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ONE-DIMENSIONAL GIBBS STATES
AND AXIOM A DIFFEOMORPHISMS

D. RUELLE

Abstract

We study the equilibrium statistical mechanics of one-dimensional classical
lattice systems with exponentially decreasing interactions. For such systems,
the Fournier transforms of pair correlation functions are meromorphic in a
strip, and the residues of the poles can be expressed in terms of "Gibbs
distributions." The latter are defined like Gibbs states, but without the
positivity condition. Using symbolic dynamics, we can apply these results to
Smale's Axiom A diffeomorphisms; the Gibbs distributions then become
distributions in the sense of Schwartz on the manifold.

0. Introduction

The Gibbs states of equilibrium statistical mechanics are probability mea-
sures (on the space of configurations of an infinite system) which satisfy
certain linear conditions.1 We introduce here the more general concept of
Gibbs distributions: they satisfy the same linear conditions as before, but are
elements of a larger space than that of measures.2 We determine a class of
Gibbs distributions in the case of one-dimensional lattice systems with ex-
ponentially decreasing interactions. The interactions are allowed here to be
complex. The main interest of this result is that it gives an expression for the
residues of poles of the Fourier transform of the pair correlation function.
While one-dimensional systems with short range interactions are in a sense
trivial (they have no phase transition), they are useful in the analysis of certain
differentiable dynamical systems on a manifold (Axiom A diffeomorphisms).
We shall thus be able to study the correlation functions of these dynamical
systems, and express the residues of the poles referred to, or resonances, in

Received December 30,1985 and, in revised form, April 4,1986.
1 See Dobrushin [5]-[7], and Lanford and Ruelle [11].
2 For an early study of a special example see Gallavotti and Lebowitz [10].
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terms of Gibbs distributions on the manifold. Presumably, this analysis can be

extended, as usual, to Axiom A flows.

The literature on statistical mechanics and its applications to Axiom A

systems is extensive. For clarity, we reproduce in the present paper the details

of a certain number of known results, referring to the original papers for the

proofs (general references are Bowen [2], Ruelle [21]).

1. Subshifts of finite type, interactions, Gibbs distributions

Let / be a nonempty finite set and (7;y) a square matrix indexed by / X /,

with elements 0 or 1. We define Ω to be the space of sequences (jk)k(=z °f

elements of / such that tj = 1 for all k. Note that Ω is a closed subset of

the compact product Jz and thus compact. The shift T : Ω -> Ω is defined by

( T ^ ) ^ = ξk + 1\ T is a homeomorphism. The pair (Ω, T) is called a subshift of

finite type.

We shall assume in what follows that all matrix elements of tN are > 0 for

sufficiently large N. This means that T is topologically mixing on Ω. (The

mixing condition simplifies the discussion to follow. The general situation can

in some sense be reduced to the mixing case.)

Given any set I c Z , let πχ be the restriction to Ω of the canonical

projection Jz -> Jx, and let 77̂ Ω = Ω^. Thus, if ξ e Ω, πxξ = ξ\ X e Ω^.

The shift τ sends Ωx to tix_v An interaction is a complex function Φ on the

union U X Ώ X over all finite nonempty intervals X of Z, such that Φ ° τ = Φ

(translation in variance). Let 0 < θ < 1; we shall restrict our attention to the

Banach space SSe of exponentially decreasing interactions for which

0-diam* s u p | φ ( ^ ) | _> o whendiamX ^ oo.

(We have written diam[w, υ] = v — u.) We put on <3lθ the norm

\\Φ\\Θ = sup0- d i a m A r sup | Φ ( ί ) | < +oo.
X

Given a,b e Z with a < b, write

X:X£(-oo, a],X€[b, oo)

(If b — a > 1, the sum extends over those X which contain some X strictly
between a and b\ if b - a = 1, the sum extends over those X which contain
both a and b.)
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If A <= #(Ω,C), we write

v a r ^ = s u p { M ( { ) - A ( ξ ' ) \ : ξ k = ξ'k f o r \ k \ < n ) ,

\\A\\β = sup β - var,,Λ, | | M | | | , = \\A\\X + \\A\\β.

We let % be the Banach space of those A for which lim/l_>oo0~/l var^Λ = 0,

with the norm III \\\θ. Note that <VΘ is a Banach algebra (i.e. MABIH0 <

and that Vab9 exp ± Vab G <^. If 7 c Z, we let

This is a Banach space with respect to the induced norm A -> |||Λ © 7τy||U. We

denote by « / , « , ( y ) * the duals of ^ , ^ ( 7 ) . For σ G %* or ^ ( 7 ) * it will

be convenient to write σ(A) = fσ(dξ)A(ξ) as if σ were a measure.

We shall say that σ e Vf is a G/fcfo distribution if, for every choice of

a < b, there is σab e ^ ( ( - 0 0 , Λ] U [fe, 00))* such that, for all A G ^ ,

(1.1) f

In this formula, £' V η V ξ " denotes the element ξ G ί ϊ such that £|(-oo, α]

= £', ξ|(α, fc) = η, ξ|[ft, 00) = I " , and the integral is restricted to the set

{(£', έ") : £ ' V i) V ξ " is defined}. (If all the elements of (r ί 7) are equal to 1,

ξ' V η V £ " is always defined.)

