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EUCLIDEAN DECOMPOSITIONS
OF NONCOMPACT HYPERBOLIC MANIFOLDS

D. B. A. EPSTEIN & R. C. PENNER

In this paper, we introduce a method for dividing up a noncompact
hyperbolic manifold of finite volume into canonical Euclidean pieces. The
construction first arose in the setting of surfaces (see [7]), and in this case one
gets a canonical cell decomposition of the surface and a canonical Euclidean
structure. (The Euclidean structure, of course, is not complete.) The conformal
structure underlying this Euclidean structure does not agree with the underly-
ing hyperbolic structure, but the two conformal structures are probably not too
distant (cf. Sullivan's theorem [5] for an analogous result).

This investigation arose from an attempt to understand the coordinates and
cell decomposition of Teichmϋller space due to Harer and Mumford [6] and
independently to Thurston. Such coordinates and cell decompositions are also
provided in [3] and [7]; in the latter, the action of the mapping class group on
the coordinates is considered. We would like to thank J. Harer for the
inspiration of his work and for several helpful remarks.

Our method is to work in Minkowski space and to represent a cusp by a
point on the light-cone. The orbit of this point turns out to be discrete (even
though the action of the group on the light-cone is ergodic), and we take the
convex hull of the orbit. The boundary of this convex hull is decomposed into
affine pieces, and one should think of the convex hull boundary as a kind of
piecewise linear approximation to the upper sheet of the hyperboloid in
Minkowski space. Each piece has a natural Euclidean structure. The suggestion
that this might be possible first arose in a conversation between the authors
and Lee Mosher. We thank Mosher for his contribution to this crucial idea.
Comments by Brian Bowditch have also been helpful on a number of occa-
sions. As a final credit, we wish to thank Bill Thurston. Much of this work as
been discussed at various points with him, and the exposition has gained
substantially from his comments.
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There are a large number of interesting problems and applications which
arise from our work. Some of these are explored in [7].

1. Minkowski space and the hyperboloid model

Let V be a real vector space of dimension (n 4- 1) with a nondegenerate
quadratic form ( , •) of type (/ι, 1), i.e., there is a positive definite subspace
of dimension n and a negative definite subspace of dimension 1. All such
quadratic forms are equivalent, and we can choose a basis (e0, el9- * s O with
(ei9 βj) = 0 if i Φj, (e0, e0) = -1, and (ei9 et) = 1 if i > 1. The correspond-
ing metric on V admits an expression

ds2 = -dx\ 4- dx\ 4- +dx2

n,

and we define Minkowski space Mn + ι to be V equipped with this metric.
If S is an affine subspace of Mn+ι of codimension 1, then the restriction of

the metric on Mn+ι to S may be positive definite, singular, or of type
(n — 1,1). If we write

S = [X<E Mn+ιm: (x,s) = λ } ,

where 0 Φ s E: Mn+ι and λ e R , then these cases correspond to (s,s) < 0,
(s, s) = 0, and (s,s) > 0, respectively. In the positive definite case, S has an
induced Euclidean structure, and we can speak of Euclidean distances between
points of 5, and so on.

The hyperboloid

{VΪΞ V: (v,v) = - 1 } = {xeλfn + ι: -x2

0 + x \ + ••• + * £ = - l }

has two components. The upper sheet, where x0 > 1, is a model for hyperbolic
/7-space 1HΓ. The form of the metric on Λfπ+1, restricted to a tangent space of
the hyperboloid, is positive definite, and the hyperboloid inherits the structure
of a Riemannian manifold. An isometry of the upper sheet with the Poincare
disk model of hyperbolic «-space is given by radial projection from (-1,0, , 0)
to the unit disk in the plane x0 = 0. An isometry with the projective or Klein
model is given by radial projection from the origin of Mn+ι to the unit disk in
the plane x0 = 1 with center (1,0,0).

