FLAT SPACETIMES

DAVID FRIED

Abstract

Those closed pseudo-Riemannian manifolds covered by Minkowski space M are classified up to finite covers. The simply transitive isometric actions on M are listed. Some spacetimes with 2 ends satisfying a causality condition are analyzed.

We call a 4-manifold X wtih a metric g of signature (,,,+++-) a spacetime. We will assume that g has zero curvature, i.e. X is flat. Then X is a special kind of affine manifold, namely an affine manifold with a parallel metric of the given signature. We also assume X is complete in the sense that geodesics on X extend for all time. This implies that the universal cover of X is Minkowski space M.

We will classify such X 's under the assumption that X is compact. We prove in $\S 1$ that π has a solvable subgroup of finite index, using theory developed in [5] with W. Goldman. This result has been extended to higher dimensions by Goldman and Kamashima [6] but our proof is more geometric. For a noncompact counterexample see [8] and for further discussion see [9].

The classification also uses a theorem of Auslander's on unipotent simply transitive affine actions [1]. For subgroups of the isometry group \mathscr{P} of Minkowski space, those are classified in §2. This is extended to all simply transitive actions in $\S 3$. Then in $\S 4$ we give our classification. It extends to dimension 4 that given by Auslander and Markus for 3-manifolds [2].

It is conceivable that if X is compact then g is automatically complete. A counterexample would be a very interesting spacetime: its curvature and global topology would not account for its failure to be complete. It would also be a valuable example in the theory of affine manifolds.

In $\S 5$ we discuss some two ended flat spacetimes with respect to their causal structure.

[^0]
1. π is virtually solvable

A group with a solvable subgroup of finite index is called virtually solvable. We show

Theorem 1. If $\pi \subset \mathscr{P}$ and π acts freely and properly discontinuously on M with compact quotient then π is virtually solvable.

Proof. Taking an affine transformation to its linear part defines a natural homomorphism $\lambda: \mathscr{P} \rightarrow S O(3,1)$. We let $\Gamma=\lambda(\pi)$ and we let G be the algebraic hull of $\Gamma . G$ is an algebraic subgroup of $S O(3,1)$. The identity component G_{0} is of finite index in G, since G is algebraic. We will show G_{0} is solvable.

As in [7] one knows that each $A \in \Gamma$ satisfies $\operatorname{det}(A-I)=0$. As first noted by M. Hirsch, this reflects algebraically the fact that the nontrivial elements of π act without fixed points in M. It follows that this nontrivial polynomial equation holds on G. This shows $\operatorname{dim} G_{0}<\operatorname{dim} S O(3,1)$.

Suppose G_{0} is not solvable. Then it contains a semisimple connected subgroup S. As $\operatorname{dim} S<\operatorname{dim} S O(3,1), S$ is either $S O(3)$ or $S O(2,1)_{0}$, in properly chosen coordinates on M. In either case, S is maximal among the connected Lie subgroups of $S O(3,1)_{0}$, so $G_{0}=S$. Thus G_{0} fixes a vector v of nonzero length.

Let π_{0} be the kernel of the natural map $\pi \rightarrow G / G_{0}$. Let $X_{0}=M / \pi_{0}$ be the corresponding finite cover of our given spacetime X. Let \tilde{Y} be the parallel vector field on M determined by v and let Y be the corresponding vector field on X_{0}. The 1-form ω on X_{0} dual to Y is parallel and hence closed.

Perturb ω to a closed 1-form ω_{1} with rational periods P, where P is the set of real numbers obtained by integrating ω_{1} around closed loops in X_{0}. As π is finitely generated, P is discrete and \mathbf{R} / P is a circle. Also $\omega_{1}(Y)$ never vanishes, assuming ω_{1} is close enough to ω, since v has nonzero length.

Let $b \in X_{0}$ be a basepoint and define $\theta: X_{0} \rightarrow \mathbf{R} / P$ as the indefinite integral $\theta(y)=\int_{b}^{y} \omega_{1}$. Then θ is a fibration of X_{0} over circle [11]. Let K be a connected component of a fiber of θ. Then K is a connected cross-section to the flow φ on X_{0} generated by Y.

Since Y is parallel and X_{0} is flat, the flow φ has a transverse affine structure that induces an affine structure on K. Lifting φ to the universal cover M one obtains the one parameter group $\tilde{\varphi}$ of translations of M with velocity v. So \tilde{K} is naturally identified with the orbit space of this flow $M / \mathbf{R} v$, cf. [4]. This orbit space is just an affine 3 -space so K is complete in its induced affine structure.

A complete compact affine 3 manifold has solvable fundamental group by [5]. Thus $\pi_{1} K$ is solvable. K is the fiber of a fibration of X_{0} over the circle so
the homotopy exact sequence of this fibration shows that π_{0} is an extension of $\pi_{1} S^{1}=\mathbf{Z}$ by $\pi_{1} K$. Hence π_{0} is solvable. q.e.d.

