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FLAT SPACETIMES
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Abstract

Those closed pseudo-Riemannian manifolds covered by Minkowski space M

are classified up to finite covers. The simply transitive isometric actions on M

are listed. Some spacetimes with 2 ends satisfying a causality condition are

analyzed.

We call a 4-manifold X wtih a metric g of signature ( + , + , + , - ) a

spacetime. We will assume that g has zero curvature, i.e. X is flat. Then X is a

special kind of affine manifold, namely an affine manifold with a parallel

metric of the given signature. We also assume X is complete in the sense that

geodesies on X extend for all time. This implies that the universal cover of X is

Minkowski space M.

We will classify such X's under the assumption that X is compact. We

prove in §1 that π has a solvable subgroup of finite index, using theory

developed in [5] with W. Goldman. This result has been extended to higher

dimensions by Goldman and Kamashima [6] but our proof is more geometric.

For a noncompact counterexample see [8] and for further discussion see [9].

The classification also uses a theorem of Auslander's on unipotent simply

transitive affine actions [1], For subgroups of the isometry group 9 of

Minkowski space, those are classified in §2. This is extended to all simply

transitive actions in §3. Then in §4 we give our classification. It extends to

dimension 4 that given by Auslander and Markus for 3-manifolds [2].

It is conceivable that if X is compact then g is automatically complete. A

counterexample would be a very interesting spacetime: its curvature and global

topology would not account for its failure to be complete. It would also be a

valuable example in the theory of affine manifolds.

In §5 we discuss some two ended flat spacetimes with respect to their causal

structure.
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1. 7r is virtually solvable

A group with a solvable subgroup of finite index is called virtually solvable.
We show

Theorem 1. // m c @ and π acts freely and properly discontinuously on M

with compact quotient then Ή is virtually solvable.

Proof. Taking an affine transformation to its linear part defines a natural
homomorphism λ: 0>-> 50(3,1). We let Γ = λ(ττ) and we let G be the
algebraic hull of Γ. G is an algebraic subgroup of 50(3,1). The identity
component Go is of finite index in G, since G is algebraic. We will show Go is
solvable.

As in [7] one knows that each A e Γ satisfies det(̂ 4 - /) = 0. As first
noted by M. Hirsch, this reflects algebraically the fact that the nontrivial
elements of π act without fixed points in M. It follows that this nontrivial
polynomial equation holds on G. This shows dimG0 < dim 5O(3,1).

Suppose Go is not solvable. Then it contains a semisimple connected
subgroup 5. As dim 5 < dim 50(3,1), 5 is either 50(3) or 50(2, l ) 0 , in
properly chosen coordinates on M. In either case, 5 is maximal among the
connected Lie subgroups of 50(3, l ) 0 , so Go = 5. Thus Go fixes a vector v of
nonzero length.

Let π0 be the kernel of the natural map π -> G/Go. Let Xo = M/π0 be the
corresponding finite cover of our given spacetime X. Let Ϋ be the parallel
vector field on M determined by v and let Y be the corresponding vector field
on Xo. The 1-form ω on Xo dual to Y is parallel and hence closed.

Perturb ω to a closed 1-form ωλ with rational periods P, where P is the set
of real numbers obtained by integrating ωι around closed loops in Xo. As π is
finitely generated, P is discrete and R/P is a circle. Also ωλ(Y) never
vanishes, assuming ωλ is close enough to ω, since v has nonzero length.

Let b G Xo be a basepoint and define θ: Xo -> R/P as the indefinite
integral θ(y) = jξ ωv Then θ is a fibration of Xo over circle [11]. Let K be a
connected component of a fiber of θ. Then K is a connected cross-section to
the flow φ on Xo generated by Y.

Since Y is parallel and Xo is flat, the flow φ has a transverse affine structure
that induces an affine structure on K. Lifting φ to the universal cover M one
obtains the one parameter group φ of translations of M with velocity v. So K
is naturally identified with the orbit space of this flow M/Rv, cf. [4]. This orbit
space is just an affine 3-space so K is complete in its induced affine structure.

A complete compact affine 3 manifold has solvable fundamental group by
[5]. Thus ΊTXK is solvable. K is the fiber of a fibration of Xo over the circle so
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the homotopy exact sequence of this fibration shows that π0 is an extension of

πxS
ι = Z by mxK. Hence 77O is solvable, q.e.d.

