice of i\, , ip G {1, , q} where

w*iί * * * ? m g a r e the masses of the level-1 clones of C. It follows that G(C) C A

where A = Q(mi, ,mq). Let m — μc([0,2/]). Since σ G SG^, there must

be a gap with measure coordinate m(l — a) where a = dσ/dμc- If σ = σf,

n > 1, then because σ\ is defined on all of C, there must be a gap with measure

coordinate ra(l - α 1 / n ) . Hence ra(l - α1/7 1) G A, and so α 1 / n G A(m) = K.

Thus α is an infinitely divisible element of the multiplicative group of K* of

nonzero elements of Λ(m). Now K is a finitely generated field extension of Q,

and it is well known that the only infinitely divisible elements of such a K*

are roots of unity. But 0 < a < 1, so a is not a root of unity, therefore a is

not infinitely divisible—a contradiction.

Definition. If x is a local similarity point of C, the local scale factor at

x is

S(x) = msx{dσ/dμc < 1 : σ G SG^}.

Corollary 1. Suppose C and C are affinely generated Cantor sets, and

φ: C —• C is a measure linear quasi-isometry, but not necessarily surjective.

If x is a local similarity point of C, then φx is a local similarity point of C

andS{x) = S{φx).

Proof Suppose σ G SG^; then σ' = φoσoφ~x is BD because σ is BD and

φ is a quasi-isometry. σ' is measure linear because σ and φ are measure linear,

in fact dσ1 /dμc = dσ/dμc The map 0*: SG* —• S G ^ given by φ*(σ) — σ'

is an isomorphism with inverse ( 0 " 1 ) * . Thus S(x) = S(φx).

Definition. The spectrum of C is

spec(C) = {S(x): x is a similarity point of C}.

Corollary 2. Suppose C and C are affinely generated Cantor sets, and

C - C". Then spec(C) = specfC").
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3. Classification in the generic case

Let C* denote the set of all affinely generated Cantor sets of unit diameter

contained in [0,1]. C* may be made into a metric space using Gromov's defini-

tion [1]; thus if Ci, C^ G C*, distance(CΊ,C2) = inf{ε > 0|3 an ε-isometry p:

C\ —• C2] (recall p is an ε-isometry if p is a homeomorphism and Vx, y G Ci,

I distance(a;,y) — distance(pz,ρy)\ < ε).

Let Ψ be the set of quasi-isometry classes of C*, and give W the quotient

topology. A collection of q disjoint intervals J i , , Jq contained in [0,1]

determines an element of C*; since sliding produces quasi-isometric Cantor

sets, the g-tuple ( |Ji | , , \Jq\) determines an element of Ψ. Let

Σ li < h h > 0 \
i=i J

Then there is a continuous map πq: Mq —• Ψ which maps a g-tuple to the

quasi-isometry class determined by intervals J i , , Jq with \J{\ = l{. Mq

is topologized as a subspace of Uq. Let ~ be the equivalence relation on

U^=2 Mq generated by splitting, and let Jί — (U^U Mq)/ ~; */# is given the

weak topology. Then πq induces a continuous map π : Jίf —• ^. We show

below that π\Mq is injective on a subset of Mq of full Lebesgue measure. In

§4 we show that π is not injective.

Definition. Let C be an affinely generated Cantor set with level-1 clones

J i , , Jq of lengths /i, ,/g, and let mi = μc{Ji)> The mass ratios are

λi — rriim^1. An affinely generated Cantor set C is generic if C" ~ C, where

C is as above and {λ2, * ->λq} are algebraically independent over Q. We

remark that this definition can be broadened, it is only necessary to require

that certain specific polynomials do not vanish for {λ2, , λ g } .

Theorem (3.1). //x, y G ./#, and π(x) is generic, then πx = πy o x =

y o G(τrx) = G(πy), αnrf TΓX and πy Ziai e ί/ie same Hausdorff dimension.

The first equivalence may be restated in a slightly stronger form:

Theorem (3.2). Suppose that C and C are affinely generated Cantor

sets and C ~ C, and also that the level-1 clones J i , , Jq of C satisfy the

condition above on algebraically independent mass ratios. If J{, , J'r are the

levelΛ clones of C, then J[," ,J'r
 a r e obtained from J i , , Jq by splitting

and sliding. In particular, r > q.