It follows that the linear holonomy of X_{0}, i.e. the subgroup $\Gamma_{0}=\lambda\left(\pi_{0}\right) \subset$ $\operatorname{SO}(3,1)$, is also solvable.

Now since Γ_{0} has finite index in Γ, the algebraic hull $G\left(\Gamma_{0}\right) \subset G$ has finite index. Thus $G_{0} \subset G\left(\Gamma_{0}\right)$, so G_{0} is solvable too.

2. Unipotent groups

We will consider a subgroup $U \subset \mathscr{P}$ that is unipotent, i.e. if $A x+v$ is an affine transformation in U then the only eigenvalue of A is 1 . We suppose also that the action of U on M is simply transitive, i.e. that given $m_{1}, m_{2} \in M$ there is exactly one $u \in U$ with $u m_{1}=m_{2}$.

Clearly such a U can be used to construct flat spacetimes $X=M / \pi$ for any discrete subgroup $\pi \subset U$. By a different procedure, these U 's arise from any compact flat spacetime. We need to classify them. We write $(A \mid v)$ for the infinitesimal affine motion with linear part A and translational part v.

Theorem 2. Let U be a unipotent subgroup of \mathscr{P} that acts simply transitively on M. Then $U=\exp (L)$ where L is a nilpotent Lie algebra of infinitesimal isometries of Minkowski space M.

In suitable linear coordinates $(w, x, y, z)=v$ on M, g is given by $g(v, v)=$ $2 w z+x^{2}+y^{2}$ and $L=L_{\beta, \varepsilon}$ is all pairs $(A \mid v)$ where

$$
A=\left(\begin{array}{cccc}
0 & -\beta y & -\varepsilon z & 0 \\
0 & 0 & 0 & \beta y \\
0 & 0 & 0 & \varepsilon z \\
0 & 0 & 0 & 0
\end{array}\right), \quad v=\left(\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right)
$$

for fixed $\beta \geqslant 0, \varepsilon \geqslant 0$. The parameters β, ε are uniquely determined by U except for the rescaling

$$
(\beta, \varepsilon) \rightarrow\left(\lambda \beta, \lambda^{2} \varepsilon\right), \quad \lambda>0
$$

Proof. Since U is simply transitive, it is simply connected. One can identify the affine motions of 4 -space with the linear motions of 5 -space that preserve an affine hyperplane. Thus we may regard U as a linear unipotent group and take logarithms of the elements in U to generate $L . L$ is a Lie algebra of nilpotent matrices that represent infinitesimal isometries of Minkowski space. Since U is locally transitive, the correspondence $(A \mid v) \rightarrow v$ from L to \mathbf{R}^{4} is surjective. As U is four dimensional, it is a bijective correspondence and we can write $A=A(v)$. We proceed to reduce A to the indicated normal form.

We first show
Lemma 1. $\lambda(U)$ fixes a lightlike vector v_{0}.
Proof. By Engels' theorem, some vector v_{0} is fixed by $\lambda(U)$ (i.e., annihilated by the nilpotent Lie algebra $\lambda(L)$).

If v_{0} is timelike then $\lambda(U)$ preserves v_{0}^{\perp} so $\lambda(U) \subset S O(3)$. Thus U preserves a Euclidean inner product on \mathbf{R}^{4}. As a unipotent orthogonal matrix is trivial, this implies $\lambda(U)=1$.

If v_{0} is spacelike then v_{0}^{\perp} is Minkowski 3-space and we have $\lambda(U) \subset$ $S O(2,1)$. If $\lambda(U)$ does not fix a lightlike vector in v_{0}^{\perp}, one can again find a fixed spacelike vector v_{1} in v_{0}^{\perp}. In $\left\{v_{0}, v_{1}\right\}^{\perp}=S O(1,1)$ one sees that the unipotent group $\lambda(U)$ is trivial. q.e.d.

We choose linear coordinates w, x, y, z on \mathbf{R}^{4} so that v_{0} is the unit vector in the w direction and so that g has the form $2 w z+x^{2}+y^{2}$. We also write $\mathbf{R}^{4}=\mathbf{R}+\mathbf{R}^{2}+\mathbf{R}, v=v_{1}+v_{2}+v_{3}$ so that v_{1}, v_{3} are 1 -vectors and v_{2} a 2 -vector. Then if J denotes the linear map that switches v_{1} and v_{3} and fixes v_{2} the infinitesimal isometry A for g is a solution to $A^{t} J+J A=0$. As A is nilpotent, it must have the block form

$$
A(v)=\left(\begin{array}{ccc}
0 & -\gamma^{t} & 0 \\
0 & 0 & \gamma \\
0 & 0 & 0
\end{array}\right), \quad v=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)
$$

This defines in our setting a linear map $\gamma(v), \gamma: \mathbf{R}^{4} \rightarrow \mathbf{R}^{2}$ that we may express as $\gamma(v)=\gamma_{1}\left(v_{1}\right)+\gamma_{2}\left(v_{2}\right)+\gamma_{3}\left(v_{3}\right)$.

