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THE LOW-DIMENSIONAL METRIC FOLIATIONS
OF EUCLIDEAN SPHERES

DETLEF GROMOLL & KARSTEN GROVE

A metric foliation of a Riemannian manifold is a smooth partition into
lower dimensional submanifolds which are locally everywhere equidistant, like
for example, orbits of an isometric group action, or "parallel" hypersurfaces.
In a general setting one has to allow singular focal leaves, but we will only
consider the nonsingular case here. The leaves of a metric foliation are locally
given as fibers of a Riemannian submersion which projects the induced metric
of the normal bundle along the leaves isometrically to a metric on the quotient
manifold. Although we are basically just dealing with Riemannian foliations
for which the fixed metric is bundlelike [15], understanding the structure of
metric foliations is primarily a problem in differential geometry that has a sig-
nificant local component. Traditionally, in foliation theory only a transversal
Riemannian structure is considered to be given on the ambient manifold.

Riemannian submersions satisfy highly overdetermined equations, and they
do not exist for generic metrics, except with fibers of codimension 1. On the
other hand, many important metrics, including in particular homogeneous
metrics, admit an abundance of (usually nonhomogeneous) local Riemannian
submersions with certain fiber dimensions, and sometimes, as in the case of
constant curvature, with arbitrary fiber dimension. This makes the study of
metric foliations in space forms especially attractive. Surprisingly enough,
very little was known until recently.

In [6], we began a systematic investigation of fc-dimensional metric folia-
tions ̂ k in a constant curvature space Q™^~k, and we gave a complete analysis
in the case fc = 1. Here we continue this program and consider higher dimen-
sional foliations. The general situation is quite complex, in particular locally.
The global behavior of ̂  depends critically on the sign of the curvature c.
Our main result (Theorem 5.3) is concerned with spherical space forms. We
classify the metric foliations 9Γk of the Euclidean sphere 5 n + / c for k < 3. They
are all homogeneous, and moreover orbit foliations arising from a locally free
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orthogonal action of a Λ -dimensional simply connected Lie group. The latter
cannot occur whenever k > 3. The 1-dimensional metric foliations correspond
to nonvanishing Killing fields on odd dimensional spheres, 2-dimensional met-
ric foliations do not exist, and there are finitely many 3-dimensional metric
foliations on the spheres S4ί+3. As a consequence we obtain that the Hopf
fibrations are metrically rigid, i.e., they are the only Riemannian submersions
of a Euclidean sphere, except possibly for S15 —• M 8 . This has an important
application in the context of [7] and [3]. When all fibers are assumed to be
totally geodesic, the last result was proved in [4] (cf. also [14] and [18]). Such
foliations are in fact already locally rigid, which can be seen most easily by
observing that reflections in leaves induce local isometric reflections in points
on the base.

We should mention that complete metric foliations tend to have strong
rigidity properties if the ambient space has nonnegative curvature, but this
is not so in case of negative curvature (cf. [6]). We finally point out another
intriguing aspect of this work which emerged already in [6]. We had called
a metric foliation in a space of constant curvature isoparametric if the mean
curvature form of the leaves is basic, or equivalently, if all principal curvatures
with respect to basic normal fields are locally constant along leaves. This no-
tion is considerably more general than that used in the beautiful work on
Terng, Hsiang and Palais [17], [9] which in our terminology deals with com-
plete flat metric foliations in Euclidean spaces. Such foliations are essentially
always singular. All complete metric foliations in space forms of positive or
zero curvature turn out to be isoparametric. Further discussions including
local considerations will be contained in [8].

1. The basic geometry of J7~

For some facts about Riemannian submersions which will be used freely
throughout this paper we refer to [13] (cf. also [6]). The discussion in this sec-
tion is not restricted to constant curvature spaces Q unless otherwise stated.
The foliation & defines an orthogonal splitting TQ = Δ υ θ Δ / ι of the tangent
bundle of Q, where Av is the "vertical" tangent bundle along the leaves. We
have a corresponding decomposition

of all vector fields on an open subset U of Q. Whenever the restriction of
SF to U is given by a Riemannian submersion π : U —• M, we consider the
subspace

93 cXh
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of basic fields, i.e., horizontal π-related lifts of fields on M, so 03 is canonically

isomorphic to XM> We always use T to denote vertical fields, and X, Y, Z to

denote basic fields on U related to X, Y, Z on M. Observe that in general

(1.1) [03,3T]c3Γ,

since [X,T]h = 0, or equivalent^ LXT = [X,T\ e X?. Of course, Xv is a Lie

subalgebra of Xu, whereas Xh or 03 are typically not subalgebras.