We define the light-cone L of V by

L = { y G V: (υ9υ) = 0} = {x<ΞMn + ι: x2 = x2 + +x2

n)

and the positive light-cone L+ to be the component of L — {0} where x0 > 0.
A ray from the origin in L+ corresponds to a point of S£~ι, the sphere at
infinity of H": the points at infinity can be thought of as the boundary of the
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Poincare disk model (or the boundary of the projective disk model), and radial

projection from (-1,0,- ,0) (or the origin) establishes the correspondence. A

point v e L+ corresponds to a horosphere

{ w e Un\ (w9υ) = -1},

and the corresponding horoball is

{ w e H Λ : 0 > (w,v) > -1}.

The center of the horosphere is the ray through v, and as υ moves away from

the origin along the ray, the horoball contracts towards the center of the

horoball. This bijection between the points of L+ and the set of horoballs

becomes a homeomorphism if we use the geometric topology on the space of

horoballs in IHΓ. In order to avoid the unpleasant features of the geometric

topology on noncompact spaces, we work with closures of horoballs in the

closed unit disk employing the Hausdorff metric on closed subspaces of the

unit disk.

The group of linear isomorphisms of Mn+1 preserving the quadratic form is

the Lie group O(l, n). The subgroup O + ( l , n) of elements preserving the upper

sheet of the hyperboloid has index two in O(l, n) and is equal to the group of

isometries of hyperbolic w-space. O + ( l , n) has two components; the identity

component consists of orientation-preserving isometries of hyperbolic H-space.

Such elements are also characterized by the property that they preserve the

orientation of Mn+1. O(l, n) has four components, SO(1, n) two components,

and SO(1, n) Π O + ( l , n) is the identity component, preserving the sheets and

the orientation. This group is sometimes called the group of Mόbius transfor-

mations of hyperbolic w-space; we denote it by SO+(1, n).

Lemma 1.1. O + ( l , n) acts transitively on L + , and the stabilizer of a point is

noncompact if n ^ 1. The stabilizer of a point of L* under SO+(1, n) is

noncompact ifn^l, and the action is transitive ifn>l.

Proof. Let v0 e L+ be an arbitrary point. Let ^ E L + be chosen so that

vλ is not a scalar multiple of υ0. It follows that v0 + vλ lies inside the

light-cone, so

2<>o> vι) = (vo + vι> vo + vι) < °

Changing υλ by a positive scalar, we may assume that (ι>0>
ϋi) = ~1 The

subspace spanned by v0 and υx has type (1,1) (consider the basis v0 + υl9 v0 —

ϋ1), and its orthogonal complement has type (n — 1,0), with basis (v2, , vn).

Our basis has the following properties:

<S> vo) = (»i> vι) = 0» (vo> vι) = -!» <ϋ, » υj) = 8ij i f iJ > 2
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Any two such bases are equivalent under O(F) = 0(1, n), and, if we insist that

v0 e L + , then any two such basis are equivalent under O + ( l , n). Therefore

O + (l, n) acts transitively on L+.

Let N be the stabilizer of υ0. N is homeomoφhic to the space of special

bases (υ 0, υl9 , υn) with υ0 fixed. The space C of possible choices for υλ is the

positive light-cone surface L+, from which the ray from the origin through v0

has been removed. N fibers over C with fiber O(n - 1), the space of possible

choices for (υ2, , υn), given u0 and vv Since C is contractible, N is

homeomoφhic to C X 0(n - 1). This proves the lemma for O + ( l , n).

The case of SO+(1,«) is identical except that the orientation class of

(υ0, υx, - , υn) is specified. If n > 1, we can ensure that the orientation class is

correct, replacing vn by -υn if necessary, q.e.d.

Hyperbolic (sometimes called loxodromic) transformations of IH n are those

elements of O + ( l , « ) with an eigenvalue λ not lying on the unit circle. It

follows that λ must be real and positive, and the corresponding eigenvector is

unique and lies on L+ . There is exactly one other linearly independent

eigenvector on L + , and the corresponding eigenvalue is λ"1. All other eigenvec-

tors lie outside the light-cone. Parabolic transformations have a unique eigen-

vector (ray) in L+ and no eigenvector in the interior of the light-cone. The ray

in L + is fixed pointwise—the eigenvalue is 1. Elliptic transformations have all

eigenvalues on the unit circle and at least one fixed point in H n. Any element

of O + (l, n) is the identity or is elliptic, parabolic, or hyperbolic.