Lemma 2. $\quad \gamma_{1}=0, \gamma_{2}^{2}=0$.
Proof. For any v, v^{\prime} the commutator of $(A(v) \mid v)$ and $\left(A\left(v^{\prime}\right) \mid v^{\prime}\right)$ is of the form ($0 \mid v^{\prime \prime}$). Since L is a Lie algebra, we must have $\gamma\left(v^{\prime \prime}\right)=0$.

Explicitly $v_{1}^{\prime \prime}=-\gamma(v)^{t} v_{2}^{\prime}+\gamma\left(v^{\prime}\right)^{t} v_{2}, v_{2}^{\prime \prime}=\gamma(v) v_{3}^{\prime}-\gamma\left(v^{\prime}\right) v_{3}$, and $v_{3}^{\prime \prime}=0$.
Let $v_{3}=v_{3}^{\prime}=v_{2}^{\prime}=0$. Then $0=\gamma\left(v^{\prime \prime}\right)=\gamma_{1}\left(\gamma_{1}\left(v_{1}^{\prime}\right) \cdot v_{2}\right)$. Letting v_{1}^{\prime}, v_{2} vary we see $\gamma_{1}=0$.

Now take $v_{3}=0$ only. Then $0=\gamma\left(v^{\prime \prime}\right)=\gamma_{2}\left(\gamma_{2}\left(v_{2}\right) v_{3}^{\prime}\right)$, where we have used $\gamma_{1}=0$. Letting v_{2} and v_{3}^{\prime} vary shows $\gamma_{2}^{2}=0$.

Conversely if $\gamma_{1}=\gamma_{2}^{2}=0$ then indeed $\gamma\left(v^{\prime \prime}\right)=0$. q.e.d.
So U is determined by $\gamma_{2}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ and $\gamma_{3}: \mathbf{R} \rightarrow \mathbf{R}^{2}$ with $\gamma_{2}^{2}=0$. We regard γ_{3} as a 2 -vector. One can make the following changes in γ_{2}, γ_{3} by g-isometries that preserve the subspace $\mathbf{R} v_{0}$:

1) $\gamma_{2}^{\prime}=\lambda \gamma_{2}, \gamma_{3}^{\prime}=\lambda^{2} \gamma_{3}, \lambda \in \mathbf{R}, \lambda \neq 0$,
2) $\gamma_{3}^{\prime}=B \gamma_{3}, \gamma_{2}^{\prime}=B \gamma_{2} B^{-1}, B \in 0(2)$,
3) $\gamma_{2}^{\prime}=\gamma_{2}, \gamma_{3}^{\prime}=\gamma_{3}-\gamma_{2}(u), u \in \mathbf{R}^{2}$.

Here 1) represents a rescaling of the w and z axes, 2) represents a rigid motion of the $x-y$ plane and 3) a change of coordinates that fixes v_{0}^{\perp} (the $w-x-y$ space) and changes the z-axis.

Using 2) we can put the matrix γ_{2} into the form $\left(\begin{array}{ll}0 & \beta \\ 0 & 0\end{array}\right)$, so $\gamma_{2}\binom{x}{y}=\binom{\beta y}{0}$.
Suppose $\beta \neq 0$. Then 3) can be used to put γ_{3} into the form ($\binom{0}{\varepsilon}$. If $\beta=0$ then a) can be used to the same effect. So we reach the normal form for γ and A. It is not hard to arrange $\beta, \varepsilon \geqslant 0$ by using $\lambda=-1$ in 1$)$ and $B=\left(\begin{array}{cc} \pm 1 & 0 \\ 0 & \pm 1\end{array}\right)$ in 2) if necessary.

We now show that (β, ε) and $\left(\beta^{\prime}, \varepsilon^{\prime}\right)$ give the same U only if $\beta^{\prime}=\lambda \beta$, $\varepsilon^{\prime}=\lambda^{2} \varepsilon$, for some $\lambda>0$. The case $\beta=\varepsilon=0$ is uniquely characterized by the property $\lambda(U)=1$.

Lemma 3. If $(\beta, \varepsilon) \neq(0,0)$ then the w-axis W consists of all the lightlike vectors fixed by $\gamma(U)$.

