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CONSTRUCTION OF SINGULAR HOLOMORPHIC
VECTOR FIELDS AND FOLIATIONS
IN DIMENSION TWO

ALCIDES LINS NETO

0. Introduction

In this paper we construct holomorphic differential equations or foliations in
two different situations:

Case 1. Singularities of vector fields (local case).

Case 2. Ricatti foliations in C X C (global case).

In Case 1 we consider singular vector fields defined in a neighborhood U of
0 € C* Suppose that 0 is an isolated singularity of X. In this case, as is well
known, the singularity can be solved by a finite number of blowing-ups (cf. [4],
[5], and [12]). Let us consider for simplicity the case where X is solved by one
blowing-up. After blowing-up 0 € C2, we obtain a complex line bundle
C? > C, C=CU {w)}, a proper projection 7: C* - C?, and a singular
holomorphic foliation % on U = 7~ }(U), where:

(i) 7~ 1(0) = C, the zero section of C?, and m: €>*— C—> C*— {0} is a
diffeomorphism.

(i) 7 sends nonsingular leaves of % in U — C onto integral curves of the
complex differential equation x = X(x). The singularities of % are in C and
are all simple (cf. §1.1 for the definition). Set S = set of singularities of Z.

In some cases (nondicritical cases) C is invariant by %, that is, C is the
union of S and a leaf of %, C—S. Therefore it is possible to consider the
holonomy group of the leaf C— S (in some transversal section). This group is
called the projective holonomy of the singularity and we denote it by J#(%).
In §2 of this paper we prove a slightly more general version of the following
result.

Theorem 1. Let G = {g,,---, 8} be a set of germs at 0 € C of holomor-
phic diffeomorphisms which leave 0 fixed and such that g,,---,g, and
g1 ° -+ o g, are linearizable, not necessarily in the same coordinate system. Then
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there is a germ of vector field X, with a singularity at 0 € C?, such that its
projective holonomy is conjugated (holomorphically) to the group generated by G.
The proof of this theorem is based in a theorem of Grauert (cf. [1]) and a
construction done in §2.3. In §2.4 we prove a generalization of Theorem 1 for
several blowing-ups. I wish to thank D. Cerveau, who motivated me in the
problem solved by Theorem 1, and R. Moussu, who told me about Grauert’s
theorem, which simplified a lot the original version of the proof.
In Case 2 we consider Ricatti equations in the form
&) L p), Lma() b+ ey
where p, a, b, and ¢ are polynomials, (x, y) € C% and T is a complex time.
Let % be the singular foliation on C? whose leaves are the solutions of (1). It
is clear that the vertical { x } X C is invariant for & if and only if p(x) = 0. If
p(x) # 0, then the vertical {x} X C is transverse to %. On the other hand the
change of variables v = 1/y transforms (1) into
) L p(x). Lo a(x)er - b(x)o - e(x)
which implies that % extends to a foliation % on C x C. Clearly % is
transverse to all fibers {x} € C such that p(x) # 0. Since p, a, b, and ¢ are
polynomials, % can be extended to a foliation % in CxC. This goes as
follows: the change of variables u = 1/x transforms equation (1) into

(2) %=—uzp(%), %—a(i)+b( )y+c(3‘)y2.

Let d = max{dg(a),dg(b),dg(c),dg(p) — 2} (dg = degree). If we multiply
the vector field associated to (2) by u? we obtain a new Ricatti equation
without poles, which extends % to a neighborhood of {x = o0} ¢ CXC.
Observe that the line { x = oo} is invariant by & if and only if dg(p) < d + 2.
We call # a Ricatti foliation on Cx C. The fibers {x} X C, where p(x) =0
(or {00} X Cif dg(p) < d + 2) are called the invariant fibers. We say that an
invariant fiber { x} X Cis simple if x is a simple root of p(x).

Let S=p }(0)or S=p1(0)U {oo} if dg(p) < p + 2. Since F is trans-
verse to the fibers of (C—S) x C >C- S, it follows that we can define a
global holonomy in some transverse section { g} X C, ¢ & S. This holonomy is
a representation of m,(C—S, g) — Diff({ g} X C) and it is defined as follows:
Take a curve y € 7,(C— S, q) and a point (g, y) € {q} x C. Lift y to a curve
Y,» contained in the leaf L, of & through (g, y), and such that 1,(0) = (g, »)
and Py(v,(1)) = v(2). Defi_lle £,(g, ¥) = v,(1). It can be verified that f, is a
diffeomorphism of {g} X C which depends only on the homotopy class of y
in 7,(C— S, q). Moreover y — /f, 1s a homomorphism of groups. In our case,
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since f, is holomorphic, it follows that f, is a Moebius transformation of the
fiber {¢q} x C.

In §3 we prove the following result.

Theorem 3. Let f,,---, f, be Moebius transformations, where k > 1. Let
Xg,* **, X, be k + 1 points in C, where k > 1. There exists a Ricatti foliation F
on CX C with the following properties:

(i) The invariant fibers of F are {xy} X C,---,{x,} X C. If one of the fi’s
is not parabolic, then these invariant fibers are simple.

(i) The holonomy of % is conjugated to the subgroup of PSL(2,C) generated
by fi.- s S

(i) If fi, -+, fx and fo = (fy° - -+ o f,) ! are not parabolic or elliptic, then
all the singularities of % are of Poincaré type.

We say that a singularity p of % is of Poincaré type if % can be defined in
a neighborhood of p by a vector field X such that the eigenvalues A, A, of
DX( p) satisfy A, /A, & R.

The proof of this theorem is based on the classification of fiber bundles over
C with fiber C and in a construction sketched in §3.1, which is in fact a slight
modification of the construction in §2.3.

In §4 we apply Theorem 3 to study some aspects of the structural stability
problem for singular foliations on Cx C.

I should say that, after writing this paper, J. P. Ramis pointed out that
Theorem 3 can be proved from the results of Birkhoff about linear differential
equations in [2] and [3]. Nevertheless, I decided to include it here since the
method for the construction is almost the same as the one we use for
constructing the singularities in §2.

I wish to thank C. Camacho and X. Gomez-Mont for helpful conversations
and ideas about Case 2.

1. The blowing-up method and preliminary results for Case 1

1.1. The blowing-up method. Let Z(x, y) = A(x, y)d/dx + B(x, y)d/dy be
a holomorphic vector field defined in an open set U C C?, such that 0 € U
and 0 is a singularity of Z, i.e., Z(0) = 0. We say that 0 is a simple singularity
of Z if the eigenvalues A, A, of its linear part at 0 satisfy one of the following
conditions:
(3) Ai-A,#0 and A /A, €Q,,
(4) A;=0 and A, #0.

By definition, the multiplicity of Z at 0 is the order of the first nonzero jet of
Z at 0.
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The blow-up of 0 € C? consists in replacing 0 by a one-dimensional projec-
tive line P, the set of complex directions at 0. The total space C? is then
replaced by a line bundle C2, whose zero section is P and such that C2 — P is
diffeomorphic to C? — {0}. Formally this goes as follows: C? is covered by
two coordinate charts ((t, x), E,) and ((s, y), E,,), where E,=C*>—1[_, E_
= CH? — I, [, is the y-axis, and /_ the x-axis. In the first chart the fibers of
C? are represented by the lines ¢ = constant and in the second by the lines
s = constant. The change of coordinates from the first chart to the second is
given by s = 1/¢, y = tx, so that the Chern class of this bundle is —1, as can
be easily verified. The projection 7: C* — C? is defined by 7(t, x) = (x, 1 - x)
in the first chart and by #(s, y) = (s - y, y) in the second. This projection
sends fibers of C? into lines passing through the origin of C? and its restriction
to C? — P is a diffeomorphism onto C? — {0}.

Now, let # be the singular foliation in U — {0} whose leaves are the
integral curves of the vector field Z. Let % * = #*(%) be the coinduced
foliation on 7~ }(U) — P. It is not difficult to prove that #* extends to a
singular foliation on U = #~}(U) with a finite number of singularities, all of
them in P (cf. [4], [5], and [12]). We denote this extended foliation by # )(Z).
Two situations can happen:

(i) Non dicritical case—P is invariant for # V(Z). In this case, if we denote
by S the set of singularities of # M(Z), then P — S is a leaf of # 1(2Z).

(i) Dicritical case—P is not invariant for % V(Z). In this case F V(Z) is
transverse to P, except in a finite number of points. Some of these tangency
points are singularities.

The foliation # M(Z) can be expressed near each singularity by a holomor-
phic vector field (cf. [12]). Therefore the process can be repeated in a
neighborhood of each singularity. If we do this, a new foliation # @ (Z) is
found in a neighborhood of a union of projective lines having normal cross-
ings. The foliation % @(Z) has again a finite number of singularities. The
process can be repeated as long as we want, so that after k blowing-ups we
have a foliation % ¥)(Z) defined in a neighborhood U ® of a union 2*) of
projective lines having normal crossings. Moreover the process gives us a
proper analytic projection 7#¥: U — U such that #*)(2®) = {0} and
7k U — p*) - U — (0} is a holomorphic diffeomorphism which sends
leaves of % (X)(Z) onto integral surfaces of Z. We will write
(UR g0 k) g ()(Z)) to denote a sequence of k blowing-ups, beginning
at 0 € C2 The map 7 will be called the blowing-up projection and 2% its
divisor. The divisor 2% is a union of projective lines such that two of them
intersect transversally in at most one point, called a corner.
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We observe that when 0 is a simple singularity of Z, then all singularities of
F (K)(Z) are also simple, so that we shall consider a simple singularity as a
final object in the blowing-up method. A remarkable fact about this method is
the following;:

Desingularization theorem [14]. Let 0 € C? be a singularity of a vector field
Z. Then there exists a blowing-up (U%), 7, @ ®) 7 K)(Z)) of Z at 0, such
that all singularities of # *)(Z) are simple.