It follows that the linear holonomy of Xo, i.e. the subgroup Γo = λ(ττ0) c

SO(3,1), is also solvable.

Now since Γo has finite index in Γ, the algebraic hull G(Γ0) c G has finite

o c G(Γ0), so Go is solvable too.

2. Unipotent groups

We will consider a subgroup U c & that is unipotent, i.e. if Ax + υ is an

affine transformation in U then the only eigenvalue of A is 1. We suppose also

that the action of U on M is simply transitive, i.e. that given mv m2 Ξ M

there is exactly one u e U with umι = m 2.

Clearly such a f/ can be used to construct flat spacetimes X = M/π for any

discrete subgroup π c U. By a different procedure, these ί/ 's arise from any

compact flat spacetime. We need to classify them. We write (A\υ) for the

infinitesimal affine motion with linear part A and translational part v.

Theorem 2. Let U be a unipotent subgroup of 0> that acts simply transitively

on M. Then U — exp(L) where L is a nilpotent Lie algebra of infinitesimal

isometries of Minkowski space M.

In suitable linear coordinates (w, x, y, z) = υ on M, g is given by g(v,v) =

2wz + x2 + y2 and L = Lβ ε is all pairs (A | ί;) where

-βy -εz 0 \

0 0 0 βy

0 0 0 εz
\0 0 0 0 ,

A = v =

for fixed β > 0, ε > 0. The parameters β, ε are uniquely determined by U except

for the rescaling

( 2 ε ) , λ > 0 .

Proof. Since U is simply transitive, it is simply connected. One can identify

the affine motions of 4-space with the linear motions of 5-space that preserve

an affine hyperplane. Thus we may regard U as a linear unipotent group and

take logarithms of the elements in U to generate L. L is a Lie algebra of

nilpotent matrices that represent infinitesimal isometries of Minkowski space.

Since U is locally transitive, the correspondence (A\v) -> v from L to R4 is

surjective. As U is four dimensional, it is a bijective correspondence and we

can write A = A(v). We proceed to reduce A to the indicated normal form.
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We first show

Lemma 1. λ(ί/) fixes a light like vector v0.

Proof. By Engels' theorem, some vector υ0 is fixed by λ(U) (i.e., annihi-

lated by the nilpotent Lie algebra λ(L)).

If υ0 is timelike then λ(U) preserves υ£ so λ(U) <z SO(3). Thus U

preserves a Euclidean inner product on R4. As a unipotent orthogonal matrix is

trivial, this implies λ(U) = 1.

If v0 is spacelike then υ£ is Minkowski 3-space and we have λ(U) c

50(2,1). If λ(U) does not fix a lightlike vector in VQ , one can again find a

fixed spacelike vector υλ in υ$ . In {£>0> ̂ I}" 1 = 50(1,1) one sees that the

unipotent group λ(ί/) is trivial, q.e.d.

We choose linear coordinates w, x, y, z on R4 so that v0 is the unit vector in

the w direction and so that g has the form 2wz + x2 + y2. We also write

R4 = R + R2 + R, v = vx + υ2 + v3 so that υv υ3 are 1-vectors and υ2 a

2-vector. Then if / denotes the linear map that switches vλ and υ3 and fixes υ2

the infinitesimal isometry A for g is a solution to A*J + JA = 0. As A is

nilpotent, it must have the block form

A(v) =
0 -γ' 0
0 0 γ
0 0 0/

v =

This defines in our setting a linear map γ(ι ), γ: R4 -> R2 that we may express

as y(υ) = y^vj + γ2(ι>2) + γ 3 ( ^ )

Lemma 2. γx = 0, γ2

2 = 0.

PAΌO/. For any υ, υ' the commutator of (A(v) \ v) and (Λ(t/) | υ') is of the

form (01 υ"). Since L is a Lie algebra, we must have y(υ") = 0.

Explicitly ϋi' = -y{υ)V2 + γ ( ^ r ) ^ 2 , ^ = Y(^)y3 " ϊ ( ^ ) ϋ 3 , and ^ = 0.

Let ί;3 = υ3 = ϋ2 = 0. Then 0 = γ(ϋ r ') = Yχ(Yi(yi) ^ 2) Letting ϋi, ι;2 vary

we see yx = 0.

Now take ϋ3 = 0 only. Then 0 = γ(ϋ") = 72(72(^2)^3)' where we have used

7! = 0. Letting v2 and ι?3 vary shows γ2

2 = 0.