Proof. Suppose $v=\left(w_{1}, x_{1}, y_{1}, z_{1}\right)$ is lightlike and fixed, i.e. $2 w_{1} z_{1}+x_{1}^{2}+$ $y_{1}^{2}=0,-\beta y x_{1}+\varepsilon z y_{1}=0, \beta y z_{1}=0$, and $\varepsilon z z_{1}=0$ for all $y, z \in \mathbf{R}$. Whether $\beta \neq 0$ or $\varepsilon \neq 0$, one has $z_{1}=0$. This gives $x_{1}^{2}+y_{1}^{2}=0$ so $x_{1}=y_{1}=0$. $\therefore v=\left(w_{1}, 0,0,0\right)$. q.e.d.

Thus W and its orthogonal the $w, x, y, 3$-space W^{\perp} are determined by U when $\gamma(U) \neq 1$. It is now easy to check that only the coordinate changes 1), 2) and 3) above are relevant for comparing (β, ε) and ($\beta^{\prime}, \varepsilon^{\prime}$). The special case $\beta=0$ corresponds to $\gamma \mid W^{\perp}=0$. The special case $\varepsilon=0$ corresponds to the other possibility for $\operatorname{rank}\left(\gamma: \mathbf{R}^{4} \rightarrow \mathbf{R}^{2}\right)<2$. It only remains to analyze the cases $\beta>0, \varepsilon>0$: but one can check that choosing $\varepsilon=1$ forces the value of β. q.e.d.

If $(\beta, \varepsilon) \neq(0,0)$, we call the corresponding unipotent group U_{ρ} where $\rho=\beta^{2} / \varepsilon \in[0, \infty]$. Thus the only U 's are the translation group T and the U_{ρ} 's.

3. Simply transitive actions

We will consider a Lie group $H \subset \mathscr{P}$ that acts simply transitively on M. Then H must be solvable [A, M]. Auslander proved that there is an associated unipotent group U that also acts simply transitively on M, namely the unipotent radical of the algebraic hull G of $H[A]$. We will use this fact, together with the results of the previous section, to find all H 's.

Suppose U is not the translation group T, so U corresponds to a nonzero pair (β, ε). If $\beta=0$ there is a two dimensional space of parallel vector fields corresponding to the $w-x$ plane. If $\beta \neq 0$ then the $w-x$ plane is determined as the kernel of γ. Thus the flag $W \subset(w-x$ plane $) \subset W^{\perp}$ is in
both cases determined by U and the normalizer N of U preserves this flag. In particular elements of N have only real eigenvalues.

Since U is the unipotent radical of $G, U \triangleleft G$. Thus $G \subset N$. Let L_{G} be the Lie algebra of G. Then elements of L_{G} have the form $(A \mid v)$ where

$$
A=\left(\begin{array}{ccc}
\lambda & -\delta^{*} & 0 \\
0 & 0 & \delta \\
0 & 0 & -\lambda
\end{array}\right)
$$

relative to the splitting $\mathbf{R}^{4}=\mathbf{R} \oplus \mathbf{R}^{2} \oplus \mathbf{R}$. The middle block vanishes because G preserves the flag discussed above.

We will show $\lambda=0$. Subtracting off an element of $L_{\beta, \varepsilon}$ we may suppose $v=0$. Rescaling, we may suppose $\lambda=1$. By choosing the z axis differently we may suppose $\delta=0$. Computing the commutator of $(A \mid 0)$ with the typical element $(A(v) \mid v) \in L_{\beta, \varepsilon}$ gives (in this new basis which is like that used in Lemma 2)

$$
\left[\left(\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right),\left(\begin{array}{ccc|c}
0 & -\gamma^{t} & 0 & v_{1} \\
0 & 0 & \gamma & v_{2} \\
0 & 0 & 0 & v_{3}
\end{array}\right)\right]=\left(\begin{array}{ccc|c}
0 & -\gamma^{t} & 0 & v_{1} \\
0 & 0 & \gamma & 0 \\
0 & 0 & 0 & -v_{3}
\end{array}\right) .
$$

Since $(A \mid 0)$ must normalize $L_{\beta, \varepsilon}$, we must have $\gamma\left(v_{1}, 0,-v_{3}\right)=\gamma\left(v_{1}, v_{2}, v_{3}\right)$. This gives $\gamma_{2}=\gamma_{3}=0$, so $\beta=\varepsilon=0$ contrary to assumption. So $\lambda=0$.

It follows that L_{G} is nilpotent, so G and H are unipotent. But any unipotent connected Lie group is Zariski closed, so $H=G$. Taking this unipotent radical we see $H=U=U_{\rho}$. We have

Theorem 3. If $H \subset \mathscr{P}$ acts simply transitively on Minkowski space M then either

1) H is one of the unipotent groups $U_{\rho}, \rho \in[0, \infty]$, or
2) the unipotent radical U of the algebraic hull G of H is precisely the group T of translations of M.

