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COLLAPSING RIEMANNIAN MANIFOLDS
TO ONES OF LOWER DIMENSIONS

KENJI FUKAYA

0. Introduction

In [7], Gromov introduced a notion, Hausdorff distance, between two metric
spaces. Several authors found that interesting phenomena occur when a
sequence of Riemannian manifolds Λf, collapses to a lower dimensional space
X. (Examples of such phenomena will be given later.) But, in general, it seems
very difficult to describe the relation between topological structures of Mt and
X. In this paper, we shall study the case when the limit space X is a
Riemannian manifold and the sectional curvatures of Mi are bounded, and
shall prove that, in that case, M, is a fiber bundle over X and the fiber is an
infranilmanifold. Here a manifold F is said to be an infranilmanifold if a
finite covering of F is diffeomorphic to a quotient of a nilpotent Lie group by
its lattice.

A complete Riemannian manifold M is contained in class Jί(n) if dim M <
n and if the sectional curvature of M is smaller than 1 and greater than - 1 . An
element N of Jt{n) is contained in Jί(n,μ) if the injectivity radius of N is
everywhere greater than μ.

Main Theorem. There exists a positive number ε(n,μ) depending only on n

and μ such that the following holds.

IfMeJP(n), N E:J({n,μ), and if the Hausdorff distance ε between them is

smaller than ε(«, μ), then there exists a map f:M -> N satisfying the conditions

below.

(0-1-1) (M,NJ) is a fiber bundle.

(0-1-2) The fiber offis diffeomorphic to an infranilmanifold.

(0-1-3) Ifξ^ T{M) is perpendicular to a fiber off, then we have

e-Ύ{t)<\df(ί)\/\ί\ <eτ{ε\
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Here τ(ε) is a positive number depending only on ε, n, μ and satisfying

limε^oτ(ε) = 0.
Remarks. (1) In the case when N is equal to a point, our main theorem

coincides with [6,1.4].

(2) In the case when the dimension of M is equal to that of N, the

conclusion of our main theorem implies that / is a diffeomorphism and that

the Lipschitz constants of / and f~ι are close to 1. Hence, in that case, our

main theorem gives a slightly stronger version of [7, 8.25] or [8, Theorem 1]. (In

[7] or [8], it was assumed that the injectivity radii of both M and N were

greater than μ, but here we assume that one of them is greater than μ.)

Next we shall give some examples illustrating the phenomena treated in our

main theorem.

Examples. (1) Let T? = R 2 / Z θ (l/ι)Z be flat tori. Then l i in,.^ 7)2 = Sι

( = R/Z) and T2 is a fiber bundle over S1.

(2) (See [9].) Let (M, g) be a Riemannian manifold. Suppose Sι acts

isometrically and freely on M. Let gε denote the Riemannian metric such that

gε(v, v) = ε g(υ, υ) if υ is tangent to an orbit of Sι and gε(υ, v) = g(υ, υ) if υ

is perpendicular to an orbit of S1. Then l i m ε ^ 0 ( M , gε) = ( M / S 1 , g') for some

metric g'. In this example, the fiber bundle in our main theorem is Sι -» M ->

M/S\

(3) Let G be a solvable Lie group and Γ its lattice. Put Go = G,GX = [G, G],

G2 = [G^G^ - ,G/ + 1 = [GvGj]. Take a left invariant Riemannian metric g

on G. Let gε denote the left invariant Riemannian metric on G such that

gε(v, v) = ε'*2' g(υ, v) if υ e Te(G) is tangent to G, and perpendicular to

Gi+1. (Here e denotes the unit element.) Then l i m ε ^ 0 ( Γ \ G, gε) is equal to

the flat torus Γ \ G/Gv and the sectional curvatures of gε are uniformly

bounded. In this example, the fiber bundle in our main theorem is

(Gλ Π Γ)\GX -> Γ \ G ^ T\G/GV

Finally, we shall give an example of collapsing to a space which is not a

Riemannian manifold.

(4) (This example is an amplification of [7, 8.31].) Let (G,, Γ, ) be a sequence

of pairs consisting of nilpotent Lie groups G, and their lattices Γ,.. Let (M,g)

be a compact Riemannian manifold and φ, a homomorphism from Γ, to the

group of isometries of (Af, g). Put T = Π/OJy^-φ^Γy)). Here the closure,

\Jj>iφJ(TJ), is taken in the sense of compact open topology. It is proved in [1,

7.7.2] that there exists a sequence of left invariant metrics g. on G7 such that

the sectional curvatures of g, (/ = 1,2, ) are uniformly bounded and that

Hmz-.^^ (Ti \ G,, gt) = point. On M X G,, we define an equivalence relation -

by (<Pi(y~ι)(x), g) ~ (̂ ?Ύg)> Let MXτGi denote the set of equivalence
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classes. Then it is easy to see

lim
/->oo

In this example, there also exists a map from M X Γ Gt to M/T.
This example gives all possible phenomena which can occur at a neighbor-

hood of each point of the limit. In fact, using the result of this paper, we shall
prove the following in [5]:

Let Mf be a sequence of compact m-dimensional Riemannian manifolds
such that the sectional curvatures of Mi are greater than -1 and smaller than 1.
Suppose lim/_^00M/ is equal to a compact metric space X. Then, for each
sufficiently large /, there exists a map f:Mt -+ X satisfying the following.