Note that when Φ is real and σ is a probability measure, we recover the

definition of a Gibbs state. Our conditions imply that there is one and only

one Gibbs state in the present situation.

2. Determination of a class of Gibbs distributions

Define κ ; e <P,((-oo, α]), F," e «^([ft, 00)) by

i, oo)

Note that, if α < b,

We shall look for Gibbs distributions such that (1.1) holds with σah(dξ'dξ") =

<b(dt')<b(dξ"), where o'ab e ίP,((-oo, a})*, o'a'b e ^([ft, oo))*. In view of
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(1.1), and using formulas (2.1), we can choose a'ab = σj, σ^h = σ'h' such that

(2-2)

(o'b'(dξ")A(ξ")=

for all A e <^((-oo, a]) or A e ^9([b, oo)) respectively. Conversely, if the

families (σn'), (σn") satisfy (2.2), they determine a unique Gibbs distribution by

(1.1).

We introduce now ̂ a':%((-oo, a]) ̂  ^ ( ( - o o , a - 1]), Pζ'\ %([b, oo))

-» #β([fc + 1, oo)) such that

If ^ ' * , ^ , r / * are the adjoints of these operators, we may rewrite (2.2) as

K1^) Ja °a-l ~ °a> Jb °b+\ ~ °b

If a < b, also let Xah\ Vθ((-ao, a])* -+ Vθ([b, oo)) be defined by

^)(Γ)= Σ

(It has to be checked that if σ' e «^((-oo, a])*, then Jf^σ r G ^([ft, oo)).

We shall take a = 0, b = 1, and also suppose for simplicity that ttj = 1 for all

i, y e / (these restrictions are easily lifted). Write /(£")(•) = K01( V η V | / ; ) .

Then / ( £ " ) e ^ ( ( - o o , α]) and | | |/(f'OIL < 2fl(l - tf)-2||Φ|U If ξ" and ξ x

differ only by their components of index > n, then | | | / ( ί " ) - f(ξx)\\\$ <

4^ w ( l - β)~ 2 | |Φ| |^. Using the fact that «^((-oo, Λ]) is a Banach algebra, one

has similar estimates for e~f, from which it follows that 0^alp' e ^ ( [ 6 , oo)).)

The adjoint Xa% : ̂ ( [ α , oo))* -> ̂ ( ( - o o , α]) satisfies

/ σ-(JΓ0^"^(Γ V η V

(It suffices to check that this formula implies (X*bo",of) = (Xabσ\σ")\ this

- follows from a simple density argument.) We also have

b ^ab

b^b
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We define 2'\ <f,((-oo,0]) -> <^((-oo,0]), JSP'': «^[1, oo)) -> «i([l, oo)),
and Jf:<^((-oo,0])* -> ίf,([l,oo))byJ2"Λ = W ^ ) ° T , «̂ "Λ = ( ^ ) o τ " 1 ,
and JΓ= JΓ01. We may also write

where T : «^(X)* -> %(X - 1)* is the adjoint of A -• Λ o τ . We then have, in

view of (2.4), the formulas

(2.5) JfJS?'* = S£"tf, X*Seff* = Si'X*.

Whenever a < b we also have the relations

(2.6) (-£?'*)*~Vσα' = τbσ'b9 (^"*)b~aτb-ισ'b' = τa~ιo'a'

equivalent to (2.2) or (2.3).

It is known (see [19] or [21, Chapter 5]) that the spectral radius of Si' is

bounded by ep, where P = PReΦ is the "pressure" associated with the real part

of the interaction Φ. The part of the spectrum of £?' (resp. «£"*) in the region

[z: \z\ > θep) is discrete and consists of eigenvalues with finite multiplicity as

noted by Pollicott [17].3 The generalized eigenspaces E{ of Si' and E{* of

«£?'* corresponding to an eigenvalue λ have the same dimension and are

naturally dual to each other. If λ Φ μ, then (E£*9 Eχ) = 0. Similar properties

hold for Se", and E{\ E{'* are defined by analogy with E{9 E{'. In view of

(2.5), J f sends E{* into E{' and Jf* sends E{'* into E{; we shall see below

that these maps are bijective.

2.1. Proposition. // σ' e E{* and σ" e £μ"*, /Λe« //î  element σ o/ « /

defined by

(2.7) σ(</Γ V d^O =

w α G/fefo distribution.

Since oS?'* is a linear isomorphism of E{* and JSP''* is a linear isomor-

phism of EjL'*9 there are measures o'n, σ^' for all n e Z such that σo = σr,

σ(' = σ" and the identities (2.6) hold, therefore (2.7) defines a Gibbs distribu-

tion.

Note that, if σ' Φ 0 and σ" ¥= 0, (1.1) implies σ =* 0. (Here we use the

assumption that all matrix elements of tN are > 0 for sufficiently large N.)

