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PROJECTIVE STRUCTURES WITH
FUCHSIAN HOLONOMY

WILLIAM M. GOLDMAN

A protective structure on a manifold S is a distinguished system of local
coordinates modelled on a fixed protective space P in such a way that the local
coordinate changes are locally projective. In this paper we will be mainly
concerned with projective structures on manifolds of real dimension 2; thus P
is either the complex projective line CP1 or the real projective plane RP2. If S
is a topological surface then we shall speak of CP^structures (resp. RP2-
structures) on S; a manifold with a CP^structure (resp. a RP2-structure) will
be called a CP^manifold (resp. an RP2-manifold).

It is well known that if M is a manifold with a projective structure modelled
on a projective space P, then there exists a pair (dev, φ) (unique up to
projective automorphisms of P), where dev: M -> P is a projective immersion,
and φ is a homomorphism of π = π^M) into the group of projective
automorphisms of P. The so-called developing map dev globalizes the coordi-
nate charts defining the projective structure, while the holonomy homomor-
phism <p globalizes the coordinate changes. It is the purpose of this paper to
classify projective structures on closed surfaces whose holonomy homomor-
phism is a fixed Fuchsian representation.

A Fuchsian representation of a discrete group π on CP1 is a faithful
representation of π onto a discrete subgroup of PSL(2, C) preserving a disc Ω
in CP1. Let φ be a Fuchsian representation φ of π on Ω. Using the Poincare
model for hyperbolic geometry, Ω/φ(ττ) has a natural hyperbolic structure,
which we call the Fuchsian CP^structure with holonomy φ. Conversely, every
hyperbolic structure determines a Fuchsian CP^structure in this way.

Similarly, suppose that φ is a representation of π in the group of projective
transformations of RP2 (which we identify with SL(3,R)). Then we say that φ
is Fuchsian if φ is a faithful representation of π onto a discrete subgroup of
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SL(3,R) preserving a convex domain Ω bounded by a conic in R P 2 . Using the

Klein-Beltrami model for hyperbolic geometry, we see that the Ω/φ(ττ) has a

natural hyperbolic structure, called a Fuchsian structure; conversely a hyper-

bolic structure determines a Fuchsian RP2-structure in this way.

Using a construction due originally to Maskit [19], Hejhal [11], and

Sullivan-Thurston [22] (all independently), one can modify Fuchsian structure

by inserting annuli into Fuchsian structures split along simple closed curves.

This surgery process, which we call "grafting," is described in detail in §1. We

denote the set of all isotopy classes of disjoint collections of homotopically

nontrivial simple closed curves on S by Sf. Our main result on CP^structures

is the following:

Theorem C. Let S be a closed surface and φ:π -> PSL(2, R) c PSL(2, C) a

Fuchsian representation. Let M be a CPι-structure on S with holonomy φ, and

let Mo be the Fuchsian CP1-structure on (S) with holonomy φ. Then there exists

a unique σ e Sf such that M is obtained from Mo by grafting along σ.

Thus we may identify the set of developing maps (i.e., projective structures)

with fixed holonomy φ with the discrete set 6?.

Thurston [24] (see [2]) has shown that the deformation space CP\S) of all

CP^structures on S admits a natural description as a product 3~s X M££s,

where S"s is the Teichmϋller space of S and J(S£S is the space of all

measured geodesic laminations on S. The space JίS£s has a natural structure

as a piecewise linear manifold with integral coordinate changes, and the set Sf

may be interpreted as the set Jί<£s(ΊL) of integral points on Jΐ3Ps. Thus under

Thurston's description, the CP^structures with Fuchsian holonomy may be

identified with the set of integral points in ^ X Jί3?s. In particular this set is

a countably infinite disjoint union of open (6g — 6)-cells, where g is the genus

of S.

The analogue of Theorem C for RP2-structures is more complicated. The

first examples of exotic RP2-structures are due independently to Thurston [22]

and Smillie [21]. Using Thurston's construction and the work of Nagano-Yagi

[20] on affine structures, the classification of RP2-structures on the 2-torus was

given in [6]. The developing maps of certain RP2-structures on the torus are

described by equivalence classes of certain words in two symbols. A positive

word in two symbols A, B is an element w(A, B) of the free semigroup

generated by A and B. We shall say that w(A,B) is completely even if its

exponent sums in A and B are each even. Let S be a closed surface. A

grafting data on 5, by definition, consists of an isotopy class of a disjoint

collection Γ of homotopically nontrivial simple closed curves, no two of which

are isotopic, together with a completely even positive word wy(A, B) for each

y ^ Γ . Let && denote the set of all such objects. In §§3 and 4, it is shown how
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to associate to a hyperbolic surface S and grafting data σ e 92 a new
"grafted" RP2-structure on S. Our main result on RP2-structures is the
following.

Theorem R. Let S be a closed surface and <p: SO(2,1) c SL(3, R) a Fuch-

sian representation. Let M be a KP2-structure on S with holonomy φ, and let Mo

be the Fuchsian CPι-structure on S with holonomy φ. Then there exists a unique

σ e 93 such that M is obtained from Mo by grafting along σ.

Theorems C and R establish a bijection between developing maps of
projective structures with Fuchsian holonomy and certain sets of simple closed
curves weighted by elements of semigroups. For CP^structures this semigroup
consists of the positive integers, and for RP2-structures this semigroup consists
of completely even positive words in two symbols. Thus we classify geometric
structures in terms of intrinsic topological data on S.

As noted by Hejhal [11] and Sullivan-Thurston [22], the developing maps of
grafted CP1-structures fail to be covering maps onto their images. Thus one
consequence of our work is the construction of RP2-structures on all non-
simply connected surfaces with pathological developing maps. As noted by
Benzecri [1] and Sullivan-Thurston [22], RP2-structures on a manifold M yield
affine structures on products of M with a circle. This enabled Sullivan-
Thurston [22] and Smillie [21] to construct the first examples of affine
structures on compact manifolds with pathological developing maps. Using
these techniques we obtain the following:

Corollary. Let M3 be a closed 3-manifold homeomorphic to a product of a

surface of genus greater than one with a circle. Then M3 admits an affine

structure whose developing map is a surjection onto the complement of the origin

in R3, and is not a covering map. Furthermore examples exist where the affine

structure is a dense subgroup of either SO(2,1) X R+ or GL(3, R).

(For more information on affine structures, the reader is referred to Fried-
Goldman-Hirsch [4] and Goldman-Hirsch [10].)

Finally we mention one last set of related examples. A flat conformal
structure is a geometric structure modelled on the /t-sphere and its group of
conformal automorphisms. Kulkarni [17] showed that there is a natural opera-
tion of connected sums on such structures. Using this operation it is not
difficult to construct flat conformal structures whose developing maps are
surjective but not covering maps onto their images. Kuiper asked whether such
examples could exist on 3-manifolds which are not connected sums. Using the
work of Thurston on hyperbolic 3-manifolds, we show:

Proposition. Let M3 be a closed atoroidal 3-manifold with an incompressible

surface which is not the fiber of afibration of M over the circle. Then M admits a

flat conformal structure whose developing map is surjective but not covering.
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In higher dimensions similar techniques yield the following.

Proposition. Let M be a closed hyperbolic manifold which admits a closed

totally geodesic hypersurface. Then M admits a flat conformal structure whose

developing map is surjectiυe but not covering.

This paper is organized as follows. In §1 the Maskit-Hejhal grafting proce-

dure is described. In §2 Theorem C is proved. The reader interested only in

CP^structures need read no further. In §3, the classification of RP2-structures

on tori and annuli with real-split holonomy is described (following [6]). In §4

grafting of RP2-structures is defined and Theorem R is proved. In that section

there is also a description of RP2-structures with holonomy in SO(2,1) and

various new examples of such structures are given. In §5, it is shown how

grafting techniques can be used to construct flat conformal structures on

hyperbolic manifolds with complicated developing maps.

Finally I would like to thank D. Fried, N. Kuiper, J. Smillie, D. Sullivan,

and W. Thurston for helpful comments during the course of this work.