(1) For each point p of X, there exists a neighborhood U which is
homeomorphic to the quotient of IR" by a linear action of a group T. Here T
denotes an extension of a torus by a finite group.

(2) Let Y denote the subset of X consisting of all points which have
neighborhoods homeomorphic to Rk. Then (/) \f-\Y), f~ι(Y),Y) is a fiber
bundle with an infranilmanifold fiber F.

(3) Suppose p has a neighborhood homeomorphic to Mn/T. Then f~ι(p) is
diffeomorphic to F/T.

The global problem on collapsing is still open even in the case of fiber
bundles.

Problem. Let F be an infranilmanifold and (M, N, /) a fiber bundle with
fiber F. Give a necessary and sufficient condition for the existence of a
sequence of metrics gt on M such that the sectional curvatures are greater than
-1 and smaller than 1 and that l im^^M, gt) is homeomorphic to N.

The organization of this paper is as follows. In §1, we shall construct the
map /. In §2, we shall prove that (M, JV, /) is a fiber bundle. In §3, we shall
prove a lemma on triangles on M. This lemma will be used in the argument of
§§2, 4, and 5. In §4, we shall verify (0-1-3). In §5, we shall prove (0-1-2). Our
argument there is an extension of one in [1] or [6].

In [7, Chapter 8] and [9] (especially in [7, 8.52]), several results which are
closely related to this paper are proved or announced, and the author is much
inspired from them. Several related results are obtained independently in [3]
and [4]. The result of this paper is also closely related to Thurston's proof of
his theorem on the existence of geometric structures on 3-dimensional orbi-
folds. The lecture by T. Soma on it was also very helpful to the author.

Notation. Put R = min(μ, ττ)/2. The symbol ε denotes the Hausdorff
distance between M and N. Let σ be a small positive number which does not
depend on ε. We shall replace the numbers ε and σ by smaller ones, several
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times in the proof. The symbol τ(a\b,---,c) denotes a positive number
depending only on a,b,- - ,c,R,μ and satisfying l im α _ o τ(a\b, ,c) = 0
for each fixed b, , c. For a Riemannian manifold X, a point p e X, and a
positive number r, we put

BTr(p9X)={ξeTp(X)\\ξ\<r}.

Here T^(-Y) denotes the tangent space. For a curve l:[0,T]-+ X, we let
(Dl/dt)(t) denote the tangent vector of / at l{t). For two vectors ξ, ξ' e ^ ( X ) ,
we let ang(£, £') denote the angle between them. All geodesies are assumed to
have unit speed.

1. Construction of the map

First remark that Rauch's comparison theorem (see [2, Chapter 1, §1])
immediately implies the following.

(1-1-1) For each p e M and p' e N the maps exp| β Γ ( M) and
e x Pl BT2R(P' N) h a v e maximal rank. Here exp denotes the exponential map.

(1-1-2) On BT2R(p, M) [resp. BT2R(p\ N)]9 we define a Riemannian metric
induced from M [resp. N] by the exponential map. Then, the injectivity radii
are greater than R on BTR{p, M) and BTR(p', N).

Secondly we see that, by the definition of the Hausdorff distance, there
exists a metric d on the disjoint union of M and N such that the following
holds: The restrictions of d to M and N coincide with the original metrics on
M and N respectively, and for each x e N, y e M there exist x' e M,
y' €: N such that d(x, *') < ε, d(>>, >>') < ε. It follows that we can take subsets
ZN of N and ZM of M, a set Z, and bijections jM:Z -> ZM, jN:Z-^> ZN,
such that the following holds.

(1-2-1) The 3ε-neighborhood of Z^ [resp. ZM] contains Λ̂  [resp. M].
(1-2-2) If z and z' are two elements of Z, then we have

d{jN(z),jN(z'))>ε and

(1-2-3) For each zeZ,we have

z)jM{z)) < ε.

Now, following [8], we shall construct an embedding fN:N -> Mz. Put
r = σΛ/2. Let K be a positive number determined later, and h: R -> [0,1] a
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C°°-function such that
(1-3) *(0) = 1 and h{t) = 0 if t> r,

K < h'{t) < 0 if 0 < ί < ̂  or f < / < r.

We define a C°°-map fN:N -> Uz by fN(x) = (h(d(x, ^ ( z ) ) ) ) r e Z j v . In [8], it
is proved that, if ε and σ are smaller than a constant depending only on R, μ,
and n, then /^ satisfies the following facts (1-4-1), (1-4-2), (1-4-3), and (1-4-4).
The numbers Cl9C2,C3, C4 below are positive constants depending only on R,
μ, and n.