The integrability tensor A of the horizontal bundle Ah is the skew 2-form

on &h with values in Δ υ , given by

where V is the standard Riemannian connection of Q. The foliation is flat

if A = 0, or equivalently if 03, Xh are subalgebras, i.e., Ah is integrable.

Consider the subspace of integrability fields

sz car

spanned by all fields AxY on [/, and the subalgebra [«$/] of 3^ generated by

sf. Note that for any leaf W in U, the restriction S$w oϊsrftoW is finite

dimensional, in fact

0<

The restriction [j/]w = [Mv] is usually infinite dimensional; we refer to it as

the holonomy algebra of W.

It follows from (1.1) that

(1.3) VTX = VXT = -A*XT,

where A*x is the (pointwise) adjoint of the transformation Ax. The curvature

tensors of M and U always satisfy the relation

(1.4) (RM - Rh)(X, K, Z) - A*xAγZ - A*γAχZ - 2A*ZAXY.

In the case of constant curvature, R(X, Y)Z = c((Y, Z)X - (X, Z)Y) is basic,

and so is therefore the right-hand side of (1.4). In particular, A*xAχY is

basic, hence (AχY,AχZ) is constant along leaves,

(1.5) T(AχY,AxZ)=Q.

The second fundamental form S of SF is the horizontal 1-form on Δh with

values in self adjoint transformations of Δ υ ,

(1.6)
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The mean curvature form is the horizontal 1-form /c on Q,

(1.7) «(£/) =

2. Holonomy algebras of substantial foliations

In this section we show that the space of integrability fields s/\y coincides

with the holonomy algebra [Mv] provided the foliation & is highly nonflat.

Fix a connected open set U on which & is given by a submersion, as in

§1. Let us call T1,T2e3cv congruent modulo s/ifT2-T1es/.ln this case

we write 7\ ~ T 2 .

We begin with a general observation. For any X,Y,Z E*B,

(2.i) LχAYz = \[x, [Y, zγγ = VXAYZ + SXAYZ,

using (1.1), (1.2), and (1.6). Thus by the Jacobi identity,

(2.2) ZVχAγZ + ίSxAγZ = lLxAγZ = -UX[Y, Z]h - 0,

where C denotes cyclic summation. Equality holds everywhere if X, Y, Z com-

mute mutually on the local quotient. We now restrict attention to the case of

constant curvature.

Lemma 2.3. For all fields X,Y,Z G 35,

VχAγZ - VYAXZ - -2SZAXY.

υ v v v v h v

Proof. From VχAγZ = VxVγZ = VχVγZ - Vχ¥γZ = VxVγZ -

AXVYZ and RV(X, Y)Z = 0we obtain

VXAYZ - VYAXZ = V[XΎ]Z - AXVYZ + AYVXZ

= V[XΎ]VZ + V[XΎ]hZ - AXVYZ + AYVXZ.

Hence,

(2.4) VXAYZ - VYAXZ = -2SZAXY + A[XΎ]hZ - AXVYZ + AγVXZ.

Lemma 2.5. For all fields X,Y,Z E 33,

VzAxY - SZAXY - SχAvZ - SYAZX.

In particular,

VχAxY ~ 2SχAxY.
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Proof. Applying (2.2) and (2.4) to the identity

V
Z
AχY = ZVχA

Y
Z - {VχA

Y
Z - VγA

X
Z)

yields

(2.6) VZAXY = SzAχY - SXAYZ - SYAZX + AXVZY - AγVZX.

For future reference we note

(2.7) LZAXY ~ 2SZAXY - SXAYZ - SYAZX,

as an immediate consequence of (2.1) and (2.5).

