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HARMONIC MAPS OF THE TWO-SPHERE
INTO THE COMPLEX HYPERQUADRIC

JON G. WOLFSON

Introduction

Let G(k,n; C) denote the Grassmann manifold of all fc-dimensional sub-
spaces Ck of complex w-space Cn. Let Pn_1 denote complex projective (n — 1)
space, Pn_x = G(l, n; C) and let Qn_2

 c Pn-i denote the complex hyper-
quadric, that is, the complex hypersurface, of Pn_1 defined by the equation

where {Zo, ,Zn_1} are homogeneous coordinates of Pn__x. <2M_2 has a
natural Kahler metric which it inherits as a complex submanifold of Pn_v

In this note we will study the minimal immersions or harmonic maps of
the two-sphere S2 into <2n_2 Our result can be described as follows: To
each harmonic map /: S2 -> Qn-2

 w e associate a directrix curve Δf:
S2 -> G(2, n\ C) which is either a holomorphic curve or a degenerate harmonic
map. (The degenerate harmonic maps arise in the study of harmonic maps
S2 -> G(2, n\ C). In [4] it is shown that they can be constructed from
holomorphic curves S2 -» Pn_v) The directrix curve Δ^ will be shown to
satisfy strong nullity conditions, in the sense that its /th osculating space is null
for 0 < / < r (where r ^ 0 depends on / ) . The harmonic map / can be
recovered from its directrix curve Δ^ via differentiation and the choice of
holomorphic sections of Pλ bundles over S2. This description and Calabi's
description of minimal maps S2 -* SN [1] are related. In fact, the nullity
conditions on the directrix curves of harmonic maps S2 -> Qn_2

 a r e similar to
those on the directrix curves of minimal maps S2 -> SN.
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In §1 we will discuss the geometry of the spaces G(k,n; C), G(2,n; R), and
Qn_2- I n §2 we will give an account of the basic results on harmonic maps
M2 -> G(2, n\ C) as developed in [4]. We will omit proofs and refer the reader
to [3] or [4].

1. Some geometry

Let V,We C,

(1.1) V = ( Ό l 9 ~ , ϋ n ) 9 W=(wl9 ,wΛ).

We equip Cn with two inner products. First, with the standard Hermitian
inner product so that

(1.2) (V,W) = Σ°Λ*Λ=Σ»ΛW*

and, second, with the symmetric inner product so that

(1.3) (KW) = ΣvAwA.

Of course ( V, W) = (V, W).
A frame consists of an ordered set of n linearly independent vectors ZA, so

that

(1.4) Zλ Λ ••• AZnΦ0.

It is called unitary if

(1-5) (ZA,ZB)=δA-B.

The space of unitary frames can be identified with the unitary group U(n).
Writing

(1.6) dZA = L « ^ Z B ,
B

the ωAβ are the Maurer-Cartan forms of U(n). They are skew-Hermitian, i.e.
we have

(1.7) ω^3 + ω ^ - = 0 .

Taking the exterior derivative of (1.6), we get the Maurer-Cartan equations of
U(n):

(1.8) dωAβ = ΣωAcA ωCB
c

We call equations (1.6) and (1.8) the structure equations of the frame.
An element of G(k,n; C) can be given by a multivector Zτ Λ Λ Zk Φ 0,

defined up to a factor. The vectors Zα, / < α < λ, and their orthogonal vectors
Zf , k + 1 < / < n, are defined up to a transformation of U(k) and U(n — k),
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respectively. Thus, the form

(1.9) ds2 = Σω^ai
a,i

is a positive definite Hermitian form on G(k9n; C) and defines a Hermitian
metric. Its Kahler form is

(1.10) Ω=χΣ^A5a,
a,i

By using (1.8) it can be verified immediately that Ω is closed, so that the metric
ds2 is Kahlerian. When k = 1, G(l, n; C) is complex projective (n - l)-space
Pn_λ and the metric (1.9) is called the Fubini-Study metric.

It is easy to see that complex conjugation is an isometry of G(k, n\ C) with
the metric (1.9). Its fixed point set is the real Grassmann manifold G(k,n; R).
Thus G(k, n\ R) lies totally geodesically in G(k, n\ C).