Here we are more interested in constructing the vector field Z from the
foliation % (%), In this direction we have the following

Proposition 1. Let U be an open polidisk with 0 € U C C? and F be a
holomorphic foliation defined in U — {0}. Then there exists a vector field Z in U
with at most one singularity at 0 and such that the integral surfaces of Z in
U — {0} are the leaves of .

The following corollary follows easily from Proposition 1.

Corollary. Let (UW, 7", 25 be a sequence of k blowing-ups beginning
at 0 € C?, where m'¥(U®) = U is a neighborhood of 0 and (2 X)) = (0}.
Suppose that % is a singular holomorphic foliation in U, whose singularities
are in PX. Then there exists a vector field Z in U such that F*(Z) =%,
where F (K)(Z) is as before.

Proof. Since 70; U0 — 2*) - U — (0} is a diffeomorphism, then F=
me( %) is a foliation of U — {0}. Now apply Proposition 1 to .

1.2. Proof of Proposition 1. Given a point p € U — {0}, there exist a
neighborhood V' C U — {0} of p and a vector field Z? = 49/dx + Bd/dy in
V, whose integral surfaces are the leavesof # in V. Let f: ¥V - C = C U {0}
be the slope of Z?, f(q) = B(q)/A(q). Since V. U — {0}, forany g € V we
have A(q) # 0 or B(q) # 0. Hence f: ¥V — C is a well-defined holomorphic
function. Now if f: ¥ —» Cand f”: V' — C are the slopes of % in V and V",
where VN V' + &, then clearly f=f" in V' N V’. Therefore the slope
function f: U — {0} » C of % is well defined and holomorphic. It follows
from Levi’s extension theorem (cf. [8]) that there exist holomorphic functions
P,Q: U — C such that f(q) = Q(q)/P(q) for any g € U — {0}. Now, it is
not difficult to see that the leaves of % will be the integral curves of the
holomorphic vector field Z = Pd/dx + Q9/9y.

2. Construction of nondicritical singularities
Let Z be a holomorphic vector field defined in a neighborhood U of 0 € C?
and such that O is an isolated singularity of Z. Suppose that the first
blowing-up of Z at 0, say (U, 7, P, #®), is nondicritical. In this case as we
saw before, if S C P is the set of singularities of % ®, then P — S is a leaf of
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F D and so it makes sense to consider the holonomy of P — S, with respect to
a transversal section 2, where = N (P — S) = { p,}. This holonomy is a
representation of 7,(P — S, p,) in the group of germs of transformations of =
which leaves p, fixed, defined as follows: Let [y] € m(P — S, py) and y be a
loop whose class in m(P — S, p,) is [v]. Let p: C?> —> P be the projection of
the bundle defined by the first blowing-up. If p € C is near p,, then we can
lift v to a curve y, contained in the leaf of % @ which passes through p and
such that p oy, = y. The endpoint of y, will depend only of [y] and will be
denoted by [y]( p). The correspondence p = [y](p) is a holomorphic diffeo-
morphism between two neighborhoods of p, in =. Moreover if [a],[B] €
m (P — S, py), then ((a]*[B]D(p) = [al(BI(p)), if both members are defined,
where * is the product in =, (P — S, p,).

Now suppose that S = { py,---, py.1} (observe that k > 0). In this case
m (P — S, py) is a free group with k generators. Hence the holonomy of P — S
at = is generated by k germs f1, - -, fi: (2, py) = (2, py), corresponding to
the k generators of 7, (P — S, p,).

Here we prove the following result.

Theorem 1. Let g,,---, g8, be germs at 0 € C of holomorphic diffeomor-
phisms which leave O fixed. Suppose that for any j € {1,---,k}, g, is con-
Jugated with its linear part at 0, z — g/(0) - z. Suppose that the composition
8o =8i e -+ ogr' is also linearizable. Let I,,---,l, ., be distinct complex
lines through O € C2. Then there exists a germ at 0 € C? of holomorphic vector
field Z which satisfies the following properties:

(1) Z has exactly k + 1 analytic invariant manifolds, which are contained in
the l;’s.

(ii) Z is solved after one blowing-up, which is nondicritical, and the projective
holonomy of % V(Z) is conjugated to the group of germs generated by g,,- - -, 8-

(iii) The multiplicity of Z at O is k.

(iv) FD(Z) has k + 1 singularities in the divisor and all such singularities
are linearizable.

Remark 1. The case where some of the g,’s are periodic is not excluded in
the construction.

Remark 2. The same theorem (without (iv)) can be proved when
80> 81> * > 8, can be realized as local holonomies of nondegenerated singular-
ities, in the following sense: We say that the germ g: (C,0) - (C,0) can be
realized as local holonomy of a nondegenerated singularity if there exists a
differential equation in a ball B,0 € B C C?,

x=Ax(1+ Ri(x,y)),

©® y= >‘2)’(1 + Ry(x, Y))
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such that:
(1) A, A, # 0and Ry(0,0) = R,(0,0) = 0.

(i1) (0, 0) is the unique singularity of (5) in B.

(iii) The holonomy of the invariant manifold {y = 0} N B — {(0,0)} in
some transversal section 2 = {(x,, y); |y| <8} is analytically conjugated
to g.

The hypothesis in Theorem 1 that g,,---, g, are linearizable implies that
each g; is realizable as a local holonomy of a nondegenerated singularity.

Remark 3. The construction that will be done in §2.3 for the proof of
Theorem 1 can be applied also to prove the following result:

Let M be a compact Riemann surface and S = { py, pi,---, p,} C M,
k = 1. Let {g,---, 8¢} be as in the hypothesis of Theorem 1. Let / € Z. Then
there exist a complex 2-dimensional manifold ¥ O M and a singular foliation
% on V such that:

(1) The singular set of # is S and these singularities are linearizable.

(1)) M — S is a leaf of &.

(iii) The holonomy of M — S with respect to % is conjugated to the group
generated by {g,, -+, g, }.

(iv) The Chern class of the normal bundle of M in V is /.

At the end of §2.3 we will indicate how to prove this result from the
construction.

We observe that, although the C* structure of V' is determined completely
by /, we have no control on its holomorphic structure (unless in the special case
M = Cand ] < 0).

2.1. Preliminaries for the proof of Theorem 1. The proof of Theorem 1 will
be based in Proposition 1 and in the following theorem due to Grauert [1]:

Theorem. Let M? be a complex manifold of dimension 2 and S C M? be a
compact Riemann surface. Suppose that the Chern class of the normal bundle of S
is negative. Let (TS)* be the normal bundle of S in M and S, be the null section
of (TS)*. Then there are neighborhoods V of S in M and W of S, in (TS)*
which are diffeomorphic by a holomorphic diffeomorphism @: V — W such that
o(S) = S

Now let S € M be a Riemann surface of genus 0 and suppose that its Chern
class is — 1. Since the normal bundle (T'S)* is linear and has Chern class —1,
it follows that (TS)* is equivalent to the bundle C? > P, obtained by
blowing-up at 0 € C? (cf. [8]). The equivalence is a holomorphic diffeomor-
phism @: (TS)* — €? which sends fibers to fibers linearly. As a consequence
of Grauert’s theorem we have the following;:

Corollary 1. Let S C M? be a projective plane embedded in M with Chern
class —1. Let C* — P be the line bundle obtained by blowing-up at 0 € C2.
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Then there are neighborhoods V of S in M and W of P in C* which are
diffeomorphic by a holomorphic diffeomorphism @: V — W such that ¢(S) = P.

In order to prove Theorem 1 completely we shall need a small refinement of
Corollary 1. Let S € M? be as in Corollary 1 and suppose that ¢ is a
nonsingular holomorphic foliation of complex dimension 1, which is defined in
a neighborhood ¥V, of S and is transverse to S.

Corollary 2. Let S C M, and let 9, C?, and P be as above. Then there exists
a diffeomorphism @: V = W, as in Corollary 1, such that the image of any leaf
of 9/V by @ is contained in a fiber of C* > P.

Proof. Let §: V - W, WD P, be as in Corollary 1. Let = ¢,(%) be the
foliation induced by ¢ in W. Let m: C2 — C? be the projection associated to
the blowing-up of 0 € C2 Let %, = m,(%). By Proposition 1, ¥, is defined by
a vector field Z in W, = (W ). Since the leaves of ¢ are transverse to P, it
follows that the linear part of Z at 0 can be taken as DZ(0) = L = x9/9dx +
y3d/0y. Now by Poincaré’s linearization theorem [1], it follows that there is a
diffeomorphism ¢: U; = U, such that 0 € U; N U, and ¢,(Z) = L. Now the
integral curves of L are lines passing through 0 € C2. Let : U; - U, be the
blowing-up of ¢, U, = 7~ (U)), i = 1,2. It follows that ¢ = ¢ o § satisfies the
properties needed.