1. Grafting complex projective structures

1.1. Before describing the constructions, we establish the following nota-

tions. G will denote the projective group PSL(2,C), M will denote a CP1-

manifold, M will denote a fixed universal covering space of M, and π will

denote the group of deck transformations of M. Fix a developing map

dev: M -> CP 1 . We shall denote the corresponding holonomy homomorphism

by φ : π -> G.

The Maskit-Hejhal-Sulliυan-Thurston construction. The basic construction we

shall describe is due to Maskit [19], Hejhal [11], and Sullivan-Thurston [22]

although our present treatment differs somehat from these references. Let

A e G be a hyperbolic (including loxodromic) transformation. That is, the

stationary set Fix(A) of A in CP 1 consists of two points, one of which is an

attractive fixed point for A, the other is a repelling fixed point for A. The

cyclic group (A) = {An:n e Z} generated by A acts properly discontinuously

on the complement QA = CP 1 \ Fix(A). There exists a circle C in CP 1 such

that C and A(C) bound disjoint discs each containing a point of Fix(Λ); the

annular region bounded by two such circles is a fundamental domain for (A)

on Ω,A. The quotient TA = QA/(A) is a CP^manifold diffeomorphic to a

2-torus. Such a CP^manifold will be called a Hopf torus. The holonomy

homomorphism ^ ( 7 ^ ) = Z Θ Z -> (A) <-+ G has cyclic kernel, generated by

a simple closed curve which possesses a lift to the universal cover M which

develops to one of the boundary components of a fundamental domain. A
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simple closed curve in M which is not in this kernel has a component of its

preimage which is an arc γ in the universal cover which develops to an open

arc in CP 1 having endpoints the two fixed points ¥ix(A).

For each integer n > 0 let ίlA

n) denote the unique connected n-ίo\ά covering

space of Ω^. The protective automorphism A of ΩA lifts to a unique projective

automorphism A(n) of ίlA

n\ such that the covering projection QA

n) -> Ώ,A is

(^)-equivariant. Hence the quotient Tjn) = ΩA

n)/Ain) is another CP1-

manifold with holonomy homomorphism isomorphic to that of TA, but with a

distinct developing map from TA. These are the simplest examples of distinct

CP^structures on compact manifolds with the same holonomy.

1.2. Next consider a topological surface S and a homeomorphism S -> M

where M is a CP^manifold. Let dev: M -> CP 1 be the developing map.

Definition. Let M be a CP^manifold. A simple closed curve σ in M is

said to be admissible on M if and only if

(i) The holonomy φ(σ) around σ is hyperbolic (including loxodromic).

(ii) There exists a component of the preimage of σ in the universal cover

which develops to a simple arc in CP 1 with endpoints the two elements of

Fix(φ(σ)).

Let σ be a simple closed curve in M whose holonomy is hyperbolic. Suppose

σ is an admissible simple closed curve. Then dev(σ) is a closed A -invariant

subset of CP 1 \ Έix(A) and the quotient σ' = σ/(A) is a simple closed curve

inside the Hopf torus TA. In particular σ has a tubular neighborhood N b d M ( a )

in M which is projectively isomorphic to a tubular neighborhood of the

corresponding curve σ' in the Hopf manifold Γφ ( σ ) (whose holonomy gener-

ates the holonomy group of Tφ(σ)). This is exactly the situation needed for

grafting.

Suppose σ is an admissible simple closed curve on M. Let M\σ denote the

surface obtained by splitting M along σ. The boundary of M\σ consists of two

simple closed curves σ+, σ_ which are identified under a quotient map

q: M\σ -> M which is 1-1 on int(M) and 2-1 on dM = M+U M_. Our surgery

procedure will begin with CP^manifolds M, N and curves A c M, B <z N

with a projective isomorphism between a tubular neighborhood of A in M and

B in N. The union of M\A and N | £ along the resulting identification of

boundary components is a CP^manifold which we shall call the sum of A and

B (with respect to the isomorphism NbdM(A) -> Nbd^(5)) .

Let TA be the Hopf torus with holonomy A and T}n) its w-fold covering. Let

σ be a curve in TA which has holonomy A e G. We shall form the union of n

TA's along A. First TA\o is a compact CP^manifold with boundary homeomor-

phic to an annulus, whose holonomy homomorphism τ r 1 ( 7 ^ | σ ) s Z -
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an isomorphism. The universal covering space of TA\σ is projectively isomor-

phic to the universal covering space of the complement CP 1 \ ¥ix(A). To form

the rt-fold sum consider the disjoint union of n copies of TA\σ. Next identify

boundary components to obtain the n-ΐold sum TA + +TA. Observe that

the «-fold sum is projectively isomorphic to the n-io\ά covering space T}"\ In

particular by summing coverings of Hopf tori we obtain sum relations T\m) +

This identifies the set of CP^structures with cyclic holonomy generated by A

with the semigroup of positive integers. By summing these structures on annuli

to structures on surfaces of higher genus we obtain new CPx-structures

possessing holonomy isomorphic to that of the original structure.

1.3. Suppose M is a CP^manifold with fixed developing map dev: M ->

CP 1 and holonomy homomorphism ψj^'.TT^M) -> G and suppose that σ is a

curve in M whose holonomy φM(σ) = A is hyperbolic and such that σ lifts to

a curve σ in M which develops to an open arc with endpoints at Fix(v4). (This

latter condition will be valid under many interesting hypotheses, e.g., if φM is

an isomorphism πλ(M) -» Γ, where Γ is a quasi-Fuchsian subgroup of G.) Let

TA denote the Hopf torus with holonomy A. Then we may find curves σM, στ

on M and on TA respectively with isomorphic neighborhoods. The sum

M + TA along the σ-curves is a new CP^manifold, the graft of M along A,

topologically the union of M with an annulus TA\A. Note that the graft of M

along A is uniquely determined upon specifying A c M. We denote this graft

by M[A].

In the graft M[A] there are curves corresponding to A. Grafting M[A]

along the new curve A is equivalent to summing M\A with two copies of TA\A,

which is equivalent to summing M\A with T}2)\A. Thus we may inductively

graft along the same curve: define M[nA] = M[(n - l)^4][yl] so that «-fold

iterated graft M[nA] = M[A] [A] = M\A + T}n)\A.

More generally suppose that A and B are two disjoint simple closed curves

satisfying our basic hypothesis that they have lifts which are arcs between the

two hyperbolic fixed points of their holonomy. Then it is clear that in the graft

M[A] there is a curve corresponding to B and a curve corresponding to A in

M[B] such that the iterated grafts M[τ4][l?] and M[5][^4] are isomorphic

CP^manifolds. In this way we define M[A, B] and M[AV A2,- , An], where

{Ax, A2, -, An} is any set of disjoint simple closed curves satisfying the basic

hypothesis.

1.4. Definition. Let S denote the set of all disjoint unions of homo topically

nontrivial simple closed curves. A grafting data on M is defined to be a

disjoint union of admissible simple closed curves on M. Define SM c S to be
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the set of all grafting data. If σ e SM, then the σ-graft of M is defined to be

M[σ] = M[Aλ, , An] where Al9 , An represent the components of σ.

1.5. Definition. Suppose that S is a closed surface. We say that a homo-

morphism φ:πλ(S) -> G is Fuchsian (respectively quasi-Fuchsian) if and only

if φ is injective and its image is a Fuchsian (resp. quasi-Fuchsian) subgroup of

G. If φ is Fuchsian (resp. quasi-Fuchsian) then a Fuchsian (resp. quasi-

Fuchsian) structure with holonomy φ is one of the two CP^manifolds of the

form Ω/φ(ττ), where Ω is one of the two components of discontinuity of φ(τr).

1.6. Theorem C. Let M be a CPι-manifold whose holonomy φ: πx(M) —> Γ

c G is Fuchsian (respectively quasi-Fuchsian). Then there exists a disjoint union

of nontriυial simple closed curves σ E S and a Fuchsian (resp. quasi-Fuchsian)

structure Mψ with holonomy φ such that M = Mφ[σ].