An element S of G(k, n\ C) is called null if

(v, W) = 0 for all vectors V.W^S

(equivalently (V,W) =0). In particular an element L G Pn_λ is null if
(Z, Z) = 0 for any Z E: L. The manifold of all null lines is a complex
hypersurface of Pn_λ called the complex hyperquadric and denoted βw_ 2 The
Fubini-Study metric induces a Kahler metric on βM_2. If Z is a homogeneous
coordinate vector for a point on βM_2> then (Z, Z) = 0, so (Z,Z) = 0. That
is, Z is orthogonal to Z. Define a map

as follows: Represent a point p e β r t_2 by a homogeneous coordinate vector
Z and set

Φ(p)= tΞLzΛZ;
φ is clearly well defined, φ is one-to-one and onto. It follows easily using (1.6)
and (1.9) that φ is an isometry. Using φ we will henceforth identify β π _ 2 and
G(2, n\ R) (for more details see [2]).

2. Harmonic maps of surfaces into G (2, n C)

Let M be an oriented Riemannian surface and let /: M -> G(2, n; C) be a
nonconstant harmonic map. Denote the Riemannian metric on M by ds\[ =
φ - φ, where φ is a (1,0) form on Af. For x^M the image f(x)^
G(2, w; C) has an orthogonal space f(x)1

 Ξ G(« - 2, AI; C). If Z e /(JC), we
can write
(2.1) dZ = Xφ+ Yφ
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where X, Y e f(x)1. If Z e Cw - {0}, we denote by [Z] the point in Pn_ι

with Z as the homogeneous coordinate vector. Then

(2.2) 3 : [ Z ] - > [ X ] and 3: [Z] -> [ 7 ] ,

if not zero, are well-defined projective collineations of the projectivized space

[f(x)] into [/(x)"1]. These maps are called the fundamental collineations. The

fundamental collineation 3 (resp. 3) is zero if and only if / is holomorphic

(resp. antiholomorphic).

Choose a unitary frame ZA so that {ZVZ2} span f(x). By (1.9) the

one-forms ωab a = 1,2, / = 3, ,«, form a unitary coframing of G(2,n; C).

We have

(2.3) /*««/ = *«/Φ + *«;Φ.

Set

Dba] = dba] - bβiωaβ + 6 e ; W y / + )Γ:ϊbaϊη9

where η is the connection one-form of the metric ds2

M.

Theorem 2.1. The property that f is a harmonic map is expressed by one of

the following equivalent conditions:

(a) Daai s 0 modφ, or

(b) Dbaι:s Omodφ.

Throughout this paper the criterion of Theorem 2.1 will be used repeatedly.

It follows from the harmonicity of / that the fundamental collineations have

constant rank, except perhaps at isolated points. Denoting dim3[/(x)] = kγ —

1, we define the 3-transform of /,

(2.5) df:M^G(kl9n;C)9

by (3/)(x) = 3[/(JC)], x e M. Similarly we define the 3-transform of /.

Theorem 2.2. Letf: M -* G(2, n; C) be a harmonic map. Then

(a) The maps 3/, 3/ are harmonic.

(b) Ifkx = 2, 33/ώ/itself.

Repeating the construction of the theorem we get two sequences of harmonic

maps

a a
Lo( = f ) - * L λ - * L 2 -> •••,

-a -a
Lo-+ L_λ-* L_2 -> . . .
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whose image spaces are connected by fundamental collineations. Such se-

quences are called harmonic sequences. When all the Lp 's are two-dimensional

we can combine the sequence into one:

(2.7) L_ 2 <=t L_! <±LO<±LX .
3 3 8

Two consecutive spaces Lp(x) and Lp+1(x), x e M, of a harmonic sequence

are orthogonal. If any two members of a harmonic sequence are orthogonal,

then the sequence is called a Frenet harmonic sequence. A Frenet harmonic

sequence whose members span the ambient space is called a full Frenet

harmonic sequence.