2.2. Idea of the proof of Theorem 1. The idea of the proof is to construct a
manifold M of complex dimension 2, by glueing several local models of linear
foliations in such a way that at the end a singular foliation # will be defined
in M which will have an invariant set P C M, diffeomorphic to a projective
line and with the Chern class of the normal bundle equal to —1. The
holonomy of P — {singular set of % } with respect to # will be conjugated to
the given group, generated by g;,- - -, g,. Hence by Corollary 1 of Grauert’s
theorem this foliation % will be equivalent to a foliation # in a neighbor-
hood ¥ of P in C? and therefore there will be a vector field Z, defined in a
neighborhood of 0, whose blowing-up is .%. The projective holonomy of the
singularity 0 of Z will be conjugated to the given group, generated by
g1, * *» 8- Moreover the construction of % will be done in such a way that its
separatrices, not contained in P, will be leaves of a foliation transverse to P,
and so by Corollary 2 the equivalence between % and % will be chosen in
such a way that the separatrices of % will be contained in the fibers of
C? > P. 1t will follow that the separatrices of the vector field Z will be
contained in k + 1 complex lines through the origin of C2. The fact that the
multiplicity of Z at 0 is k will follow from Theorem 1 of [4].

2.3. Construction of the manifold M and the foliation #. Let z) = 0 and
z{,--+, z be arbitrary k points in C, and for each j € {0,---,k} let D, be a
open disk of radius r and center z}, where r is chosen so that |z} — zJ| > 2r
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for any i #j, 0 < i, j < k. For each j &€ {1,---,k}, let us choose a point
z/ € D;— {z)} and a point z;’ € D, — {0}, where

, T 27i(j— 1 , r
(6) zZ; =§exp(%), zj=zj(.)+5.

Let a;, -+, a;,: I = C, I =[0,1], be simple curves in C satisfying the following
properties:

(@) a;(0) =z}, a;(1) = z;.

) a;(I)ND;= Bif0#i#].

©a(l)Na,(l)=Bifi#].

(d) For any j € (1,---,k}, a;,(J)N D, and a;(I) N D; are segments of
straight lines contained in diameters of D, and D; respectively.

Let A,,---, A, be small strips around a,,- - -, a, respectively which satisfy
the following properties:

®)A,ND,=@if0+i+]

() A4,NA;=2aifi+]

(d) 4, N Dy and 4; N D; are contained in sectors of Dy and D;, 1 <j <k
(see Figure 1).

FIGURE 1

We also set U= UL, 4,)UUL,D)) and y =0U. From the con-
struction, y is a simple curve in C. Let T be a tubular neighborhood of
y and set V= (C—U)U T, where C = C U {c0}. It follows that
{A,,---, Ay, Dy,-- -, D,,V'} is a covering of C by open sets. For each j =
L,---, k let us consider in 4; X C coordinates (z,v;), z € 4;, v; € C, and for
each i = 0,- kcoordmates(z u;)in D; X C, z € D,, u; EC In VXCwe
take coordinates (w, y) wherew =1/z € Vand y € C.

Now the idea is to take in each set of the form V' X C, D, X C, 4 ;X Ca
local model of foliation and glue them together in order to obtain a manifold
M and a singular foliation # in M as in §.2. In 4, X C we take the
horizontal foliation ﬂ'. whose leaves are of the form v; = constant, j =
1,-- -, k. If VX Cwe take also the horizontal foliation % whose leaves are of
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the form y = constant. The local models 3‘3; in D; X C j=0, -k, will be
singular foliations induced by linear vector fields in D, X C of the form

dz du;
(7) Vit z?, -‘—1-7’=auj
The numbers a; will be chosen accordlng to the generators g, - -, g, of the
holonomy group. Let g (x) =A;x+ ---, where A, = g}(0). We take a; so
that e>™® =\, j = -k, and ag=—1-Xk 1a Let v,(0) = rie® + z0

0<60<27, where r,<r. Let Z; —{pj}XC p; € v;[0,27]. It is easy to
verify that the holonomy of the curve y, in 2, with respect to the foliation F, i
is of the form u; > \;u;, where Ag = A;' --- A 1. We have also, from the
hypothesis, that the transformation g, = g;'e --- o gy ! is linearizable, and
so we can choose the coordinates (z, u,) in D, X C so that g,(uy) = A u,.

Now let us define the diffeomorphisms of identification, in order to glue
together the sets 4, X C and D; X C, j=1,---, k. Since 4, N D; is simply
connected and z JQ & A; N D, let us consider the coordinate system (z, #;) in
(4; N D;) X C, where

) z—z§
(8) i = ujexp(—ajlg( ) ))

Here lg is the branch of the logarithm in C — {x + iy; x < 0} such that
lg(1) = 0. Since z; = z§ + r/2, we have that @,(z,u;) = u; and @,(z,0)= 0
Moreover the leaves of the foliation %, restricted to (4; N D;) X C are the
level surfaces @&; = constant, as can be easily seen from (8). Let us identify the
point (z,v;) € (4, N D;) X C C 4; X C with the point (z,u;) € (4; N D;) X
Cc D; X C, where

(9) uj=vjexp(ajlg(27;§)).

Clearly (9) is equivalent to identifying (z, v; ) with (z, #;) and so, with (9), we
are gluemg together plaques of the foliation / in(4;N D ;) X C with plaques
of # in (4;,N D;)XC. Observe that thlS 1dent1f1cat10n sends the fiber
{z=c}CcA4;XC c€A4;N D, in the fiber {z = c} C D; X C. Moreover the
holonomy of the curve 8, = a; *y; * «;! in the section E” ={z/}xCc A.
X C, with respect to the foliation obtained by gluemg}ogether . with #,
linear of the form v; = A v;. Let us call this foliation %, also.

Now let h;: B, » C be a holomorphic d1ffeomorph15m where h,;(0) =
B,NC, and let us glue together the new foliation ﬂ'. with %, in (A N DO)
>< C, but now using h; instead of the identity. More spec1flcally, let us 1dent1fy
the points (z,v;) € (Aj N Dy) X B; with (z,u,) € (4; N Dy) X C by

(9" ug = h;(v,) exp(ao lg(z/zjf')).
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As above, identification (9’) glues together plaques of ./ with plaques of
%, and this defines a new foliation in a complex rnamfold of complex
dimension two, which contains D, U 4; U D; as a leaf of this new foliation.
The holonomy of the curve B, in the section {z;"} X C C D, X Cis given by

(10) uo— h;(Nh7(u)).

Now let yy(8) = r/2e”, 0 < < 2, and for each j=1,---,k, let p; be
the segment of y, between r/2 and z/’ (in the positive sense). Let §, =

*B;*xp;tand 2, = {r/2} x C.

It is easy to verify that the holonomy of the curve §; in 2 is of the form,

(10" u~ b (NR(w)),

where h; = a;'h;, a; = expQmiag(j — 1)/k)

Srncc g; 1s hnearrzable we can choose h; so that h log f h (u ) = >\ u;. In
the section £, the holonomy of §; is therefore g (uO) = \u, + ajul+ ---

Now let M be the manifold obtained by glueing together all the foliations
3-;1,- - j'k as indicated above. Let % be the foliation in M obtained in this
way. From the construction, & satisfies the following properties:

(@) U= (U, 4,) N (U%_, D)) is a leaf of #.

(b) The holonomy of U in £ is generated by g,, - -, g,. This follows from
the fact that g, = g 'o --- o g/ L.

(c) The holonomy of the curve 8, * - -- * §, * v, is the identity. This follows
also from g, = g;'o -+ o gy L.

(d) M admits another foliation &, transversal to U, without singularities.
This foliation is obtained by glueing together, in each step of the construction,
the vertical foliations z = constant of 4, X C and D, X C and D, X C. Any
leaf of & cuts U in exactly one pomt and so we can define a projection p:
M — U so that p~'(z) is the leaf of ¢ through (z, 0).

(e) Let Iy,---,1, be the separatrices of the singularities of % which are
transversal to U (the equatlon of l in D, X Cis z =z} ) Then I,,---,I, are
leaves of 4. Moreover 9 is transverse to / in M — Uk L.

Now let A = TN U, where T is the tubular nelghborhood of y=9U
considered before. Then A is clearly an annulus. Moreover, if § is a closed
curve in 4 which generates the homotopy of A4, then the holonomy of § with
respect to % (in some transversal section) is trivial. This follows from (c) and
the fact that § is homotopic to the curve §,;* --- *§, *y, in U — Uf=0 z§. Tt
follows from Reeb’s stability theorem (cf. [13]) that the restricted foliation
F/A4, A = p~(A), is diffeomorphic to a product foliation, that is, there exists
a diffeomorphism @: W — 4 X D, of some neighborhood W of 4 in A onto
A X D, where D c C is a disk, such that ¢ sends leaves of % | W onto leaves
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of the trivial foliation 4 X {c}, ¢ € D. This map ¢ can be chosen so that
9(p~U(z) N W)= {z} X D.

In order to complete the construction of M and % it is sufficient to glue
together the foliations % in M and % in V X D by using ¢, that is, if we
identify a point g € W with p(g) € V' X D, we obtain a manifold M, which
contains a projective space U U ¥ = C = P. Since ¢ sends leaves of %/W
onto leaves of the horizontal foliation in 4 X D, it follows that the foliation %
extends to a foliation &%, in M, where P is invariant by #,. Observe that the
foliation & can be extended also to M, since ¢(p~%(z) N W)= {z} X D. Let
us call this extension ¢,. The leaves of &, are transverse to P and each leaf
intersects P in exactly one point, hence p can be extended to a projection p:
M, — P, such that p~1(z) is a leaf of ¢, for any z € S. Observe that some of
the leaves of ¥, are diffeomorphic to C, whereas others are diffeomorphic to
disks. Nevertheless, it is easy to see that we can take a small neighborhood M
of P in M, so that p/M: M — P is a fibration with fibers diffeomorphic to
disks. To conclude the construction it is sufficient to take %= %,/M and
G=9,/M.