(1-4-1) fN is an embedding [8, Lemma 2.2].
(1-4-2) Put

Bc(NfN(N)) = {(P>u) G t h e normal bundle of fN(N) \ \u\ < C),

K= sup #(Br(p,N)njN(ZN)).
XGiV

Then the restriction of the exponential map to BCιKι/i(NfN(N)) is a diffeomor-
phism [8, Lemma 4.3].

(1-4-3) For each ξ' e Tp,(N) satisfying \£'\ = 1, we have

C2K
ι/2 < \dfN(ξ')\ < C3K

ι/2 [8, Lemma 3.2].

(1-4-4) Let x, y e N. If d(x, y) is smaller than a constant depending only
on σ, /A, and «, then we have

K^1 J(x, y)<C4 dRn(fN(x)JN(y)) [8, Lemma 6.1].

The next step is to construct a map from M to the CχίΓ1/2-neighborhood of
fN(N). The map x -» (h(d(x, JM(Z))))ZGZ ^ a s ^ s property. But unfor-
tunately this map is not differentiable when the injectivity radius of M is
smaller than r, and is inconvenient for our purpose. Hence we shall modify
this map. For z e Z and Λ: G M, put

(z), M)),

Assertion 1-5. J z is a Cι~function and for each ξ e TX(M) we have

== Vol(A) •

Here A = {y G Bε(jM(z),N)\y is not a cut point of x).
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Assertion 1-5 is a direct consequence of the following two facts: dz is a

Lipschitz function', the cut locus is contained in a set of smaller dimension.

{Remark that dz is not necessarily of C2-class.)

Lemma 1-6. / M ( M ) is contained in the 3εKι/2-neighborhoodoffN(N).

Proof. Let x be an arbitrary point of M. The definition of dz implies

W(JM(Z)> x) ~ dz(x)\ < ε. Take a point x' of N such that d(x, x') < ε. Then

condition (1-2-3) implies that \d{jM(z\x) - d{jN(z\x')\< 2ε. It follows

that \d(jN(z), x') - dz{x)\ < 3ε. The lemma follows immediately.

Lemma 1-6, combined with facts (1-4-1) and (1-4-2), implies that

Z^1 ° 7r ° Exp"1 o fM = f is well defined, where π: N(fN(N)) -> fN(N) denotes

the projection. This is the map / in our main theorem.

2. (M, Ny f) is a fiber bundle

The proof of the following lemma will be given in the next section. Let δ, δ',

and v be positive numbers satisfying δ < δ'.

Lemma 2-1. Let /,: [0, ίz] -> M(i = 1,2) 6e geodesies on M such that ^(0) =

/ 2 (0), and //: [0, t ] (i = 1,2) be minimal geodesies on N such that /{(O) = Γ2(0).

Suppose

(2-2-1) ^(//(O),/,-^))-^^^

(2-2-2) </(/,(0),/;(0)) < y,

(2-2-3) rf(/i(O.//(ί;))<^

(2-2-4) δ#/10 <h<8R and δ'R/10 < t2 < δ'R.

Then we have

Now we shall show that (M, N, f) is a fiber bundle. It suffices to see that fM

is transversal to the fibers of the normal bundle of fN(N). (Here we identified

the tubular neighborhood to the normal bundle.) For this purpose, we have

only to show the following lemma.

Lemma 2-3. For each p e M and ξ' e Tf(p)(N), there exists ξ e Tp(M)

satisfying

WMU) - dfN(t') \/\dfM') I < r(a) + τ(ε| σ).
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To prove Lemma 2-3, we need Lemmas 2-4 and 2-9.

Lemma 2-4. Suppose σ < δ, v < σ/100. Let /3:[0, t3] -* M,V3\[0, t'3] -> 2V

ί?e minimal geodesies satisfying the following

(2-5-1) </(/3(0),/;(0))<ι.,

(2-5-2) <*(/3('3)^('ί)) <'>

(2-5-3) 8R/10 < t3,t'3 < SR.

Then we have

τ(σ) + τ(ί>|σ,δ) + τ(ε |σ ,δ) .

Put /? = /3(0), f = (Dl3/dt)(0l ξ' = (Di;/dt)(0). For an arbitrary

element z of Z satisfying

(2-6) d(/>,y A , (z))>r + 2i' or </(/>, ̂ ( z ) ) < r/8 - 2v,

we have, by (1.3), that

(2-7) \i(h(d(jN(z), )))\<κ, \ξ(h(dx( )))\<κ,

in some neighborhoods of /̂ (O) and /3(0), respectively. Next we shall study the

case when z e Z does not satisfy (2-6). Assume that an element y of

Bε(jM(z), M) is not contained in the cut locus of p. Let /4: [0, t4] -> M and

' 4 : [0» 4̂] ~> ̂  denote minimal geodesies joining /3(0) to y and /̂ (O) to ^ ( z )

respectively. Since σR/10 < r/8 - 2 ε - 2 ^ < r + 2ε + 2^<σ.R, we have

σ#/10 < U < °R> SR/10 < t3 < 8R. Hence, Lemma 2-1 implies

\ξ'(d(jN(z), •)) " t(d(y9 •)) I < τ(σ) + φ | σ , β ) + τ ( ε | σ , δ ) .