We now introduce a standing hypothesis: (f) The clone structure on C has

level-1 clones J i , , Jq with {λ2, , λq} algebraically independent over Q.

Lemma 1. Suppose C satisfies {]), A is a co-gap of C, B is a clone of

C, and μc{A) = μc{B). Then A is a clone of C.

Proof. For p large enough both A and B are a union of level-p clones.

The mass of a level-p clone D is μc{D) = mi1rrii2 -mi for some choice
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of ij G {1, * IQ} βc is a probability measure so Σ?=i mz — 1 and hence

m~l = 1 + λ2 H- 4- λq. Thus

μc(Z?) = XT\ψ λj« (1 + λ2 + + Ag)-P

for suitable integers n2 > 0.
The equation μc(A) = μc{B) becomes, on multiplying by m^~p,

Σ ,n2(D) ,n3{D) \nq(D)
λ2 λ3 ' " λ q

D<ZA
D a level—p clone

^ ' _ V ^ ΛΠ2(D)λn3(D) \nq(D)
— 2Lt 2 Λ 3 '"Λq" -

DCB
D a level—p clone

The algebraic independence of the λ '̂s over Q implies that there must be
the same number of terms on both sides of (1). Thus A and B contain the
same number of level-p clones. If r = level(B), then B contains qp~r level-
p clones. Thus A is contained in the union of at most two adjacent level-r
clones, and is contained in a single level-r clone if and only if A is a level-r
clone. So suppose that A meets two adjacent level-r clones J' and J". Let nf

and n" be the number of level-p clones in J1 Π A and J" Π A respectively, so
n' + n" = qP~r and n', n" > 0. Set m! = μc{J') and m" = μc{J")- Ύhen

μc(A)=m'ϊ + mfΊ",

where /' = μc(AΠJ')/μc{J') and /" = μc{AnJ")/μc{J") N o w ' ' = ( t h e n'
rightmost level- (p — r) clones in C) and I" = μcfthe n" leftmost level-(p — r)
clones in C) because there are clone maps taking J1 —> C and J" —• C. Now
n' + n" = qp~r, therefore /' -f I" = 1 and so equation (1) can be rewritten as

(mϊrμc(J'))(mr

ι-
pll) + {m^ μc{J")){m\-vl") = (m^μc{B)){m\-p).

Each bracketed term is a polynomial in the λ 's. Define

Pi = mϊrμc{J') = λ? •• K? for some a > 0,

p2 = m-rμc(J") = Xp " λ** for some d{ > 0,

P3 = mϊrμc{B) = Xe

2

2 λ^ for some e» > 0,

p4 = m ; - P = (l + λ2 + . + λ g ) p - r ,

P5 = m[-pl"-

Using m\~p{l' -f /") = p± to rewrite the above equation we obtain

Pi(P4 - Pδ) + P2P5 = P3P4 or p 4(pi - p 3 ) = p 5(pi - p 2 ) .

Now p 4 and (pi - p 2 ) have no common factor, therefore p 4 divides p 5 .
Evaluating p 4 and p 5 at λ2 = λβ = = λ g = 1 gives P4(l, ••-,!) = qp~r
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and p 5(l, , 1) = n". Thus qp~r divides n"', but 0 < n" < qp~r, which is a
contradiction.

Lemma 2. Suppose C satisfies (f) and G is a gap in C. Let AL be
any clone adjacent on the left to G, and AR any clone adjacent on the
right to G. Then μc{AL)/μc{AR) determines the name of G. In other
words, if G' is another gap of C, A!L and A!R are clones adjacent to Gf, and
μc(A'L)/μc(A'R) = μc{AL)/μc(AR), then G and G' have the same name.

Remark. Nothing is assumed about the level of AL and AR] in particular
they can be at different levels.