2. The action of discrete subgroups on the light-cone

If Γ is a discrete subgroup of O + ( l , «), then Γ acts properly discontinuously

on 0-0". Conversely, a group acting properly discontinuously by isometries on

Hn is a discrete subgroup of O + ( l , n). This nice correspondence results from

the fact that the stabilizer in O + (l, n) of a point of D-Dn is compact (isomoφhic

to the orthogonal group O(n)).

In contrast, the action of Γ on L+ is usually not proper.

Theorem 2.1. // Γ \ O + ( l , w ) (or equiυalently Γ \ H " ) has finite volume,

then the action of Γ on L+ is ergodic, with respect to Lebesgue measure on L+.

Remark. Γ does not preserve Lebesgue measure on L + , but it does preserve

the measure class, i.e. the transformed measure has the same sets of measure

zero.

Proof. We need only prove that some subgroup of Γ acts ergodically, so

we may assume that Γ c SO+(1, n). Let TV be the stabilizer in SO + (1, n) of a

point in L + , so that L + = SO + (1, n)/N. We need only show that if Γ acts on
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SO + (1, n) on the left and N acts on the right, then the action of Γ X N on

SO + (1,«) is ergodic. Equivalently, we show that the action of N on

Γ \ SO + (1, n) is ergodic; as before, it suffices to show that some subgroup of

N acts ergodically on Γ \ SO+(1, n). Since Γ \ SO+(1, n) has finite volume by

hypothesis, the result follows upon appealing to [9, p. 19].

Corollary 2.2. // Γ \ Un has finite volume, then almost every point of L +

has a dense T-orbit.

Proof. Let U be a nonempty open subset of L+. The difference L + - TU

then has zero measure. Letting \Ji run over a countable basis of L + , it follows

that

has zero measure. Finally, this is exactly the set of points whose orbits are not

dense.

Theorem 2.3. // Γ is a discrete subgroup of O + ( l , n) and Γ \ O + ( l , n) {or

equivalently Γ\IHΓ) is compact, then the orbit of every point of L+ under Γ is

dense.

Proof. We may assume that Γ preserves orientation. If N is the stabilizer

of a point of L + , then N acts strictly ergodically on Γ \ S O + ( 1 , w) by [4].

q.e.d.

Our basic starting point is the following result, which is somewhat unex-

pected in view of the ergodicity results above.

Theorem 2.4. Let T be a discrete subgroup of O + (l, n) such that for some

point v G L + , the stabilizer of v in Γ is nontrivial. Ifn^A, we also suppose that

Γ \ H " has finite volume and that Γ is finitely generated. Then the orbit of v

under Γ is discrete and is closed in Mn + ι.

Remarks. (1) To say that the orbit is closed in Mn + ι means that it is

closed in L + and does not accumulate at 0.

(2) If p G S£~ι is a parabolic fixed point, then a horoball centered at p is

said to be uniform (with respect to Γ) if yH Π H Φ ψ implies that γ// = H

for γ e Γ . Our proof is based on the existence of uniform horoballs. Apanasov

has examples for n > 4 where uniform horoballs do not exist. These examples

all require an infinite number of generators for Γ. The situation for finitely

generated groups is unknown. With a little care, these examples can be

modified so that the orbit of a parabolic fixed point is not discrete. This

example is explained in the Appendix.

(3) If Γ \ IHΓ has finite volume, then Γ is finitely generated. This result has

been proved by Brian Bowditch.
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Proof. If Γ \ D-Dn has finite volume and Γ is finitely generated, then, by

going to a finite cover, we may assume Γ is torsion free. It follows that Γ \ HIn

is a finite union of cusps and a compact part (see [8] or [9]). Lifting to the

universal cover, each of the cusps gives a uniform horoball. If n = 2 or n = 3,

an orientation-preserving parabolic subgroup consists of translations (in the

upper half-space model for example). The existence of uniform horoballs

centered on any parabolic fixed point then follows from the Margulis Lemma

or Jorgensen Inequality.