Therefore, by using Assertion 1-5, we have

(2-8) \ξ'(d(jN(z), •)) " € K ( 0 ) I < τ(σ) + φ | σ , « ) + τ ( ε | σ , δ ) .
Then, Lemma 2-4 follows from (2-7), (2-8), and (1-4-3) if we take K sufficiently

small.

Lemma 2-9. For eachp e M,we have d(p, /(/?)) < τ(ε).

Proof. By the definition of / and Lemma 1-6, we have

(2-10) dR.(fM(p),fN(f(p))) < 3εK1/2

Let q G N be an element satisfying d(p, q) < ε. Then, by the proof of Lemma

1-6, we have

(2-11) d
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Inequalities (2-10) and (2-11) imply

Therefore (1-4-4) implies

d(q,f(p))<6C4ε.

The above inequality, combined with d(p, q) < ε, implies the lemma.
Proof of Lemma 2-3. By assumption, there exist geodesies /3: [0, ί3] -* M,

i;:[0, t'3] -» N such that /3(0) = p, /3'(0) = /(/>), d(l3(t3), / 3 ' (φ) < ε,
(Dl^/dt)(0) = ξ', and σR/10 < t3,t'3 < σR. Lemma 2-9 implies </(/3(0),/£(
< τ(ε). Therefore, Lemma 2-4 implies

dfAZ') - ̂ ( ^ ( 0 ) ) I j\dfN{ί')\ < Ho) + τ(ε|σ),

as required.

3. A triangle comparison lemma

To prove Lemma 2-1, we need the following:
Lemma 3-1. Let /;:[0, ί j-> M (z = 5,6) be geodesies on M such that

/5(0) = /6(0). Suppose

(3-2-1) /5(0) = /5(r5),

(3-2-2) \d{lMMh))-U\<v,

(3-2-3) 82R< t5< 28R and 8R/10 <t6<8R.

Then we have

7^(0), - ^ ( 0 ) ~ ττ/2 < τ(8) + τ(v\δ) + τ ( ε | δ ) .

Proof. Let / ^ [ - ^ / ^ *ό/^] ~~* ̂  be a minimal geodesic satisfying
^(/6(°X ^(O)) < e and d(l6(t6), l'e(t6)) < 3ε + r. (The existence of such a
geodesic follows from (3-2-2).) Take a minimal geodesic lΊ: [0, /7] -> M satisfy-
ing /7(0) = /5(0) and d(lΊ{tΊ\ l'e{tβ/8)) < ε. Let /8:[0, /8] -> M be a minimal
geodesic joining lβ(tβ) to / 7 (ί 7 ). Then, since \t6 + /8 — *7| < τ(ί') + τ(ε), and
since lΊ is minimal, it follows that

(3-3)

Let /9: [0, tβ/8] -> M denote the geodesic such that /9 | [ 0 t ^ = /6. Put r9 =
( < # ) . Inequality (3-3) and the fact \tΊ - t9\ < τ(v) + τ(ε') imply
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Hence, by the minimality of /7, we obtain

(3-4) \d(θ,l9(t9))-t9\<τ(v\S) + τ(ε\δ).

Now let /,: [0, ί,] -> 5ΓΛ(/x(0), M) (i = 5,9) denote the lifts of /, such that

7,(0) = 0. Then, (3-4) implies

(3-5) d(l5(t5),l9(t9)) > rf(/5(0),/,(*,)) - τ(v\8) - τ ( e | δ ) .

On the other hand, by (3-2-3), we have

(3-6) ts/t9 < 20δ and δ2R < t5.

Inequalities (3-5), (3-6), and Toponogov's comparison theorem (see [2, Chapter

2]) imply

(3-7) a n g ( ^ ( 0 ) , ^ ( 0 ) ) > tr/2 - τ (δ) - φ\δ) - τ ( ε | δ ) .

Next, let / 1 0 : [0, ί10] -* M be a minimal geodesic satisfying /5(0) = /10(0)

and d(Γ6{-tb/δ), ll0(tw)) < e. Then, since

\d{U(t6),/10(ί10)) ~Ue + ho) I < r(p) + τ(ε),

it follows that

(3-8) τ(v\δ) + τ ( ε | δ ) .

On the other hand, by the method used to show (3-7), we can prove

(3-9) a n g ( ^ ( 0 ) , ^ ( 0 ) ) > m/1 - τ(«) - τ ( , | δ ) - τ ( e | δ ) .

The lemma follows immediately from inequalities (3-7), (3-8), (3-9).

Remark that to prove Lemma 2-1 we may assume δ = δ'. When t2, t'2 < δR,

clearly we can take δ = δ\ and when t2, t'2 > δR, Assertion 3-10 implies that

we can replace /2, V2 by / 2 | [ ( U / ? ] , III^SRY

Assertion 3-10. d(l2(δR\l'2(δR)) < τ(v\δ,δ') + τ ( ε | δ , δ θ .