Proof Let i € {1, ,q — 1} be the name of G, and suppose initially that
G, AL and AR are all at the same level, p say. Then μc{AR)/μc{Aι) =
Xi+i/Xi and the algebraic independence of the λ '̂s implies that if \j+ι/\j =
λ»+i/λj, then i — j . Proceeding with the general case,

μc{AR)/μc{AL) = λi+imί/λimj,

where r, s > 0 are defined by \eve\(AL) = s + level(G) and leve\(AR) =
r + level (G). Thus

μc(AR)/μc{AL) = λ i + i λ ^ λ ' ^ l + λ2 + + λ g)
θ~ r,

and again it is clear that if this equals λ J +iλ~1λ~θ (1 + λ2 + + Xq)
s ~r

then i — j . q.e.d.
Lemma 3. Suppose the same hypotheses as in Lemma 2. Let A be the

smallest clone containing G, and A' the smallest clone containing G'. Let

φ: A —> C and φ': A' —• C be the corresponding clone maps and set ψ =

{φ')'1 o φ. Then <ψ{G) = G', φ{AR) = A!R and ψ{AL) = A'L.

Proof. G has level-1 relative to A, G1 has'level-l relative to A1 and, by
Lemma 2, G and G' have the same name, therefore ψ(G) — G'. From the
proof of Lemma 2,

μC{AR) _ μC{A'R) _ χ x - l x - s n _, x , , x λs-r

where

level(i4L) = level(G) + s = level(A) + 5 + 1,

level(A'L) = level(G;) + s = level(A') + s + 1,

level(i4Λ) = level(G) + r = level(Λ) + r + 1,

\e\el{A'R) = level(G') + r = level(A;) + r + 1.

This implies ^(AL) = A'L and ψ(AR) = A'R because a clone adjacent on a
specified side to a specified gap is completely determined by its level. But the
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levels of AL and AR relative to A are the same as the levels of A'L and A'R
relative to A!, by the above.

Lemma 4. Suppose C satisfies (f). Let U be a co-gap in C, σ: U —• U
a local similarity, and A the smallest clone containing U. Then there is a
linear map ψ: A —> A such that ψ\UΓ\C — σ\UΓ\C. Furthermore, ψ~ι is the
conjugate of one clone map by another clone map.

Proof. By the corollary to (2.3), there are an n > 0 and a clone A' C ί7,
containing the fixed point x of <7, with σn\A! Π C linear. Define a = dσ/dμc-
Then the Radon-Nikodym derivative of σn is an = μc{B)/μc{Af) where B =
σnA! is a clone. Set p = level(B) - level(A'); then μc(B)/μc(A') = μc(B')
for some level-p clone B'. Let Λ = Q(λ2, , λg); then

an = μc(B') = λ£2λ£3 λj« (1 + λ2 + • + λ , ) " p

for some n2, , nq > 0. But σA! is a co-gap and μc{oΆ') = aμc{A') E Λ,
hence

a= ^[λψ λg9 (1 + λ2 + + Aβ)-P] G A.

This implies n|n^ for each 2 < i < q and also n|p, since the λ '̂s are alge-
braically independent over Q. Write v!i = ΠiΠ~ι and p' = pn~λ. Then

μC(σA') = \f λ"« (1 + λ2 + + λ ς )- p / μσ(^)i

and so σA' has the same mass as a clone, for example the clone

iτiι ''' TQ 9 )~ 1 (^ / ) where n[ — p1 — Y^=2 n'i- By Lemma 1, σA' is a clone.
Hence the restriction of σ to (A' Π C) is aίfine. Let Ψ: A' —> σA' be the affine
orientation preserving surjection. It remains to show that the affine extension
of Ψ over A maps C into itself. Because A' ^> U, there is a clone, E say, with
E C V — A! and ϋ? may be chosen to be adjacent to a gap G say, with G adja-
cent to A!. Either E is on the left or right of Al\ assume without loss that E
is on the left of A'. Now F = σE is a co-gap and has mass μc(F) = aμc{E)
which is the same mass as a certain clone, therefore by Lemma 1, F is a clone.
Furthermore μc{E)/μc{A') = μc(σE)/μc{σA') because σ is measure linear.
So by Lemma 3, there is an affine map *ψ": A" -» φ"(A") with ψ"(A"Γ)C) C
C, where A" is the smallest clone containing G. Since now A" contains A' and
2?, ^ ; / is an affine extension of ψ so that level (A") < level (A') — 1. Repeating
this extension process a finite number of times gives level (A") < level (A) and
therefore the required extension of ψ over A. ψA is a clone because it has the
correct mass to be a clone. Let ψι: A —• C be the clone map corresponding
to A, and Ψ2: ψi(ψA) —• C the clone map corresponding to ψι(ψA). Then
^ = -0Γ1 ° ^ό"1 ° VΊ q.e.d.