1.7. It is easy to reduce Theorem C to the Fuchsian case, because any

quasi-Fuchsian φ'.π^M) -> Γ c G is quasiconformally conjugate to a Fuch-

sian representation φ 0 : πλ(M) -> Γ c G. That is, there exists a quasiconformal

homeomorphism h: CP 1 -> CP 1 such that for all γ e ^(Λf), hφh~ι = φ 0 . It

is easy to see that Theorem C for φ is equivalent to Theorem C for φ o ; hence it

suffices to consider the case that φ is Fuchsian.

Suppose that φ : π -> PSL(2,R)cG is Fuchsian. We shall break the hy-

pothesis that φ is Fuchsian into two parts: first, φ is a real representation

since φ(πλ(M)) c PSL(2, R); second a real representation is Fuchsian if and

only if the absolute value of its Euler class is maximized among all real

representations (see [7] or [8]). We shall begin by exploring the consequences of

the holonomy representation being real.

2. CP ̂ structures with real holonomy

2.1. We shall consider the decomposition CP 1 = H+U RP 1 U H_, where

the upper and lower hemispheres H+ and H_ are defined by Imz > 0 and

I m z < 0 , respectively. Since the sets H+, RP 1, H_ are each PSL(2,R)-

invariant, this decomposition passes to a 77-invariant decomposition of the

universal cover M. Namely, M = M + U M R U M_, where M + = dev - 1 ( i/ + ) ,

etc. Let p:M -> M denote the projection, and write M + = / ? ( M + ) , MR =

p(MR), M_= p(M_). Define the R-decomposition: M = M+U MR U M_.

Let ^ P denote the symmetric 2-tensor on H±= CP 1 \ R P X which restricts to

the Poincare metric on H+ and to the pull-back of the Poincare metric by

complex conjugation on H_. There is a unique symmetric 2-tensor ^M on the

open subset M±= M+U M_= M\MR c M such that p*(&M) = dev*(^ P ) .
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2.2. Theorem. Each component of M+ or M_ is a complete hyperbolic

surface, with ideal boundary a union of components ofMR.

Proof. On each component Mi of M + , ^M restricts to a Riemannian

metric gi9 for which the restrictions of p and dev are local isometries. Thus

(M / ? Φj) is a hyperbolic 2-manifold. We claim that Mt is complete as a metric

space. Suppose that Mi c M+. To this end let {yv y29- , yk, } be a

Cauchy sequence in Mf ; we will show it converges in Mr Since M is compact

the sequence {yn} has an accumulation point z e Λί. We claim that z = lim yn

G M, .

Lift the Cauchy sequence {_yw: n = 1,2,3, } in M{to a Cauchy sequence

{ yn:« = 1,2,3, ) in Mf.. Let z G M b e the corresponding lift of z, which is

a cluster point of the {yn}. Since ^ P has a pole at RP 1, and {dev(j^)} is

Cauchy, it follows that dev(z) £ RP 1. Since dev(z) lies in the closure of H+, it

follows that dev(z) G H+. Hence z G Mf .

There exists a neighborhood t/of z G Mi such that devl^ is an isometry. For

n sufficiently large, yn G t/ so we may assume that j w e ί / for all n. Since

devl^ is an isometry, and (dev(yn)} is a Cauchy sequence in H+, yn -> z.

Since dev: M -» CP 1 is a local diffeomoφhism and each component of H ±

is an open 2-disk with boundary RP 1, it follows that each Mt has boundary a

union of components of M R . Since each component of H+ has ideal boundary

RP 1 , each Λff- has ideal boundary a union of components of M R . This

completes the proof of the lemma.

2.3. Remark. This decomposition is also discussed by Faltings [3], from a

more conformal-geometric point of view. The approach taken here is more

directly based on hyperbolic geometry.

It is worthwhile to point out the basic structure of a complete hyperbolic

surface Mi with ideal boundary. Inside Mi there is a unique maximal convex

subsurface such that the inclusion into M is a homotopy equivalence. Such a

subsurface is called the convex core of M\ we denote it by core(M). Its

boundary consists of closed geodesies. Furthermore we can see that the ends of

Mu are annuli of infinite area. The complement M^coreίM,) consists of

annuli each bounded by a closed geodesic and an ideal boundary curve. The

complement of the ideal set is a disjoint union of annuli we call complete

collars about their bounding geodesies. These complete collars are natural

representatives of the ends of Mt. There is a canonical deformation retraction

M -> core(M), along geodesies orthogonal to θcore(M).

If χ ( Mf.) = 0, then Mt is topologically an annulus and the convex core of M,

is an essential simple closed geodesic γ,. Then Mi is the union of two complete

collars of the' geodesic along their common geodesic boundary component.

Such a hyperbolic 2-manifold we shall call a complete tube about γ,.
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2.4. First we observe some elementary topological properties of the R-

decomposition of M:

Lemma. Suppose M is closed and connected. Then no component of M ± is

simply connected.

Proof. Suppose M/ is a simply connected component of M±. Then the

developing map determines a projective isomorphism Mf -> H ± . The ideal

boundary of Mi is a component M^k) of MR whose developing map dev: 3Mf

RP 1 is a bijection. Let Mj be the other component of M± bounded by

j ^ 0 then Λff U M^ U My is a union of two 2-disks along a common

boundary and hence is an embedded open 2-sphere in M. This contradicts M

being connected.

2.5. Corollary. For each component M, of M ± , ί/ie £w/er characteristic

X ( M ) < 0.

2.6. The components satisfy χ(M ; ) < 0 except for certain annuli A/,-.

These annuli are quotients of H U (RP 1 \Fix(^4)) by the cyclic group of

projective transformations generated by A. Note that if M is compact, then A

will be strictly hyperbolic. There exists a closed geodesic c, in M/ and a

retraction r:Mi -> c, (given by orthogonal projection along geodesies) exhibit-

ing M,- as a trivial R-bundle over c,. These are the only components M, with

2.7. Let φ : π -> PSL(2, R) be a real representation. Let Hφ denote the

oriented //+-bundle over S with holonomy φ. (Recall that Hφ is defined as the

quotient of the product H +-bundle over the universal covering M of M by the

action of TΓ which is by deck transformations on M and by φ on the fiber.)

Since the action by 77 on M is proper with quotient M, the map Hφ -> M

induced by the projection M X i/+-> M is a CP^fibration. Let ̂ (φ) = e(Hφ)

e H2(M\ Z) = Z denote the Euler class of this oriented 2-disk bundle.

Lemma. Let M be a connected closed CPι-manifold with holonomy φ: 77 ->

PSL(2,R). Le/ M = M + U M R U M _ Z?̂  the R-decomposition of M. Then

Proof. Let P φ denote the flat CPx-bundle with holonomy φ. Then the

bundle P φ decomposes as H+φ U RPφ U H_φ, where H+φ and H_φ are

oriented 2-disk bundles and RPφ is an oriented RP^bundle. Define a bundle

map F:Pψ -> Hφ by requiring that it be on each fiber the identity map

H +<z H+ or reflection //_-> H+ in RP 1 (i.e., complex conjugation). Let

D: M -> P φ be the developing section of M. The composite F ° D is a section

of J/φ.

In order to compute the Euler class of Hψ, we consider the self-intersection

number of the section / = F ° D. We shall compute the self-intersection

number of / from the self-intersection number of the developing section D in
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Pφ. By general position, we may assume the self-intersections of D are disjoint
from the subbundle RPφ. Furthermore a tubular neighborhood of D is
equivalent to the tangent disk-bundle (see Goldman [7]). Thus the Euler class
e(φ) has contributions from M+, which sum to χ(M+) and contributions
from M_, which sum to χ(M_).

The Euler class e(φ) can then be computed as the self-intersection number
of F o D. The computations are exactly the same as for the self-intersection
number of /), except that the contributions from M_ are counted negatively:
the total self-intersection number of F° D equals (contributions from M+) —
(contributions to M_) which equals χ(M+) — χ(M_). This proves Lemma
2.7.