Let us prove that the Chern class of the normal bundle of P in M is —1.
This follows from the formula:

k
Chern classof TP+ = ) i(z;’, P),
i=0
where i(z }’, P) is the index of the singularity of # with respect to the invariant
manifold P (cf. [5]). In [5] it is shown that i(z}’, P) = a; and so

k
Chernclassof TP*= ) a;= —1.
Jj=0

This concludes the proof of Theorem 1.

In order to prove the assertion in Remark 3, we observe that if M is a
Riemann surface and p,,-- -, p, € M, then there is a disk U € M such that
{ Po>- -+, P} € U. From the construction it is possible to construct a singular
foliation #; on U X D such that:

(a) The singularities of %#, are p,,---, p, and %, is linearizable in a
neighborhood of each singularity.

(®) (U= { Py -+, pi}) X {0} is a leaf of #; and the holonomy of this leaf
is conjugated to the group of germs generated by g,,- - -, g,.

(©) Tk oi( py U X {0)) = L.

(d) The holonomy of a simple closed curve near the boundary of 9U is
trivial, that is the foliation restricted to 4 X D, where 4 is a tubular neighbor-
hood of U, is trivial.



CONSTRUCTION OF HOLOMORPHIC VECTOR FIELDS AND FOLIATIONS 13

Now, as before, glue %, with the foliation of (M — (U — 4)) X D whose
leaves are the horizontals (M — (U — A)) X {z}, z € D. The foliation ob-
tained by this process will be holomorphic and will satisfy properties (i), (ii),
(iii), and (iv) of Remark 3.

2.4. Generalization of Theorem 1 for several blowing-ups. Observe that in the
construction of §2.3 we could take ag, - -, &, so that ¥ ja, = n, n € Z. The
difference is that the Chern class of the normal bundle to P would be # in this
case.

Let us consider some manifold U obtained after k blowing-ups as
indicated in §1. Then a projection is defined, #¥: U®) — U, where U is a
neighborhood of 0 € C2%, (7¥))~}(0) = 2% is a union of projective spaces,
and 70 |U%) — 2% - U — {0} is a diffeomorphism. In this process, £
is in fact a tree of projective spaces so that if (X = U%_, P,, where P,,---, P,
are projective spaces, then P, N P, is empty or consists of exactly one point (a
corner of X)) Moreover, we have no cycles, in the sense that if P, P is
a chain of projective spaces such that P, N P, # &, r=1,---,1—1, then
P, NP =2

Let us take in each P aset {(pds s p,{ }=3S, where this set contains all the
intersections of P; with the other P;’s. Let us also take for each j a group of
germs of diffeomorphisms H, generated by g{,- - -, 8- Suppose that gf,- - -, g/
and gf = (g{e --- og/)~! are all linearizable (not necessarily in the same
coordinate system). Then by the construction of §2.3 it is possible to obtain a
manifold M; and a foliation %, in M, with the following properties:

(a) P; € M; and the Chern class of TPjl in M, is equal to the Chern class of
TP* inU®.

(b) The set of singularities of % is S; and all such singularities have a
neighborhood where %, can be written as in (7).

Now let us suppose that P, N P, = { p} # @ (this intersection is in 2*))
and suppose that %; is written in a neighborhood W, C M, of p as

dx dy
(11) —dT =X, dT - 01)’,

where (x, y) is a coordinate system such that p =(0,0) and P,N W, =
{y = 0}. Similarly, suppose that %; can be written in a neighborhood
W, M, of p as

, du dv
(11) ﬁ—u7 dT_BU’
where W, N P, = {v = 0}.If g/ € H, and g/ € Hj are the holonomy elements
of # and % relative to p € P, and p € P, respectively, then we have

1
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(£9)'(0) = e2™« and (g/)"(0) = e>"A. Let us suppose that the following equa-
tion of compatibility is satisfied:

(12) a-B=1.

In this case the foliations defined by (11) and (11’) can be glued together by
the diffeomorphism ¢@(x, y) = (y, x). Therefore we can glue together the
manifolds M, and M; in order to obtain a new manifold M, U M, = M;; D
P, U P, and a foliation % in M,; such that P, U P, is invariant by %, and
the holonomies of P, — S, and P, — §; are exactly H; and H,.

If the compatibility equation (12) is satisfied in all the corners of 2% it is
clear that we can glue together all the manifolds M;’s and foliations %’s in
order to obtain a manifold M ¥ > #® and a foliation F® in M® such
that the holonomy of P, — §; is exactly H; and the Chern classes of TP,* in
M® and in U® are the same.

Now let us observe that the Chern class of the last projective space obtained
by the blowing-up process considered is — 1. Hence, by Grauert’s theorem the
manifold M ¥ can be blown down to a manifold M**" D> P, U --- UP,_,.
The Chern class of each TP,* in M *~P clearly coincides with the Chern class
of TP* in U (k=1 the corresponding manifold obtained by blowing down
U%). Moreover by the corollary of Proposition 1 in §1, the foliation % %) can
be blown down to a foliation # *~D in M*~D_ If we continue this process
inductively we obtain finally a foliation % © in a neighborhood of 0 € C2,
which by Proposition 1 can be represented by a vector field Z defined in
U — {0}. We have proved the following result.

Theorem 2. Let (U®), 7%), 28 be g sequence of k blowing-ups beginning
at 0 € C? where 7'®(U™)= U. Let P,,---, P, be the projective spaces
contained in PX) and S a finite subset of P© which contains properly all the
corners of P, For eachj=1,--,k, let H; be a group of germs at 0 € C of
holomorphic diffeomorphisms which leave 0 fixed and satisfy the following
properties:

(i) For eachp € S N P, there exists a germ g, € H, which is linearizable and
such that the set A, = {g,| p € S N P;} generates H,.

() If SN P = {py, -+, p,}, then we have g, ° --- g, = identity. More-
over for each p; there exists a; € C such that g;;,(O) = e2™% gnd Yi_ja;=c(P).

(i) If P, P, =p is a corner, and f, € H,, g, € H;, where f,(0) = elmie,
g,(0) = e*"# (o and B as in (ii)), then a - B = 1.

Then there exists a vector field Z in U, such that if % s the singular
foliation of U® associated to Z then,

(@) X is invariant by F ©.
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(b) The set of singularities of F ) is S.

(c) The holonomy of P, — S with respect to F® is H,.

(d) The multiplicity of Zat 0 € C? isv = #S — #(corners) — 1.
We observe that (d) follows from Theorem 1 of [4].

3. Construction of Ricatti foliations in Cx C

In this section we prove Theorem 3 (stated in the Introduction). The idea of
the proof is to construct a singular foliation % in a fiber bundle E over C with
fiber C satisfying conditions (i), (ii), and (iii) of Theorem 3, by glueing together
local pieces as in §2.3. This process is sketched in §3.1. In §3.2 we prove that
the glueing process can be done in such a way that at the end E = Cx C.

3.1. Construction of E and %. Here we use the same notations of §2.3. Let
Dy,---, D, be disks around x,=0,---,x,, and 4,,---, 4, be strips which
satisfy (b'), (¢’), and (d’) of §2.3 (see Figure 1). Let V' be as in §2.3, so that
{Ay, -+, Ay, Dy, -+, Dy, V'} is a covering of C. We take coordinate systems
(x,v))for 4, X C, j=1,---,k,(x,u;) for D, X C, i = 0,---, k,and (w, y) for
V' X C,w=1/x. In a neighborhood of 4; X 0o C 4; X C we take coordinates
(x,9;), o, = 1/v;. Analogously we put &; = 1/u;, i = 0,---,k,and j = 1/y.

Let us define the local models for %:

() In 4; X C we consider the trivial foliation, whose leaves are of the form
A, Xp,peC, j= 1,--+, k. The samein V X C.

(ii) Let us fix / € {0,-- -, k}. As is well known, there is a coordinate system
¢ in C— (point) such that f, can be written in one of the following forms:

(a) f,(&§) = A& if f, is not parabolic.

(b) f,(§) = £ — 1.if f, is parabolic.

In case (a) we consider a local model of the form:

dx du dil .
(13) a7 =% % -d—jf=a,u,, (d_T[= —a,u,),
where e"i® =\,
In case (b) we consider the local model:
dx _ duy -1 (diy_ 1 . 2)
(14) ar ~ "% ar T 2w (dT' 2 ()

Clearly the holonomies of (13) and (14) around a circle in D, containing x,
are as in (a) and (b) respectively.

Now let us glue together the foliation on A4; X C and the foliations on
D, x C and D; X C. Suppose first that f, and f; are not parabolic. In this
case we use the same identifications as in (9) and (9") of §2.3, where in (9)
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we take h; € PSL(2,C) such that f(z)=a; 'h;(\;h;'(a;2)), where a; =
exp(2miay(j — 1)/k). With this choice the holonomy of the curve §; in the
section 2, = {r/2} X C will be of course u — f;(u) (see Figure 2).

D;

FIGURE 2

In the case where f; or f, are parabolic the identifications in (9) and (9') are,
respectively,

15 1 . X = X;
(15) “iT 9T 2 g( r/2 )’
, 1 X
(15%) Ug = hj(uj) iy lg( —Z;,)

(see §2.3 for the definition of z]’).

It can be verified easily that h; can be taken in such a way that the
holonomy of §; in 2 is f.. 3

Now the extension of &% to V' X C is done in the same way as in §2.3. We
leave the details to the reader.

At the end of the process we obtain a fiber bundle E 5 C, with fiber C, and
a foliation % on E whose leaves are transversal to the fibers in
7 Y(C—{xg, -, x,}) and such that the fibers 7~ !(x,), - -, 7 !(x,) are in-
variant by %#. Observe that in the case where f,---, f, are not elliptic or
parabolic then all the singularities of # are of Poincaré type (see (13)).