We are now ready to prove Theorem (3.2): the idea is to conjugate the
dynamical system producing C' over to C by using the quasi-isometry, and
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then linearize this dynamical system. Let φ: C —• C be the given quasi-
isometry, by the corollary to (2.1) there is a measure linear quasi-isometry,
which we again call φ, φ\ C -+U where U is a co-gap of C. We may assume
that the smallest clone containing U is C, by composing φ with a clone map of
C if needed. Let rt , 1 < i < r, be the level-1 clone maps of C, and φ^ = (r^)"1,
and let J[ = $([0,1]) be the level-1 clones of C". Set ψ'S = φoφf

ioφ~1 and
J'J = 0(Jt'), then Ψ": U' —• J " is BD and measure linear. By Lemma 4, there
are affine maps ψ1" \ J —• il)'"{J) = J"' where J = [0,1] is the level-0 clone
of C, and ψ'j'\C ΠU = t^' |C Π 17, and (V^")"1 i s t h e conjugate of one clone
map of C by another clone map of C. Hence J"' is a clone of C. Suppose
U φ J'. Let x be the fixed point of ψ"; then x is the leftmost point of J".
Because U is a clopen, x is isolated from the left in C. If x is not the leftmost
point of J, then x is an interior point of J{;/, and is the fixed point of tp"', so
x cannot be isolated from the left in C, a contradiction. Thus the leftmost
point of U and of J are the same, similarly for the rightmost points, therefore
U = J ? J'J — J'J'? and φ is measure linear and surjective. This implies
G(C) = G(C). Now J", , J^' are disjoint clones of C, which contain C,
and so are obtained by splitting the level-1 clones of C. Since φ is measure
preserving, μc(Ά') = Pc(J") s o IΛ'Ί = IΛΊ> a n d so the J2 are obtained by
sliding the J". This proves (3.2) and part of (3.1). It only remains to prove
that if G(C) = G(C), C and C have the same Hausdorff dimension, and C
satisfies (f), then C ~C. We would like to thank Dennis Sullivan and Curt
McMullen for help with the following argument.

Let Ψ be a clone map of C". Then φ induces an aSine map ψ~x: G(C) —•
G(C) with derivative o r 1 = dφ^/dμc. Since G(C) = G(C;), Ψ*1: G(C) —
G(C). Now /071[0,1] = [01,02] where 01, 02 G G(C), so there is a co-gap A
of C with {μc[0,x\: x € A} = -0"1 [0,1] and we will show that A is a clone
of C. Let U be the multiplicative group generated by mi, λ2, , \q. Then
G(C) C 1[U] = A, and α " 1 = 02 — 01 = p\ G A. But U is the group of units
of A, and μc{B) EU iί B is any clone of C. Let B be a clone of C such that

X={μc[O,x\: xeB} C ^ [ 0 , 1 ] .

Then X = [6i,62] for some bu b2 G G(C). Write ψ*X = [ci,c2]; then
C2 — ci = p2 G A and 62 — &i = P3 G ί7, so a — P2P^X- Thus pj"1 = P2P3"1,
so p3 = P1P2 G Ϊ7, which implies p\ G ί7. For r large enough, A is a union of
level-r clones of C, thus

level -r
clones DC A
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Observe that r > ri2(D) + + nq(D) for each D C A, so that for some ni,
ri2, , nq, pi = ml1 λ%2 λ^ς where ni = n\ — (712 + + nq) > 0. Thus
pλ = mΊιm%2 mj ς , and there is a clone E of C with μc{E) — Pi Hence
4̂ is a clone by Lemma 1. Let «/{,••• , J^ be the level-1 clones of C. Then the

above shows that there are clones J", , J " of C such that J t and J" have
the same mass coordinates, and therefore the same length. Now J", , J "
are obtained by splitting the level-1 clones of C, and J[, , J^ by sliding
J", * * 5 ^r' Since splitting and sliding produce quasi-isometric Cantor sets,
C ~ C". This completes the proof of (3.1) and (3.2).