Because of our definition of ^ , we can choose a, b, A, with a < b, and

A -Ώ{ah) -» C such that

Σ f o^dξ')o'b'(dξ")e-v^^^^A(η) Φ 0,

3 This important remark by Pollicott is based on Nussbaum's essential spectral radius formula
[16].
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and therefore JΓa%a+ιθ'a Φ 0, Jf*-χ,ιPb Φ 0. The first inequality is equivalent

to

If a > 0, we have τaσ'a = (Sf"*)aσ^9 hence

hence Jfσ0' # 0. If α < 0, we have (&'*yaτaσ'a = σό; since Jf (τaσα') e £{' we

have

0 * &"-ajT{raa'a) = j r ( ^ ' * ) ~ V < = J f <

Therefore, we have always Jfσ' Φ 0, and similarly Jf*σ" =£ 0.

2.2. Proposition. ΓAe m φ J f restricted to E{* is a bijection to E{\ and J f *

restricted to Eχ* is a bijection to E{.

We have just seen that these maps are injective. We thus have

which forces dim E{* = dim E{\ dim E{'* = dim E{. Therefore, the maps

must be onto.

The class of Gibbs distributions in which we shall be interested is that

determined by Proposition 2.1. We shall denote by @λμ the linear space

spanned by distributions of the form (2.7) with σ' e E{* and σ" e Ef*. (We

might of course consider linear combinations between different &λμ.)

2.3. Proposition. τ ^ λ μ = 9Xμ, and the spectrum of τ\^λμ is (λμ" 1 } . In

particular, if dim E{ = dimEx = 1, then τ\@λμ = λμ"1.

We have indeed

(τσ)(dζ' V di") = (τ

so that τ ^ λ μ c &λμ. Similarly τ~ι^Xμ c ^ λ μ so that τ ^ λ / i = <&Xμ. The state-

ments about the spectrum also follow readily from (2.8).

If σ e ^ - , where σ is associated with σr e ^{*, σ" e f;/'*, we may define

(2.9) (σ,σ) = σ ' ί J f βf") σ"(jΓσ')

which extends to a bilinear form on ^ λ / A X ^ - .

2.4. Proposition. ΓΛe bilinear form defined by (2.9) is invariant under the

translation σ -> TO, σ -> Tσ, and vanishes unless λ = μ, μ = λ.

The proof follows readily from (2.8).
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3. Use of the functions Aφ,A'φ,Aφ

Instead of basing statistical mechanics on the "interaction" Φ, we may use

functions on Ω, Ω ^ ^ 0 ], or Ω [ l o o ) as we now indicate (see for instance Ruelle

[21]). If Φ e aΘ9 we define Aφ e V$2, A'φ e «i((-oo, 0]), and A'ί e Vθ([l, oo))

by

00

Let us say that AG% [or Λ' e %((-oo, 0]), or Λ" e ^ ( [ 1 , oo))] is

cohomologous to zero in ^θ [or ^ ( ( - o o , 0]), or %([l, oo))] if there is C e ^

[or C e «i((-oo, 0]), or C " e ^ ( [ 1 , oo))] such that A = C- C°τ [or

Λ'Φ = C - CΌff 'oT- 1 , or Λ£ = C " - C " o f f ' Ό T ) where τrr denotes the

projection of Ω(_00f ^ to Ω ^ ^ 0 ] and 7r/r the projection of Ω[0 ^ to Ω[X ^ J .

We then write ^ - 0 [or ^ - 0, or A" - 0], and similarly ,4 - 5 i f ^ - i - 0

(see Livδic [13], [14] and Sinai [26] for this cohomology). The following results

hold.

3.1. Proposition, (a) There are continuous linear maps <p,φ', φ " of ^ 2 ,

«W-oo> 0]), ^ ( [ 1 , 00)) to Λβ such that AψB = 5, A'^ = 5 ' , α Λ έ / i 4 ^ =

(b) The linear maps Φ -> Λφ, y4'φ, 4̂φ are continuous £#θ -> ^ 2 , ^ ( ( - 0 0 , 0]),

^ ( [ 1 , 00)) (and surjectiυe by (a)). Furthermore Aφ - y4φ ° π ^ ^ 0 ] - ylφ o 77̂  0 0 )

(c) 77ie conditions Aφ - 0 IΛ ^ 2 , ^ r

φ - 0 IΛ ^ ( ( - 0 0 , 0]), α«J ^ φ - 0 ΪΛ

^ ( [ 1 , 00)) Λr̂  a// equivalent. We express them by writing Φ ~ 0.

(d) // Φ, Φ r G ^ fl/irf Φ' - Φ (i.e. Φ r - Φ ~ 0), the spaces &λμ of Gibbs

distributions for the interactions Φ and Φ' are the same.

(e) The pressure Pφ associated with a real interaction Φ G I | , depends only on

the cohomology class of Aφ (or Aφ or Aφ) and can in particular be denoted by

P(AΦ).