Clearly the orbit of a fixed uniform horoball is discrete and closed in the

space of all horoballs. Moreover, the Euclidean radius of the horoballs in the

Poincare disk model is bounded away from one, and this implies that the

origin in the Minkowski space Mn+1 is not a limit point of the orbit of the

parabolic fixed point D G L + .

3. The convex hull construction

Let Γ be a discrete subgroup of O + ( l , n) such that the quotient of Hn by Γ

has finite volume and such that there is at least one parabolic fixed point in

L+ (i.e., at least one cusp in Γ \ D-fl"). We choose one orbit 5 , c L + of

parabolic fixed points corresponding to each cusp of Γ \ H Γ , / = 1, •,/?.

Theorem 2.4 guarantees that each Bt is discrete in Mn+1.

Let C be the closed convex hull in Mn+1 of Bτ U UBp. We now have a

series of lemmas to elucidate the nature of C.

Lemma 3.1. The dimension of C is (n 4- 1).

Proof. We will assume that C has dimension less than (n + 1) and derive a

contradiction. Let W be the vector subspace in Mn+ι which is parallel to the

affine hull of C Since C is invariant under Γ and Γ acts linearly, W is also

invariant under Γ. The quadratic form on W must be nondegenerate, for

otherwise the kernel will be an invariant one-dimensional space, giving rise to a

fixed point for Γ in S^"1. However, there is no such fixed point.

Thus, W is nondegenerate and so is Wx furthermore, both are invariant

under the action of Γ. One of these (call it W) has a quadratic form of type

(s, 1) with s < n, so W gives a Γ-invariant subspace of H n. This means that the

limit set of Γ is contained in a sphere of dimension (s — 1). Since Γ \ H n has

finite volume, the limit set is the whole of S£~ι. This contradiction proves the

result.

Proposition 3.2. Suppose that Γ \ D-Dn has finite volume and let x e L + . The

origin is not an accumulation point for Tx if and only if x is a parabolic fixed

point.
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Proof. We have already proved one implication in Theorem 2.4. To prove

the other implication, we suppose that the origin is not an accumulation point.

The complement in Γ \ H n of the set of cusps is compact, and we let R be

greater than the diameter of this compact set. Let z 0 be a point of IH n mapping

into this compactum and let K be the ball centered at zQ of radius R. Now,

choose a height (i.e., first coordinate in Mn+1) so that every point of L + above

this height corresponds to a horoball which is disjoint from K.

By hypothesis, we can multiply x by a large enough scalar so that the

Γ-orbit of JC lies entirely above this height. It follows that the horoball

corresponding to x projects to one of the cusps of Γ \ D-0". Therefore, this

horoball lies entirely inside some standard horoball about some cusp. This can

only happen if x is itself a parabolic fixed point.

Lemma 3.3. L + Π C is the set of points of the form az, where a ^ 1 and

z G Bf for some i = 1, , p.

Proof. Suppose that x e L+ is not of the stated form and choose α > 1 so

that ax is also not of the stated form. Let A be the horizontal subspace (i.e.,

contained in a level set of x0) of dimension (n - 1) through ax tangent to L+.

The tangent plane to L+ at ax can be rotated slightly around A to give a

plane P which intersects L + in a long thin ellipsoid nearly equal to the ray

[0, ax] and containing ax. Since there are only finitely many points of

Bλ U U Bp below the height of ax, we can ensure that the rotation about A

is so small that x lies on the opposite side of P from Bλ U U 5 . It follows

that x £ C.

It remains to show that if x e Bi for some i: = 1, , p and α > 1, then

ax e C. The rays of L + through points of Bt are dense in the space of all rays

in L+ (since the action of Γ on S£~ι is minimal), so we can choose a sequence

of such rays r. converging to the ray through x. Let yjX G r . Since Bt is

discrete, yjX tends to infinity, the segment [x, jjx] is contained in C by

definition, and clearly contains points arbitrarily near ax for j large. Since C

is closed, ax e C, as desired.

Lemma 3.4. Each ray from the origin lying on L+ meets dC exactly once.