Proof. Take minimal geodesies l[x: [0, R] -> Λ̂  and ln : [0, tn] -> M satis-

fying /J(0) = /^(O), d(!2(δR), l^iδR)) < 2v + 2ε, /2(0) = /n(0), and

^(fii(*ii)> '11(^2)) < ε Let / 1 2: [0, ί12] -> M denote the minimal geodesies

joining l2(δR) to / n ( / n ) . Then, since \tn + δR - tn\ < τ(v) + τ(ε) and since

l n is minimal, it follows that

a n g ( ^ ( S * ) , ^ ( 0 ) ) < τ ( r | β , « ' ) + τ ( ε | δ , δ ' )

Hence we have

' 2 ) ^ i i ( ^ ) ) < τ(»Ίδ,δ ') + τ(βjδ,δ ')
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On the other hand, by assumption, we have

d{l2(h), I'M)) < ' . d{ln{tn), l^t't)) < ε.

Then, we conclude

Therefore, applying Toponogov's comparison theorem to N, we obtain

τ(v\δ,δ') + τ ( ε | δ , δ ' )

The assertion follows from the above inequality and the fact d(l2(8R),
l{x(δR)) < ε.

Therefore, in the rest of this section, we shall assume δ = δ'. Take a minimal

geodesic l u : [0, ίu] -> M joining lλ(tλ) to I2(ϊ2). Let /,.: [0, *,.] -> BT^l^O), M)

(i = 1,2,13) denote the lifts to /, such that /,(0) = 0 (/ = 1,2) and 713(O) =

Assertion 3-11. We have d(ju(t13)J2(t2)) < (τ(δ) + τ(v\δ) + τ(ε |δ)) δ.

Proof. Put i = d(lu(tι3)J2(t2)). We may assume δ 2 # < i. Take another

lift ί2 of l2 satisfying 12(t2) = Il3(tl3). Let 7z:[0, /J - ^ ^ ( / ^ O ) , M) (/ =

14,15) denote the minimal geodesies joining I2(t2) to 71 3(ί1 3) and 7^0) to /2(0)

respectively. Then Lemma 3-1 implies

τ(δ) + τ(p\δ) + τ ( ε | δ ) ,

< τ ( δ ) τ ( ε | δ ) ,

τ(δ) + τ ( » Ί δ ) + τ ( ε | δ ) ,

τ(δ) + τ(v\δ) + τ ( ε | δ ) ,

Hence, a standard argument using Toponogov's comparison theorem implies

> ί { l - τ ( β ) - τ ( p | δ ) - τ ( e | β ) } - δ { τ ( δ ) - τ ( » Ί δ ) - τ ( ε | δ ) } .

But /13(0) = ϊι(tι). The assertion follows immediately.
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Now we are in the position to complete the proof of Lemma 2-1. Assertion

3-11 implies

\d(h(ti)Mh)) ~ <*(/ί(Ί).'2('2))l < 2ε + δ { τ ( δ ) + r(v\8) + τ ( ε | δ ) } .

On the other hand, we have

tt - t'i\< 2v and SR/10 < tt < SR (i = 1,2).

Hence, Toponogov's comparison theorem implies

(δ) τ ( ε | δ ) ,

as required.

4. / is an "almost Riemannian submersion"

In this section we shall verify (0-1-13). First we shall prove the following:

Lemma 4-1. \df\ < 1 + τ(σ) + τ(ε |σ).

Proof. Since the second fundamental form of fN(N) is smaller than τ(σ),

the norm of the restriction of the exponential map to BΛεKι/i(NfN(N)) is

greater than l - τ ( σ ) - τ ( ε | σ ) (for details, see the proof of [8, Lemma 7.2]).

Therefore Lemma 4-1 follows from Lemma 2-3 and the definition of /.

Let p e M, q =/(/?). Put k = (the dimension of N). We introduce a new

small positive constant θ and assume σ < θ. Take points z{, z'2,''',z'k
of N such that d(q, z ) = 0# and that the set of vectors

gτsidq(d(z'ι, •)),• ,grad^(J(z^., •)) is an orthonormal base of Tq(N). Let zi

be a point of M such that d(zi9 z-) < ε. For x e BθiR(p, M), put

, j ) φ/Vol(2?e(z,., M)),

and let Ux(x) denote the linear subspace of TX(M) spanned by

^g^,- ^grad^g^), and Π 2 ( x ) the orthonormal complement of Π ^ J C ) .

P : TX(M) -» Π .(JC) denotes the orthonormal projections.

Lemma 4-2. For each ξ G Π ^ x ) satisfying \ξ\ = 1, we have

Proof. By Lemmas 2-4, 2-9, and the definitions of fM,fN and g, , we can

prove

( τ ( σ ) + τ ( ε | σ ) )
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Therefore, by the definition of /, we have

\ d f ( g m d x ( g ι ) ) - p a d f { x ) ( d ( z ' i 9 ) ) l < τ ( σ ) + τ ( ε | σ ) .