Remark. The proof shows that a measure linear map φ: C —• C, which
is a quasi-isometry onto its image, has image a clone of C, and is the slide
map for some splitting of the clones of C, when C is generic.

4. A nongeneric example

In this section we calculate which affinely generated Cantor sets are quasi-
isometric to an affinely generated Cantor set determined by two level-1 clones
of equal mass, hence equal length. This includes Cantor's middle third set, and
in fact there is precisely one example for each Hausdorff dimension d E (0,1).
The classification is different from the generic case; there are additional quasi-
isometries arising from the symmetry. In the language of §3, TΓ: J# —^W'IS

not injective.

Theorem (4.1). Let C be an affinely generated Cantor set determined
by two ievel-1 clones each of mass 1/2. Let C be another affinely generated
Cantor set with the same Hausdorff dimension as C. The following statements
are equivalent:

(2)G(C) =
(3) Every level-1 clone of C has mass an integral power of 1/2, and 1/2 E

G(C).

Example. Fix a Hausdorff dimension d, and recall the relationship be-
tween mass and length of clones given in §1. It follows that an affinely gener-
ated Cantor set is determined up to quasi-isometry by the Hausdorff dimen-
sion, and the masses of the level-1 clones taken in order from left to right on
the line. Suppressing the Hausdorff dimension and denoting such a Cantor
set by the n-tuple of level-1 clone masses, the above theorem gives:

(\\ (k I\ ~ (I I I I\
I V V 2 ' 2 / — V 8 ' 4 ' 8 ' 2 / '

(») ( U ) ^ ( i U ) because HG(ϋ4)
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The Cantor sets in (i) are not equivalent under splitting and sliding. To

prove this, observe that sliding may be ignored using this notation. Given

a q-tuple a = ( 2 ~ n i , , 2~n*) determining an affinely generated Cantor set

G, let m = min{2~ n i, , 2~n*} and define M(α) to be 0 if every maximal

consecutive sequence 2~ n i , 2~ n i + 1 , 2~ n i + 2 , ,2~~nt+J, each term of which is

equal to m, has an even number of terms in it, i.e. J Ξ I mod 2. Otherwise

define M(α) = 1. If an r-tuple β is obtained by splitting α, then it follows by

a simple combinatorial argument that M(a) = M(β). Now M ( ^ , | ) = 0 and

M ( | , | , | , | ) = 1, therefore ( | , | ) and ( | , | , | , | ) are not equivalent under

splitting.

The level-p clones in a Cantor set are obtained by splitting once each level-

(p — 1) clone. However, since the clone structure is not unique, this produces

a rather arbitrary decomposition. A geometrically more natural procedure is

to split the largest clones. This gives rise to an operation called rolling, which

for simplicity we will describe only for those Cantor sets all of whose clones

have mass a power of 1/2.

Definition. Let C be an affinely generated Cantor set with level-1 clones

J i , >Λ> a n d suppose that μc{Ji) = 2~ n i for some Ui E N. The rollΛ

clones of C are J i , , Jq. The roll-n clones of C are obtained from the

roll-(n — 1) clones by splitting once those roll-(n — 1) clones with mass 2 1 ~ n .

Let M = max{ni, , nq} — 1; then the mass of every roll-n clone is 2~p for

some p G N depending on the clone, with n < p < n + M. This is proved by

induction on n. A gap, G, of C is a roll-n gap if it first appears at roll-n, i.e., G

is a complementary component of the roll-n clones, but not of the roll-(n — 1)

clones. A roll-n gap G is contained in a unique roll-(n — 1) clone, A, of mass

2 1" 7 1, and G has level-1 relative to A. If d is the Hausdorff dimension of C and

ad = 2, then |Λ| = α 1 " n . Thus L < \G\an-1 < 1 where L = min{|G|: G is a

level-1 gap of C}. Thus every roll-n gap has length within a bound multiple,

independent of the gap or n, of oΓn.

Proof of (4.1). (3) => (1) Define φ: C1 —> C to be the unique measure

preserving continuous map. Extend φ affinely across the gaps of C"; we will

show that φ is a quasi-isometry. Let G' be a roll-n gap of C and set G — φ(Gf).