3.2. How to obtain E = CxC. We use here the classification of ruled
surfaces over C (cf. [8]) which is a consequence of Grothendieck’s theorem on
the classification of holomorphic vector bundles over C (cf. [9]). The classifica-
tion of ruled surfaces over C can be summarized as follows:

For each integer k > 0 there exists a unique fiber bundle E, over C with
fiber C which is characterized by the property that E, is the projectivization of
F, ® F,, where F; is the line bundle over C with Chern class —j. Every ruled
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surface over C is holomorphically equivalent to E, for some k. In terms of
sections of E we have the following characterization.

Proposition 2. Let E be a ruled surface over C. Then E = E, (k > 0) if and
only if E has a holomorphic section o: C — E such that the Chern class c(o) of
the normal bundle of 6(C) in E is —k. If k > 1 then this section is the unique
one with the property c¢(0) < k.

Proof. Observe that F, ® F; can be covered by two coordinate charts
(x, y1, ¥,) and (u,v,v,), where u =1/x, v, = x*y,, and v, = y,. When we
projectivize these charts we get (x, (y;: »,)), (4, (vy:v,)), where u = 1/x and
(vy:v,) = (x*y,: y,). This implies that E, can be covered by four coordinate
charts (x, y;), (x, y,), (4,v;), and (u, v,) such that the transitions are given by
the equations: u = 1/x, y, = 1/y;, v, = 1/v;, v; = x*y;, and v, = x %y, It
follows that the section ¢ which is expressed in the first chart as 6(x) = 0 and
in the third as o(u) = 0 has ¢(o) = —k.

In order to complete the proof it is sufficient to prove that if k > 1 and 6 is
another section of E,, then c(8) > k. It is easy to verify that § can be
represented in the above charts as

_r(x) _ax)
(16) SO 27 ()
v, = u-‘"_kM — g rtk—s Q(u)

i) 270 )

where p and g are polynomials without common factors, dg( p) = r, dg(q) = s,
p(u)=u'p(l/u), and G(u) = u’q(1/u). It is sufficient to prove that the
self-intersection number of the section given by (16) is at least k. This can be
done by considering a small perturbation § of 6, expressed in the chart (x, y,)
as y; = (1 + &) p(x)/q(x), where |¢| < 1. The intersection number of § with 6
isr+s+t,wheretr=0ifs=r+k, t=s—r—kifs>r+k,ort=r+
k + s if r + k > 5. In any case it is clear that this number is at least k, which
proves the proposition.

Now let us consider a point p € E, — o(C), where o is the section given by
Proposition 2 (k > 1). Let F be the fiber of E, through p. Since F is a fiber
we have ¢(F) = 0. When we blow up at p we obtain a new manifold £,, a
proper map #: E, > E,, and a projective space P C E, such that ¢(P) = —1,
#(P) = p,and #/E, — P: E, — P > E, — { p} is a diffeomorphism.

Assertion. There exists a projective space F C E, such that #(F)=F, F
crosses P transversally, and c(F) = —1.

This assertion follows from the following more general lemma.

Lemma 1. Let M be a 2-dimensional complex manifold and S € M be a
Riemann surface such that the Chern class of the normal bundle of S in M is
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c(S). Let M 5 M be the manifold obtained by blowing-up once at p. Then
7 1(S)=S U P, where #(P)=p, #(S)=S, § is diffeomorphic to S, §
crosses P transversally at one point, and c($)=c(S)-1.

For the proof see [5].

From the assertion, we know that F C Ek satisfies ¢(F) = —1. It follows
from Grauert’s theorem (see §2.1) that we can blow down a neighborhood of F
toa neighborhood of 0 € C2 In this way we obtain a new manifold £, and a
proper map : Ek - Ek such that #(F)is a point p € Ek and w\Ek —Fisa
diffeomorphism. Let P = #(P). Then it is easy to see that P is a projective
space embedded in E and from the lemma we have c¢(P) = 0.

Proposition 3. The manifold E, is a fiber bundle over C with fiber C and
E, = E,_,. Moreover if we put = # o(#|E, — P)", then y: E, — F - E,
—Pisa diffeomorphism which sends fibers to fibers.

Proof. Since #|E, — P and # | E, — F are diffeomorphisms, it is clear that
Y is a diffeomorphism Let m,: E, > C be the projection of the bundle E,.
Define #,: E, — P - C—{x,}, where x, = m (F), by #, = M © YL Clearly
#,: E, — P> C—{x,) defines a fiber bundle structure in E, — P. We can
suppose x, # co. If D is a small neighborhood of x,, then it is not difficult to
see that #, (D — {x,)UP=U, isa neighborhood of P. Moreover as the
diameter of D tends to zero, U, tends to P. In particular #, is bounded in
Up — P and so it can be extended holomorphically to P as #,(P) = x,. It
follows that #,: E, — Cis a fiber bundle. It remains to prove that E, = E,_,.

Let us consider the section o: C — E,, given by Proposition 2, with
¢(o) = —k. Since the point p where we did the blowing-up at the beginning is
not in o¢(C), we obtain an embedded projective space S= # 1(o(C)) C Ek.
The Chern class of the normal bundle of £ is of course ¢(2) = ¢(0) = —k.
Let $ =43 c Ek. From the lemma it follows that ¢(3) = —k + 1. Let us
prove that S is the image of some section : C — E,. Define é: C—{x,} —
E, — P by = y o 6. It is not difficult to see that & is bounded in a punctured
neighborhood of x, and so é can be extended holomorphically to x,, where
6(xy) € P. Moreover 6(C) = £, which implies that ¢(8) = —k + 1. It follows
from Proposition 2 that £, = E, _,. (Figure 3 illustrates the process.)

Now let us consider the singular foliation % on E constructed in §3.1 and
let us apply to E the process described above in the case where E = E,, say
E=E,

Suppose first that some of the generators, say f;, of the holonomy group is
not parabolic. In §3.1 we have chosen a local model for the foliation of the

form
dx du dii,

= = 1 1 _ =
(13)) T =X T X gp =k | r |
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where e?™ = A, f,(¢) = A& Observe that the glueing process was done in
such a way that the projective spaces defined by {x = constant} are fibers of
the bundle E. The fiber F = { x = x,} contains two singularities of %, namely
{x = x;,u; = 0} and {x = x;, it = 0}. On the other hand the section o, given
by Proposition 2, has an expression of the form u; = o(x) in the chart (x, u,)
(x € D,), where o is meromorphic. Let us suppose that o(x,) # 0. In this case
the point p = (x,,0) & ¢(C) and we can apply the argument illustrated in
Figure 3 to it.

F F ;
F’ _ FI 'i Fl .
ao(C) 1t _ — z
/
d "
-
. x-axis
x 1 -axis '//_ jll:a’xﬂ . i
x-axis p—— F’ _(‘“"> x-axis
P P {’/r
blowing down at F

blowing up at F
FIGURE 3

Let us consider the blowing-up at (x,,0) given by u; = t(x — x;) and
x — x; = su;, s = 1/t. The open set # (D, X C) C E, can be covered by
three charts (s, u,), (s,#,), and (¢,x), where r=1/s and x =5 -u; + x; =
st + x,. Here F = {(s,u;)|s = 0} U {(s,#,)|s = 0} and

P={(s,u)u; =0} U{(t,x)|x=x}.

Now, when we blow down F, the open set #(#~ (D, X C)) C Ek can be
covered by two charts (x, t), (x, s) where s = 1/¢ and the inverse blowing-up
is given by x — x; = u;5, s = it,(x — x,) (see Figure 3). We have #(F) = q =
{(s=0,x=1x} and #(P)=P = {(x,1)|x =x;} U {(x,5)|x =x,}. The
map ¢ can be expressed by ¢ (x, u;) = (x, 1), t = uy/(x — x7), or Y(x, i) =
(x,s), s = @;(x — x;). The differential equation in (13) is thus transformed by
¢ into:

(137) %=x—x1, %=(al—l)t, di;:=(l—a1)s .

Observe also that the section 6 of Proposition 3 is expressed in the chart
(x,t) as t = 6(x)/(x — x;), and since o(x,) # 0, 6 has a pole at x = x,.
Therefore we can apply the same process again if ¢(6) < 0, blowing-up at
p={x=x,t=0}
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In the case where o(x;) = 0 we begin the process at p = {x = x, &, = 0}
and we obtain at the end the local model:
dx dt ds

(131') a7 =X — X, E‘T":(_al_l)t’ aT =(1+a1)s).

Observe that the holonomy of (137) or (137) is the same as the holonomy of
(13,) and so the blow-up, blow-down process does not affect the glueing maps.
Therefore the above argument implies that if we had chosen the local model as
(137) or (137) in the construction of §3.1, instead of (13,), then the bundle
obtained at the end of the construction would be E,_; instead of E, This
proves the following lemma:

Lemma 2. Let fO,--:, fi be Moebius transformations, where k > 1 and
fo=(fy° -+ °f,)" . Suppose that f, is not parabolic. Choose local models as in
(13) or (14) which realize f, as local holonomy in the normal form for | + 1.
Choose also Moebius transformations hy,---, h, such that f(z) =
a;'h,(X;h; Ya;2)) if f; is not parabolic, or f(z) = a; *h,(h; "(a;z) = 1) if f; is
parabolic, where a; = exp(2miay(j — 1)/k), 1 <j < k. Then there exists o
with e*™% = | such that the bundle obtained at the end of the construction of
§3.1 is E, = Cx C. Moreover, if no J; is elliptic or parabolic, then all singular-
ities of % are of Poincaré type.

