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HANDLEBODIES AND /7-CONVEXITY
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The aim of this paper is to study the Riemannian geometry of manifolds

with boundary. In a previous paper [4], the author proved the following

theorem.

Let M be a compact connected manifold with nonempty boundary. If M admits

a Riemannian metric with nonnegative sectional curvature andp-conυex boundary,

then M has the homotopy type of a CW-complex of dimension < p — 1.

Note. The author has recently learned that this theorem has also been

proved independently by H. Wu [5].

One of the main results of this paper is a converse of this theorem.

We begin by recalling the notion of /^-convexity. Let X be an (n — 1)-

dimensional (normally oriented) hypersurface in a Riemannian manifold Ω

and let λx < λ 2 < < λ w _ : be its principal curvature functions. X is

called /?-convex if λx 4- +λp > 0 at each point of X. Note in particular

that "1-convexity" is the usual notion of convexity; "(n - l)-convexity"

means that X has positive mean curvature. Also note that /?-convexity implies

(p 4- l)-convexity.

In [3], by a handle-attaching process, Lawson and Michelsohn showed the

following: Suppose X has positive mean curvature and let X' be a hypersurface

obtained from X by attaching an ambient k-handle to the positive side of X. If the

codimension (n — k) of the handle is > 2, then Xr can be constructed also to

have positive mean curvature. (That is to say that Xf is ambiently isotopic to a

hypersurface of positive mean curvature.)

Our central result is a generalization of this theorem to the /^-convex case.

Specifically we shall prove the following.

Theorem 1. Let X be a {normally oriented} p-convex hypersurface in a

Riemannian manifold Ω, and let X' be a hypersurface obtained from X by

attaching a k-handle Dk to the positive side of X. If k < p - 1, then Xf can be

constructed also to be p-convex.
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Arguing as in [3] we get the following.

Corollary 2. Let X be a compact manifold embedded as the boundary of a

domain D in a Riemannian manifold Ω. Orient X with respect to the inward

pointing normal vector. If D is diffeomorphic to a handlebody of dimension

< p — 1, then X is ambiently isotopic through mutually disjoint embeddings to a

p-convex hypersurface X' in Ω. The new hypersurface X' bounds a domain D'

which is diffeomorphic to D.

Applying this together with the fundamental results of Gromov in [1] we

then obtain the following result which is a converse to the theorem in [4].

Theorem 3. Let M be a compact connected manifold with nonempty boundary.

If M is a handlebody with handles only of dimension < p — 1, then M supports a

Riemannian metric with positive sectional curvature and p-convex boundary.

In fact, by the theorem of Gromov the sectional curvature of M can be

ε-pinched for any ε > 0. If M is parallelizable, then by immersion-submersion

theory (cf. [2]) there exists an immersion M <-> Sn(\) where n = dimM. By

pulling back the constant curvature metric from Sn(l) and proceeding as in

Theorem 3, we have the following.

Theorem 4. Let M be as in Theorem 3. If M is parallelizable and is a

handlebody with handles only of dimension < p — 1, then M supports a Rieman-

nian metric with constant sectional curvature 1 and p-convex boundary.

The remainder of the paper is devoted to proving Theorem 1. Since our basic

set-up closely follows Lawson and Michelsohn [3], our presentation will be

brief. The basic picture is shown in Figure 1.

FIGURE 1

1. The basic set-up

Assume Ω is connected. Let X be as in Theorem 1. Positive mean curvature

(implied by /^-convexity) implies a well-defined normal direction to X\ i.e., we

have an embedding of X X (-1,1) in Ω with the image of X X 0 identified to

X. Let X+ be the union of components of Ω \ X containing X X (0,1), and

X~ be the union of components of Ω \ Xcontaining J X ( - l , 0 ) .
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Let Dk be a λ:-dimensional disk orthogonally attached to X in X+. Set, for

x e Ω,

s(x) = dist(x, X), r ( x ) = dist(x, !>*).