2.8. To prove the Fuchsian surgery Theorem C we shall need the following,
which is discussed in Goldman [7]:

Corollary. Let φ e Hom(ττ, PSL(2, R)) be Fuchsian. Then e(φ) = ±χ(M).
Proof. Apply §2.7 to the developing section of the Fuchsian structure with

holonomy φ. Either M+ or M_ is empty, so e(φ) = ±χ(M).
Remark. Although §2.8 is obtained here as a corollary of §2.7, its proof is

really implicit in the proof of §2.7, as a key special case.
2.9. Conclusion of the proof of Theorem C. Suppose M is a closed CP1-

manifold with holonomy homomorphism φ: TΓ -> PSL(2, R) which is Fuchsian.
By possibly changing the orientation on M, we shall assume that e(φ) = χ(M).
Let M = M+U MR U M_ be the R-decomposition of M. Now

χ ( M + ) + χ(M_) = χ ( M ) = e(φ) = χ(M+) - χ(M_),

whence χ(M_) = 0.
Write M_ as a union of components MλU UMk. By 2.5 each Mt has

nonpositive Euler characteristic. It follows that each χ(M t) = 0.
Thus each component of M_ is a complete tube (i.e., an annulus H_/{A)

as described above in §2.3) with ideal boundary (RPX\ Yιx(A))/{A). For a
given boundary component MR(k) of Mi9 let Mj denote the component of M+

whose boundary contains ΛfR(Λ). Then there is a complete collar in Mj which
joins M, at MR(k). Similarly in the other component of M+ which is adjacent
to Mt there is a complete collar which meets one on Mt. The union of Mt with
these two complete collars is a split Hopf torus TA\A, which is easily seen to be
a summand of the CP^manifold M.

This decomposes M into a union of disjoint compact surfaces with boundary
satisfying x{Mt) < 0. The complement of the union of the complete tubes and
the complete collars is a convex hyperbolic surface with a set of boundary
identifications which yield the Fuchsian CP1-manifold Mo. The components
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which are annuli determine grafting data σ for which M = M0[σ], where Mo is
the Fuchsian structure with holonomy φ.

2.10. Construction of CP^structures with real holonomy. We have seen how a

CP1-structure with real holonomy may be considered a union of two (not
necessarily connected) hyperbolic surfaces along geodesic boundary. We will
see how to use this theorem to explicitly construct projective structures with
various kinds of holonomy homomorphisms. In particular we shall express the
inverse images under

hol C P 1 ^ ) -> Hom(τr,PSL(2,C))/PSL(2,C)

of the subsets

Ps c Hom(ττ ,PSL(2,R))/PSL(2,R) c Hom(ττ,PSL(2,C))/PSL(2,C).

Here SΓS denotes the subset of Hom(π,PSL(2,R))/PSL(2,R) consisting of
equivalence classes of orientation-preserving Fuchsian representations. We will
see that h o l " ^ ^ ) consists of all the integral points in £ΓsχJ(££s and
hoΓ1(Hom(ττ,PSL(2,R))/PSL(2,R)) consists of the half-integral points in
0Γ V /M P

Let M = M+U M_ be the R-decomposition of M. Let {Mt\ i e /} denote
the set of components of M±. Consider the union Mo = UlcoreίM,) :i e /}.
Its complement in M consists of annuli Ay bounded by geodesic arcs γ all of
which have the property that their two bounding circles develop to the same
semicircular arc γ.

The annuli Ay in the complement of the convex cores all possess a retraction
onto the closed geodesies γ which they determine. Thus there is a canonical
identification map of Mo onto a connected hyperbolic surface Mo

r. This map
M -> MQ is an isometry with folds along closed geodesies corresponding to
various γ.

For example, in the Schottky uniformization of genus 2, the hyperbolic
surface Mo' is a surface of genus 2, realized as the double of either (a) a pair of
pants with geodesic boundary or (b) a torus with one geodesic boundary
component. In any structure with Fuchsian holonomy, Mo' is just the Fuchsian
structure.

2.11. The decomposition into annuli and convex hyperbolic surfaces is a
special case of a remarkable parametrization of CP^structures due to Thurston
(unpublished) (see also Epstein-Marden [2]). Thurston shows that a CP1-
manifold may be viewed as a hyperbolic 2-manifold "bent" in a locally convex
way inside hyperbolic 3-space. Thurston's identification can be succinctly
stated in terms of deformation spaces as follows.
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Theorem (Thurston). There is a canonical bijection &:C

Jί££s, where CP 1 (5 ' ) is the deformation space of (homotopy) CP1-structures on

S, SΓS is the Teichmuller space of S, and JC££S is the Thurston space of

measured geodesic laminations of S.

Under various assumptions on the holonomy representation, the Thurston
parameters will be extremely easy to calculate (unlike the classical conformal
parameters). However, it is important to point out that the hyperbolic structure
on M given by Thurston's correspondence is generally not the one produced
by the uniformization theorem: Thurston's metric is generally conformally
inequivalent to the Poincare metric on M.

We shall only describe the part of Thurston's theorem which deals with
laminations of rational slope, i.e., laminations supported on a closed one-
dimensional submanifold. In that case Thurston's bending construction can be
neatly described by the insertion of 0-annuli into Fuchsian structures. We shall
henceforth assume M is a closed hyperbolic surface. We presently define two
kinds of CP^manifolds, 0-crescents and 0-annuli.

2.12. Definition. Let θ > 0 be any positive real number, and let Wθ be the
closed region in C consisting of all complex numbers z such that 0 < Im z < θ.
Consider the CP^structure induced on Wθ by the exponential map exp: C -»
C*. We shall denote the resulting CP^manifold by Q. A θ-crescent is any
CP1-manifold C with boundary projectively equivalent to Cθ. If f:C0-+C is
such a projective map between 0-crescents, we say that the vertices of C are the
images /(0), /(oo). Suppose that A e PSL(2, C) leaves invariant a θ-
crescent C. Then there is an induced projective automorphism A : C -» C. The
resulting quotient CP^manifold is a θ-annulus.

If 0 < θ < 2ττ, then a 0-crescent is nothing more than a region bounded by
circular arcs which intersect at angle θ. Two such 0-crescents are adjacent if
they share a common edge. Clearly if C\ and C2 are θλ- and #2-crescents,
respectively, and are adjacent, then the union Cx U C2 is θλ + 02-crescent.

Note that if ^/(A), i = 1,2, are 0Γannuli covered by adjacent crescents,
then their union is canonically a 0-annulus.

If T is a 0-crescent bounded by circular arcs 3+(τ), 3_(τ), let e(τ) denote
the unique elliptic transformation fixing the vertices of T and taking 3+(τ) to
3_(τ).

2.13. Let Mo be a closed hyperbolic surface. We shall describe how to
"bend" Mo along a measured geodesic lamination μ supported on a disjoint
union of closed geodesies. Then μ consists of disjoint simple closed curves γ, in
M together with positive weights m{ attached to them. We may write
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To "bend" the structure along μ, we shall enlarge Mo by first splitting Mo

along the curves γ,, then inserting 0Γannuli along the boundary curves γ,+, γ,~,
where θi = 2τrm/.

The developing map (and hence the structure) can be constructed as follows.
Let {M,:/ e /} denote the components of M\\j{yi:i e /}. For each Aff- we
can find a fundamental domain Ft c Mi c M. Furthermore these fundamental
domains can be so chosen that the union F = U{ Fi:. i e /} is a fundamental
domain for π acting on M.

Choose a germ of a projective immersion S -> CP1 near X G S . We may
assume that x £ int(M,) for some / e /. Then one can find a uniquely
determined developing map for the fundamental domain F(0) for this M, . On
the sides of JF(0) which correspond to curves γf in the lamination, we attach
0,-crescents. The fundamental domain for the region M adjacent to Mf along a
γ is then immersed by e(τγ)<>dev0, where dev0 is the original developing map
restricted to F-, Continuing in this manner one eventually defines the entire
developing map by requiring dev to be 7r-equivariant.