Conversely if yx = γ2

2 = 0 then indeed y(υ") = 0. q.e.d.

So U is determined by γ2: R2 -> R2 and γ3: R -> R2 with γ2

2 = 0. We regard

γ3 as a 2-vector. One can make the following changes in γ2, γ3 by g-isometries

that preserve the subspace Rυ0:

1) Ύ2 = λγ 2, Ύ; = λ2γ3, λ G R, λ Φ 0,

2) γ3' = 5γ 3 , γ^ = Λγ,*" 1, 5 e 0(2),

3) Y2 = Ϊ2» Ϊ3 = Y3 2
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Here 1) represents a rescaling of the w and z axes, 2) represents a rigid motion

of the x — y plane and 3) a change of coordinates that fixes v£ (the

w — x - y space) and changes the z-axis.

Using 2) we can put the matrix γ2 into the form (g ξ), so γ 2 (*) = (β

o

y).

Suppose β Φ 0. Then 3) can be used to put γ3 into the form (°ε). If β = 0

then a) can be used to the same effect. So we reach the normal form for γ and

A. It is not hard to arrange β, ε > 0 by using λ = -1 in 1) and B = ( ± J +J)

in 2) if necessary.

We now show that (β, ε) and (β ' , εr) give the same £/ only if βf = λβ,

ε' = λ2ε, for some λ > 0. The case β = ε = 0 is uniquely characterized by the

property λ(t/) = 1.

Lemma 3. // {β,ε)Φ (0,0) then the w-axis W consists of all the lightlike

vectors fixed by y(U).

Proof. Suppose υ = (wv JC15 yv zλ) is lightlike and fixed, i.e. 2wιz1 + x\ +

y\ = 0, -βyxx + εzyx = 0, βyzx = 0, and εzzx = 0 for all J , Z G R . Whether

β Φ 0 or ε # 0, one has zx = 0. This gives x\ + j>x

2 = 0 so Xi = JΊ = 0.

/ . ϋ = (w1? 0,0,0). q.e.d.

Thus W and its orthogonal the w, JC, ^, 3-space W1- are determined by U

when γ(ί/) ¥= 1. It is now easy to check that only the coordinate changes 1), 2)

and 3) above are relevant for comparing (β, ε) and (/?', ε'). The special case

β = 0 corresponds to y\W±= 0. The special case ε = 0 corresponds to the

other possibility for rank(γ: R4 -> R2) < 2. It only remains to analyze the

cases β > 0, ε > 0: but one can check that choosing ε = 1 forces the value of

β. q.e.d.

If (β, ε)=£(0,0), we call the corresponding unipotent group Up where

p = β 2 /ε G [0, oo]. Thus the only ί/'s are the translation group Γ and the C/ 's.

3. Simply transitive actions

We will consider a Lie group H c & that acts simply transitively on M.

Then // must be solvable [A, M]. Auslander proved that there is an associated

unipotent group U that also acts simply transitively on Λf, namely the

unipotent radical of the algebraic hull G of H[A]. We will use this fact,

together with the results of the previous section, to find all H 's.

Suppose U is not the translation group Γ, so U corresponds to a nonzero

pair (β, ε). If β = 0 there is a two dimensional space of parallel vector fields

corresponding to the w — x plane. If β Φ 0 then the w — x plane is de-

termined as the kernel of γ. Thus the flag W c (w — x plane) c W1- is in
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both cases determined by U and the normalizer N of U preserves this flag. In

particular elements of N have only real eigenvalues.

Since U is the unipotent radical of G, U< G. Thus G c N. Let LG be the Lie

algebra of G. Then elements of LG have the form (A\v) where

Iλ -δ* 0
A = 0 0 8

\0 0 -λ

relative to the splitting R4 = R Θ R2 Θ R. The middle block vanishes because

G preserves the flag discussed above.

We will show λ = 0. Subtracting off an element of Lβ ε we may suppose

v = 0. Rescaling, we may suppose λ = 1. By choosing the z axis differently we

may suppose δ = 0. Computing the commutator of (A\0) with the typical

element (A(υ)\

Lemma 2)

[ ) ) G L E gives (in this new basis which is like that used in

1

0

0

0

0

0

0

0
-1

0

0

0,
/

/0 -γ1

0 0

0 0

0

0
0

-y'

0
0

0

γ
0

0

-v3j

Since (^410) must normalize Lβ ε, we must have y(v1,O9-υ3) = y(vl9υ29v3).