We now restrict to case 2) with $H \neq T$, i.e. we suppose H is not unipotent. On the one hand $\lambda(H)=H / H \cap T \subset G / T=G / U$. The quotient G_{0} / U is abelian (indeed it is isomorphic to a linear group of diagonal matrices). Thus $\lambda(H)$ is abelian. A nontrivial connected abelian subgroup of $S O(3,1)$ has dimension $d \leqslant 2$. As the translation subgroup $H \cap T$ is normalized by H, $\lambda(H)$ preserves the corresponding subspace of M. We find

Theorem 4. If $H \subset \mathscr{P}$ acts simply transitively on M then either H is unipotent (and so described by Theorem 2) or $\lambda(H)$ is a nonunipotent 1parameter subgroup of $\lambda(\mathscr{P})=S O(3,1)$ and $H \cap T=\operatorname{ker}(\lambda \mid H)$ is a 3-
dimensional invariant subspace of $\lambda(H)$. In the latter case there are linear coordinates w, x, y, z on M for which $g=2 w z+x^{2}+y^{2}$ and the Lie algebra L_{H} consists of all pairs $(A \mid v)$ where
a)

$$
v=\left(\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right), \quad A(v)=\left(\begin{array}{cccc}
y & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -y
\end{array}\right)
$$

or
b)

$$
v=\left(\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right), \quad A(v)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & z & 0 \\
0 & -z & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Proof. Suppose $H \cap T$ has dimension 3 and choose $A_{0} \neq 0$ in the Lie algebra of $\lambda(H) . A_{0}$ is not nilpotent.

As in the proof of Theorem $1, \operatorname{det}(\Lambda-I)=0$ for all $\Lambda \in \lambda(H)$. Thus $\operatorname{det} A_{0}=0$, that is A_{0} is singular.

As A_{0} is an infinitesimal isometry, its eigenvalues occur in pairs $\pm \mu$. We must have exactly two eigenvalues equal to 0 . Rescaling A_{0}, we may suppose the other two are $\pm i$ or ± 1.

If they are $\pm i$, the eigenspace they span is irreducible. The invariant subspace $H \cap T$ has codimension one and so must contain this eigenspace. This gives case b), where w, x, y span $H \cap T$ and the $\pm i$ eigenspace is spanned by x, y.

If the eigenvalues are ± 1 and $H \cap T$ contains both eigenspaces, one gets case a). Otherwise, switching to $-A_{0}$ if necessary, we may suppose $H \cap T$ contains the +1 and 0 eigenspaces. This leads to a nontransitive affine group, so it does not contribute to our list.

If $H \cap T$ has dimension 2, then the Lie algebra of $\lambda(H)$ consists of singular commuting elements. This easily implies that $\lambda(H)$ is unipotent. q.e.d.

We summarize our results in the following table, listing (up to conjugacy in \mathscr{P}) all the simply transitive isometric actions on Minkowski space with respect to coordinates in which $g=2 w z+x^{2}+y^{2}$. The only redundancy is that $(\beta, \varepsilon) \neq(0,0)$ and $\left(\beta^{\prime}, \varepsilon^{\prime}\right) \neq(0,0)$ determine the same U_{ρ} if $\rho=\beta^{2} / \varepsilon=$ $\left(\beta^{\prime}\right)^{2} / \varepsilon^{\prime}$. We show a typical element of each group where $r, s, t, u \in \mathbf{R} .(A \mid v)$ denotes the motion $p \rightarrow A p+v, p \in \mathbf{R}^{4}$.

Simply Transitive Motions of Minkowski Space

$$
T:\left(\begin{array}{cccc|c}
1 & 0 & 0 & 0 & r \\
0 & 1 & 0 & 0 & s \\
0 & 0 & 1 & 0 & t \\
0 & 0 & 0 & 1 & u
\end{array}\right) .
$$

$U_{\rho}:$
$\left(\begin{array}{cccc|c}1 & -\beta t & -\varepsilon u & -\frac{1}{2}\left(\beta^{2} t^{2}+\varepsilon^{2} u^{2}\right) & r-\frac{1}{2}(\beta s t+\varepsilon t u)-\frac{1}{2}\left(\beta^{2} t^{2} u+\varepsilon^{2} u^{3}\right) \\ 0 & 1 & 0 & \beta t & s+\frac{1}{2} \beta t u \\ 0 & 0 & 1 & \varepsilon u & t+\frac{1}{2} \varepsilon u^{2} \\ 0 & 0 & 0 & 1 & u\end{array}\right)$.