If X is the tangent field of a horizontal geodesic 7, and Y is horizontally

parallel along 7, then we conclude from (2.6),
V

(2.8) VχAxY = 2SXAXY.

In particular, the kernel of Ax is horizontally parallel, and Ax has constant

rank along 7.

Corollary 2.9. For all X,Y,Z e 33, (SXAXY,AXZ) is constant along

leaves.

Proof. Using (2.6), we obtain

2(SχAxY, AXY) = ±X\\AXY\\2 - (AχVxY,AχY) - (AYVXX,AYX),

which is constant along leaves by (1.5). The claim follows by polarization.

We call & substantial along a leaf ^ if Ax maps Ah onto Av for some

normal vector X (and thus for an open dense subset of normal vectors) at

some point q E ^ , or equivalently, if A*x is injective. This condition is

independent of g, since the dimension of the kernel of Az is constant for

local basic fields Z, by (1.5). It follows then from (2.8) (applied to broken

horizontal geodesies) that A is substantial along all leaves in an open dense

subset, since Q is connected.

Lemma 2.10. If SF is substantial along all leaves in U, then

SχAχY~0 forX,Ye<B.

Proof We show that SχAxY\W e Mv for any leaf W in U. It suffices

to assume Ax is onto along W. Then using (1.5) and Corollary 2.9, we

find Yi, ,Yife € 33 such that AχYi, ,AχYk are orthonormal fields of

eigenvectors for Sx with constant eigenvalues λi, ,λfc along W. Thus

SχAxY = AXZ along W for some Z e 33.

Remark 2.11. The proof of Lemma 2.10 has another interesting conse-

quence: If ̂  is substantial along some leaf, then the principal curvatures of

S are constant for all (local) basic X along any leaf, i.e., & is isoparametric.
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Lemma 2.12. Suppose £F is substantial along all leaves in U. Then

LXAYZ ~ 0 for X,Y,Ze S3.

Proof. According to (2.7) and Lemma 2.10 we have LxAxY ~ 3SχAχY
~ 0, and L,χAγZ is skew symmetric in all three arguments, up to congru-
ence. Therefore, LxAγZ ~ LyAzX ~ LzAxY, and hence 0 ~ ZL,χAγZ ~
3LxAγZ by (2.2). This completes the proof.

Proposition 2.13. Suppose ^ is substantial along all leaves W in U.

Then S/ = [sf] and thus $fw = Ww] are Lie algebras, k < dimJ^v < (£) .

Furthermore, stf Θ 93 is a Lie algebra containing srf as an ideal.

Proof. Let T G sf and X, Y G 23. Then

[] [] [ ] / ι T = \Lχ, Lγ]T - L[χtγ]hT,

and all assertions follow immediately from Lemma 2.12.

3. Local homogeneity aspects

The foliation & is called homogeneous if there is an isometric group action
on Q preserving & such that the isotropy group of each leaf ^ is transitive
on ^v (cf. also [12] in this context). If near any point we only have such
actions by local groups of isometries, we say 9F is locally homogeneous.

In this section, we will show that low dimensional substantial foliations in
space forms are locally homogeneous in a strong sense. Let us restrict &
again to a suitable open set U as before. In the next three lemmas we assume
that & is substantial along a leaf W in U and dimty = k < 3.

Lemma 3.1. Let TUT2 G stfw. Then (TUT2) is constant on W. In
particular, άimJ^w = k.

Proof. It suffices to prove

(3.2) \AXY,AZV) is constant on W,

for arbitrary X, F, Z, V G 03.
We only have to consider the cases k = 2 and k = 3, which we treat

simultaneously. First suppose, H is a subspace of basic fields along W, 3 <
dimH = ra + l < 4 , m = 2 only when k = 2 and n = 3, such that for some
Xo G H, the vectors Aχ0Y, Y G i/, span Av at some point, and thus along
W by (1.5). Then (3.2) holds for all X,Y,Z,V G H. To see this, choose
independent X\ G H, 0 < I < m, with AXoXι orthonormal for 1 < I < k. We
are done if we show (Aχ.Xj,Aχ0Xι) is constant for 0 < i < j < m, 1 < I < k,
observing the skew symmetry of A. But by (1.5), the last claim follows for
i = 0, or i = /, or j — I. The remaining cases are then obtained using that
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Aχ.Xj has constant length. Since A is substantial along W, a straightforward

limiting argument now yields (3.2) for arbitrary X, Y,Z,VE *B.