In order to construct φ in (a) one writes A as a sum Σn>0An, where An(ξ)

depends only on iΓ[-Λtn]ζ and \\A - ΣQ~1 A^^ < varπ^4. Then one takes

φoff|-«,«] = -An and Φ ° 77̂  = 0 if diam X is odd. Similarly, for φ' and φ/r.
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In the proof of (b) one writes 4 " 4 0 ί r ( - o o , o ] = C ~ C ° τ- Suppose that
Φ(£ I X) vanishes unless dim X = In - 1 [resp. diam X = In]. Then one writes

C(ξ) = Φ(ξ\[-2n + 1 , 0 ] ) + ••• + Φ(ξ\[-n,n - 1 ] )

[resp. C ( 0 = Φ(f|[-2/ι,0]) + +Φ(f | [-Λ - 1,/I - 1])].

This definition extends by linearity and continuity to all Φ e ί , , yielding

In view of (b), the proof of (c) reduces to checking the following:

* (A'φ ~ 0m%((-

By assumption, if £' is a periodic orbit of period n for 77 V ι (remember that

π' is the projection Ω^^-^ -» Ω(_oo,oj)» ^en

A ί - l

Σ ^ ( ( Ϊ Γ ' T - 1 ) ^ ' ) = 0.
/=0

One may thus construct C such that A'φ = C — C ° π' ° τ~ι by first choos-
ing a dense orbit {(π'τ~ι)kη : k > 0} in Ω^^ 0], then writing

/=0

and extending the definition of C by continuity. It is easy to verify that
C e ^((-00, 0]). Similarly for the study of A'^ (See Livsic [13], [14] and
Sinai [26] for the construction of C, and Ruelle [21, Theorem 5.2], for an
application close to the present one.)

To prove (d), it suffices to show that ^^^λμ remains the same under the
replacement Φ -> Φr [use translation in variance of 9Xμ and density of

Un > o*i((-oo» °])°τ M i n V0I τ h e s P a c e (̂-oc,o]̂ λμ is spanned by the
products S'σ', with 5" e E^ o' e ^ * . Since Fo

r = ^'φ, we have

(^,2?)(£') = Σ i(T€' V η)expΛ'φ,(τr V η)

= Σ B{τV V τ,)exp[^φ(τr V η) + C ' ( T ^ V η) - C'(| ')

withC'G ^((-00, 0]). Therefore

(3.1)

so that when Φ -> Φ', E'μ -• e " c ^ and ^ * -^ ^ c ΐχ* τ h e products S'σ' are
thus unchanged, proving (d).
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If Φ is real, Proposition 3.5 below identifies ep as the largest eigenvalue of

3?' in absolute value. In view of (3.1) this is unchanged when Φ -> Φ' with

Λφ ~ A'φ,, proving (e).

3.2. Proposition, (a) // Φ' ~ Φ, the eigenvalues of£?' and their multiplici-

ties are unchanged by the replacement Φ -> Φ'.

(b) Where λ is a simple eigenvalue of £P\ it depends analytically on A = Aφ

G %i. We then have

(3.2) DAλ = \oλλ\^

where DAλ G r€$. is the derivative of λ at A, and σ λ λ G <€£ is the only element

of @λλ such that σ λ λ ( l) = 1. ( σ λ λ is also τ-invariant.) Note that DAλ extends

uniquely to an element of Ήβ {viz. λσ λ λ ) because ^θi is dense in ^θ. (There are

similar results using Ar

φ G ̂ ((-oo,0]) or Aφ G ^ ( [ 1 , oo)) instead of Aφ.)

Part (a) results from the proof of (d) in the previous proposition. Since λ is a

simple eigenvalue of JS*^, it depends analytically on A'ψA e ^ ( ( - o o , 0]), and

since A -> A'ψΛ is a continuous Unear map, the analyticity statement in (b) is

verified. Note that π^^ 0]^λλ ^s one-dimensional and consists of the multi-

ples of S V , where S r G £j[, σ' G £^*, and we may assume that σ'(S') = 1.

The only σ λ λ G ̂ λ λ mapped to ^'σ' by π^^ 0 ] is 77-invariant and satisfies

To prove (3.2) it suffices to show that

(DAλ)B = λσλλ(B)

for A and B in a dense subset of ^ 2 . In particular, we may take A of the form

A' o TΓ^^ 0 ] o 77W and 5 of the form B' o 77^^ 0 ] o τ

w . Therefore it suffices to

show that

(3.3) {DΛ\)B' = λσ'(S'B'),

where DA,λ is now the derivative at A' of λ considered as an analytic function

on ^ ( ( - 0 0 , 0]). Taking σ' and S' as before, we have

{DA,\)B'=[DA\o'{2"S'j\]B'

= \{DΛ.o')(X'S') + o'{X'DA,S')]B' + [o'{{DA.X')S')\B'

The first term vanishes because σ'(S') = 1. Since ((DA,£")S')B' = &'(S'B')
we obtain

and (3.3) is verified.