Proof. Let r be a ray from the origin inside L+. By considering the

projective disk model and again using minimality of the action of Γ on S£~ι,

we see that there are points zl9- , zk e Bt with the point of IHΓ represented

by r in the interior of the hyperbolic convex hull of the points in S£~λ

corresponding to zl9-—9zk. It follows that r meets the convex hull of

{zl9— ,zk} and hence meets C. Let z be the first such intersection as we

proceed from the origin along r.

We wish to prove that as we proceed along r, we eventually reach and

remain in the interior of C. To see this, take k rays in L+ through points of 2?,
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very near to the rays through z l 5 , zk, such that their convex hull contains

the ray of z in its interior. Since Bt is discrete, the points of Bi in these nearby

rays can be assumed to lie above any pre-assigned height. It follows that every

point of r above z is in the interior of C.

Proposition 3.5. The boundary of C in Mn+ι is the union of C Π L +

(described in Lemma 3.3) and a countable set of codimension-one faces Fl9

F 2 , . Each Fi is the convex hull of a finite number of points in Bλ U UBp.

The affine hull At of Ft is Euclidean, and the intersection of At with L+ is

spherical with respect to the Euclidean structure on At (ellipsoidal with respect to

the usual Euclidean structure on Mn+ι). The set of faces Ft is locally finite in the

interior of the light-cone.

Proof. Let z 0 E 3C - L + and let W be a support plane for C at z0. W

cannot contain 0, for otherwise the ray from 0 through z 0 could not meet the

interior of C, which contradicts Lemma 2.4. Therefore

W= {x e Mn + 1: <JC,W> = -1}

for some vector w e M w + 1 , and

C c {x €= Mn + ι: (x,w) < -1}.

We claim that w lies inside L+ and presently rule out the other cases in turn.

Suppose that (w,w) > 0 and choose xf so that (x',w) = 0, (x\ x') =

-(w,w) and so that x' lies inside the positive light-cone. It follows that

JC' + W 6 L + and (xf + w,w) = (w,w) > 0. Let N be a neighborhood of

JC' + w such that if y e N, then (y, w) > (w, w)/2. We then choose z e Bt so

that for some large α, z/a e. N. It follows that (z,w) > a/2(w,w), and so

z £ C, a contradiction.

Suppose that (w,w) = 0. Insofar as (zo,w) = -1 and z 0 lies inside L+, w

must lie in the positive rather than the negative light-cone surface. If z e Bx

U U5p, then (w, z) < - 1 ; hence w is not a multiple of any such z. By

Proposition 3.2, we can find a sequence γ7 e Γ so that yjw converges to 0.

Finally, we have

-1 > (y~ιz,w) = (z,yjw) -» 0,

which is a contradiction.

We are left with the only possible case: (w,w) < 0, so W meets L+ in an

ellipsoid and has a Euclidean structure. We see that W Π L+ is an (n - \)

sphere in this Euclidean structure by conjugating in S O + ( 1 , H ) SO that W is

horizontal.

We next claim that there is a support plane through z 0 which contains n

affinely independent points of Bx U UBp. Recall that W is an arbitrary
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support plane through z 0 and suppose that some affine subspace A of W

containing W Π (B1 U UBp) has dimension (n - 1). Rotate W about Λ as

far as possible without passing through any point of B1 U ••• UBp, and

continue to denote the new support plane by W. As before, W meets L+ in a

compactum lying below some definite height, so only a finite number of points

of Bι U UBp were at issue when deciding how far to rotate about A. It

follows that W contains at least one more point of Bx U UBp than it did

before rotation and that the affine hull of W Π (Bλ U UBp) has increased

dimension. Finally, if we choose W to be a support plane through z 0 so that

the affine hull of W Π (Bλ U UBp) has maximal dimension, then this

dimension is n. Thus, W Π C is a closed convex set of dimension n and is one

of the faces Fi in the statement of the proposition.

We must lastly prove that the set of faces Fi is locally finite inside L + . To

this end, let K be any compactum inside L+ and suppose that Fv F2> is a

sequence of distinct faces meeting K. Choose xι; e Ft ; Π K converging to some

point x, and such that the affine hulls Ai of Ft converge to a limit A

containing x. Since each Axis a support plane for C, so is A, whence A

meets L + in an ellipsoid. By compactness, the set ( ^ U ^ U J Π

(Bx U UB p) is finite, so there are only a finite number of distinct faces f).