According to Proposition 2.13 and Lemma 3.1, S?w is a fc-dimensional Lie

algebra of vector fields, usually not Killing. However, we can construct local

isometries of W by changing the local action of the corresponding Lie group

from "left" to "right".

L e m m a 3.3. For each p € W there is an open neighborhood Ω in W

and a unique k-dimensional Lie algebra 3fς\ of Killing fields on Ω such that

[%Ω, &Ω] = 0. The associated local isometric Lie group action is free.

Proof Consider the local Lie group G of local diffeomorphisms of W near

p, generated by £fw By Lemma 3.1, we can choose an open neighborhood

(9 of the identity in G such that the left action P : 0 -> W, P{g) = g(p),

maps 0 diffeomorphically onto the orbit P(0) = Ω. The induced Lie algebra

isomorphism P* : X& —• XQ carries the subalgebra of right invariant fields

31 ff onto stfςi. Let Jz^ denote the left invariant fields, and set J£ς\ = P*«2^>.

Clearly, the algebras 3Hςι and <2/Q commute. Since $/& contains a basis of

pointwise orthonormal fields according to (1.5), it follows that each T G 3fa

is a Killing field. The remaining assertions are straightforward.

Our next step is to extend the fields Jfa of Lemma 3.3 to Killing fields near

Ω in U.

L e m m a 3.4. Let Ω be as in Lemma 3.3 and U a tubular neighborhood of

Ω in Q. Then J?Ω extends to a unique algebra 3? of {vertical) Killing fields

on U such that 3Z\w = Jfai for each substantial leaf Ω' in U. In particular,

& restricted to U is locally homogeneous.

Proof. Let h be a local isometry in Ω generated by some field in J?Ω.

Extend h to an orthogonal isomorphism H of normal bundles along Ω in Q,

Bott parallel, i.e. HX = X o h for X e 03.

We claim that H preserves the normal connection and the second funda-

mental form. Let T e J / , X e 33. Then VTX = -A*XT G 55 by (1.3)

and Lemma 3.1, and ΛΦΓ = T o h by Lemma 3.3. Now the first assertion is

obtained from the following calculation along ft:

VTHX = VTX o ft = VhmTX = VτohX

= -{A*XT) o ft = -HA*XT = HVTX.

To prove the second assertion, observe in addition 5 χ j / C J/, in view of

Lemmas 2.10 and 3.1. Thus

KSXT = {SXT) o ft = SXohT oh = SHχh*T.
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Now we can apply the Fundamental Theorem for submanifolds (cf. [16]
for example). It follows that h extends to a local isometry in U given by
expΩ oH o exp^1, where expΩ is the normal exponential map of Ω in U. By
construction, these extensions preserve the leaves in U and define the algebra
3? uniquely.

Since the substantial leaves form an open and dense subset of Q, the fol-
lowing conclusion is an immediate consequence of the results in this section.

Proposition 3.5. Suppose ^ is substantial along some leaf, d i m ^ < 3.
Then &" is locally homogeneous and in fact everywhere given by (local) free
isometric group actions.

4. Restrictions in the complete case

The main purpose of this section is to show that in a complete space Qc

with c > 0 a (nonsingular) metric foliation <!^~k, k < 3, is substantial. In
general, there is no such restriction for c < 0.

We begin with some simple remarks concerning holonomy. Recall that since
& is locally described in terms of Riemannian submersions, any piecewise
differentiable horizontal curve 7 : [α, b] —• Q extends to a unique family of
nearby horizontal curves with same projection in local quotients. This way, 7
gives rise to a diffeomorphism hΊ of a neighborhood of η(a) in the leaf «^(α)
onto a neighborhood of 7(6) in < (̂&), the "holonomy displacement" along 7.
In particular, let 7 be the restriction of a unit speed geodesic ηx to [0, ί],
7x = X, and hx = hΊ. Then the differential of hι is given by the Jacobi fields
T along 7 in Q,

(4.1) hlTo = T(t) with Γ(0) = To, Γ'(0) - -SχT0 - A*XTQ.