Because the two-sphere has no nonzero holomorphic differential forms, we

have

Theorem 2.3. Let Lλ: S2 -> G(2, n\ C), 0 < λ < s - 1, n ^ 2s, be

harmonic maps which form a Frenet harmonic sequence

3 3 3
(2.8) Loτ±L^ ••• τ±Ls_γ.

3 3 3

Let π+: L^_λ -> Lo and π_: LQ -* Ls_x be the orthogonal projections. Consider

the maps
D d 3 ( : Ls_λ -> Ls_l9

(2.9)
D _ = 3 o - <>d o [π_ o 3 ) : L o -> L o .

s - 1

The trace and determinant of D+ and D_ vanish identically. In particular the

maps π+ ° 3: Ls_λ -> L o and π_ ° 3: L o -> Ls_λ are degenerate. When n = 2s,

3: Ls_λ^> Lo and 3: L o -» Ls_λ\ so in this case the fundamental collineations

are degenerate.

Suppose that (2.8) is a full Frenet harmonic sequence (so that n = 2s). By

Theorem 2.3 the fundamental collineation 3: L o -» Ls_λ is zero or has rank

one. If the former, then L o is a holomorphic curve S2 -> G(2,n; C). If the

latter, then by Theorem 2.2 the image of 3 describes a harmonic map

S2 -> G(l ,« ; C) = i^-x The Din-Zakrzewski description of harmonic maps

S 2 -* P n _ x [5] gives that the image of 3 is an element of the classical Frenet

frame of some holomorphic curve S 2 -> Pn_v Thus we see that full Frenet

harmonic sequences lead to holomorphic curves. The idea of [4] is to exploit

this by associating to a given harmonic sequence a new harmonic sequence

which is full and Frenet. This association is effected by an inductive construc-

tion called crossing. Crossing associates a Frenet harmonic sequence of length

/ + 1 to a given Frenet harmonic sequence of length /.
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Now suppose that Lo: S2 -> G(2, n\ R) c G(2, n; C) is harmonic, so in
particular Lo = Lo. In fact the harmonic sequences of (2.6) are, in this case,
conjugates of one another. If all the L/s are protective lines we have the
harmonic sequence

9 a a a 3 9

(2.10) L_s - L_(J_1} - -» L_x -» L o -» Z^ -» -» L,,

where each Lp, — s < p < s, is the image of the previous one under a
fundamental collineation and where L_p = Lp, - s < p < s. Such a harmonic
sequence will be called a real harmonic sequence. A harmonic sequence of the
form (2.10) with Lo deleted and satisfying L_p = Lp will also be called a real
harmonic sequence. In §3 we will show that the construction of crossing takes
real harmonic sequences to real harmonic sequences.

3. Crossing

Consider the real Frenet harmonic sequence

(3.1) L_s Λ . Λ L_x Λ Lo Λ Lx Λ ... Λ Ls.

Denote the fundamental collineation 3: Lp -> L p + 1 (resp. 3: Lp -> L p - 1 ) by 3p

(resp. 3p) for — ̂  < p < .̂ Then because (3.1) is a real harmonic sequence

(3-2) °(3p) = 3_ p ,

where σ denotes complex conjugation. By σ ( 3 p ) = 3 _ p we mean that if

F e L p , then

This follows immediately from (2.1) and its conjugate. Because the elements of
(3.1) are mutually orthogonal

(3-3) 9 p =-o'(9 p - i) '

where ' denotes the adjoint with respect to the symmetric inner product.
Theorem 3.1. The sequence obtained from (3.1) by adding ds: Ls -> Ls+ι

(or by adding d_s: L_s -^ L_ ( j + 1 )) is a Frenet harmonic sequence.
Proof. The structure equations associated to (3.1) show that Ls+ι is

orthogonal to L_(s_X), , Lo, ••, Ls and that L_{s+l) is orthogonal to
£_ s , , Lo,- - , Ls_v Let τr+: Ls+ι -> L_s and ττ_: L_ ( J + 1 ) -> L5 denote the
orthogonal projections. Consider the maps π+oS^ Ls^> L_s and T Γ . © ^ :

L_s-+ Ls. Clearly

(3.4) π* 0 ^ = σ(τr_o3_s).
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From the structure equations it follows that

(3.5) τ + ° 9 ί = -σ'(«r_o3_,).