$$
\begin{gathered}
\mathscr{A}:\left(\begin{array}{cccc|c}
e^{t} & 0 & 0 & 0 & r \\
0 & 1 & 0 & 0 & s \\
0 & 0 & 1 & 0 & t \\
0 & 0 & 0 & e^{-t} & u
\end{array}\right) . \\
\mathscr{B}:\left(\begin{array}{cccc|c}
1 & 0 & 0 & 0 & r \\
0 & \cos u & \sin u & 0 & s \\
0 & -\sin u & \cos u & 0 & t \\
0 & 0 & 0 & 1 & u
\end{array}\right) .
\end{gathered}
$$

4. Discrete groups

Let π be a discrete subgroup of a simply transitive group H of motions of Minkowski space M. Then the orbit space $X=M / \pi$ is a flat spacetime. The possible discrete subgroups π depend only on the structure of H as a Lie group and not on its embedding in \mathscr{P}. Since H is known up to conjugacy by $\S 3$, we can easily find the possible subgroups π.

By a theorem in [5], every compact complete affine manifold $X=A / \Gamma$ with virtually solvable Γ has a crystallographic hull $H(\Gamma)$. This group $H(\Gamma)$ has an identity component $H_{0}(\Gamma)$ that acts simply transitively on A. Also $H(\Gamma)$ has only finitely many components, each of which meets Γ. These properties determine $H(\Gamma)$ uniquely in case Γ (or some subgroup of finite index in Γ) consists of matrices with only real eigenvalues.

We turn to the special case $A=M, \Gamma \subset \mathscr{P}$. Then A / Γ is the most general compact complete flat spacetime, since $\S 1$ assures us that Γ is virtually solvable. The identity component $H_{0}(\Gamma)$ must occur in our table of simply transitive motions. By Bieberbach's theorem, any discrete subgroup of B meets
T in a subgroup of finite index [12]. Thus in all cases Γ has a subgroup of finite index with only real eigenvalues. So the hull $H(\Gamma)$ is unique in our setting. If $\pi=\Gamma \cap H_{0}(\Gamma)$ and $H=H_{0}(\Gamma)$, the quotient M / π is a finite regular cover of A / Γ, canonically associated to Γ. So by classifying the discrete subgroups π, we will classify up to a natural finite cover all the compact, complete, flat spacetimes.
Now we lose little by not discussing \mathscr{B} further, since it does not arise as $H_{0}(\Gamma)$. The case $H=T$ is obvious: π is any lattice in \mathbf{R}^{4}. Only the cases $H=U_{\rho}$ and $H=\mathscr{A}$ give interesting groups.
Theorem 5. X is a flat complete compact spacetime with fundamental group Γ. There is a uniquely determined simply transitive group H of motions of the universal cover \tilde{X} such that $H \cap \Gamma=\pi$ has finite index in Γ.

The group π is a semidirect product $\mathbf{Z}^{3} \times_{A} \mathbf{Z} . A \in S L(3, Z)$ has characteristic polynomial $p_{A}(t)=\operatorname{det}(t-A)=(t-1)\left(t^{2}-b t+1\right)$, with $b \geqslant 2$ an integer.

The similarity class of A over \mathbf{Q} (or \mathbf{C}) determines the group H up to isomorphism as a Lie group. In the finer classification as a subgroup of \mathscr{P}, H is conjugate to
a) \mathscr{A}, if $b>2$,
b) U_{ρ} with $\rho>0$, if $(A-I)^{3}=0,(A-I)^{2} \neq 0$,
c) U_{0}, if $(A-I)^{2}=0, A-I \neq 0$,
d) T, if $A=I$.

In each case, if $\alpha=\log A$ then H is the semidirect product of \mathbf{R}^{3} by \mathbf{R} where \mathbf{R} acts on \mathbf{R}^{3} by $e^{t \alpha}, t \in \mathbf{R}$.

Proof. The first paragraph has been shown and all possibilities for H are known.

In each case H has an abelian subgroup H^{\prime} isomorphic to \mathbf{R}^{3}. For \mathscr{A} there is the subgroup $T \cap \mathscr{A}$, for U_{ρ} the subgroup defined by $t=0$. This shows that H is a semidirect product by some one parameter group $e^{t \alpha}$. One sees that α has eigenvalues all 0 if $H=U_{\rho}$ or $H=T$ and eigenvalues $0, \pm \lambda$, some $\lambda \in \mathbf{R}$, if $H=\mathscr{A}$.

In case $H=\mathscr{A}$, one can check that $H^{\prime}=T \cap \mathscr{A}$ is the maximum connected normal nilpotent subgroup of H. By $[10,3.5] \pi$ meets H^{\prime} in a lattice. Since $H^{\prime} \cong \mathbf{R}^{3}, \pi \cap H^{\prime} \cong \mathbf{Z}^{3}$. The quotient $\pi / \pi \cap H^{\prime}$ is discrete in $H / H^{\prime} \cong \mathbf{R}$, so it is infinite cyclic. The action A of \mathbf{Z} on \mathbf{Z}^{3} has eigenvalues $\mu, 1, \mu^{-1}, \mu>1$ and so $\operatorname{det}(t-A)$ is of form $(t-1)\left(t^{2}-b t+1\right), b \geqslant 3$.