2.14. Our primary use of Thurston's correspondence is to neatly char-
acterize the projective structures with respectively Fuchsian and real ho-
lonomy.

Theorem. Let hoi: CP\S) -• Horn(ττ,PSL(2,C))/PSL(2,C) be the map
which assigns to a homotopy CPι-manifold the equivalence class of its holonomy

homomorphism. Let

ys c Hom(ττ,PSL(2,R))/PSL(2,R) c Hom(τr,PSL(2,C))/PSL(2,C)

be the natural map {where SΓS is embedded in Hom(π,PSL(2,R))/PSL(2,R)
as a connected component.

(i) Let h o Γ 1 ^ ) denote the subset of CP^S) consisting of CP^manifolds
with Fuchsian holonomy. Then θ defines a bijection between hol" 1( t^) -> and
3TS x Jΐ&s{Z).

(ii) Let hoΓHHomίTΓ, PSL(2, R)))/PSL(2,R) denote the subset of CV\S)
comprising CPι-manifolds with real holonomy. Then Θ defines a bijection

between hol-1(Hom(ττ,PSL(2,R))/PSL(2,R)) and SΓS XJf&s(\Z).
In terms of the above terminology, Theorem C has the following inter-

pretation: the general CP^manifold with Fuchsian holonomy is obtained by
inserting 27r-annuli into the Fuchsian structure Λf0. Thus the subset of
CP^S) comprising CP^manifolds with Fuchsian holonomy is precisely
β~\ys X - # J S ^ ( Z ) ) , where Jt&s(Z) denotes the set of integral points in
</#JS?S, i.e. isotopy classes of disjoint unions of homotopically nontrivial simple
closed curves.
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Theorem 2.2 gives an interpretation of CP^structures with real holonomy as
a kind of union of complete hyperbolic structures with ideal boundary. By
retracting these hyperbolic manifolds to their convex cores we obtain a
hyperbolic surface Mo' which is the one specified by the Thurston isomorphism

Moreover the bending lamination is easily seen to be the curves γ counted with
multiplicity m(γ) corresponding to the number of components of M± col-
lapsed to γ. The bending parameters are easily seen to be equal to ττm(γ)
around each γ. Identifying a measure 2π of bending to 1, we see that the subset
of the measured lamination space JίS£s corresponding to CP^structures with
real holonomy is precisely the subset of half-integral points Jί^s{\Έ).

When the measure around a curve γ is even, say m(γ) = 2«, then the
bending parameter around γ is a multiple 2m n of 2m. In this case there are
exactly n Hopf manifolds split along γ which become identified to γ. This
corresponds to an «-fold graft along γ. Thus the integral points of Jt<£s

correspond to CP^manifolds with Fuchsian holonomy.

When the measure around γ is odd, say m(γ) = 2>? + 1, then we find
exactly n split Hopf manifolds which map to γ. After removing them we find
two components M+(γ) c M+, M_(γ) c M_ which are adjacent along γ.
These two components have opposite orientation and we only obtain a
hyperbolic structure on M when the developing map for M_(γ) is obtained
from the developing map of M+(γ) by composition with a reflection in the
geodesic γ. This is an example of a "hyperbolic structure with fold singulari-
ties" along γ, and one obtains a fold singularity along each curve γ for which
there are an odd number of π-annuli collapsed to γ.

3. Some real projective structures on annuli and tori

3.1. The grafting process for RP2-structures is more complicated than for
CPx-structures, even for surfaces of χ(S) = 0. For the examples we consider
the developing maps are classified by disjoint unions of families of simple
closed curves weighted by elements of a certain semigroup. This semigroup is a
certain class of RP2-structures on annuli with geodesic boundary. Once these
RP2-structures are classified, it will be easy to adapt the proof of the Fuchsian
surgery theorem for CP^structures to RP2-structures. In this section we
develop the notion of grafting RP2-manifolds, applying it to the classification
of RP2-manifolds with holonomy a cyclic group of R-hyperbolic projective
maps.
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Let M be an RP2-surface (i.e., a surface with RP2-structure). An arc in M is

geodesic if it has a lift which is developed bijectively onto a line segment in

R P 2 . M is a compact surface with geodesic boundary if and only if dM is a

(disjoint) union of closed geodesies. Suppose that Mλ and M2 are RP 2 -

manifolds with geodesic boundary and Bλ c dMλ and B2 c 3M2 are unions of

boundary components for which there exist neighborhoods Nx and N2 of Bλ

and B2 respectively and a projective isomorphism j:Nλ-^> N2. Then the sum

of Mx and M2 (along j : Nλ -> N2) is the RP2-manifold with geodesic boundary

M = Mx + M2 given by the disjoint union Mλ U M2 modulo the identifica-

tions given by j .

Definition. A special RP2-annulus is a compact RP2-manifold with geo-

desic boundary homotopy-equivalent to a circle.

This section will deal with the classification of special RP2-annuli and

related structures on tori and Klein bottles whose holonomy group is a cyclic

group generated by a projective transformation of R P 2 represented by a

diagonal matrix in GL(3, R) having distinct positive eigenvalues. This will be

the only case needed for describing the Fuchsian surgery theorem for oriented

RP2-structures. The general classification of RP2-structures on surfaces of zero

Euler characteristic is given in [6], upon which this treatment is based.

3.2. We shall find it useful to fix the following notation concerning the

group of projective transformations of RP 2 . The projective group consisting of

all collineations of RP" is the group PGL(« -h 1, R). If ΛI is even, this group is

isomorphic to SL(n + 1, R). The composition of the inclusion SL(n + 1, R) <->

GL(« + 1,R) with the projection GL(« + 1,R) -> ?GL(n + 1,R) is an iso-

morphism SL(« + 1,R) -> PGL(« + 1,R) of real analytic groups; the inverse

homomorphism GL(« + 1, R) -> SL(« + 1, R) is given by

A -> det(Λ) A.

3.3. Classification of special RP2-annuli. Consider a diagonal matrix A e

SL(3,R)

λx 0 0

0 λ 2 0

0 0 λ 3

where λx > λ 2 > λ 3 > 0. Then λ 1 λ 2 λ 3 = 1. We shall identify A with the

collineation of R P 2 which it induces.

Corresponding to the three coordinate axes in R3 are the three stationary

points pv p2, p3 for A acting on RP 2 . The stationary point pλ corresponding

to the largest eigenvalue is a repelling fixed point for A similarly p2 and p3
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FIGURE 1

are respectively a saddle point and an attracting fixed point (compare Figure

1). The coordinate planes in R3 define invariant lines in R P 2 joining the fixed

points in pairs: we denote by lx the line containing p2 and p3, by l2 the line

containing px and p3, etc.

There are many special RP2-annuli with holonomy generated by A. We shall

see their structure by decomposing them into eight types of building blocks.

Let / = U/, be the union of invariant lines and let Δf , i = 1,2,3,4, be the four

components of the complement R P 2 \ / . The interiors of these eight special

RP2-annuli represent four equivalence classes, i.e. the quotients Δf /(^4),

ι = l,2,3,4.

3.4. Definitions. An elementary annulus is a special RP2-annulus whose

interior is a quotient of a triangular domain Δf . Define a boundary label to be

a pair of distinct lines in /, and a development label to be one of the triangular

regions Δ/? z = 1,2,3,4. The elementary annulus with holonomy A with labels

(Δ, , lj k) is the quotient of Δ, U (u(lj) U u(lk)) by A where u(ln) denotes the

component of l\ Fix(A) on ln bounding Δ, . We shall denote this RP2-annulus

by Eι

jk(A) (see Figure 2).
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FIGURE 2. An elementary RP2-annulυs

Note that (A) does not act properly on R P 2 \ (p2 U /2) so that l13 and l3l

are not allowed as boundary labels. Thus we may construct many new special

RP2-annuli with holonomy A by gluing together various elementary annuli

along common boundary.