In the case where all f;’s are parabolic the argument is analogous. At the end
we obtain a foliation % on CX C with the desired holonomy. However there is
a difference in the local models near the invariant fibers. These local models
can be obtained from (14) by applying the change of variables ¢ several times
and by multiplying the final equation by some power of x — x, in order to
cancel the pole, if necessary. Since these computations are straightforward, we
leave them to the reader. In order to complete the proof of Theorem 3, we
prove the following result.

Proposition 4. The foliation & obtained above is of Ricatti type. In other
words, there is a Ricatti equation:

an o) ma() by +e(x)r,
where dg(p) =k + 1, max{dg(a),dg(b),dg(c)} < k — 1, and such that its
compactification in CXC is exactly F .

Proof. Let us consider in CX C coordinate systems (x, ), (x,v), (%, y),
(u,v), where u = 1/x, v = 1/y. We choose these coordinates in such a way
that the invariant fibers are the verticals {x = x;}, where x; # 00, 0 <j < k.
The image of the chart (x, y) is C X C, therefore it induces a singular foliation
% on C x C which is transverse to all verticals x = ¢, where ¢ # x L0<j<k
The verticals { x = x,},0 < j < k, are % invariant.
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Now, since % is transverse to the verticals in the set U X C, U= C —
{xg,"*» .}, it follows that &% can be defined in U X C by a differential
equation of the form dy/dx = f(x, y), where f: U X C — C is holomorphic
(f is the slope of & at (x, y)). Since % can be compactified to U X C, it
follows that f is a polynomial in the variable y. The fact that % is transverse
to the fibers x = ¢, ¢ € U, at the points of the form {x = ¢,y = 00} = {x =
¢, v = 0} implies that the degree of f with respect to y is at most 2. Therefore
we can write f(x, y) = A(x) + B(x)y + C(x)y?, where 4, B, C: U - C are
holomorphic. Since % extends to the vertical x = x » 0 <Jj <k, as a singular
foliation, it follows from Proposition 1 of §1 (or from the construction) that
the points x,- - -, x, are poles of A, B, C. Therefore we can write 4 = a/p,
B =b/p, C = c¢/p, where p is a polynomial whose roots are x,,- - -, x, and a,
b, ¢: C = C are holomorphic. Hence % can be defined by equations (17). In
order to prove that a, b, and ¢ are polynomials with max{dg(a), dg(b), dg(c)}
< k — 1, it is sufficient to use the fact that # extends to the line x = oo, and
that this vertical is not invariant.

4. Applications

In this section we study perturbations of Ricatti foliation on Cx C.

Let M be an n-dimensional complex manifold. A singular foliation % on
M is given by a covering {U,},-; of M by open sets and a collection
X = {X,},e such that:

(i) For each « € I, X, is a holomorphic vector field on U,, whose singular
set S, has codimension at least 2.

(i) If U, N Uy # 9, then there exists a function A 5 U, N Uy = C* such
that X, = Az - Xp.

Let F(M) be the set of singular foliations on M. Given F€ F(M) as
above, we define the singular set of % as S=U,.,S, Clearly & is a
foliation, in the usual sense, on M — S. The nonsingular leaves of %#/U, are
the nonsingular integral curves of X,.

Let us suppose that M is compact. In this case we can suppose that
I = {1,---,m} is finite and that each U, is the domain of a coordinate system
o: U, = By, B ={(x,-:7,x,); Ix|<r, j=1,- -,m}, where the set
(Vilwer Vo= o7 (B,), is also a covering of M. Let us fix #€ F(M) and
these coverings. Given Fe F(M), for each « € I there exists a vector field
X, on U, such that the leaves of % |U, are the integral curves of X,. This
follows from an argument analogous to that of Proposition 1 (cf. [7]). Let us

define the & neighborhood of #, % (F, X, ¢), as the set of all # € F(M) such
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that for each a € I there exists a function p,: U, - C* satisfying
sup{| X,(x) = pa(x) - X () [; x €V, } <e.

It can be verified easily that the set {# (%, X,¢); #€ F(M), ¢ >0 and
X = {X,} e Where # |U, is represented by X, } is a base for a topology in
F(M).

Let us consider the case where M = CX C and £ is a Ricatti foliation. Let
{x;} X C, j =0,---,k, be the invariant fibers of #. If D € C—{xg," -+, X, }
is a closed disk, then # is transverse to all fibers {x} X C, x € D. Since D is
compact, it follows that there exists a neighborhood % of % in F(CX C) such
that if #€ %, then # is also transverse to all fibers {x} X C, x € D. From
this fact it is not difficult to prove that . is also a Ricatti foliation. For the
proof just use the same computations made in the proof of Proposition 4. So
we have the following result.

Proposition 5.  The set of Ricatti foliations is an open set of F(C x C).

In this section we prove the following results.

Theorem 4. Let k > 3. There exists an open set U C F(CXC) with the
following properties:

(1) Any # € % is a Ricatti foliation with k invariant fibers. All singularities of
& are of Poincaré type.

() If # and G € U are topologically equivalent, then their holonomies are
conformally conjugated.

We say that % and ¢ are topologically equivalent if there exists a
homeomorphism 4: CX C — Cx C which sends leaves of % onto leaves of ¢
and the singular set of # onto the singular set of ¥.

Theorem 5. Let f,,- - -, f, be Moebius transformations such that the group G
generated by them is free and structurally stable in the sense of [15). Let
fo=(fi° -+ of,)"! and F be a Ricatti foliation constructed as in Theorem 3
from fo,- - -, f.. Then F is structurally stable.

We say that %€ F(CxC) is structurally stable if there exists a neighbor-
hood % of # such that any ¢ € % is topologically equivalent to %.

Remark. Let D,,---, D,, be disjoint closed disks and f;,- - -, f, be Moebius
transformations such that:

() /,(3D)) = 8Dy, j =1, k, _

(ii) f,‘(C_(D/ U Dj+k)) c l)j and fj_l(C_(Dj U Dj+k)) c Dj+k’ J=
k.

Then f,---, f, are loxodromic or hyperbolic and the group generated by
them is free. This type of group is known as a Schottky group (cf. [11]) and is
structurally stable, since all nearby representations are free (cf. [15]).

17
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4.1. Proof of Theorem 4. We begin by proving that if % and ¢ are
topologically equivalent, then their holonomies are topologically conjugated.

Let / be an equivalence between % and ¢. Then & sends invariant fibers of
& onto invariant fibers of ¥. So, if the invariant fibers of & are {x j} x C,
j=0,---,k, then iz({xj} X C) is an invariant fiber of ¢, which we can
suppose is {x7} X C. Put § = {xq,- -, x;}, §" = {xg," - -, x; }. For any fiber

={q}xC, q&S§, its image h(Z o) is a topological sphere which is
topologically transverse to & (that is, h(Z,) has a product neighborhood
whose fibers are disks on the leaves of ¢). Let us fix two fibers 2 = 2,
2 =2,9€¢S5, q' € S§’. We are going to prove that there exists a homotopy
Y: I X C — (C—S"’) x C with the following properties:

() ¥o(C) = h(Z), $,(C) = " and ¢,: C > h(Z), ¢;: C > =’ are homeo-
morphisms (xp,(_z) =Y (t, 2)).

(i) For z € C, /(I X z)is contained in the leaf of ¢ through {,(z).

This homotopy can be constructed easily by considering the universal
covering W x €= (C—S’) x C, where W = Cor W = {x € C; |x| < 1}. Let
7*(9) = 9, be the foliation coinducted by ¥. Then ¥, is transverse to the
fibers {x} X C, x € W. It follows from a theorem of Ehresman that %, is
equivalent to the trivial foliation on W X C, whose leaves are of the form
WX {z}, z€ C (cf. [6]). We can suppose therefore that ¥, is this foliation.
Let 3’ and $ be connected submanifolds such that #(2) = 3’ and #(3) =
h(Z). Since 3’ is transverse and 2 is topologically transverse to %,, there exist
functions «,8: C - W, a analytic and B8 continuous, such that 3=
{(a(z),2); z € C}yand £ = {(B(z2), 2); z € C).

This assertion is clear for 3’. Let us prove it for 2. It is sufficient to prove
that each leaf L = W X {z} of ¥, cuts 3 in exactly one point. Clearly each
leaf L cuts ¥ in exactly one point. So we can consider a map p: 3 - 3’
defined by P(q) = L N 3’, where ¢ € £ and L is the leaf of %, through q.
Since 2 is topologically transverse to %, (3 has a product neighborhood
whose fibers are disks on the leaves of ,), it follows that P is a covering map.
This proves the assertion, because 3" = Cand 2 is connected.

Now it is sufficient to put ¢ (¢, z) = #(ta(z) + (1 — t)B(z), z). It is easy to
verify that  satisfies (i) and (ii).

We are going to prove that the homeomorphism 8 = ¢, o ygoh: T - =’ is
a conjugation between the holonomies of % in 2 and ¢ in Z’.