We introduce now an analytic function d which will be useful later.
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3.3. Proposition. If A e %2, A' e « , ( (-OO, 0]), and A" e <^([1, oo)), we

Z n " =

B' = A'<> ^ . ^ 0 ] α n J 5 " = A

det(l - zeΛ') = exp - Σ ~ z « ,

αj power series. There is some θ < 1 swc/z /Λ#ί det(l - zeA ) converges when

\z\θep/ < 1, w/7Λ P' = /^Re^o^.^oj) , α«J det(l - ze'4") converges when

\z\θep" < 1, w/7

// Φ e ^ , we

J(zexpv4φ) = det(l - zexpA'φ) = det(l -

These quantities do not change if Φ is replaced by Ψ ~ Φ. In the region

(z : \z\θep < 1}, w/ίΛ P = P(ReΛ φ ), the zeros of z -> d(zexpAφ) coincide with

the inverses λ~ι of the eigenvalues of ££' such that λ > θep, and have the same

multiplicity.

There are analytic functions z -> Jί\zeA ), ^ " ( z e ^ " ) defined on {z:\z\θep

< 1} α«J vv/YA values in the bounded operators in ^ ( ( - o o , 0]) or ^ ( [ 1 , oo))

det(l - zexpΛ'φ) '

( i -
det(l -
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All these results are essentially contained in Pollicott [17].4 (The statement
about multiplicities of the zeros, and about the existence of Jff, Jf" are not
in there, but follow readily.) The "determinant" notation is suggested both by
the definitions and by (3.4).

3.4. Proposition. Let θ' e (0,1). For each eigenvalue λ of£f'9 with θ'ep <
|λ| < ep, we choose a basis (S{a) of E{ and a basis (θχa) of E^ such that
°L(S\β) = 8aβ and σ'λa(£>'Sίβ) = λ(L'λ)aβ, where the matrix L'λ is in Jordan
normal form. Then

λ aβ

where 3tf has spectral radius < θ\ hence

(1 - ze-^Ύ1 = Σ Σ SL((l -
λ aβ

U'(z)

where U\z) is an analytic function of z for \z\ < θ'1. In particular, if the
eigenvalues of &' are simple, we have

(3.5) T = Σ
- ze-pλ

+ U'(z)

In the general case, for each eigenvalue λ of 3?' there is p, with 1 < p <
multiplicity of λ, such that (1 - ze~p££'yλ has a pole of order p at λ with
leading term

(3.6)
(l-ze-pλ)p'

where S{q, σ'^ are eigenvectors of Si", S£'* to the eigenvalue λ.
Note that there are similar results with 3?" replacing if'. We check only

(3.6), the rest is immediate. Let L'λ contain the p x p "normal" block

/I 1

(3.7)

1/

4 Pollicott shows that the part of the spectrum of &' and 3?" in {λ : |λ| > θep) consists of
eigenvalues of finite multiplicity. But the analyticity of det(l - zeA) and det(l - zeΛ") is proved
only when \z\θep' < 1 or \z\θep" < 1 with some θ > θ. (I am indebted to the referee for
reminding me of this).
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corresponding to values q + 1, , q + p of the indices α, /? of (L'λ)aβ. Using

the formula

\ -i-u

1 - u

-u

1-ul

(1 - u)~l u(l-u)~2 ••• up-\l - u)~pX

(l-u)

(1 - u)-1

we see that the block (3.7) contributes to (1 - ze~pS£'yx a pole of order p at

epλ~ι. The leading term is

(l-ze-pλ)p '

We write S? = S{tq+l9 σ^ = σif^+/,, and note that 2'S'f = λ ^ , ^ ^ σ ^ =

λσ^; (3.6) follows readily.

3.5. Proposition. // the interaction Φ is real, then ep, with P = Pφ, w α

simple eigenvalue of S£r, and the rest of the spectrum of ££' is contained in the

open disk {z\\z\ < ep).

For the proof, see Ruelle [19] or [21].

4. Correlation functions

In this section, Φ will be real, so that Proposition 3.5 applies. The Gibbs

distribution σepep (in the notation of Proposition 3.2(b)) is just the ordinary

Gibbs state for Φ, and we shall denote it by p. The correlation function pBC(-)

is defined (for B, C e %) by

(4.1) pBC(k) = p{(Boτk)C) - p(B)p(C),

and we shall be interested in its Fourier transform

(4.2) PBC(")= Σ ekΛpBC(k).

Let σr e E'Jt, S' G E'ep9 where σr and S' are positive and satisfy σ'(S')=l.

By Proposition 3.2(b) a probability measure p on Ω(_OOϊ 0] ^s defined equiva-

lently by

(43) P = Voc,o]P, or p( .) = σ / (5 / )

Before studying (4.1) and (4.2), we take B',C e ^ ( ( - o o , 0]) and discuss

jδ((5 /oT

/ # l)C /), where
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We have

p{(B'* τ'n)C') = σ'((BΌτ'n)S'C) = e-nPσ\B'&'nS

and therefore, for \z\ < 1,

n>0 \ n>0

(4.5) = p(Bf Σ (ze-pS'-ι&'S')nC'\

This expression extends meromorphically to {z:\z\ < θ~1} in view of the

following result.