3.5. Lemma. Let Δ M = p(dev-\KP2\l)) and let V = UKy, where Vj de-

notes the subset p(dQv~ι(lj)) of M. Let B be a component of AM. Then B is an

elementary annulus with boundary a pair of components of V.

Proof. There is an A -invariant Riemannian metric ^ Δ on R P 2 \ /. In affine

coordinates on R P 2 \ / υ for example, we may take ^ Δ = X22(dx2)
2 +

X32(dx3)
2. There is a unique metric @M on AM such that p*&M = dev* ^ Δ . By

the same argument as 2.2, @M is a complete metric on Δ M. It follows that dev
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restricted to B is a local isometry onto one of the components Δ of R P 2 \ /. It

follows that dev: B -> Δ is a covering map and hence a homeomorphism.

3.6. Corollary. Let M be a KP2-annulus. Then there exist elementary annuli

Mi (i = 1, , n) such that M = Mx + +M Π .

Using this decomposition into elementary pieces, it is easy to classify

RP2-annuli. Each Mi is bounded by two geodesies, one from V2 and one from

Vλ U V3. Let γ be a simple arc on M with endpoints in each of the two

components of M. By general position we assume that γ is transverse to the

decomposition curves V. Furthermore we shall take γ so as to have a minimal

number of intersections with V. Record the sequence of Vi which γ intersects.

This sequence is subject to two constraints: (i) no Vj may follow itself; (ii) Vx

and V3 may never follow each other. Conversely given a sequence of elements

of {Vι,V2,V3} satisfying (i) and (ii), there corresponds a special RP2-annulus

with holonomy Λ.

3.7. The basic surgery process is, as with CP1-structures, to insert annuli

into protective structures split along nontrivial curves. In order that the

holonomy be unchanged, during this modification we shall want to insert

special RP2-annuli whose boundary components lie in the same Vh and

moreover develop to the same component of li\Ύix(A). (Indeed we will

require that the boundary components lie in V2.) Thus we shall need to

consider those special RP2-annuli M such that there is a projective quotient

map M -> Mr (where M' is a closed RP2-manifold) which identifies boundary

components.

Definition. A special RP2-torus (resp. an RP2-Klein bottle) is a closed

orientable RP2-manifold M homeomorphic to a torus (resp. a Klein bottle)

which possesses a simple closed geodesic C such that M\C is a special

RP2-annulus.

It is an elementary matter now to classify the various developing maps of

special RP2-tori and special RP2-Klein bottles. Split M along a component C

of V2 to obtain a special RP2-annulus with holonomy (A). The projective

equivalence class of M\C is described by a sequence of symbols {Vλ,V2,V3}

satisfying the two conditions (i), (ii) above. Furthermore this sequence both

begins and ends with V2.

Conditions (i) and (ii) imply that this sequence takes the form V2Viχ V2

ViVi ' Vi where the i1,---Jn are either 1 or 3. Thus we may rewrite this

sequence (after dropping the terminal V2) as a positive word W(JC, y) (i.e. all

exponents positive) in symbols x, y where x represents V2V3 and y represents

V V

In order that the special RP2-annulus can be identified to become a torus or

Klein bottle, it is necessary that the two boundary components develop to the
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FIGURE 3. Two Hopf RP2-tori

same component of l2 \ { p v p3}. It is easy to see that this is equivalent to the

condition that the total exponent sum of w in x and y be even. In that case we

shall say w(x, y) is an even word: otherwise w(x, y) is an odd word.

Suppose M is a special RP2-annulus whose boundary components develop

to the same component of / 2 \ {pλ, p3}. As above M determines a positive

word w(x, y). The condition that the special RP2-annulus identifies to a torus

and not a Klein bottle is a stronger "evenness" condition on w(x, y) obtained

as follows. Let γ c M b e a curve joining the two boundary components, which

intersects each component of each Vt exactly once when the special RP 2 -

annulus A(w) determined by w(x, y) identifies to a torus if and only if γ is

orientation-preserving. (Compare Figure 3.)

3.8. Lemma, γ is orientation-preserving if and only if the x-exponent sum

(and hence they-exponent sum) ofw is even.

Proof. Let γ ' denote the closed loop in R P 2 \ {pv p2, p3) to which γ

identifies. Since w(x, y) is even, we may write w(x, y) = w'(x2, xy, yx, y2).

Let βl9 β 2, β 3 , β 4 denote the elements of ^ ( R P 2 \ {px, p2, p3}) corresponding

to x2, xy, yx, y2 respectively (compare Figure 4). The homotopy class

[γ'] e 771(RP2 \ [pλ, p2, p3}) then admits the expression [γ'] =
w'(βι* βi> /*3> ̂ 4)- Qϊ these four elements, βλ and β4 (corresponding to x2 and

y2) preserve orientation and β2 and β3 (corresponding to xy and yx) reverse

orientation, q.e.d.
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FIGURE 4. The RP2-torus X2 Y2

We shall say that a positive word w(x, y) is completely even if the exponent

sums of w(x, y) in both x and y are even. Otherwise we shall say that w(x, y)

is partially odd. Two words w1(.x, y) and w2(x, y) are cyclically equivalent if

there exists positive words W(JC, j>), v(x, y) such that w^x, y) = u(x, y)v(x, y)

and W2(JC, >>) = y(jc, y)u(x, y). Together Corollary 3.6 and Lemma 3.8 imply:

3.9. Proposition. Let A be a collineation of R P 2 represented by a diagonaliz-

able element of SL(3; R) having distinct positive eigenvalues. Let (A) denote the

cyclic group generated by A.

(i) Let M be homeomorphic to a 2-torus and fix a surjective homomorphism

h:πλ(M) —» (A). Then the set of projective equivalence classes of RP 2 -

structures on M with holonomy h corresponds bijectively to the set of all cyclic

equivalence classes of completely even positive words.

(ii) Let M be homeomorphic to a Klein bottle and fix a surjective homomor-

phism h π^T2) -> (A). Then the set of projective equivalence classes of RP 2 -

structures on M with holonomy h corresponds bijectively to the set of all cyclic

equivalence classes of partially odd even positive words. {If A is diagonalizable

over R and has an odd number of negative eigenvalues, then the set of projective

equivalence classes of Restructures on M with holonomy h corresponds bijec-

tively to the set of cyclic equivalence classes of completely even positive words.)

If M is an oriented special RP2-annulus for which there exists an identifica-

tion map M -> M\ where M' is a special RP2-torus (i.e., the identification
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FIGURE 5. An RP2-Klein bottle XY

map is given by the identity map in local projective coordinates), then there is
a well-defined completely even positive word W(JC, y) which describes its
developing map. The various choices of geodesies on M ' along which to split
M' into a special RP2-annulus correspond to the various boundary compo-
nents which develop to the same component of / 2 \ {pv p3}. As above M
determines an even word w{x, y). But given a special RP2-torus M\ there may
be several completely even positive words corresponding to various ways to
split Mf into a special RP2-annulus; however all such words are cyclically
equivalent. An example of such a Klein bottle is given in Figure 5.

4. RP 2-manif olds with Fuchsian holonomy

In this section we shall prove the Fuchsian surgery theorem for RP2-
manifolds. In this section M will be an RP2-manifold of negative Euler
characteristic. For the sake of clarity we shall assume M is orientable (the
results for nonorientable M can be easily deduced from the orientable case).

Let C D RP 2 be a conic. Its stabilizer in PGL(3; R) is conjugate to PO(2,1)
c PGL(3; R). We shall say that a subgroup is quadric if it preserves a conic C.
(This is the analogue of real holonomy for CP^structures.) A representation
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φ : m -> PGL(3; R) is Fuchsian if it is a faithful homomorphism onto a discrete

quadric subgroup of PGL(3; R).