This gives γ 2 = γ3 = 0, so β = ε = 0 contrary to assumption. So λ = 0.

It follows that LG is nilpotent, so G and H are unipotent. But any unipotent

connected Lie group is Zariski closed, so H = G. Taking this unipotent radical

we see H = U = Up. We have

Theorem 3. // H c & acts simply transitively on Minkowski space M then

either

1) H is one of the unipotent groups Up9 p e [0, 00], or

2) the unipotent radical U of the algebraic hull G of H is precisely the group T

of translations of M.

We now restrict to case 2) with H Φ T, i.e. we suppose H is not unipotent.

On the one hand λ ( # ) = H/H Π ί c G/T = G/U. The quotient Go/U is

abelian (indeed it is isomorphic to a linear group of diagonal matrices). Thus

λ(H) is abelian. A nontrivial connected abelian subgroup of S0(3,1) has

dimension d < 2. As the translation subgroup H Π T is normalized by H,

λ(H) preserves the corresponding subspace of M. We find

Theorem 4. If H c @> acts simply transitively on M then either H is

unipotent (and so described by Theorem 2) or \(H) is a nonunipotent 1-

parameter subgroup of λ(@) = 50(3,1) and H Π T=keτ(λ\H) is a 3-
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dimensional invariant subspace of λ(H). In the latter case there are linear

coordinates w, x, y, z on M for which g = 2wz + x2 + y2 and the Lie algebra LH

consists of all pairs {A \ v) where

a)

or

b)

V =

V =

A(o) =

y
0
0
0

Ό
0
0

ιθ

0
0
0
0

0
0
-z
0

0

0
0
0

0
z
0
0

0 ϊ

0
0

-y)

0\
0
0

o

Proof. Suppose H Π T has dimension 3 and choose Ao Φ 0 in the Lie
algebra of λ(H). Ao is not nilpotent.

As in the proof of Theorem 1, det(Λ - /) = 0 for all Λ e λ(H). Thus
det Ao = 0, that is ^40 is singular.

As Ao is an infinitesimal isometry, its eigenvalues occur in pairs ±μ. We
must have exactly two eigenvalues equal to 0. Rescaling Ao, we may suppose
the other two are + / or ± 1.

If they are ±/, the eigenspace they span is irreducible. The invariant
subspace H Π T has codimension one and so must contain this eigenspace.
This gives case b), where w, x, y span H Π T and the + / eigenspace is
spanned by x, y.

If the eigenvalues are +1 and H Π T contains both eigenspaces, one gets
case a). Otherwise, switching to -Ao if necessary, we may suppose H Π T
contains the +1 and 0 eigenspaces. This leads to a nontransitive affine group,
so it does not contribute to our list.

If H Π T has dimension 2, then the Lie algebra of λ(H) consists of singular
commuting elements. This easily implies that λ(H) is unipotent. q.e.d.

We summarize our results in the following table, listing (up to conjugacy in
@) all the simply transitive isometric actions on Minkowski space with respect
to coordinates in which g = 2wz + x2 + y2. The only redundancy is that
(β, ε)^(0,0) and (β\ ε') Φ (0,0) determine the same Up if p = β2/ε =
(β')2/εf. We show a typical element of each group where r, s, t, u e R. {A \ υ)
denotes the motion p -> Ap + υ, p e R4.
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Simply Transitive Motions of Minkowski Space

T:

Ί
0
0

yO

0
1
0
0

0
0
1
0

0
0
0
1

s
t
u)

-βt

1

0

0

-εu -

0

1

0

βt

εu

1

eι 0 0 0
0 1 0 0
0 0 1 0

0 0 0 έ?"'

(1 0 0 0
0 cosw sinw 0
0 -sinw cosw 0
0 0 0 1

r
s
t
u,

\βtu

\εu2

4. Discrete groups

Let π be a discrete subgroup of a simply transitive group H of motions of

Minkowski space M. Then the orbit space X = M/π is a flat spacetime. The

possible discrete subgroups π depend only on the structure of H as a Lie group

and not on its embedding in @>. Since H is known up to conjugacy by §3, we

can easily find the possible subgroups π.