For the last equality we have used (1.3) and (1.6).
Being a local diffeomorphism, the differential h7 of any holonomy displace-

ment hΊ is always nonsingular. Therefore, the Jacobi fields in (4.1) have no
zeros unless they vanish identically. In the remaining part of this section, SF
will always be a (nonsingular) metric foliation of a complete Qc. In this case
we can immediately draw the following conclusion from the above.

Lemma 4.2. // SXTO = λT0, To φ 0, and λ2 + c> 0, then A*XTO φ 0.
This lemma shows that the integrability tensor A is nontrivial everywhere

for c > 0, and also for c = 0 unless & is locally congruent to the product
foliation RΛ x R n (cf. also [6], [8]). Moreover Lemma 4.2 is also the key to
our crucial

Proposition 4.3. Let & be a k-dimensional metric foliation of a com-
plete <2c+n If c > 0 and k < 3, then A is substantial along all leaves.
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Proof. By passing to the universal cover we can assume, after rescaling

the metric, that Q = Sk+n. First observe that h + n must be odd, since the

tangent bundle of an even-dimensional sphere cannot split. Now fix a point

If the linear map X —» Sx has a nontrivial kernel, the claim follows from

Lemma 4.2. Therefore, we assume that S is injective, so in particular n <

fc(fc + l)/2, and it remains to discuss the cases when (fc, n) is one of the pairs

(2,3), (3,6), (3,4), (2,1), (3,2). Although we have to deal with each situation

individually, the arguments will always use Lemma 4.2 in an essential way.

In the first three cases we will make use of the following general facts.

Consider for T G ΔJJ = Rfc the skew symmetric transformation AT of Δ£ =

R n defined by

ATX = A*XT.

Then we have for T φ 0,

(4.4) rkAτ>n-k.

In particular, whenever n > fc,

(4.5) dimE = fc, E = im(T -> Aτ).

We note that (4.5) is equivalent to saying that Δ£ is spanned by all vectors

AχY> To prove (4.4), suppose rk AT < n —fc, or equivalently, dimker Aτ0 > fc

for some To φ 0. Since the space of selfadjoint transformations of Δ£ with

eigenvector To has codimension fc — 1, we find 0 φ XQ G kerAτ0 such that To

is an eigenvector of Sχ0, contradicting Lemma 4.2.

Assume now that A is not substantial along SFV. This means E in (4.5) is

an annihilator space of Δ£ = R n , i.e. for any x G R n there exists 0 φ a G E

with ax = 0. However, by Lemma 4.2, no x φ 0 is annihilated by all of E.

Therefore,

(4.6) 1 < dim{α G E\ax = 0} < fc

for all xφO.

Let fc = 2 and n = 3. The claim follows from (4.5), since clearly no proper

subspace of the skew symmetric transformations of R 3 annihilates R 3 .

Now let fc = 3 and n = 6. By (4.4), dimkerα < 2 for all 0 φ a G E.

Therefore E cannot annihilate R 6 for dimension reasons, since dim E = 3.

In the tightest case fc = 3 and n — 4, we proceed as follows. Again by

(4.4), rkα > 2 for all 0 / α G E. Let a denote the 2-form on R 4 associated

to a. Note that rkα = 2 iff a Λ a = 0. Suppose first that there exists αo G E

which is invertible, i.e., the quadratic form / on E, f(a) — άΛά, is nontrivial.