It follows that

\\df(ffadx(gi))\-l\<τ(σ) + τ(ε\σ).

This inequality, combined with Lemma 4-1, implies Lemma 4-2.
The following lemma is a direct consequence of Lemmas 4-1 and 4-2 and the

fact dim U2(p) = dim N.
Lemma 4-3. Let x e BΘiR{p, M). Then for each ξ e TX(M) tangent to the

fiber, we have

Now, (0-1-3) follows immediately from Lemmas 4-1, 4-2, and 4-3.
In the rest of this section, we shall prove several lemmas required in the

argument of the next section.
Lemma 4-4. Let x ^ Bθ*R(p, M) and let i e Π 1 (x) be a vector with

\ξ\ = 1. Then we have

\d(x,expx(sξ)) -s\< τ (σ) - τ ( ε | σ )

and

\d(f(x),f(expx(sξ))) ~s\< τ (σ) - τ(ε |σ )

for each s smaller than R.

Proof. Put ξ' = df(ξ)9 and /'(/) = exp(ίΓ/|Γ|). Lemma 4-2 implies \\ξ'\
— 1| < τ(σ) 4- τ(ε |σ) . Let /:[0, R] -> M be a minimal geodesic satisfying
d(l(R\Γ(R)) < 4ε + R(\ξ'\ - 1). Put η = (Dl/dt)(0). By Lemma 2-3 and
the definition of /, we have

(4-5) |£//(τj)-€'|<τ(σ) + τ ( e | σ ) .

Hence we have ||d/(η)| - h | | / | η | < τ(σ) 4- τ(ε|σ), Therefore, Lemmas 4-1,
4-2 imply

(4-6) | P 1 ( η ) - r ? | < τ ( σ ) + τ(ε |σ).

Inequalities (4-5), (4-6), combined with the facts £ e Ux(x), df(ξ) = £', and
Lemmas 4-1, 4-2, imply \η - ξ\ < τ(σ) + τ(ε|σ). Furthermore, by the defini-
tion of η, we have

\d(f(x)j(exvx(sη))) -s\< τ ( σ ) + τ ( e | σ ) .

The lemma follows immediately from these facts.

Lemma 4-7. Let x e BθiR(p, M), and ξl9 ξ2 G U^X) be vectors such that

l̂ il = 1̂ 1 < σ ^ Then we have

) - 2 \ξx\ ύn(ang(ξl9ξ2)/2)\ < τ ( σ ) + τ ( ε | σ ) .
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Proof. By Lemma 4-4, we have

151

On the other hand, Lemmas 4-1 and 4-2 imply

| a n g ( J / ( | 1 ) , ^ / ( ξ 2 ) ) - ang(£ 1 ? £ 2 ) | < τ(σ) + τ ( ε | σ ) .

Hence, applying Toponogov's comparison theorem to N, we obtain the lemma.

Lemma 4-8. Let x e BθiR(p, M) and ξ e Π 2 ( x ) be a vector with \ξ\ = 1.

Then we have

d(f(exp(sξ)),f(x)) < ( τ ( σ ) + τ(θ) + r(e\σ,θ)) • s

for each positive number s smaller than Θ2R.

Proof. Put ll6(t) = exp(ί£). Since ξ e Π 2 ( Λ : ) , we have

(4-9) ang(ξ,gradJ C(g/)) = π/2.

Lemma 4-8 follows immediately from Lemmas 4-1, 4-2, 4-3, and the following:

Assertion 4-10. For each t < s,we have

:τ(e\θ) + τ(θ).

Proof. Let lk: [0, / J -> M (k = 17,18) be minimal geodesies joining x and

/ 1 6 ( 0 to zf respectively. By the definition of g/? we can take /17 and /18 so that

they satisfy

(4-11)

(4-12)

Let 1j (j = 16,17,18) denote the lifts of /y (y = 16,17,18) to BR(x,M)

satisfying 716(O) = 717(0) = 0 and 718(O) = 716(ί), and let 7 1 9 : [ O , / 1 9 ] ^

BR{x, M) denote the minimal geodesic joining / 1 7 (ί 1 7 ) to /i 8 (ί 1 8 ). Put /19 =

expx Z19. Then Lemma 3-1 implies that one of the following holds:

(4-13-1) t19 <Θ2R,

(4-13-2)

<τ(θ)+r(ε\θ),

: τ(θ) + τ ( ε | 0 )

If (4-13-2) holds, then applying Toponogov's comparison theorem to BR(x, M\

we obtain
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Then, in each case, we have d(ll7(tlΊ), 71 8(ί1 8)) = t19 < 2Θ2R. Therefore, by a
standard argument using Toponogov's comparison theorem, we can prove

(4-14)
/ nl nl \ i nl nl \

:τ(θ)+τ(ε\δ).

Assertion 4-10 follows immediately from (4-9), (4-11), (4-12), and (4-14).