In the unipotent cases, the argument is similar. One only needs to show that H^{\prime} can be chosen so $\pi \cap H^{\prime}$ is a lattice in H^{\prime}.

For $H=T$, this is trivial.

For $H=U_{0}$ (i.e. $\beta=0, \varepsilon=1$) the center Z of H is 2-dimensional. By [10, 2.17] $Z \cap \pi$ is a lattice in Z. The quotient $\pi / Z \cap \pi$ is a lattice in \mathbf{R}^{2}. Taking an element of π that corresponds to an indivisible vector in $\pi / Z \cap \pi$ and adjoining it to $Z \cap \pi$ gives a free abelian subgroup π^{\prime} of rank 3 . The quotient π / π^{\prime} is infinite cyclic. One takes H^{\prime} to be the Malcev completion of π^{\prime}.

Now suppose $H=U_{\rho}, \rho>0$, say $\beta=1$. Now the center Z is 1 -dimensional and the quotient H / Z is the Heisenberg group. Let G be the discrete subgroup $\pi / \pi \cap \mathbf{Z}$ of H / Z. It is a lattice and so it has the form $\langle x, y, z| x \leftrightarrow$ $\left.y, z, y z=x^{a} z y\right\rangle$. The central extension π of G by \mathbf{Z} has presentation $\left\langle w, x, y, z \mid w \leftrightarrow x, y, z, x y=w^{b} y x, x z=w^{c} z x, y z=w^{d} x^{a} z y\right\rangle$ for suitable integers a, b, c, d. One finds immediately that $x y^{m} z^{n}=w^{b m+c n} y^{m} z^{n} x$. Choose m, n relatively prime with $b m+c n=0$. Then the subgroup π^{\prime} generated by w, x, and $y^{m} z^{n}$ is free abelian with quotient group \mathbf{Z}. Again we take H^{\prime} to be the Malcev completion of π^{\prime} in H. q.e.d.

The quotient groups Γ / π are not very large if $H \neq T$. For instance, recall that the groups U_{ρ} have a natural flag: this must be preserved by Γ. The graded action of Γ is a sum of 41×1 matrices and it has finite order and determinant 1 . Thus $[\Gamma: \pi$] divides 8 . If $H=T, \Gamma$ is on the list of crystallographic groups in dimension 4, [3]. Thus the finite extensions are, in principle, routinely computable.

Note that we have shown
Corollary. Every complete compact flat spacetime is finitely covered by a T^{3} bundle over the circle.

5. Causality

Let us call a motion $A p+v$ of Minkowski space causal if the displacement vector $A p-p+v$ is spacelike or zero for all points p. If $\pi \subset \mathscr{P}$ acts freely and properly discontinuously on M and each element of π is causal, we will say that π and $X=M / \pi$ are a causal group and a causal spacetime, respectively. Here no timelike or lightlike geodesic in X returns to its starting point, reflecting the physical notion of causality.

If π is causal, one cannot have X compact. The strongest compactness property one can assume corresponds to the compactness of the "special directions" in X. This is to assume that X has two ends, i.e. that there is a compact set C (separating X into two unbounded open components but no compact C^{\prime} gives more than two. Clearly this holds if $X=K \times \mathbf{R}, K$ compact: the 2 ends correspond to those of \mathbf{R}, i.e., to $\pm \infty$, or the infinite future and infinite past.

We will further suppose that π is contained in a simply transitive group of motions H. Then we find

Theorem 6. Let H be a simply transitive group of motions of M and let π be a causal subgroup of H such that $X=M / \pi$ has two ends. Then there is an affine fibration of X over \mathbf{R} with 3-tori as fibers. In particular π is free abelian of rank 3 and X is diffeomorphic to $T^{3} \times \mathbf{R}$.

Proof. Suppose to begin that $H=\mathscr{A}$. The element $A p+v$ of \mathscr{A} is causal if $2\left(r+\left(e^{t}-1\right) w\right)\left(u+\left(e^{-t}-1\right) z\right)+s^{2}+t^{2}>0$ for all $w, z \in \mathbf{R}$. If $t \neq 0$ this is absurd. So $t=0$ on π. Thus $\pi \subset T$.

Similarly if $H=\mathscr{B}$, one can show $\pi \subset T$.
But for $\pi \subset T$, the condition that X has two ends means just that π has rank 3. Let T^{\prime} be the vector space spanned by π. The projection $X \rightarrow M / T^{\prime}$ is the desired affine fibration. The fibers are flat Euclidean tori, except in the case when $T^{\prime}=v^{\perp}, v$ lightlike, $\mathbf{R} v \cap \pi=0$.