By a theorem in [5], every compact complete affine manifold X = A/T with

virtually solvable Γ has a crystallographic hull H(T). This group H(T) has an

identity component H0(T) that acts simply transitively on A. Also i/(Γ) has

only finitely many components, each of which meets Γ. These properties

determine H(T) uniquely in case Γ (or some subgroup of finite index in Γ)

consists of matrices with only real eigenvalues.

We turn to the special case A = M, Γ c 0>. Then A/T is the most general

compact complete flat spacetime, since §1 assures us that Γ is virtually

solvable. The identity component H0(T) must occur in our table of simply

transitive motions. By Bieberbach's theorem, any discrete subgroup of B meets
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T in a subgroup of finite index [12]. Thus in all cases Γ has a subgroup of

finite index with only real eigenvalues. So the hull H(T) is unique in our

setting. If π = Γ Π H0(T) and H = H0(T), the quotient M/π is a finite

regular cover of A/T9 canonically associated to Γ. So by classifying the

discrete subgroups TΓ, we will classify up to a natural finite cover all the

compact, complete, flat spacetimes.

Now we lose little by not discussing 38 further, since it does not arise as

H0(T). The case if = Γ is obvious: m is any lattice in R4. Only the cases

H = Up and H = si give interesting groups.

Theorem 5. X is a flat complete compact spacetime with fundamental group

Γ. There is a uniquely determined simply transitive group H of motions of the

universal cover X such that H Π Γ = π has finite index in Γ.

The group π is a semidirect product Ί? Y, A Z. A e SL(3, Z) has char-

acteristic polynomial pA(t) = det(ί - A) = (t - l)(t2 - bt + 1), with b > 2 an

integer.

The similarity class of A over Q (or C) determines the group H up to

isomorphism as a Lie group. In the finer classification as a subgroup of ^ , H is

conjugate to

a) si, ifb>29

b) Up with p>0,if(A- I ) 3 = 0, (A - I ) 2 Φ 0,

c) ί/0, if (A - I)2 = 0, A - I Φ 0,

d) Γ, if A = I.

In each case, if a = log A then H is the semidirect product of R3 by R where

R acts on R3 by eta, t e R.

Proof. The first paragraph has been shown and all possibilities for H are

known.

In each case H has an abelian subgroup W isomorphic to R3. For J / there

is the subgroup T (Ί si, for Up the subgroup defined by t = 0. This shows that

H is a semidirect product by some one parameter group eta. One sees that a

has eigenvalues all 0 if H = Up or H = T and eigenvalues 0, ± λ , some λ e R ,

if H = si.

In case H = J / , one can check that H' = T (Ί sf is the maximum connected

normal nilpotent subgroup of H. By [10, 3.5] π meets /Γ in a lattice. Since

Hr = R3, π Π # ' = Z 3 . The quotient TΓ/77" n # ' i s discrete in # / # ' = R, so it

is infinite cyclic. The action A of Z on Z 3 has eigenvalues μ, 1, μ~\ μ > 1 and

so det(/ - A) is of form (t - l)(t2 - bt + 1), b > 3.

In the unipotent cases, the argument is similar. One only needs to show that

H' can be chosen so π Π E' is a lattice in IT.

For H = Γ, this is trivial.
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For H = Uo (i.e. β = 0, ε = 1) the center Z of H is 2-dimensional. By [10,

2.17] Z Π 77 is a lattice in Z. The quotient ττ/Z Π 77 is a lattice in R2. Taking

an element of π that corresponds to an indivisible vector in π/Z Π π and

adjoining it to Z Π 77 gives a free abelian subgroup 77' of rank 3. The quotient

77/77' is infinite cyclic. One takes Hf to be the Malcev completion of 77'.

Now suppose H = Up, p > 0, say β = 1. Now the center Z is 1-dimensional

and the quotient H/Z is the Heisenberg group. Let G be the discrete

subgroup 77/77 Π Z of H/Z. It is a lattice and so it has the form (JC, y, z \x <->

y,z, yz = x^zy). The central extension 77 of G by Z has presentation

(H>, xy y, z\w <r* x, y, z, xy = w^yx, xz = wczx, j z = H^xαzy) for suitable in-

tegers a,b,c,d. One finds immediately that xymzn = whm+cnymznx. Choose

m,« relatively prime with bm + en = 0. Then the subgroup 77' generated by

w, x, and j>mz" is free abelian with quotient group Z. Again we take Hf to be

the Malcev completion of 77' in H. q.e.d.