Suppose that φ : m -> PSL(2, R) is Fuchsian. Then there is a preferred

RP2-manifold Λfo(φ) with holonomy φ. Namely, let W denote the convex

region bounded by the conic C. Then Γ = φ ( π ) i s a discrete group which acts

properly and freely on W. We refer to this structure as the Fuchsian structure

(or the convex structure} with holonomy representation φ.

A Fuchsian RP2-manifold M is convex: every arc in M is homotopic to a

geodesic arc keeping endpoints fixed. Equivalently, M is the quotient of a

convex domain Ω in R P 2 by a discrete group of projective transformations

acting properly and freely. By analogy with the complex projective case, we say

a representation φ π -> PGL(3;R) is RP2-quasi-Fuchsian if it arises as the

holonomy representation of a convex RP2-structure.

We shall describe a procedure for constructing all possible RP2-manifolds

with RP2-quasi-Fuchsian holonomy. We shall express the general one as a

graft of the convex structure.

4.1. For some basic properties on convex RP2-structures we refer to

Kuiper [16] and Benzecri [1]. In particular Kuiper proved that if a domain Ω

covers a compact convex RP2-manifold then either 3Ω is a conic or ΘΩ fails to

be C 2 on a dense subset. Moreover Benzecri [1] prove that, under the same

hypotheses on Ω, either Ω is a triangle or ΘΩ is always C1. When χ(M) < 0,

then Ω is actually strictly convex (Kuiper). For more examples of convex

RP2-structures see Vinberg [25], Vinberg-Kac [13], Goldman [6]. Figure 6

illustrates one of the convex domains which may arise.

FIGURE 6

Kuiper [16] proved that each γ e Γ is semisimple and represented by a

diagonal matrix over R. In that case γ has three fixed points p0, pv p2, joined

by invariant lines /0, /1? /2 in RP 2 . The intersection of /2 with Ω covers a closed

geodesic curve lM(y) on M. By grafting special RP2-annuli to M along lM(y),

we construct all RP2-manifolds with holonomy φ.
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4.2. Let M be a convex RP2-manifold. Then by Kuiper [16], each simple

closed curve a is represented by a unique closed geodesic a{M) which is

simple. Furthermore the holonomy transformation can be represented by a

diagonalizable matrix in GL(3;R), and the intersection of Ω with the config-

uration of the three invariant lines is a line segment with endpoints the

attracting and repelling fixed points (which covers the closed geodesic).

It is easy to see that α(M) has a neighborhood in M which extends to an

RP2-annulus. In particular if w is a completely even positive word, then let

Λa(M)(w) denote the unique such RP2-annulus which corresponds to w. Thus

we can form the sum M\a(M) + Aa(M)(w) which we shall denote by M[α] as

before. Now consider a disjoint collection αz, / = 1,2,3, , n of homotopi-

cally nontrivial simple closed curves, no two of which are isotopic. For each

/ = 1,2,3, , n choose a completely even positive word w# . We shall call such

a collection η = (α 1 ? ,w1? ) a grafting data and we denote the set of all

grafting data on M by ^Q(M). Let Af denote the corresponding RP 2 -

annulus corresponding to w, which contains a closed geodesic with neighbor-

hood isomorphic to that of α,(M). Then we may simultaneously graft all the

Ai to form a new RP2-manifold with holonomy φ. We denote this RP 2 -

manifold by M[η].

4.3. Theorem R. Let Mo be a compact convex RP2-manifold and let M be a

compact RP2-manifold having the same holonomy representation. Then there

exists a grafting data η e ^S>(M) such that M = M[η].

4.4. The proof of Theorem R will be completely analogous to the proof of

the Fuchsian surgery theorem for CP^manifolds. After lifting to an S2-bundle,

we find an oriented 2-disk bundle (at least up to homotopy) and by calculating

its Euler class in two ways deduce the conclusion of Theorem R. Before

pursuing this analogy, we must explain how to use the fact that Γ preserves a

convex domain to define a suitable Euler class.

If Ω is a strictly convex domain in RP 2 , which is invariant under a

representation φ, then we decompose the flat RP2-bundle RPφ

2 over M into

subbundles in the following way. The convex decomposition of R P 2 is the

decomposition R P 2 = Ω U Ω6. Since this decomposition is Γ-invariant, there is

a corresponding decomposition of the flat RP2-bundle RP^ over M as the

union of the 2-disc bundle ΩM and a Moebius-band bundle tίc

M. The develop-

ing section Dev: M -> RP^ induces a decomposition of M into subsets MQ =

D e v ' ^ Ω ^ ) , Mc = Dev~ι(Ωc

M). As for the complex case, the following facts

are easily proven:

(1) ΩM is a disjoint union of complete hyperbolic surfaces with ideal

boundary a union of components of 9Ω^;

(2) each component of Ω^ is an annulus;
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(3) no component of ΏM is simply connected.

4.5. Let RP 2 denote the double cover of RP 2 . Since M is orientable, Γ

preserves an orientation on Ω. The obstruction to lifting φ to an action on the

double cover RP 2 is exactly the second Stiefel-Whitney class w2(φ). Since a

tubular neighborhood of the developing section of M o is isomorphic to the

tangent microbundle of M, we can conclude that w2(Ωφ) = w2(TM0) = 0.

Thus Γ lifts to an action on RP 2, and the developing section lifts to a section

of the associated bundle RP2^.

Since M is orientable, there are two components of the lift of Ω to RP 2 ,

which we call Ω+, Ω_. The lift of Ωc is an annulus A which separates Ω+ from

Ω_. As above we find a decomposition of M as M = M+U MA U M_. Now

all of the components of M\dtiM are oriented, and we obtain an orientation on

M by requiring that the components of M + be positively oriented and those of

M_ be negatively oriented. We have the following analogue of §2.7, whose

proof is entirely analogous.

Proposition. Let e(φ) denote the Euler number of the oriented 2-disc bundle

Combining Proposition 4.5 with remarks (1), (2), (3) in 4.4, we conclude, just

as in Theorem C, that either M_ or M + is a union of annuli. Suppose that it is

M+ which is a union of annuli. The RP2-structure of each component of M + is

described by a completely even positive word; thus the structure on M + as

well as a description of how M+ is attached to M_ is encoded in a grafting

data σ e &3). Then M is obtained from the convex structure Mo by grafting

along σ. Since the further details of the proof are parallel to those of the proof

of Theorem C we omit them.

4.6. Construction of real projective structures. We have seen that given an

RP2-manifold M with quadric holonomy, there is a canonical decomposition

of M as a union of complete hyperbolic manifolds attached along their

common ideal boundary. We shall further examine this decomposition. Let

(Λ/ / } / e / be a collection of complete hyperbolic manifolds, such that each Mt

admits a compactification M~ by ideal boundary components 3My. Suppose

we have partitioned the A{ into two disjoint classes labeled by sets / + and /_.

Let M~ denote the disjoint union of all M~. Suppose given an involution

j:dM~-* dM~ which has the property that if / e / + (resp. / e / _ ) , then each

component of jidM^) lies in dMk where k e /_ (resp. where k e /+). For

each y'-invariant pair (3μ,3 / j ( μ )) of boundary components, choose an annulus

Aμ, and form the quotient space M of M~Ό\jAμ by the identification

determined by j . Clearly M is a smooth surface. Furthermore it is clear that by

taking the surfaces M, to be hyperbolic surfaces with the associated RP 2 -

structures and the annuli Aμ to be suitable pieces of RP2-annuli, M can be
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FIGURE 7

given an RP2-structure with quadric holonomy. Some examples are given in

Figures 7-8. In particular Figure 8 indicates how to build an RP2-surface

whose holonomy is a Schottky group in SO(1,2).

We have seen how this decomposition determines the projective structure in

the case of Fuchsian holonomy. Indeed, the decomposition of M as a union of

compactified hyperbolic surfaces along ideal boundary components determines

two types of data: (i) the pattern of annular components, described by a

completely even positive word, (ii) the singular hyperbolic structure on M

constructed as the union of the convex cores of the Λff . The singularities of this

hyperbolic structure are all folds along boundary components. In §2 we saw
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FIGURE 8

that there was a similar breakdown for a CP^manifold with real holonomy. In

particular, we have the following.