Thus,

(3.6) π+ods= - Ό r + o 3 , ) .

By Theorem 2.3 the map Ls -» L5 given by the composition
ds_χo . . . o3_ ίo(τΓ +o3 ί)is degenerate. By assumption however the maps 3p:
Lp -> L p + 1, — 5 < p < s, are nondegenerate and so det(τr+°3s) = 0. This
together with (3.6) implies that π+ ° ds = 0 and therefore Ls+ι is orthogonal to
L_s. q.e.d.

Consider the real Frenet harmonic sequence
8 _ 9 » 9 — 2 9 — i 9i ««—i

(3.7) L _ , - ••• - » L _ 1 - * L 1 ^ ••• - L s .

The proof of Theorem 3.1 gives

Theorem 3.2. The sequence obtained from (3.7) by adding ds: Ls -> Ls+1

(or by adding d_s: L_s -> L_ ( 5 + 1 ) ) w a Frenet harmonic sequence.

Consider the Frenet harmonic sequence
3- s 3-i 90 3,

(3.8) L_,-» ••• -»L0-» ••• - L s - L ί + 1

obtained from (3.1) by adding 3S: Ls -» L J + 1. Suppose that the harmonic
sequence obtained from (3.8) by adding 3_/. L_s -» L_(s+1) is not Frenet, i.e.,
L_ ( J + 1 ) = L J + 1 is not orthogonal to Ls+ι. Let π: L_ ( ί + 1 ) -> L J + 1 denote the
orthogonal projection and consider the map π ° 3_s: L_s -> Ls+ι. By Theo-
rem 2.3 77 o 3_5 has rank one. Let Z2s+2

 G Ls+1 be a vector of unit length
whose span is the image of ττ<>3_J and choose Z 2 ί + 1 G L ί + 1 so that
{ Z 2 s + 1 , Z 2 j + 2 } is a unitary framing of Ls+ι. Now inductively choose a unitary
framing {Z2p_l9 Z2 p} of Lp, p > 0, by setting

(3.9) 9p(Z2 p_1) = α 2 p + 1 Z 2 p + 1

(where α 2 p + i is a scalar) and choosing Z 2 p orthogonal to Zlμ_λ in Lp. With
respect to the bases {Z2p_ l5 Z2 p} and {Z 2 p + 1 ,Z 2 p + 2 } of Lp and Lp + 1,
respectively, the matrix ^4p of 3p has the form

(310) A p = ( l

The conjugated frames {Z2p_v Z2 p} are unitary frames of the spaces Lp =
L_p. Let >l_p denote the matrix representation o f 3 _ p : L _ p - » L _ p + 1 . Then
with respect to the bases {Z 2 p JZ 2 p_ 1} and {Z2p_2, Z2 p_3} of L_p and
L_p+l9 respectively, A_p has the form

(3.11) A-P=(l 2)' -2>-9>s.

(Note the ordering of the frames.) (3.11) follows from (3.2), (3.3), and (3.9).
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Since Z2s+1 is orthogonal to the image of π °d_s, Z2s+Ϊ is orthogonal to
L_(s+l). In particular Z2s+ι is orthogonal to Z 2 j + 1 . Let C denote the matrix
representation of π°9_ 5 with respect to the bases {Z25, Z2s_x} and
{ Z 2 J + 1 , Z 2 J + 2 } of L_, and L J + 1, respectively. Then since ds(Z2s_λ) =
α 2 j + 1 Z 2 ί + 1 , it follows that

Thus, 7r o d_s(Z2s_1) = 0. C has the form

(3.12) C( J).

We need to choose a framing of Lo. Let Zo e Lo be a vector of unit length
satisfying

(3.13) 3_1(Z2) = ά 0 Z 0 .

Now (3.3) and (3.9) imply that

(3-14) 3p(Z2p) = ( ) Z 2 p _ 2

and (3.13) implies that \{Z2) = α 0 Z 0 . So

(3.11) and (3.13) imply that

θ_1o o a _ ί ( z 2 j ) = ( )

We claim that ( Z o, Zo) = 0. To see this note that

(3.15) = (z2 j,D(Z2 i)),

where D = c L ^ . ^ ° °ds o(ττ o^.^).