The quotient groups Γ/77 are not very large if H Φ T. For instance, recall

that the groups Up have a natural flag: this must be preserved by Γ. The

graded action of Γ is a sum of 4 1 X 1 matrices and it has finite order and

determinant 1. Thus [Γ:τ7] divides 8. If H = T, Γ is on the list of crystallo-

graphic groups in dimension 4, [3]. Thus the finite extensions are, in principle,

routinely computable.

Note that we have shown

Corollary. Every complete compact flat spacetime is finitely covered by a T3

bundle over the circle.

5. Causality

Let us call a motion Ap + v of Minkowski space causal if the displacement

vector Ap — p + v is spacelike or zero for all points p. If 77 c 9 acts freely

and properly discontinuously on M and each element of 77 is causal, we will

say that 77 and X = M/77 are a causal group and a causal spacetime,

respectively. Here no timelike or lightlike geodesic in X returns to its starting

point, reflecting the physical notion of causality.

If 77 is causal, one cannot have X compact. The strongest compactness

property one can assume corresponds to the compactness of the "special

directions" in X. This is to assume that X has two ends, i.e. that there is a

compact set C (separating X into two unbounded open components but no

compact C" gives more than two. Clearly this holds if X = K X R, K compact:

the 2 ends correspond to those of R, i.e., to ± 00, or the infinite future and

infinite past.
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We will further suppose that 77 is contained in a simply transitive group of

motions H. Then we find

Theorem 6. Let H be a simply transitive group of motions of M and let π be

a causal subgroup of H such that X = M/π has two ends. Then there is an affine

fibration of X over R with 3-tori as fibers. In particular π is free abelian of rank

3 and X is diffeomorphic to T3 X R.

Proof. Suppose to begin that H = J / . The element Ap + v of s/ is causal

if 2(r + (e* - l)w)(u + (*?"' - l)z) + s2 + t2 > 0 for all w, z <= R. If / # 0

this is absurd. So / = 0 on π. Thus ?τc Γ.

Similarly if 7/ = ^?, one can show T Γ C Γ .

But for 77 c Γ, the condition that X has two ends means just that m has

rank 3. Let Γ' be the vector space spanned by π. The projection X -> M/T is

the desired affine fibration. The fibers are flat Euclidean tori, except in the

case when V = v x , v lightlike, Rv Π 77 = 0.

We now suppose H = Up. In the notation of our table, let (A\v)e Up

correspond to the parameters /*, s, /, u. Let /? be the vector with coordinates

w, x, >>, z and write υt for the coordinates of v, δ, for those of Ap — p + v.

Then

δχ = _/?/;<; - ευy - \(β2t2 + ε2u2)z + ϋ 1 ?

δ2 = βtz + ϋ 2, δ3 = εwz + ϋ 3, δ4 = v4 = w,

and causality means 2δ xδ4 + δ | + δ3

2 > 0 for all x, y, z. Considering the terms

in x and 7, one sees that βtu = εu2 = 0 at all elements of π.

Suppose there is some element of m with nonzero u. Then ε = 0. As

(β,ε)Φ (0,0), we have β =£ 0. Thus tu = 0 on TΓ. Since ε = 0, the map φ:

£/p -> R2, φ(>41 f) = CM) is a group homomorphism. As φ(77) is a subgroup of

R2 and lies in the coordinate axes, we must have t = 0 on π. Thus 2δ xδ 4 + δ |

+ δ3

2 = 2ru 4- s2 and iτ c T. So again TΓ has rank 3. It follows that r, s, u can

be chosen on m with 2ru + s2 < 0 since any cocompact lattice in Minkowski

3-space meets the interior of the light cone. This contradiction shows u — 0 on

7r. Causality holds provided s, t does not vanish simultaneously on nonzero

elements of iτ.

Since u = 0, TΓ preserves the z-coordinate. This gives the fibration of X over

R. One can check that ker u c Up is an abelian subgroup, so the fiber is a

3-torus. q.e.d.

For each fixed z, the action of 77 c Up is given by

1
0
0

-t

1
0

0
0
1

r — \st

s +
t

-\tλz

tz
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where we have set β = 1 for simplicity (if β = 0 then TΓC Γ). Thus the affine

structures on the fibers vary with z. They are never Euclidean. The vector field

9/3 w gives bounded light rays on each toral fiber, so the causality of these

examples is very delicate.
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