4.1. Proposition, (a) With the notation (4.3), (4.4) we may write

,% P V ' dα(l - zeχp(-i> - A',))

where the numerator is analytic in {z: \z\ < θ~1}, and bilinear continuous in B\

C. The operator Jίr is given by Proposition 3.3, with A'ψ = A'φ + logS' —

(b) To avoid complications let us assume that the eigenvalues of 5£' are

simple, so that E{ is spanned by S{9 E{* by σχ. We may also assume that

θχ(S{) = 1. Then, choosing θ' as in Proposition 3.4, we have

n>o λ \

where τ^'(z) = S'~ιU'(z)S' and Uf is given by Proposition 3.4; the last term is

thus analytic in z for \z\ < θ'~ι and bilinear continuous in B\ C.

The proof results from application of Propositions 3.3 and 3.4 to (4.5).

We come now to the study of (4.1), (4.2), and write

B-p(B)- Σ Bmoπ(_ao0]oτm, C-p(C)= £ ς I ( . . f l Λ
m=0 m=0

where Bm, Cm e ^((-oo, 0]), and

= 0,

, \\CJ < βΊHClll,,

lim θ-m\\BJx = lim β-m\\Cm\\x = 0.
m—>oo m—*oo

Define also

B(z) = £ z»Bm, C(z) = £ zmCm.
m=0 m=0
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We thus have

PBC{«)= £ ekap[(B°τk-p(B))(C-p(C))]
= - 0 0

00

= Σ Σ Λ
( "— ) e f Σ e (*+ m-" )Tδ((iϊ I I Ioτ' ("- I"-* ))C ),)

L A:</? — w

(4.6) + Σ e(* + " - " )

k~^

Σ e(

m, w > 0

Σ e'«

Note that our way of writing pBC(ot) is asymmetric in the sense V rather than

L" plays a priviledged role. We could of course write p β C ( α ) in other ways.

4.2. Proposition. We use definitions (4.1), (4.2) with B,C e ^ .

(a) W

det(l - exp(-α - P + ^ ' φ ) ) det(l - exp(α - P + A'φ))

where

NBC(e") = p(B(e-')jr'{eκp{-a -P + A

and A'ψ = A'φ 4- logS' — logS*'0 T*. Therefore pBC(a) is meromorphic for

|Reα| < log θ~ι, with poles located at ±(logλ - P) where the λ are the

eigenvalues of ££' with the exception of ep.

(b) To avoid complications, let us first assume that the eigenvalues of ££' are

simple, so that ^ePλ and @λep are one-dimensional, spanned by σepλ and σλep

respectively. We may also assume that (oepχ,σλep) = 1 (see (2.9)). Finally, we

choose θf e (0,1). Then

PBc{a) = ? I l - ' λ 1 -
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where the sum Σ* extends over those eigenvalues λ of ££' (in finite number)

such that |λ | > θ'ep and λ Φ ep; i^Bc(^) is analytic for |Reα| < log0'~\ and

bilinear continuous in B, C.

(c) In the general case, for each eigenvalue λ Φ ep of ££' there is p such that

pBC(ά) has poles of order p at e±a = ep\~ι. These poles have an expression of

the form

\ Σsσ-(C)or

+

s(B)]
\

where σ~ e &ePλ, σ* e @\ep. For the leading order terms we have τσ^s =

This proposition is obtained by inserting (3.4) or (3.5) into (4.6). Concerning

(a), notice that det(l - exp(- α - P - Af

φ)) is analytic when Reα > log0,

vanishing when ea+p is an eigenvalue of &'. If θ < θ* < 1, we have C(ea) e

^•((-oo, 0]) provided Reα + logβ < 21og#*, and JΓ\e-a~?A'^) is analytic

as an operator on ^•((-oo, 0]) provided Reα > logβ*. Therefore NBC(e~a)

is analytic when log0 < Reα < |logβ|, and bilinear continuous in B, C.

Similarly for NCB(ea\ p(£(<r α )C(O)

To obtain (b) we write

σ'(Sjp(e«))σj;(S'B(e-«)). , , ^*\σ{SίB(e))oί(SC(e)) ,
P ι c l β ) ' r ί 1-e—'λ l-e-'λ

+ p(B{e-a)Ϋ"(e-a)C{ea)) + p{C{ea)r'{ea)B{e-'))

and replace in Σ* the numerators by their values at the zeros of the denomina-

tors.

To prove (c) we consider the contribution to the poles of pBC coming from

one p X p block (3.7) in Z/λ. This contribution has the form

(4-8) Σ \ ^ ^ "'
V1 ~~ e Λ J

+ other term

where the "other term" is obtained from the first by the exchange of B(e~a),

C(ea) and the replacement of e~a by ea in the denominator. To proceed we

write
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and expand the first term of (4.8) in powers of (1 - e~a~p\)\ only the terms
of total degree < 0 are kept. Let us provisionally assume that there is only one
term in the definitions of B(z) and C(z), i.e.,

B

B

If we express σ'(S{g+iBm) and σ^q+j(S'Cn) in terms of o^(B) and σf(C)
with σ^ Ξ <&ePX and σ/~ e ^ λ e p, 1 < A:, / < p, we obtain an expression of the
form

where the Prkl are polynomials in m, n arising from the calculation. These
polynomials must be constants because if B and C have a representation of
type (4.9) with given m, n, they have a similar representation for all larger m
and n. Since the Prkl are constants, the case where B is a sum over m and C a
sum over H is easy to handle: the expression (4.10) remains valid.