4.7. Theorem. Let S be a closed orientable surface, χ(S) < 0, and let

77 = 7τλ(S). Let φ e Hom(τr,PSL(2,R)). Let ^:PSL(2,R) -> SO(2,1)° be an

isomorphism. Then the following are equivalent:

(1) £ o φ is the holonomy of an Restructure on S;

(2) φ is the holonomy of a CP1-structure on S.

In [5] it is shown that the following condition is also equivalent:

(3) w2(<f>) = 0 (i.e., φ lifts to SL(2, R) and φ(π) is not a solvable group.
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5. Examples of conformally flat manifolds

In this final section we shall show the same geodesic construction applies to

geodesic structures in higher dimensions. Recall that a flat conformal structure

on an ^-dimensional manifold M is a geometric structure modelled on the

^-sphere Sn, with coordinate changes lying in the group Con^S"7) of confor-

mal transformations of Sn. It is well known that Conf(S"*) is isomorphic to the

orthogonal group SO(n + 1,1). (A flat conformal structure can also be defined

as a conformal class of Riemannian metrics, which are locally conformally

Euclidean. Although this definition clarifies the Riemannian-geometry impor-

tance of these structures, we will not need these ideas here.) For more

information on flat conformal structures, see Goldman [9], Johnson-Millson

[12], Kulkarni [17], Kulkarni-Pinkall [18], Kamishima [14].

5.1. To begin, we consider the conformal geometry of the complement of a

geometric A:-sphere in S". Observe that the group G of conformal automor-

phisms of Sn which preserve Sk may be identified with the subgroup G of

O(k + 1,1) X O(n - k) with determinant 1. Furthermore, in the usual projec-

tive model where Sn is a quadric hypersurface in RP" + 1, the intersections of

S" with a (k + 2)-dimensional linear subspace containing Sk is a (k + 1)-

dimensional hemisphere. In particular the complement Sn\Sk is fibered by

these (k + l)-discs, which are parametrized by S"~k~ι. In particular Sn\Sk

« Dk + ι X Sn~k~ι with the natural (product) action of SO(& + 1,1)X

SO(n - k). We may give Dk + ι X Sn~k~ι the product metric, where Dk + 1 has

the Poincare metric and S"~k~ι the spherical metric; then G acts isometrically

on this product.

Now let Γ c SO(A: + 1,1) be the inclusion of a torsionfree discrete cocom-

pact subgroup. Thus Dk + 1/T is a compact hyperbolic manifold Mk + ι and the

quotient of Sn\Sk by Γ c SO(A: + 1,1) c SO(n + 1,1) is Mk + ι X S"~k-\

Thus the product of a hyperbolic manifold with a sphere (or any spherical

space form) is conformally flat.

5.2. Such product manifolds (when n - k = 2) are the building blocks of

our examples of conformally flat manifolds with surjective developing maps. In

particular when n > 2, these are the simplest examples of conformally flat

manifolds whose developing maps are not injective maps from the universal

cover to Sn.

Kulkarni [17] has defined a notion of connection sum of flat conformal

structures. That is, if Bγ<z Mx and B2 c M2 are embeddings of geometric

balls in two conformally flat manifolds M1 ? M 2, then there exists a conform-

ally flat structure on MX#M2 = Mι\Bι U M 2 \ B2, which restrict to the given

flat conformal structures on each M, \ Bt.
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If dev^M; -> Sn (i = 1,2) are the developing maps of the M, , and Bi is a
lift of £, c M, to M, , then there exists A e Conf(5") such that A o d e y ^ ) =
dev(2?2). Let j e Conf(S") be inversion in 3dev(Z)2). Then y ° A is a confor-
mal map which defines a conformal isomorphism d(Mλ) -> 3(Af2) The result-
ing identification space M = M1\BιU M2\B2 thus inherits a flat conformal
structure. If the developing maps of Mλ and M2 are both injective, then so is
the developing map of M. For a detailed proof, see Kulkarni-Pinkall [18].

Let Mx be a conformally flat manifold homeomorphic to the product of Sι

with a closed hyperbolic (n - l)-manifold. Let M[ be the k-io\ά covering
space of Mλ induced from the A:-fold covering map Sι -> Sι. Let M2 be any
closed conformally flat manifold other than Sn. One can show that any
conformally flat connected sum M = M{ U M2 must have surjective de-
veloping map.

To build an example on a manifold which is not a connected sum, we use a
variant of the grafting construction. Let Mo be a closed hyperbolic H-manifold
and suppose that F c M is a hypersurface satisfying the following condition:

(*) There exists a lift F of F to the universal cover M such that the
intersection Λ of the closure of dev(F) with Sn~ι = dD" is homeomorphic to
Sn~2.

As above the conformally flat manifold W = (Sn\A)/πι(F) ~ Fx S1.
Let i 7 ' c M' be the hypersurface in M' which develops to dev(.F/). The split
manifold M'\F' is a flat conformal manifold homeomorphic to F X /, with
two boundary components which develop to dev(F). Consider the split hyper-
bolic manifold Mo \ F. Clearly there are collar neighborhoods of the respective
boundary components of Mo \ F and M'\F' which are conformally equiva-
lent. Thus the union M[F] = M / \ ^ Γ / | - I ^ o \ i 7 h a s a conformally flat struc-
ture.

It is easy to see that the developing map of M[F] is surjective (and hence
not a covering map). For the developing image of Mr is the complement of Λ
in Sn. Thus the developing image of M contains the complement of Λ in Sn.
However, the holonomy group of M[F] is the same as holonomy group of Mo,
i.e. Γ. Since the developing image of M is Γ-invariant, it must contain the
union of all translates γ ( S n \ Λ ) ( γ e Γ ) , which is easily seen to be all of Sn,
since Γ acts minimally on S""1. Thus the developing map of M is surjective.

There are several important cases when (*) is satisfied. When n = 3 and F is
an incompressible surface in M which is not the fiber of a fibration M -» S1,
then it follows from results of Maskit and Thurston that πx(F) is represented
as a quasi-Fuchsian group acting on Z>3, so (*) is satisfied. In another
direction, if M happens to possess a totally geodesic hypersurface, we take F
to be that hypersurface. Then Λ is actually a geometric sphere and (*) is
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satisfied in this case. Many of the "arithmetic" hyperbolic manifolds (i.e.

hyperbolic manifolds of the form Dn/Γ, Γ an arithmetic lattice in O(n,l))

possess totally geodesic hypersurfaces; see Johnson-Millson [12] for a thorough

discussion. In particular we obtain:

Theorem. Let M be a closed hyperbolic manifold with holonomy representa-

tion φ:ττ 2 (M) -> Conf(S"~ι). Suppose that either:

(i) dim M = 3 and M contains an incompressible surface which is not the fiber

of afibration M -> Sι; or

(ii) M possesses a totally geodesic hypersurface.

Then there exists a flat conformal structure on M with surjectiυe developing

map whose holonomy representation is the composition of φ with the inclusion

In case (ii) there is a whole 1-parameter family of flat conformal structures

on M obtained by "bending" M along F, as discussed in Johnson-Millson [12]

and Kourouniotis [15]. This is the analogue of "inserting 0-annuli" described

in §2. In particular the structure we obtain above is obtained by "bending" M

along F a full 2π radians. (The only angles through which one may bend and

obtain the same holonomy representation are multiples of 2π.)

We have been unable as of yet to prove the following conjecture, which is

the analogue of the Fuchsian surgery theorems for conformally flat structures

on hyperbolic manifolds.

Conjecture. Let Mo be a compact hyperbolic /ι-manifold and let <p: π ->

Conϊ(Sn~ι) be its holonomy representation. Suppose that M is a conformally

flat manifold whose holonomy is the composition of φ with the inclusion

C o n ^ S " " 1 c Coni(Sn). Then there exists a (not necessarily connected) hyper-

surface F c M o such that M is obtained from Mo by grafting along F.
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