This contradiction establishes the proposition.

Since the construction of C was equivariant under the group Γ, the

decomposition into faces is Γ-invariant. The cell structure on dC — L+ is

locally finite and each cell is Euclidean. This cell structure projects homeomor-

phically to the projective disk model of D-0" and gives a locally finite tesselation.

This tesselation may be altered if we change the initial Γ-orbits Bx,- ,Bp by

oίxB^' - ,apBp, where each α, > 0; however, if αx = = ap, then it is

unchanged. We therefore get a (p - l)-parameter family of tesselations of IHΓ.

Each cell has totally geodesic faces and there are no zero-dimensional cells

(they all lie in L + ). In particular, if p = 1, there is a canonical such tesselation.

In case Γ is torsion-free, then Γ\IHΓ is a hyperbolic manifold, and the

interior of a face of C of any dimension injects into Γ \ D-0n by Lemma 3.4.

Thus, the tesselations of HΓ descend to a natural (p — l)-parameter family of

decompositions of Γ \ H ". (The decompositions are not CW decompositions

since part of the boundary of a cell may well be at infinity.) Furthermore, each

cell has a natural Euclidean structure (up to change of scale), but, for n > 2,

these do not generally combine to give Euclidean structure on Γ \ D-0" since the

total angle in the link of an (n - 2)-dimensional decomposition element will

not have an angle 2π.

In case n = 2 with Γ torsion-free, Γ \ H 2 does inherit a Euclidean structure

since there are no zero cells.
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We summarize with

Theorem 3.6. Suppose that Γ is a {finitely generated) discrete subgroup of

O + (l, n) so that Γ \ HIn has finite volume andp cusps, p > I. The convex hull

construction associates a (p — \)-parameter family of locally finite ΐ-invariant

tesselations of HΓ. In particular ifl' is torsion-free, then the tesselations descend

to a canonical (p — X)-parameter family of decompositions of the hyperbolic

manifold Γ \ H n . Furthermore, if n = 2, then the surface Γ \ H 2 has a

(p — l)-parameter family of (incomplete) Euclidean structures, and for each

parameter, there is a canonical decomposition of the surface by disjointly em-

bedded geodesies into a finite number of cells.

Remark. In case n = 2 and p = 1 with Γ torsion-free, one can fix the

topological type Δ of such a decomposition on a surface and consider C(Δ) =

{ Γ G Teichmύller space of the genus g once punctured surface: the convex

hull construction for Γ gives Δ}. The collection of all C(Δ) as Δ varies gives a

decomposition of the Teichmuller space. Each C(Δ) turns out to be contract-

ible, giving a cell decomposition of the Teichmύller space itself (see [6]).

4. The Ford domain

Our construction is dual to the classical Ford domain. Usually duality means

a (1, ̂ -correspondence between cells of dimension r in one decomposition

with cells of dimension n — r in another decomposition, reversing the relation

of inclusion. In our case the correspondence is much more precise, and has a

metric quality. We will not explore the correspondence in detail, but will

content ourselves with showing that each vertex of the Ford domain is equal to

the center of a top dimensional face of our convex hull C

First we recall the classical definition of the Ford domain. Let Γ be a

discrete group of isometries of hyperbolic space H " such that Γ \ IHΓ has finite

volume. We also assume that Γ is finitely generated (Brian Bowditch has

recently proved that this is a redundant hypothesis). We suppose that Γ \ 0-Dn

has one cusp. We use the upper half-space model, and assume that Γ^, the

stabilizer of infinity, is nontrivial.

Each element of γ G Γ - Γ^ has an isometric sphere Sγ which is orthogonal

to the boundary of the upper half-space. Let By be the half ball bounded by

Sγ, and let the Euclidean center be pγ, lying on the boundary. Let F =

0-0n \ U γ i? γ . Then F is invariant under Γ^, which acts by Euclidean motions on

HΓ.