Therefore, /~1(0) is a cone in E over a manifold of dimension < 1. We
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conclude that f~λ(0) and thus E can only annihilate a set of dimension < 3
in R 4. It remains to show / = 0 is impossible under our assumptions. In that
situation, all a are decomposable and a A b = 0 for α, b G E. Hence α, b have
a common factor, i.e., α = /)Λα, b = p A β. Now choose a basis αi, a<ι, as of
E and write

αi = εo Λ εi, 02 = ε0 Λ ε2,

with independent 1-forms εo, εi, ε2 on R4. Suppose, as is not contained in the
span of Ei A Sj, 0 < i < j < 2. Then we find εs such that as — (siεo -(- t\S\) A
£3 = («2^o + £2̂ 2) Λ εβ. We conclude s\ — s<ι = s, ί2 = ί2 = 0. But then
^3 = sεo A ε3, and no 0 φ a G E annihilates the vector eo of the dual basis
eo?ei,e2>£3 °f R 4 Otherwise, choose any ε3 independent of εo,εi,ε2 Now
E annihilates β3, contradicting (4.6). In the latter situation, E is essentially
the space of all skew symmetric transformations of a 3-dimensional subspace
ofR4.

The last two cases (2,1), (3,2) actually do not occur, as a consequence of
the next general result.

Theorem 4.7. There are no metric foliations of Qc~l~n for c > 0 with
codimension n<2, except when k = 1 and n = 2.

Proof. By Lemma 4.2, this is immediately clear in the flat case, i.e. A = 0,
so in particular for n = 1. Actually, all of Theorem 4.7 is a consequence of
a general result on Riemannian foliations (cf. [11]). In the remaining case of
interest to us here, k = 3 and n = 2, we give a simple direct proof. Fix a
point p. All vectors AxY form a 1-dimensional subspace of Δ£. By Lemma
4.2, it suffices to find Xo φ 0 so that Sχ0 has an eigenvector perpendicular to
the image of A. But this follows from the claim that given any 2-dimensional
subspace E of all symmetric 3 x 3 matrices and any plane H through 0 in R3,
there exists So G E* = E\0 having an eigenvector in H. If not, all S in E*
must have distinct eigenvalues λi < λ2 < λ3, which are continuous functions
and define a continuous frame field of corresponding eigenvectors ei,e2,β3
on E* in a fixed open half-space with boundary H. Now ei(—S) = es(S),
e2(—S) = e2(5), es{—S) = eι(S). This is impossible βince β3,e2,ei and
βi,β2,β3 represent opposite orientations, and E* is connected.

5. Global conclusions

Recall that a simply connected space Qk

c

 + n admits an isometric immersion
into Mc, the complete simply connected (k + n)-dimensional space with con-
stant curvature c. This "developing map" is unique up to congruence. Any
connected Lie subgroup G of the isometry group Ic of Mc gives rise to the
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metric orbit foliation ^Q of the open dense subset of points whose isotropy

groups have minimal dimension. We can now globalize Proposition 3.5.

Theorem 5.1. Let ^ be a k-dimensional metric foliation of a simply

connected Qc, k < 3. Suppose &~ is substantial along some leaf Then there

exists a connected k-dimensional Lie subgroup G of Ic, acting locally freely on

^G, such that ^ is the pullback of ^Q under the developing map. Thus if Q

is complete, i.e. Qc ~ Mc, then G acts locally freely everywhere.

Proof. This is again a straightforward application of our discussion in

§3. In particular, we can make use of monodromy based on the uniqueness

statement in Lemma 3.4. Observe that any local Killing field in Mc has a

global extension.

As an immediate consequence of Proposition 4.3 and Theorem 5.1 we have

Corollary 5.2. Any metric foliation ,9Γk of the Euclidean sphere Sn+k

is homogeneous for k < 3. In fact, ^ is the orbit foliation ^Q °f a connected

k-dimensional Lie subgroup G of SO(n + k + 1).

We now discuss the classification of the foliations ^ k in Corollary 5.2. If

k = 1, the universal cover G 2̂  R is the one-parameter subgroup generated by

a nowhere vanishing Killing field. This result was already obtained in [6]. Such

foliations exist precisely for even n. Up to congruence, they are completely

described by diagonalizing the action of R on R n + 2 ~ C s as the direct sum

e2πtθit 0 . . . 0 e2πιθst of i r r educible 2-dimensional representations such that

0 < θι < - < θs = 1. Note that there are always at least s = n/2 + 1

compact leaves which are great circles. All orbits are compact iff all 0's are

rational, i.e., & is given by a circle action. Among these Seifert fibrations

only one is an actual fibration. This is the Hopf fibration corresponding to

θλ = = θs = 1.