For each point p’ € h(Z), let a,, be the curve on the leaf of & through p’,
defined by a, (1) = ¥,°¥5(p’). Let y be a loop in 7,(C—S,q) and for
P = (g, ) € Z, let y, be the lifting of y on the leaf L, of % through p such
that y,(0) = p. By definition we have v,(1) = f,,(p), where f, is the
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holonomy transformation associated to y. Let p’ = h(p), p” = h(f,;(P)):
and vy, = a,' *(hoy,)*a,. (see Figure 4). We have

Yé(p)(o) = ap’(l) =0(p), Yé(p)(l) = ap"(]') = ‘9(f[y](P))-

Moreover vy, is a curve contained in the leaf L}, ,) and so it is the lifting on
this leaf of the loop Pi(v4,)) = v,, where P;: (C-8")xC - C-S’ is the
first projection. Hence yj »)= g[m(ﬂ( p)), where 8] is the holonomy
transformations of ¢ associated to [v,]e 7,(C—S’,q’). Now observe that the
homotopy class of v, € m(C—S’,4q’) does not depend on p. Moreover, since
h: C—S X C > C-S’ X Cis a homeomorphism, the map [y] € m(C-S, q)
= [y,]le 7,(C—S’, ¢’) is an isomorphism and from the above construction we
have that 6« f_,(p) = 841 ° 0( p). This proves the assertion.

= h(z)

o(f, ] (p)
h(vp)

FIGURE 4

Theorem 4 will follow from Theorem 3 and the lemma below.

Lemma 3. There exist open sets %, %, C PSL(2,C) satisfying the following
properties:

(i) Any element f € U, U U, is hyperbolic or loxodromic.

(1) Iff, € %, and f, € U,, then f, and f, have no common fixed points.

(iii) Given (fy, f,) € U, X ¥, and g,, g, € PSL(2,C) such that there exists a
homeomorphism 8 of C satisfying 8 o f;=8;°0, j=1,2, then 0 is a conformal
map.

Proof. The idea is to construct open sets %,;, %, which satisfy (i) and (ii)
and: (iv) For any (f;, f,) € %, X %,, the group generated by f, and f, is not
discrete.

Suppose for a moment that we have constructed such %, and %,. Fix
(f1, ;) € %, X %, and let T be the group generated by f; and f,. Since T is
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not discrete, its closure I contains a one-parameter subgroup { f,}, < g. Now let
6 be a homeomorphism of C such that g i =00f0 6=, j =1,2, are Moebius
transformations. Let I'" be the group generated by g, and g,, and T’ be its
closure. Then g, =8¢ f,o0! is a one-parameter subgroup of I'. It follows
from a theorem of E. Cartan that ¢ — g, is real analytic. Hence for any z € C
which is not a fixed point of the family { f,}, . g we have that @ is real analytic
along the curve t = f,(z). This follows from 0( f,(z)) = g,(6(z)). We observe
that, since a one-parameter subgroup is abelian, all nontrivial elements of
{ f.}: < r have the same fixed points. The same is true for the family { g}, c r-

Now, let f € T' be such that f and the family { f,}, c g have no fixed points
in common. It follows that the family { f, = f~'f,f }, c g is contained in T and
has no fixed points in common with { f,},< r. Hence there exists z, € C such
that the curves ¢ = f,(z,) and s — fs(zo) are transverses at ¢ = s = 0. Since
transversality is an open property, the same is true for the curves ¢ = f,(z) and
s = f.(z), where z € D, D a neighborhood of z,. Using the transversality of
these curves and the fact that 6 is real analytic along them, it is not difficult to
prove that 6 is C* in D. Since I' is not discrete, it follows from Montel’s
theorem that U, .  h(D) covers all of C, with possible exception of two points.
It follows that there exists # € I' such that #(D) contains a fixed point z; of
f1, for example. Since f; is loxodromic or hyperbolic we can suppose that
fl(z))=A, A| <1 Let fy=h"fiheT. Then fy(h ' (z))=h"Yz)€e D
and f;(h~!(z,)) = A. Moreover we can suppose that the fixed points of f, are
h~'(z;) =0 and oo, so that f;(z) = Az. Similarly we can suppose that the
fixed points of g; =00°f,207! are 0 and oo, so that g;(w) = po, |p| < 1.
This implies that 8(A"z) = p"f(z) and this equation together with the fact that
6 is C! in D, 0 € D, implies that 6(z) = £z or 8(z) = £Z. Therefore 6 is a
conformal map. It remains to prove the existence of %; and %, satisfying (i),
(ii), and (iv). This will follow from the lemma below.

Lemma 4. Let f(z) = Az, where |\| > 1 and |\ — 1| < 1. Then there exist
neighborhoods V| of f, and V", of the identity in PSL(2,C), such that for any
pair (fi, f,) € ¥ X ¥, the group generated by f, and f, is discrete if and only
if f, and f, commute.

Proof. Let us consider the map ¢: PSL(2,C) X PSL(2,C) —» PSL(2,C)
given by o(f,g) =fegeoflog . Wetake ¢ (f) = ¢(f,g) and ¢ = ¢;.

Assertion.  is a contraction in a neighborhood ¥, of the identity I, and
lim,_, ¥"(f)=1Iforany f € ¥,.

In fact, (1) = I, and for A € T,(PSL(2, C)) we have

(18) DY(I)-A=A—fo-A-f".
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In formula (18) we are considering f;, as a matrix of the form (§ 271), where
p?=A and 4 = ; _P). An easy computation implies that the eigenvalues
of DY(I) are 0, 1 — A, and 1 —A~L Since Il —A|<1 and |1 - A7} =
A" 1 = A] < 1, it follows that ¢ is a contraction in a neighborhood 73 of I
and I is the unique fixed point of ¥ in ¥5. This proves the assertion.

Let us take ¥, in such a way that for any f € ¥, — {I} we have f? # L.
Let f € 7,. Then ¢"(f) € T, the group generated by f, and f. If T is discrete
the sequence {{"(f)}, o stabilizes for n > n, and since lim, ,  Y"(f) =1
we have y"(f)=1 for n>n, Put f=4¢/(f), j>1, and let m=
min{n; f, = I}. We assert that m = 1 and hence f and f, commute.

In fact, suppose by contradiction that m > 1. This implies that f,_, # I
and f,,_; commutes with f,. Since f;(z) = Az, |A\| > 1, we have that f,,_,(z)
= pz, where p # 1. On the other hand f,_; =/, ,°fo°of.t,°fs! and so
foofmozefot =frt10f,_,. It is not difficult to see that this equation to-
gether with f,_, # I and f,_,(z) = pz, p # 1, implies that f>_, = I, which
is a contradiction since f,,_, € 7.

Now, let ¥ be a neighborhood of f, with the following properties:

(a) For any g € 77, @,|7, is a contradiction and I is the unique fixed
point of ¢, in 7.

(b) If g€ ¥, then g has a fixed point p such that |g’(p)| > 1 and
g’(p) -1 <1

It is not difficult to see that ¥ and ¥/, satisfy the properties we need.

Now let X = {f€ PSL(2,C); fof,=f,°f} Then X is a codimension 2
submanifold of PSL(2, C), which implies that ¥, — X # &. Let f, € ¥, — X
be loxodromic or hyperbolic, with no common fixed points with f. It is not
difficult to see that f, and f; have neighborhoods %, C ¥; and %, C ¥,
which satisfy (i), (ii), and (iii) of Lemma 3. This ends the proof of Theorem 4.

4.2. Proof of Theorem 5. Observe first that since G = [f,-- -, f,] is free
and structurally stable, then there exist neighborhoods %,,- - -, %, of f,,-- -, fx
respectively, such that for any (g;," -+, 8,) € %, X -+ X%, = %, the group
G=] g1,°* *, 8] is also free. Moreover, it follows from the results of [15] that if
(81" 8) € %, then G = [§,,- - -, §,] is quasi-conformally conjugated to G.
In fact in [15] this is proved for one-parameter families Gy = [gyx," " *» 8als
8j0= j;-, j=1,---,k, and the result is that the conjugation A — A, between
G, and G, can be chosen in such a way that it depends holomorphically on A
and h,=id. We observe also that all elements of G are hyperbolic or
loxodromic. In fact, since G is free and has nontrivial domains of discontinuity
(cf. [15]), it follows that G does not contain elliptic elements. Let us prove that
G does not contain parabolic elements.



CONSTRUCTION OF HOLOMORPHIC VECTOR FIELDS AND FOLIATIONS 27

Given sequences I = (i,---,i,)C{1l,---,k} and K= {ky,---,k,} C
{—1,1}, let us consider the map ¢, x: % — PSL(2,C), ¢, x(81,- ", &) =
g,.’l‘l o .- ogh Of course we do not consider sequences / and K such that
kik;,v=—1ifi =i, sothat @, x(gy, ", 8)* [if (g, -, 8) € % In
this case it is easy to verify that ¢; (%) is an open set of PSL(2, C) and that
the set

g = {(gla‘ : "gk) EU, (pI,K(gl" -+, &) is not parabolic}

is open and dense in %. It follows that &/ =, x %/,  is a generic subset of
u.1f (g, -, g) €, then the group [g,,- - -, g,] does not contain parabolic
elements. Since G is rigid, it follows that G does not contain parabolic
elements.

Now let us consider a Ricatti foliation % on CXC, constructed from
fi»- - +.fi as in Theorem 3. Since fi,---,f, and fo= (fio --- o f,)" ! are
hyperbolic or loxodromic, it follows that % has k + 1 invariant vertical fibers
and 2k + 2 singularities, all of Poincaré type, where each invariant fiber
contains exactly two singularities. Let us suppose that the invariant fibers for %
are {x,)} X C,---,{x,} X C, where for each j € {0,---,k} we have a local
model

dx du ( diu

NP
(19) =% g =t ﬁ——aju,u—u),

where 27/ is the eigenvalue of Df; in one of the fixed points of f..