Classically the Ford domain is the intersection of F with a fundamental

domain for the action of Γ^ on F. Such a choice of fundamental domain is not

canonical, and we prefer to work with Γ^ \ F, which is canonical. This is a
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hyperbolic manifold with boundary. The boundary has a finite number of

faces, and Γ \ D-Dn can be obtained by pairing faces of Γ^ \ F.

A coordinate free way of describing TO0\F is to take a horosphere in

Γ \ H Γ and let it expand until it collides with itself. We can regard the

horosphere as a balloon which is gently expanded, coming to rest where it

meets itself. Formally, we fix a cusp and a small horosphere in D-Dn correspond-

ing to this cusp. Then F is the set of points in IHΓ which are nearer to this

horosphere than to any translate of the horosphere under Γ. The collision locus

in 0-0" is the set of points for which two or more of these translates are

equidistant. The collision locus in Γ \ D-D" is the image of the collision locus in

D-0". Then Γ^ \ F is the space obtained by cutting Γ \ D-D" open along the

collision locus. This is proved as follows.

Since γ is equal to inversion in 5 γ, followed by a Euclidean isometry, the

image under γ of a horosphere centered at py is a horizontal horosphere.

Therefore these horospheres in H", which correspond under an element

γ G Γ - ΓM, are obtained by hyperbolic reflection in the hyperbolic hyper-

plane Sy. As these horospheres about infinity and pγ expand, they collide

along Sy. In this way we see that the boundary of F is exactly the collision

locus for the expanding horospheres.

Now let us see how this construction ties up without convex hull construc-

tion. Let p be a vertex on the boundary of F in M". This means that n

expanding horospheres, whose centers do not lie in the same vertical hyper-

plane, and which correspond under Γ, meet each other and the expanding

horizontal horosphere at p. Moreover, at the moment of collision p is not yet

contained in the interior of any other expanding horosphere in the same orbit

under Γ. The point p gives a vertex of Γ^ \ F and also gives a vertex in any

classical Ford domain.

Each horosphere corresponds to a point υ in a positive light-cone surface,

with (v,υ) = 0. Let {u0, , υn} correspond to the (n + 1) horospheres of the

preceding paragraphs. The point p of the preceding paragraph lies on the

upper hyperboloid and, by the results of §1, we have

<A>/>> = ••• = (vn,p) = - l .

The ^-dimensional affine space A containing {υQ, , vn} is {υ: (υ, p) = -1}.

We choose coordinates so that p = (1,0, , 0) in Minkowski space. Then A

is horizontal, and meets the positive light-cone surface in an (n - 1)-

dimensional sphere S.

If v is any parabolic fixed point in the same orbit as {v0,- ,^,}, then

(p,v) < - 1 . For if (p,υ) > - 1 , then p is contained in the interior of the

expanding horoball centered on [υ]. But we have assumed this is not the case.
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Hence υ must lie on or above A. It follows that A intersects 3C in an

w-dimensional face B.

All the vertices of B lie on the (n — l)-dimensional sphere S and

{v09— -,vn} a B Π S. B Π S is finite, but may have more then (n + 1)

elements if p happens to lie on additional horospheres in the same orbit under

Γ as those we have already considered.

Thus we have shown that p is the center of the circumsphere for the

Euclidean polyhedron B. The converse discussion works in a similar way.

Thus the tesselation of HIn by the faces of C is dual to the cell complex given

by the faces of F.

5. Tesselations by regular ideal polyhedra

It is interesting to relate our construction with the tesselations of H 3

described in [8]. Suppose we have a tesselation of H 3 by regular ideal

hyperbolic polyhedra (i.e. with vertices at infinity). This is possible with

tetrahedra, cubes, octahedra, and dodecahedra, but not with icosahedra. The

tesselation is invariant under symmetries of the polyhedron and also under

reflection in each of its faces.

For example, the tesselation of D-Π3 related to the hyperbolic structure on the

complement of the figure eight knot is by regular ideal hyperbolic tetrahedra.

Theorem. Let Γ be the group of symmetries of a tesselation of H 3 by regular

ideal polyhedra. Let C be the convex hull in Minkowski space of the orbit under Γ

of a parabolic fixed point in the positive light-cone surface, as described in §3.