The order p term (leading order term) in (4.8) corresponds to / = 1, j = /?,
yielding the expression

°isίq+ιB(epλ-ι))o'Kq+p(S'C(e-pλ))(l - * —'X)" ' + other term

σΓ(*)*, (C) σ
( ' J (1 - e ^ - ' λ ) ' ( l - ^ ^ λ ) 7

where Tσf = epλ~ισϊ, TO* = e'pλσp . Summing (4.10) over blocks yields
(4.7), and since the leading order terms are of the form (4.11), the proof of (c)
is complete.

5. Gibbs distributions for Axiom A diffeomorphisms

We refer the reader to Smale [27] or Bowen [3] for the definition of Axiom A
diffeomorphisms and of basic sets. We shall be concerned with the ergodic
theory of Axiom A systems, as discussed by Bowen [2]. (We could also work in
the more abstract framework of "Smale spaces" as discussed in Ruelle [21].)
The connection with the statistical mechanics discussed earlier is via symbolic
dynamics as we now indicate. Given are a compact manifold M, which we may
take as C00, with a diffeomorphism / of class C 1 + e, ε > 0, and a compact
invariant subset Λ. If / satisfies Axiom A, and Λ is a basic set, it is possible to
define a subshift of finite type (Ω, T) and a continuous map ω: Ω -> M such
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that ωΩ = Λ and ωτ = /ω, and ω has other nice properties which we shall
make explicit only to the extent that we need them. The definition of (Ω, T)
and ω depends on the choice of a Markov partition on Λ (see Sinai [24], [25]
and Bowen [1], [2]). The representation of points of Λ by points of Ω (which
are sequences of symbols j e / ) , and the replacement of the diffeomorphisms /
by the shift T constitute "symbolic dynamics."

Let # α ( M ) denote the Banach space of complex Holder continuous func-
tions of exponent α on M. The functions which occur naturally in the study of
Axiom A systems are in # α (M) for suitable a. Having fixed a e (0,1) one
shows that there exists θ e (0,1) such that

(5.1) AO(OG^2

Furthermore, one can choose β < a such that

(5.2) B o ί o e ^ i f B e

The linear maps tfa(M) -> %2 and <gβ(M) -> % thus defined are continu-
ous. The numbers α, 0, β may be chosen independent of the symbolic
dynamics (i.e., they may be taken to the same "for all sufficiently fine Markov
partitions").

Given A e ^a(M) we may, in view of (5.1) and Proposition 3.1(a), choose
Φ e St9 such that

A° ω = Aφ.

We let @λμ be the spaces of Gibbs distributions on Ω with respect to Φ and
define subspaces Gλ μof # α ( M ) * by

G\μ = °>&λμ>
 w h e r e ( ω σ ) ( M = σ(h ° ω )

If σ e UGλ μ, we call σ a Gibbs distribution on Λ. Since smooth functions on
M are Holder continuous, σ also defines a distribution on M in the sense of
Schwartz, and the support of σ is contained in Λ. The next proposition shows
that the knowledge of σ as a Schwartz distribution determines it as an element
of ^ α ( M ) * .

5.1. Proposition. Let a be a Gibbs distribution on A andh e ^a(M). There
are smooth functions ht such that ht -» h in the topology of ^β(M), and
therefore o(ht) -> σ(h).

By regularization (see Schwartz [22]) one obtains a sequence h\ of smooth
functions on h such that ht — h -» 0 uniformly, and
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where dist denotes a Riemann distance on M, and the constant K is indepen-

dent of /. Therefore we have also

!*,.(*) - h(x) -(h,(y) - h(y))\ < 2K(dist(x, y))a

Given ε > 0 we can thus find 8 > 0 such that, if dist(x, y) < 8, then

!*,.(*) - h(x) -(h,(y) - h(y))\ < ε(dist(x, y))β.

If dist(x, y) > 8 we have, for sufficiently large i,

\h,(x) -h(x) -(h^y) - h(y))\ < 2

2 max|A,(x) - h{x)\ • ^ s < x ' ^ < (dist(x, y))β

x 0p

which proves that hι; -» h in the topology of ^β(M). But then ht° ω -* h° ω

in the topology of <€9 and therefore
σ ( ^ / ) = ( ω σ ) Λ f = σ ( / z z o c o ) -» σ ( Λ o ω ) = ( ω σ ) / i = σ ( A ) .

Our definition of the spaces G λ μ depends on the choice of a Markov

partition. We have not been able to eliminate this dependence in general, but

Propositions 5.2, 5.3 and Corollary 5.5 yield partial results on the problem.