Then there exists a neighborhood Ω1 of I in Ω such that s is smooth in

Ωί = Ω2 \ X~ and ||Vs|| = 1. Similarly, there exists a neighborhood Ω2 of Dk

such that r is smooth in Ω'2 = Ω 2 \ ( X ~ U Dk) and | | vr | | = 1. Then r ' V o ) n

Ω2 is a hypersurface in Ω2 for any sufficiently small r0 > 0.

Hence, the map

(r,s): Ω; Π Ω ' 2 - > R 2

is a smooth submersion. Our idea is to construct a regular curve γ which is

essentially the graph of some function s = f(r) in R2, so that the hypersurface

Sy = (r ,5)~ 1 (γ) joins r~ι(ε0) to X smoothly for some ε0 > 0, and the whole

new hypersurface obtained will still be /^-convex.

Recall that the second fundamental form of the level hypersurface of a

function is closely related to its Hessian form. We summarize this fact in the

following.

Lemma 1. Let u be a smooth function on a domain of Ω. Then at every point

the 2-form V 2u defined by

is symmetric. Furthermore, if ||Vw|| = 1, then Vw lies in the null space of V2w,

and when restricted to Vw ± , V2w is the second fundamental form of the level

hypersurface of u with respect to — V u.

Proof. See [3]. q.e.d.

Suppose u is a function as in Lemma 1. Let

λλ < λ 2 < ••• < λn

be the eigenvalues of V2u. We denote by σu(m) the sum λλ + + λ m for

m = 1, , n.

Remark. Note that by Lemma 1, Vu is an eigenvector of V2w, the

corresponding eigenvalue is 0. The other (n - 1) eigenvalues are the principal

curvatures of the level hypersurface of u. We then clearly have that the level

hypersurface is /^-convex if and only if σu(p + 1) is positive.

Lemma 2. (i) We can choose Ωx such that there exists a constant δ > 0 for

which σs(p + 1) > δ in Ω1. (Here δ could be replaced by a smooth positive

function.)

(ii) We can choose Ω2 such that σr(p + 1) > c/r in Ω 2 \ ( Γ U D A ) , where

c > 0 is a constant.

Proof, (i) is from the /^-convexity of X.

(ii) is by a calculation in Fermi coordinates and the fact that k ^ p - 1 as

follows.
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Choose locally smooth orthonormal vector fields el9- ,en along Dk such

that eλ,- - , ek are tangent to Dk and that ek + ι, , en are normal to Dk. Then

for ξ e Z>*, ( χ l 5 -,xn_k) e Rπ~* with JC? + + **_* small, the map

( f , ( x 1 , , ^ # l - Λ ) ) ^ e x p { ( j c 1 ^ + 1 + ••• +xn-ken)

gives a local coordinate in some open set W c Ω 2 . Extend e 1 ? , e n to smooth

vector fields ex,- , en on Ŵ , where each ei is obtained by parallel translation

of e, along the geodesic

On ϊΓ, it is clear that

r{ξ,(xl9 -,xn-k)) = ^ i

and that

If the metric were Euclidean, i.e., if all the e/s were parallel, we would

obviously have

In general, let Vv- -,Vp+ι be arbitrary (/? + 1) orthonormal tangent vectors

at some point in W. We have that
p+l p+l

1 = 1 1 = 1

where V 2r denotes the Hessian of r under the Euclidean metric. Then the first

sum in (*) is > (p — k)/r. The second sum in (*) can clearly be bounded by

some fixed constant which is independent of r. Therefore by choosing Ω2

properly and noting that p - k > 1, there exists a constant c > 0 such that

σr(p + l)>c/r

in Q2\(X-\J Dk).