By Theorem 2.3 Z> has zero trace. As D{Z2s_λ) = 0, ( z 2 ί , D(Z2s)) = 0,

and therefore ( Z o, Zo) = 0. Thus { Zo, Zo} is a unitary framing of Lo.
Define the protective lines

(3.16) λp = Z 2 p _ 2 Λ Z 2 p _ l 5 λ_p = λp, 1 < p < j + 1.

Theorem 3.3. The projectiυe lines λ_p and λp, 1 < p < ί + 1, form a
Frenet harmonic sequence

3 8 3 θ 3

(3.17) λ_ ( ί + 1 ) - λ_, -» -> λ_x -» λx -> -» λ J + 1 .
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Proof. Let A_λ (resp. Ao) denote the matrix representative of 3_ : (resp.
30) with respect to the bases {Z2,ZX} and {Z0,Z0} of L_λ and Lo (resp.
{ Z o, Zo } and { Zl9 Z2} of Lo and Lx). Then Ai9 i = 0, — 1, has the form

Hence

(3.18)

We have

C

V i

-s <

'

5.

forl < p < 5,

(3.19) d\

= - Ά

\Zo

L)Φ

z
^ 2 ρ + l

+ Aoφ

z ι

i 2

Z2p-1
+ A_pφ

z ]

-(p + l)Ψ =

forl - 1.

The structure equations and the harmonicity of the sequence (3.8) imply that
the matrices of 1-forms πn have the form

(3.20)

IT. 1 <p < j - 1.

The theorem now follows easily from the structure equations of the unitary
frame {Z2s+1, Z2s9 -,Zl9 Zo, Zo, Zl9 Z2, , Z2s, Z2s+ι} using (3.12), (3.18),
(3.19), (3.20), and Theorem 2.1. q.e.d.

The operation of passing from the Frenet harmonic sequence (3.8) to the
Frenet harmonic sequence (3.17) is called crossing. Note that Theorem 3.2
ensures that the harmonic sequence obtained from (3.17) by adding 3: λ J + 1 ->
λ J + 2 (or by adding 3: λ_ ( ί + 1 ) -> λ_ ( j + 2 )) is a Frenet harmonic sequence.
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Theorem 3.3 shows that we must consider Frenet harmonic sequences of the
form

d d d d d d

(3.21) λ_s -> λ_(5_1} -> -> λ_χ -> λx - λ 2 -> -> λ,,

where λ_p = λp, 1 < p < s. Consider the fundamental collineations 3_x:
λ _ 1 ^ λ 1 and dτ: X1-^λ_ι. By (3.2), σ ( 3 _ 1 ) = 3 1 and by (3.3), 3X =
- σ '(9_!). Thus, 9_χ = - ' 3 _ l 9 i.e., 3_x is skew-symmetric. If {Zo, Zx} is a
unitary framing of λv then with respect to the framings {ZVZO} and
{Zo, Zλ} of λ_j_ and λx, respectively, 3_ : has the form

With this observation the techniques discussed previous to Theorem 3.3 can be
applied to the sequence (3.21). We have

Theorem 3.4. The operation of crossing can be applied to the sequence (3.21)
to construct a Frenet harmonic sequence

9 8 9 3 9 9

(3.22) /_,->/_,_!-> •••/_!->/0->/i-> ••• ->/„

where ϊp = /_p, 0 < p < .̂
The process inverse to crossing, called recrossing, comes in two types: one

inverting the construction of Theorem 3.3, the other inverting the construction
of Theorem 3.4. The inversion of the construction of Theorem 3.3 involves an
arbitrariness as it passes from a real Frenet harmonic sequence of the type of
(3.17) to a real Frenet harmonic sequence of the type of (3.8). This operation
proceeds as follows:

Consider the real Frenet harmonic sequence (3.17). The projective line λλ

describes a ^-bundle over S2. λλ is a subbundle of the trivial C"-bundle
over S2. Using the standard connection on the trivial C"-bundle and the
Newlander-Nirenberg theorem, λλ admits a natural holomorphic structure (cf.
[4]). The arbitrariness of recrossing involves choosing a holomorphic section, σ,
of the bundle λ^ Adapt a unitary framing to (3.17) by setting