For k > 1 it is known in general that Riemannian foliations ^ k of a simply

connected rational homology sphere have only compact leaves, and the generic

leaf is an odd-dimensional rational homology sphere [5]. In our situation we

can give a complete metric classification. First recall that there is no locally

free isometric Reaction on a Euclidean sphere. (This follows directly by

diagonalization.) Now let k — 2. Since a 2-dimensional Lie subalgebra of

the orthogonal algebra is necessarily abelian, we conclude that 2-dimensional

metric foliations of Euclidean spheres do not exist. This is actually true in

simply connected rational homology spheres [5].

The last argument also shows that in the case k — 3, G must be a compact

Lie group of rank 1. Thus G ~ 5?7(2), and as in the one-dimensional situation,

our classification is carried out via representation theory. We refer to [1] and

[10] for some well-known results and add brief comments on some facts which

may not be so explicit in the literature.
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The action of G decomposes as an orthogonal direct sum φ\ Θ 0 φ8 of
real irreducible representations φ of SU(2) on linear subspaces E in R n + f c + 1 .
In our situation, each φ must induce a locally free action on the unit sphere
in E. If an irreducible orthogonal representation is not already unitary for
some complex structure, then its complexification is an irreducible unitary
representation.

The nontrivial irreducible unitary representations of SU(2) are exactly the
symmetric powers p m of the standard action p of SU(2) on C 2 for arbitrary
m > 1. Explicitly, let Vm denote the space of homogeneous polynomials p of
degree m in two complex variables,

p(zuz2) = }^arz
r

1zψ-r.
r=0

Then pm is the representation on Vm induced by the canonical action of SU(2)
on the domain C 2 ~ V\. If a real structure, i.e., a complex conjugate linear
automorphism ^ of Vm with β"1 = id, commutes with the action p m , it
follows easily that

<¥Vτ = (—l)m~rω;Pm-r5

on the basis of monomials pr = z\zm~r, 0 < r < m, for some fixed unimod-
ular ω. Therefore, ρm is the complexification of an irreducible orthogonal
representation iff m is even. The maximal torus

T = ( e ί t Q e-ue)=S1cSU(2),

and then also SU(2), acts locally freely on Vm iff m is odd, as can be seen by a
direct computation. Moreover, in this case, the principal orbit is SU(2) ~ 5 3 ;
points in SU(2) pr have nontrivial isotropy groups, which are cyclic of order
m — 2r, 0 < 2r < m — 1. In fact, all isotropy groups are cyclic. There are no
totally geodesic orbits for m > 1, since pm is irreducible.

We conclude from the above that metric foliations 3r3 of Sn+3 exist pre-
cisely when n = 41. In any given dimension 4/ -I- 3, these foliations are, up to
congruence, in one-to-one correspondence with direct sums pmι θ Θ pm3

of complex irreducible representations of SU(2) such that mσ is odd and
1 < πii < < ras, mi + +ra s = 2(1+1) —s. All J?~3 are generalized Seifert
fibrations without totally geodesic leaves iff all mσ > 1. Only one is an actual
fibration. This is the Hopf fibration corresponding to m\ = = m/+i = 1.

We summarize our last results:

Theorem 5.3. Let ^ k be a metric foliation of the Euclidean sphere
gn-\-k rpjιen^ Up IQ congruence'.
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(i) Any ,9rl is given uniquely by a direct sum of rotations

JL-κiθxt φ . . . φ e2πiθst

where n = 2s - 1 and 0 < θx < < θs = 1.

(ii) No ^ 2 exists.

(iii) Any ^ 3 is given uniquely by a direct sum of irreducible unitary rep-

resentations pmι Θ Θ pms of SU(2), where all mσ are odd, n - 4/ and

1 < mi < < m β , mi + + m θ = 2(/ + 1) - s.

Topologically any fibration of a homotopy sphere 5 m must have fibers

whose homotopy type is SX,S3, or S7 [2]. The last case is only possible for

m = 15.

Corollary 5.4. Any Riemannian fibration Sn+k —• Mn of a Euclidean

sphere is congruent to a Hopf fibration, except possibly Slδ —• M 8 .
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