Then the intrinsic Euclidean structure on each face is isometric {up to change of

scale) with the regular Euclidean polyhedron corresponding to the given regular

ideal hyperbolic polyhedron.

Proof. Let P be a regular ideal hyperbolic polyhedron. We will consider

the tesselation of H 3 generated by reflection in the faces of G. Let p e P be

the unique fixed point for the symmetries of P (i.e. for the finite group of

hyperbolic isometries of P). We may take coordinates in Minskowski space,

with/? = (1,0,0,0).

The symmetries of P fix p and therefore fix (setwise) the horizontal plane

x0 = 1, since this plane, which we call A, is given by

A vertex of P corresponds to a ray on the positive light-cone. Let υ0 be the

intersection of A with this ray. Then v0 is a parabolic fixed point for Γ. The

orbit of υ0 under Γ contains all vertices of P.
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By symmetry it also follows that p lies in the collision locus of the

expanding horosphere. As in §4, we see that A Π C is a top dimensional face

of C. A Π C can be identified with P in the projective model of hyperbolic

space. In the natural Euclidean structure on A, A Π C is the convex hull of

the vertices of P, and is identified with P in the projective model of 0-D3. Since

the group of symmetries of P acts, the polyhedron must be a regular Euclidean

polyhedron.

Appendix

We reproduce a construction due to Apanosov to show that for n > 4, there

is a discrete (nonfinitely generated) subgroup Γ of the Mόbius transformations

on I " with a parabolic fixed point but with no uniform horoball. This

example also shows that the orbit of a parabolic fixed point is not in general

discrete (cf. Theorem 2.4). The situation for finitely generated groups remains

open.

The construction is given in the upper half-space model with n = 4. Para-

bolic elements fixing infinity can be identified with Euclidean isometries of the

horizontal horosphere H at height one. Let a be a parabolic element which

corresponds to a rotation through an irrational angle about an axis A, followed

by a translation along A. The vertical plane P through A in the upper

half-space is a hyperbolic plane on which a acts as a parabolic in the familiar

way. M = U 4/a is a 4-dimensional hyperbolic manifold. Our counterexample

will be constructed by excising a countable set of disjoint half-H 4 's from M,

and then gluing together the boundary D-fl3 's in pairs.

Let JCX, JC2, be a countable sequence of points in the boundary IR3 to IH 4,

whose Euclidean distances from P tend to infinity. (We will continually pass

to subsequences without change of notation.) Fix a point z 0 e A, and let Hk

be the horosphere centered at xk passing through z0. Hk converges to H, and

we will construct Γ with elements yk e Γ such that ytH = Hk(i)9 where k(i)

converges to infinity with i. Since horospheres correspond to points on the

light-cone (see §1), we will obtain a nondiscrete orbit of a parabolic fixed

point.

We will inductively choose hemispheres Sl9 S2, centered at
x/(i)> */(2)>'' *> where i(k) > k, and hemispheres Tv Γ2, such that all the

four-dimensional half-balls bounded by any translate under {an} of any Sk or

any Tk are pairwise disjoint.

Having defined x/(1), -9xi{k-ι)9 Sl9 -,Sk_l9 and 7\, -,Tk_l9 we choose

Sk centered at xi(k) of radius 2 so as to satisfy the disjointness conditions. Let

ak be inversion in Sk followed by reflection in a vertical plane through xi(k)
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(the only point of the reflection is to make ak preserve orientation). Then ak

sends the horosphere Hi(k) to the horizontal horosphere. Let βk be a similarity

of the Euclidean structure on the upper half-space taking akHi{k) to H. By

composing with a parabolic transformation keeping infinity fixed, we may

assume that βkSk = Tk satisfies the disjointness condition together with

Sl9 - 9Sk9 7\, 9Tk_v Then βkakHι(k) = Hand βkakSk = Tk.

We remove from Λf = H 4/a the half-spaces corresponding to Sk and Tk

and glue them together with the isometry βkak. After doing this a countable

number of times, we obtain a complete hyperbolic 4-manifold with fundamen-

tal group Γ, where Γ is the free group on (α, βxal9 β 2, α 2 , }. The orbit of H

includes all of the Hi{ky

This completes the discussion of the example.
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