Observe that in the proof of Theorem 3, the generators f,- - -, f,, f, of the
holonomy are associated to fixed generators y,, -+, Y, of 7,(C—S,q),
where S = {x4," -, %}, Vo= (v1* -+ *v,) %, and ¢ & S. Let us consider
neighborhoods U of f;, j=1,--+,k, as before, and %, = {(g,° - - og )L
g € 0Z/j., j=1,---,k}. Let us also fix curves y,,---,v,, and k + 1 disks
D,,---, D, c C, such that D,ND =0 if i+j, x;€ D, an_d llﬂyj= %)
for all i, j. There exists a neighborhood ¥~ of % in F(CXC) with the
following properties:

(a) If ¥ € 77, then ¥ is of Ricatti type.

(b) In the chart (x, y) considered in Proposition 4, ¢ has an expression of
the form

noodx dy _ 2
177) dT—p(x,f?), dT—a(x,g)+b(x,.(4)y+c(x,@)y ,
where for each Y€ ¥, p(x,9), a(x,9), b(x,%9), and c¢(x,¥9) are poly-
nomials such that dg(p) = k + 1, max{dg(a),dg(b),dg(c)} < kK — 1, and the
correspondences 4 - a, b, ¢, p are continuous.
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These properties follow easily from Propositions 4 and 5. They imply that
we can choose ¥~ satisfying the following additional properties:

(c) If g€ ¥, then it has k + 1 invariant fibers {x,(9)} X C,0<j<k,
where x;(¥) € D; and the map ¥ — x,(¥) is continuous for all ;. This follows
from the fact that the roots of p(x, %) = 0 are simple.

(d) The holonomy of € ¥ in the section {g} x C is generated by
transformations f4,- - -, f¢, where fjge %; is the holonomy element of ¥
relative to v, € m(C—U}_, D,, q) and the correspondence ¥ — £, is continu-
ous. This follows from (b) and the fact that the curves y,,- - -, v, are fixed.

(e) For each ¢ € ¥ the group [£5,- - -, fZ] is conjugated to [ f,,- - -, f] by
a homeomorphism hy of C such that limy_, zhy = I. This follows from
Sullivan’s results [15].

We remark that the fact that all groups [ £,%,- - -, £.¢] are discrete implies that
hg conjugates j}g with f; for each j. This follows also from Sullivan’s
techniques.

Another fact that we shall use here is that there exist coordinate systems
(x,v) and (x, ) in D; X C, o = 1/v, such that 9/D; X C can be expressed as
(20) % —x—x,(9), 2’—; — o,(9)o, (j—; - —a,(.re)a),
where ¢ — a (¥) is continuous and «;(F) = a,.

To prove this, observe first that p(x,¥) = (x — x;(9))0(x,¥), where
0(x,9) # 0 if x € D,. Therefore we can divide the right members of (17) by
Q(x, %), thus obtaining a local expression for ¢ | Dj X C of the form

” d_x _ _ ﬁil — 2
(177) T =* x,(9), dT—A(x,?)+B(x,g)y+C(x,?)y .
Now, observe that ?|Dj x C has two invariant manifolds of the form
y =a(x) and y = ay(x), which pass through the singularities of ¢ in
{x;(¢)} X C. The change of variables u = (y — a;(x))/(y — a,(x)) changes
(17”) to the form

dx du
ﬁ=x—xj(g), a—f=a(x,g)u.

Let a(x,(9),9) = a;(¥9) and consider the change of variables u = ve®*¥),
where

(19%)

22(2,9) = (a(x.9) ~ a,(9))/(x - ,(9)).

An easy computation shows that if we make this change of variables in (19),
then we get (20).
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Now let us construct a topological equivalence between % and € ¥". We
start from a conjugation hg between the holonomies of % and % in the
section 2, = {g} X C. These holonomies are generated by f,,---, f, and
81," * *» 8 Tespectively, where g, = jg, andwehave ho f; =g oh, j = L.k,
h = hg. Let us extend /& to a homeomorphism H: W X C — W X C which
preserves fibers, where W = C—U*_, D,.

Let (x, y) € W X C and join the points x and ¢ by a curve 8 in W. Since
Z |W x C is transverse to the vertical fibers, lift 8 to a curve B, in the leaf of
F |W X C which covers B. Then B,(0) = (x, y), B,(1) = (g, ") € o,. Take
(q,»"") = h(q, y’) and consider the lifting ,By‘ul of the curve 87! in the leaf of
g |W x C through (g, y”). Then ByT,l(O) =(q,y”) and ,By“,,l(l) =(x,y").
Using the fact that 4 is a conjugation between the holonomy groups, it can be
proved that y” does not depend on the curve B8 chosen and that the
correspondence (x, y) = (x, y ™) = H(x, y) is a homeomorphism (cf. [6]).

Now let us consider the restriction H, = H|3D, x C: 8D; X C < . Our
problem is to extend H; to the interior of D; X C. Observe that if ¢ is near &,
then H; is near the identity. This follows from the construction. For the sake
of simplicity let us suppose that x; = 0 = x;(¥) and that D, = {x; |x| < 1}.
Take coordinate systems (x, u) and (x, v) such that #/D; X C are expressed
by vector fields X(x,u) = (x,a;u) and Y(x,v) = (x, &;v), where &, = a(¥)
is near a;. B

Let us divide D, X C in two polydisks By = {(x,u); x € D;, |u| < 1} and
B, ={(x,u); x€ D, lu|>1}. Let T = {(x,Au); x €D, |ul=1} =098, N
dB_.. Then T is a solid torus and the foliation # of T, obtained by intersecting
the leaves of X with T, consists of one closed leaf y = {(x,u); x =0, |u| = 1}
and all other leaves are transverse to the boundary and have y as limit set (see
Figure 5). The same is true for the vector field Y and 7 = {(x,v); x € D,
lv] = 1}.

FIGURE §
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Let V' = H,(9T). Then V is a topological 2-torus which is near 97, since H;
is near the identity. Since V is topologically transverse to &, we can obtain a
tubular neighborhood U of V, whose fibers are leaves of ¢ |U. This neighbor-
hood can be constructed by covering V' with a finite number of trivialization
charts of ¢. Since we are supposmg H, near the identity, we can suppose that
dT c U, so that if we take V = {(x,v) |x| = r, |[v| = 1}, where r < 1 is near
1, then ¥ C U and V intersects each leaf of ¢ |U in exactly one point. If L,is
the leaf of |U through p € V, then L, N V is a point (x(p), v(p)), where
p — (x(p),v(p)) is continuous with p and |x(p)|=r, [v(p)| = 1. Since L,
is diffeomorphic to a disk for all p, we can join p to (x(p),v(p)) by a
path inside L, say p(¢, p) = (x(¢, p), v(t, p)), where p(0, p) = p, p(1,p) =
(x(p),v(p)), (t,p)+— p(t, p) is continuous, ¢ — p(t,p) is C*®, and ¢t~
|x(¢, p)|is decreasing with ¢. Let T = p([0,1] X V) U {(x,v); |x| < r, |v| = 1}.
It follows that T is a topological solid torus such that 07 = V and the real
foliation ¢, obtained by intersecting the leaves of Y with T, has one closed leaf
7 = {(x,v); x =0, || = 1} and all other leaves are transverse to 97 and have
7 as limit set. By using the foliations % and ¢ constructed above, it is not
difficult to extend H, to T in such a way that H, sends leaves of & onto
leaves of ¢ and H, (T) =

Now 7 divides D X C in two regions, say B, and B_, where {v = 0} C B,
and {v = 0} C B,. The idea for extending H, to B,, for example, is to prove
the existence of real vector fields X° and Y° w1th the following properties:

(2) X° and YO are tangent to % and ¥ respectively.

(b) The w-limit set of any orbit of X° in By, is the singularity {x = 0, u = 0}
and the w-limit set of any orbit of ¥°in B, is {x = 0,v = 0}.

Let us suppose for a moment the existence of such X% and Y°. Let X and
Y% be the flows of X° and Y° respectively. Given p € B, — {(0,0)}, there
exists a unique #(p) < 0 such that p’ = ,(p)(p) € 9B,. Define H,(p) =
Y2, (p"). Itis not difficult to see that H;: By — {(0,0)} — B, — {(0, O)} isa
homeomorphism which sends leaves of ﬂ' onto leaves of ¥. Moreover, since

lim, , 40 #(p) = — oo, it follows that
pl%l(» H(p)= hm Y—t(p)( ) = (0.0

and hence H; extends to B,

The construction of X° is immediate: take X°(x,u)= AX(x,u)=
(Ax, Aa;u), where Re(A) < 0 and Re(Aa;) < 0. This is possible because o, &R
(X is of Poincaré type). The difficulty for constructing Y is that 9B, has a
part which is only continuous, namely 9B, N U. This difficulty can be bypassed
by constructing a real vector field Y! on B, N U satisfying the following
properties:

(i) Y! is tangent to the leaves of .
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(ii) Y is transverse to 3B, N U and points to the interior of B,.

(iii) The orbit of Y through a point p € 9B, N U leaves U in a finite time.

(iv) Y! = AY in a neighborhood of dU, where Re(A) < 0 and Re(7\&j) < 0.

Clearly Y! can be extended to a vector field Y° which satisfies (a) and (b).
We leave to the reader the work of constructing Y. As a suggestion we observe
that:

(A) Each leaf L, of 9/U intersects BEO in a piecewise C® curve, with two
vertices and three C* segments, namely: L, N (3D; X C) N By, the curve
t— p(t,~p), and L, N {(x,0); [v] =1, |x| < r}. i

(B) 9B, = 9B, in a neighborhood of 9U and so the real vector field AY is
transverse to 9B, in a neighborhood of 3U.

(©) U is a tubular neighborhood of V, with fibers L,, p € V.
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