We now suppose $H=U_{\rho}$. In the notation of our table, let $(A \mid v) \in U_{\rho}$ correspond to the parameters r, s, t, u. Let p be the vector with coordinates w, x, y, z and write v_{i} for the coordinates of v, δ_{i} for those of $A p-p+v$. Then

$$
\begin{aligned}
& \delta_{1}=-\beta t x-\varepsilon v y-\frac{1}{2}\left(\beta^{2} t^{2}+\varepsilon^{2} u^{2}\right) z+v_{1}, \\
& \delta_{2}=\beta t z+v_{2}, \delta_{3}=\varepsilon u z+v_{3}, \delta_{4}=v_{4}=u,
\end{aligned}
$$

and causality means $2 \delta_{1} \delta_{4}+\delta_{2}^{2}+\delta_{3}^{2}>0$ for all x, y, z. Considering the terms in x and y, one sees that $\beta t u=\varepsilon u^{2}=0$ at all elements of π.

Suppose there is some element of π with nonzero u. Then $\varepsilon=0$. As $(\beta, \varepsilon) \neq(0,0)$, we have $\beta \neq 0$. Thus $t u=0$ on π. Since $\varepsilon=0$, the map ϕ : $U_{\rho} \rightarrow \mathbf{R}^{2}, \phi(A \mid v)=\binom{t}{u}$ is a group homomorphism. As $\phi(\pi)$ is a subgroup of \mathbf{R}^{2} and lies in the coordinate axes, we must have $t=0$ on π. Thus $2 \delta_{1} \delta_{4}+\delta_{2}^{2}$ $+\delta_{3}^{2}=2 r u+s^{2}$ and $\pi \subset T$. So again π has rank 3. It follows that r, s, u can be chosen on π with $2 r u+s^{2}<0$ since any cocompact lattice in Minkowski 3 -space meets the interior of the light cone. This contradiction shows $u=0$ on π. Causality holds provided s, t does not vanish simultaneously on nonzero elements of π.

Since $u=0, \pi$ preserves the z-coordinate. This gives the fibration of X over R. One can check that $\operatorname{ker} u \subset U_{\rho}$ is an abelian subgroup, so the fiber is a 3 -torus. q.e.d.

For each fixed z, the action of $\pi \subset U_{\rho}$ is given by

$$
\left(\begin{array}{ccc|c}
1 & -t & 0 & r-\frac{1}{2} s t-\frac{1}{2} t^{2} z \\
0 & 1 & 0 & s+t z \\
0 & 0 & 1 & t
\end{array}\right)
$$

where we have set $\beta=1$ for simplicity (if $\beta=0$ then $\pi \subset T$). Thus the affine structures on the fibers vary with z. They are never Euclidean. The vector field $\partial / \partial w$ gives bounded light rays on each toral fiber, so the causality of these examples is very delicate.

References

[1] L. Auslander, Simply transitive groups of affine motions, Amer. J. Math. 99 (1977) 809-821.
[2] L. Auslander \& L. Markus, Flat Lorentz 3-manifolds, Mem. Amer. Math. Soc. 30 (1959).
[3] H. Brown, R. Bulow, J. Neubuser, H. Wondratschek \& H. Zassenhaus, Crystallographic groups of four-dimensional space, Wiley, New York, 1978.
[4] D. Fried, Geometry of cross-sections to flows, Topology 21 (1982) 353-371.
[5] D. Fried \& W. Goldman, Three-dimensional affine crystallographic groups, Advances in Math. 47 (1983) 1-49.
[6] W. Goldman \& Y. Kamishima, The fundamental group of a compact flat Lorentz space form is virtually polycyclic, J. Differential Geometry 19 (1984) 233-240.
[7] B. Kostant \& D. Sullivan, The Euler characteristic of an affine space form is zero, Bull. Amer. Math. Soc. 81 (1975) 937-938.
[8] G. A. Margulis, Free totally discontinuous groups of affine transformations, Soviet Math. Dokl. 28 (1983) 435-439.
[9] J. Milnor, On fundamental groups of complete affinely flat manifolds, Advances in Math. $\mathbf{2 5}$ (1977) 178-187.
[10] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer, Berlin, 1972.
[11] D. Tischler, On fibering certain foliated manifolds over S^{1}, Topology 9 (1970) 153-154.
[12] H. Zassenhaus, Beweis eines Satzes über diskrete Gruppen, Abh. Math. Sem. Univ. Hamburg 12 (1938) 289-312.

[^0]: Received February 28, 1985, and, in revised form August 21, 1985. This work was partially supported by the National Science Foundation.