Then the mass coordinate of Gf and of G is p2~( n + M ) for some peN. This

is because the mass of a roll-n clone is an integral multiple of 2 ~ ( n + M ) . It

follows that G is a roll-fc gap of C for some k < n + M. Hence |G' | \G\-χ <

oΓn jLa~^n^M^ = aML~ι where L is the length of the unique level-1 gap

of C. Thus φ'1 is Lipschitz. To see that φ is Lipschitz, let G be a roll-A:

gap of C and G1 = 0" 1(G f) T n e m a s s coordinate of G and of G' is p2~fc for

some p G N, because the mass of every roll-fc (=level-fc) clone of G is 2~k. At
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roll-(fc — M) of C", every clone has mass 2~r for some k — M<r<k. At roll-
(k - M + aM) of C", α G N, every roll-(fc - M) clone of C has gaps dividing
it into 2α co-gaps of equal mass, although there may be additional gaps as
well. This means that at roll-(fc - M + M 2) every roll-(fc - M) clone of C
has gaps dividing it into 2 M co-gaps of equal mass. Therefore there is a gap
G" with mass coordinate p2~k, and G" has appeared by roll-(A; — M + M 2 ).
Thus G' = G", and

where 1/ = min{|iί|: H is a level-1 gap of C"}. Hence φ is Lipschitz, and 0
is a quasi-isometry, proving (3) => (1).

Next we prove (1) => (3). If C ~ C", then by the corollary to (2.1) there is a
measure linear quasi-isometry φ: C -+ C, not necessarily surjective. If x is a
local similarity point of C" then by Corollary 1 to (2.4), φx is a local similarity
point of C" and S(x) = S(φx). By the corollary to (2.3), there is a clone map of
C with Radon-Nikodym derivative [S'(x)]n for some n G N. The level-1 clone
maps of C both have Radon-Nikodym derivative 2, therefore every clone map
of C has derivative an integral power of 2. Thus S(x) = 2r for some r e Q. It
follows that every clone map of C has Radon-Nikodym derivative a rational
power of 2. Let the level-1 clone maps of C be τ[: J[ —• [0,1] for 1 < i < q.
Then {dτ'Jdμc)-1 = μc{Jl) = 2~r' for some r< € Q and ^ ? = 1 2"r* = 1. It
follows that ΓjGN.

Now </>(C") = A is a co-gap of C, and is therefore a union of level-p clones
of C for p large enough. So μc(^4) = ra2~p where m is the number of level-p
clones in A. φ is measure linear, therefore there are gaps in C" dividing C
into m co-gaps of mass m~ι. Since every level-1 clone of C has mass an
integral power of 1/2, G[C') C Z[l/2], so m " 1 G Z[l/2] and m = 2a for some
α G N. Thus 1/2 G G{C), proving (1) =» (3).

To show (3) => (2) is trivial.

Finally to show (2) =» (3), observe that G(C) = [0,1] Π Z[l/2]. Let A'
be a clone of C. Then μcO4') G Z[l/2], and μc{A') = q2~p for some
p, g G N, with ^ odd. Let x be the leftmost point of A7, yGA' the point with
μc([z>2/]) = 2~p, and σ: A' —* C" the clone map. Then μc'M^S/]) = g"1.
Since σ([x,y]) is a co-gap of C", q~ι G Z[l/2] and ς = 1. Hence the mass of
every clone of C is an integral power of 1/2.

Remark. In the generic case, and for the examples of this section, the gap
invariant is a complete invariant of quasi-isometry classes of affinely generated
Cantor sets. However, it is not yet known if the gap invariant is a quasi-
isometry invariant for all affinely generated Cantor sets. It is not a complete
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invariant, for example writing (6 x | ) for ( | , | , | , | , | , ±), C = (6 x ^) φ
(12 x ^ ) = C", although both have gap invariant [0,1] Π Z[l/6]. This is
because if x is the leftmost point of C" then S(x) = \Ί~q for some gGQ, but
if y is a local similarity point of C then 5(2/) = 6~r for some r € Q. Now
12~ς = 6~r is impossible for r, # nonzero rationale. So by Corollary 2 of (2.4),
CφC.
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