5. The fiber in an infranilmanίfold

In this section we shall verify (0-1-2). The following is a direct consequence
of Lemma 2-9.

Lemma 5-1. The diameter of the fiber, f~ι(q), is smaller than τ(ε).
If we can obtain an estimate of the second fundamental form of f~ι(q),

Lemma 5-1 combined with [6,1.4] would imply (0-1-2). But as was remarked at
§1, the map / is only of C -̂class and not necessarily of C2-class. Hence, it is
impossible to estimate the second fundamental form. Then, instead, we shall
modify the proof of [6, 1.4] in order to verify (0-1-3). The detailed proof of [6,
1.4] is presented in [1]. Therefore, in the rest of this section, we shall follow [1],
mentioning the required modifications.

We introduce a new positive constant p smaller than Θ2R. Let πp denote the
local fundamental pseudogroup introduced in [6, 5.6] or [1, 2.2.6] (in [1] the
terminology, local fundamental pseudogroup, is not introduced, but the nota-
tion τrp is defined there). Here we take p as the base point. Following [1, 2.2.3],
we let * denote the Gromov's product on πp. For a vector space V, the symbol
A(V) denotes the group of all affine transformations of V. Let m:πp-^>
A(Tp(M)) denote the affine holonomy map introduced in [1, 2.3], r its rotation
part, and / its translation part. The following lemma is proved in [1, 2.3.1].

Lemma 5-2. For α, β e τrp, we have

d(r(β)or(a),r(β*a)) <\t(a)\ \t(β)\,

\ t ( m ( β ) o m ( a ) ) \ - \ t ( β * a ) \ < \ t ( a ) \ \ t ( β ) \ ( \ t ( a ) + t ( β ) \ ) .

Next we shall prove the following:
Lemma 5-3. For each a e πp,we have

\Pι°r(a)oP1 - Pχ\ < τ(θ) + τ ( σ | 0 ) + τ ( p | 0 ) + τ ( ε | σ , 0 ) .

Proof of Lemma 5-3. Put s = (the length of a). Let ξ be an arbitrary
element of Hι(p) satisfying \ξ\ = ΘR. First we shall prove

(5-4) rf(
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In fact, let | e T0(BTR(p, M)) be a vector satisfying (d(expp))(ξ) = ξ, let a

curve a: [0, s] -> BTR(p, M) denote the lift of α satisfying ά(0) = 0, and let

I G T<*(S)(BTR(P> M)) be a vector satisfying Jίexp^Xl) = r(£). By the defini-

tion of r, the vector | is a parallel translation of f along ά. Let 1(0 G

Tά(ΐ)(BTR(p, M)) denote the parallel translation of f along α | [ 0 t]. Set JtQ{u)

= D/dt\t=tQexpά{t)(u | ( 0 ) . Since //o( ) is a Jacobi field along the geodesic

u -> exp a ( / )(κ | ( ί o ) ) ?

 a n d since |//o(0)| = 1, it follows that |/,o(l) | has an

upperbound depending only on n and \ξ\. Therefore, ζ(s) = | implies that

</(exp(f),exp(!)) < Γ

Inequality (5-4) follows immediately.

(5-4) and Lemma 4-4 imply

(5-5) |</(/>,exp(r(α)(€))) - \r(a)(ξ)\\

τ ( p | β ) .

( σ ) ( ε | σ ) .

Next we shall prove the following:

Assertion 5-6. We have

- r(a)(ξ)\/\r(a)(ξ)\ < τ(θ)

Put / 2 0 ( 0 = exp/ί r(a)(ξ)/\£\) and /20 = |ξ|. Let / 2 0 : [0, r2 0] - TV

denote the minimal geodesic satisfying /^(O) = <?, d(l20(t20), /^(^o)) < ε» a n ^

/ 2 1 : [0, /21] -> M be a minimal geodesic joining p to expp(r(α)(|)). Then, by

inequality (5-5) and Lemma 2-9, we can apply Lemma 2-1, and obtain

(5-7) τ(p|fl)

On the other hand, by Lemma 2-4 and the definition of /, we have

τ(σ) + τ ( ε | σ ) .

It follows that

DU
Ho)dt

Therefore, Lemmas 4-1 and 4-2 imply

(5-8)

τ(σ) + τ ( ε | σ ) .

r ( σ ) + τ ( ε | σ ) .

Inequalities (5-7) and (5-8) immediately imply the assertion.

Now, Lemma 5-3 follows immediately from inequality (5-5) and Assertion

5-6.
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We put T = τ(θ) + τ(p I θ) + τ(σ | θ) + τ(ε | σ, p, 0). The following lemma

corresponds to [1, Proposition 2.1.3].

Lemma 5-9. For each ξ e Π2(/?) w/r/i |ξ| < p, rtere e m t t α e τ r p satisfy-

ing \ξ - t(a)\ <τp.
Proof. By Lemma 4-8, we have

d(f(exp(O),q)<τ-\ξ\.

This formula and Lemma 5-1 imply that

d(exp(ξ),p)<τ(ε) + τ \ξ\.