2. The bending function

Let δ, εl5 ε2, and c0 be fixed positive constants. Our aim in this section is to

construct a smooth function / which is defined on r > ε0 for some 0 < ε0 < εx

such that

/ ( r ) = 0 ίoτr>ελ',

/ / ( r ) < 0 f o r r > ε 0 ;

f(r) -> ε3 < ε2 as r -> ε0

+.
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FIGURE 2

FIGURE 3

All the derivatives of / -» oo in absolute value as r -> ε£ (see Figure 2).

Furthermore, / satisfies either of the following conditions for r > ε0:

or
ir)2

fir)2

We begin by choosing f" properly to get a smooth function fx such that

fι(r) = 0 iorr^ε^

//(r)<0 forall/ ;

0 < Λ"(/') = constant < δ for r < 6^2;

exp
1

2co/;(£ l/2)2
> 1;

Λ"(0)

Λ"(o)
f o r a l l / > l .
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All the requirements can be satisfied by choosing f"(0) small and then by

choosing the area of the shaded part in Figure 3 small and also by noting that

ri dt

μcolnt
0 as / -> oo

therefore, in particular, it is bounded for / > 1.

Now set

1 1 co[-f{(ei/2)γ
a = exp

2co/1 '(ε1/2)
e n =

β/Γ(o)

Then a > 1 and aε0 < εx/2 by the construction of fv

Define for r > ε0

/ ( \ ίaε° d t

J2\r)= I —=====.
Jr /2coln(//εo)

We have

fi:(r)=-—J===, /2"(r)- —
Hence

Finally, let

/ ^ r - αε0 + εx/2) for r > «ε0.

Then it is easy to verify that f3 is C2 and satisfies all the conditions required

for /. In fact when r > ae0

by the construction of fx and when ε0 < r <

s f3"(r) cj jr) s fl'{

Λ'(0 2 r Λ"(r)2

The required / is then gotten by a smoothing of /3.

3. The construction of X'

Let Z > e = { j c e Ω : r(jc) < e} and I £ = { X E Ω : .s(x) < ε} be tubular

neighborhoods of Dk and X respectively.

There exist εvε2 > 0 such that D2ει c Ω2, Z 2 6 2 c Ωx and such that

|<Vr, V J > | < 1 in U = {x e /) 2 β i Π JT2ε2 n ^ + : r(jc) >2Q}.
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Let γ be the curve s = f(r) as in Figure 2. The hypersurface Sγ = (r, s) ι(y)

smoothly joining X\(X n U) to 9Z>βo\(3Z>Co Π £/) produces a new hyper-

surface which will be our hypersurface Xr obtained from X by attaching the

handle Dk (see Figure 4).

FIGURE 4

We claim that X' is /^-convex. It only needs to be verified at the part of Sy

where r > ε0. For this part, Sγ is the level set of the smooth function

F(x) = s(x) - f(r(x)).

We have

Let ew = The second fundamental form of 5 γ is given by

Clearly BF(e,,,en) = 0 and

- 2||vF||2/"(O(vt,/)2,
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where the last equality is obtained by recalling that Vs is in the null space of

V 2s and that VA* is in the null space of V 2r.

Then

(
e

Now suppose that e l 5 -,ep are orthonormal vectors tangent to sγ. Then

VeF= Ofori = 1, ••-,/?.

Therefore

Σ ^(e,,β,) = Σ BF(eitei) + BF{en,en)
ι = l / = 1

-f'(r)σr(p+l)-f"(r)Σ(Ver)2

s,Vs) -f'(r)\2s(vr,Vr)]

rV2r(Vi,Vί)

L^l/'(Ov: -r(r)ΣKr)J

Note that

lim rV2r(vs,Vs) = 0
r-»0
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in £/, and that

f'{r) fir)

llvFll l + / ' ( r ) ~ 2/'(r)(vr,V.s)

are bounded in U. It is then easy to see that we can choose εl5 ε2, c0 so that

δ -
cof'(r) ,„,

or (note that Ver = Ves/f'(r))

1 δ -
f'(r) f"(r)

f'{r)2\

Therefore by the construction of /, sy is p-convex.
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