5.2. Proposition. If A is real, the largest eigenvalue ep of ££' and the Gibbs

measure σ = cop are independent of the choice of Markov partition. We write

P = P(A).

This is a well-known fact: If / is the set of /-invariant probability measures

on Λ, and if h(σ) denotes the entropy of σ e /, we have

(5.3) P = max (A(σ) + σ(A))

/
and the unique maximum is reached for σ = p (see [2] or [21]).

5.3. Proposition. For any A G # α ( M ) , define

'i Σ
« = 1 xeFix/"|Λ k = 0

This series is convergent for \z\ < exp(-P(ReA)) and ξA extends meromorphi-

cally to the region \z\ < ^expt-PΐReA)).

We may define P * < P such that if

\z\ < (r1exp(-P(ReA)),exp(-P*(ReA))},

we have

< 5 4> ^ ' &
where Φ is holomorphic and does not vanish.
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The proof of this proposition is based on the counting of periodic points for

a finite collection of subshifts of finite type (see Manning [15] and Bowen [3]).

Here we follow [21, §7.23] which expresses fA in terms of functions of the form

d(zeA) for subshifts of finite type. Using Pollicott's results [17] which we have

reproduced above as Proposition 3.3 one obtains the asserted meromorphic

extension of ξA. From [21, §7.23] one also obtains (5.4), where P* is the

"pressure" for a suitable closed /-invariant set Λ* strictly contained in Λ. We

have P * < P because it is known that the unique measure p which yields the

maximum in (5.3) has support Λ and cannot therefore have support in Λ*.

5.4. Theorem. Let p be the Gibbs measure corresponding to the real function

A e #α(M). For B , C E #α(ΛΓ), let

PBC(«)= Σ ^[p((Bo/^)c)-p(B)p(C)].

This extends to a meromorphic function of a for |Reα| < log0~\ regular at

a = 0, and the position of the poles is independent of B, C.

We may write

(5.5) p B C ( α ) = NBC(e-«)ζA(e — p) + fia(eΛ)ζA(eΛ-p)9

where N B C ( e ~ α ) is holomorphic for |Reα| < minllogfl"1, P - P*} with P =

P(ReA), P * = P*(ReA).

If 0 < θ' < θ we may also write

]
In this formula WBQ

 /IS cinalytic for |Reα| < logβ'" 1 and bilinear continuous in

B, C, the sum Σ* extends over a finite set of numbers λ with θ'ep < |λ| < ep

y

the bλr are bilinear forms on (GePλ)* X (Gλe/>)*, and σ^(B), σ^(C) are the

elements of (GePλ)*, (Gλep)* determined by B and C.

All of this results directly from Proposition 4.2, with the help of (5.4). (Note

that the term p(B(e~a)C(ea)) of Proposition 4.2(a) can be distributed between

the two terms of (5.5).)

5.5. Corollary. Define

Zλ- = ( f G (GΛ)*:Z> λ rα,σ λ

+(C)) = 0forallr,

and let Hχ be the orthogonal of Zχ in GePλ. Then the subspace Hχ is

independent of the choice of a Markov partition. A subspace Hχ of Gλep is

similarly defined, and is also independent of the choice of a Markov partition.
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6. Further remarks

The discussion which we have given above for Axiom A diffeomorphisms
can be made to apply to expanding maps of manifolds (see Shub [23], and
[21]). As indicated in the introduction, our discussion of Gibbs distributions
and correlation functions also probably extends to Axiom A flows (Pollicott
[18] has given a partial proof of the fact that the Fourier transform of the
correlation function is meromorphic in a strip, its poles being related to those
of the zeta-function). A possible extension where exp A acts on a linear bundle
over M instead of being scalar (see Fried [8]) has not been investigated.5

For an Axiom A attractor Λ there is a particularly interesting Gibbs measure
p corresponding to A = -logJ, where J is the Jacobian in expanding direc-
tions (see Sinai [26], Ruelle [20], Bowen and Ruelle [4]). We have here P(A) = 0
and p is smooth along unstable directions so that the Gibbs distributions
σ + e G λ l are also smooth along unstable directions (in a sense to be made
precise).

Axiom A diffeomorphisms and flows constitute a good class of examples on
which to test conjectures about more general dynamical systems. Instead
of a Gibbs measure, let us consider a probability measure p which is smooth
along unstable directions (this is known to be equivalent to "entropy = Σ
positive characteristic exponents" a property which generalizes P(A) = 0; see
Ledrappier and Young [12]). For a diffeomorphism, we may also assume that p
has no zero characteristic exponent. It is then natural to ask if pB C(α) defined
as in (4.1), (4.2) is meromorphic in a strip. One can be more specific and
speculate that poles (close to the real axis) are located at those values of a such
that e ±a = λ, where rσ = λσ and the distribution σ is smooth along unstable
directions (again in a sense to be made precise). Similarly for flows.

Finally, let us mention that Frisch and Morf [9] have discussed the existence
of poles in the time correlation functions of dynamical systems (not their
Fourier transforms!). The methods which they use are not related to those
described in the present paper.
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