Zλ = σ,

(3.23) a ^ ^ Z j = ()Z2p+1, 1 ̂  p < s,

p

and letting Z 2 p + 2 be a point on λ p + 1 of unit length and orthogonal to Z 2 p + 1 .
As above {Z 2 p + 2 , Z 2 p + 1 } will be a framing of the line λ_ ( p + 1 ). Set

^ - p = ^2p + l Λ Z 2 p ,

(3.24) L0=Z^Zλ, 1 < P < s.

Lp = Z 2 p Λ Z 2 p + 1 ,
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Theorem 3.5. The lines (3.24) form a real Frenet harmonic sequence

(3.25) L _ Λ Λ ... - > L 0 Λ ... Λ L , .

For appropriate choice of a holomorphic section, σ, the sequence (3.25) is the

original sequence (3.8).

On the other hand the inversion of the construction of Theorem 3.4 involves
no arbitrariness. Consider the real Frenet harmonic sequence (3.22). The
protective line /0 admits a unitary frame {Z0,Z0}, where the vector Zo is
unique up to multiplication by a factor of absolute value 1. Set 3(Z0) = ()Z1

and adapt a unitary frame to (3.22) as in (3.23). Recrossing now proceeds as
above.

We conclude that to invert the construction (by crossing) of the real Frenet
harmonic sequence

8 8 3 8

from the real Frenet harmonic sequence

3 8 3 8

requires the choice of one holomorphic section of a P1-bundle over S2.

4. Main theorem

Given a harmonic map Lo: S2 -> G(2, n; R) and its associated real harmonic
sequence, by successively applying crossing we can construct longer and longer
real Frenet harmonic sequences. However, crossing cannot be applied to a real
Frenet harmonic sequence

when the fundamental collineation 35: λ5 -> λ J + 1 is degenerate. There are two
cases: (i) The fundamental collineation 3S: λs -> λ J + 1 is zero, or (ii) the
fundamental collineation 3/. λs -> λ s + 1 has rank one. In case (i) the map λ_s\
S2 -> G(2, n\ C) is holomorphic and the map λ5: S 2 -> G(2, Λ; C) is antiholo-
morphic. Moreover, for 0 < p < s - 1, the pth osculating spaces of both λ_s

and λs are null. In case (ii) the harmonic maps λ_s and λs are degenerate (i.e.
one of their fundamental collineations is degenerate). Here, for 0 < p < s - 1,
the pth holomorphic (resp. antiholomorphic) osculating space of λ_s (resp.
λs) is null. A degenerate harmonic map can be constructed from holomorphic
curves S2 -> Pn_λ via the procedure of returning (cf. [4]). In fact, if λs is
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constructed from the curve δ: S2 -> Pn_v then λ_s = λs is constructed from

the curve 8: S2 -> Pn_λ. By iterating crossing until the ambient space is

exhausted, one of case (i) or (ii) must occur. We will call a holomorphic or an

antiholomorphic curve M -> G(2,n; C) r-null if its pth osculating spaces are

null for 0 < p < r. We will call a degenerate harmonic map M -> G(2,n; C)

r-jzw// if its pth osculating spaces in the nondegenerate direction are null for

0 < p < r. We have

Theorem 4.1. Le/ /: S 2 -» G(29n: C) &£ 0 raz/ nondegenerate harmonic

map. Then there is associated to f either (i) α unique r-null holomorphic curve Δ^:

S2 —> G(2, n; C), r ^ 0, or (ii) α unique r-null degenerate harmonic map Δ^:

»S2 -» G(2, AZ; C), r > 0. /cαw Z>e recovered from Δy wα recrossing and the 3 α«rf

9 transforms.

The curve Δy is called the directrix curve of /. Since degenerate harmonic

maps can be constructed from holomorphic curves S2 -» P π _ x using return-

ings, Theorem 4.1 provides a description of the harmonic maps S2 -> β M _ 2
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