The lemma follows immediately.

Next we shall prove a lemma corresponding to [1, 2.2.7]. Following the

notations there, we define a group πp as follows. Let W(πp) be the free group

of words in the elements of πp; let N0(πp) be the set of words aβy~ι where

γ = a*/?; let N(πp) be the smallest normal subgroup in W(πp) which contains

N0(πp). Put τrp = W(πp)/N(πp).

Lemma 5-10. If p is smaller than a constant depending only on n and μ, and

if σ and ε are smaller than a constant depending only on n and R, then there

exists a natural isomorphism Φ: πp -> πλ(f~ι(q)).

Proof. Since / is a fiber bundle and since any μ balls in N are contractible,

we see that ^ ( / " H ? ) ) i s isomorphic to the image of iΓι(Bc(p,M)) in

iΓι(Bc,(p, M)), where σ, ε < τ(C) < C < C / 2 < C < μ. Using this remark,

we can prove Lemma 5-10 by the same method as [1, Proposition 2.2.7].

Using Lemmas 5-2, 5-9, and 5-10, the arguments of [1, Chapters 3 and 4]

stand with little change. Then, we obtain the following result which corre-

sponds to [1, 4.6.5].

Lemma 5-11. We can choose p such that the following holds.

(i) The natural map πp -> πp is injectiυe and mp = πι(f~\q)9 p)

(ii) π has a nilpotent, torsion free normal subgroup t of finite index. We put

Γp = f p n v

(ϋi) Γp is generated by m loops yv , γm such that each element γ e Γp can

uniquely be written as a normal word γ = γ/1 γ^w; these generators are

adapted to the nilpotent structure, i.e.

V < Y i > " »Y»> * Y / 1 = <Vi> Ύ / > ( X < i < j < m ) .

Here m denotes the dimension off~1(q).

Furthermore, Corollary 3.4.2 in [1] implies the following.

Lemma 5-12. If a e Γp, then \r(a)\ < τ.
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Next we shall follow the argument of [1, Chapter 5]. By Corollary 5.1.3 of

[1], we have the following:

Lemma 5-13. The structure of nilpotent groups on Γp = (Zn, •) can be

extended to Un. Namely there exists a nilpotent Lie group G = (Un, ) such that

Γp is a lattice of G.

Following [1, 5.1.4], we shall introduce a left invariant metric on G.

Definition 5-14. Put Xt = P2(ί(γ, )), ϊ) = exp-^γ,) e L. Here L denotes

the Lie algebra of G. We introduce a scalar product on L such that the linear

map given by X. -> Yt is an isometry between U2(p) and L, and extend this

product by left translation to a Riemannian metric on G.

Let B be a subset of M containing B2p(p,M) and satisfying πλ(B) =

τr 1(/" 1(^)). Let B denote the universal covering space of B, and TΓ : B -» B the

projection. Take a point j? in π~ι(p). By the method of [1, 5.4], we can prove

the following two lemmas.

Lemma 5-15. For each α G Γp, we have

\d(p,a(p))-dG(e,a)\<τ.

Here dG is the distance induced from the metric defined in 5-14, and e denotes

the unit element.

Lemma 5-16. The absolute value of the sectional curvature of G has an

upperbound depending only on the dimension.

Let fc:G -> L2(Tp) be the map defined by x ->(h(dG(x9y(p))))Ύ(ΞTpy where

h is a function satisfying condition (1-3), and as the number r in (1-3) we take

a constant depending only on p, R, and n. The restriction of fG to Bp(e, G) is

an embedding. Let dB:B -> L2(Tp) denote the map defined by x ->

( Λ ( J ( x , γ ( ^ ) ) ) ) γ e Γ . Now using Lemmas 5-15 and 5-16 we can repeat the

argument of §§1, 2 and obtain the following. The symbol C5 below denotes a

constant depending only on p, R and, n.

Lemma 5-17. Let B' be the C5-neighborhood of {y(ρ)\y e Γp_C 5}. Then

there exists a map Φ:2?'->2?p(e,G) such that the following hold:

(5-18-1) Φ has maximal rank.

(5-18-2) Ifx E 5 ' J G fp, γ(jc) e IT, /Λe« γ(Φ(jc)) = Φ(γ(jc)).

(5-18-3) Ifx G 5 ^ G 7;(£') jέi/wĵ  dΦ(gx) = 0, //zeπ we have

(.see Lemma 4.3).

Now we are in the position to complete the proof of (0-1-2). Put F —
7 Γ " 1 (/~ 1 (^)) % Lemma 5-1, we may assume F c B' replacing ε by a smaller

one if necessary. Hence, by Lemma 5-17, we obtain a map F/tp -> G/tp. Fact

(5-18-3) and Lemma 4-3 imply that this map is a covering map. Hence F/tp is
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a nilmanifold. On the other hand, F/tp is a finite covering of f~ι(q).
Therefore f~ι(q) is an infranilmanifold. Thus the verification of (0-1-2) is
completed.
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