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RADON TRANSFORMS
ON HIGHER RANK GRASSMANNIANS

ERIC L. GRINBERG

Abstract

We define a Radon transform R from functions Gr(&, A?), the Grassmannian
of projective A:-planes in CP" to functions on Gr(/, n). If / e C°°(Gr(A:, n))
and L e Gr(/,n), then Rf(L) is the integral of /(//) over all Λ>planes Ή
which lie in L. If R' is the dual transform, we show under suitable
assumptions on k and / that R'R is invertible by a polynomial in the
Casimir operators of U(n 4- 1), the group of isometries CP". We also treat
the real and quaternionic cases. Finally, we indicate some possible variations
and generalizations to flag manifolds.

0. Introduction

Let P" be a projective space over a real division ring, say CP". The
projective hyperplane transform, or Radon transform R, associates to a suitable

'function / on the projective space Pn a function Rf on P"*, the space of
projective hyperplanes in Pn, by integration: if H is a hyperplane in P n , then

Rf(H)=f fdμ9

where dμ is normalized invariant measure. These transforms were first con-
sidered by S. Helgason. In [6] Helgason gave inversion formulas for R defined
over real, complex, quaternionic, or octonionic projective spaces. A natural
generalization of R is the fc-plane transform Rk. This associates to / a
function Rkf on Gr(fc, n\ the Grassmann manifold of projective /c-planes in
Pn, again by integration. Helgason also gave inversion formulas for Rk defined
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over real protective spaces (see [7]); corresponding formulas exist for projective
spaces over other division rings (see Grinberg [5]). All these formulas have the
following form: Let R* be the dual Radon transform (defined explicitly below)
and let Δ be the Laplace-Beltrami operator on Pn. Then we have the formula

where Pk is a polynomial which can be given explicitly. (In the real case such a
formula exists only for k even.)

In this paper we consider a further generalization of R: Rk ,. This transform
associated a function Rk , on Gr(/, n) to a function / on Gr(£,«), once more
by integration: Let H denote a projective A>plane and L a projective /-plane.
Then

Rkif(L)= ί fdμ,
J{H\H^L)

where dμ is again normalized invariant measure. The integration is over all
/:-planes H lying in L. In analogy with the /c-plane transform, we expect R'R
to be invertible by an invariant differential operator (we will often abuse
notation and write R for Rkl). Since Pn is a rank one symmetric space, the
algebra of differential operators on it is generated by the Laplace-Beltrami
operator (Helgason [7]). However, for 0 < k < n - k - 1 the space Gr(fc, n) is
of higher rank and hence its algebra of differential operators has k + 1
generators, say D0, ,DΛ, which are called Casimir operators. We shall show
that (for suitable k and /) there is a polynomial Pkl (P for short) such that
the following formula is valid:

P(D 0 ,-•-,•*)* '* = /.

This expression is of the same form as Helgason's original inversion formula
(indeed the latter can be read off from the former).

Our principle tool is representation theory, including highest weights and
Casimir operators. We are grateful to E. Bolker who suggested doing the
analysis 'one rank-step at a time,' i.e. / = k + 1. This makes the calculations
simpler.

The reader is referred to the recent papers of Gonzalez [2] and Strichartz [12]
for related Radon tansforms on affine (i.e. nonprojective) Grassmannians. In
the concluding section of our paper we briefly discuss possible generalizations
of these transforms to flag manifolds, including cases considered in these two
papers.
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1. Harmonic analysis on Gr( k, n)

Following [5] we view the Grassmannian Gr(&, n) as the set of (A: 4- 1)-
dimensional (complex) vector subspaces of C"+ 1, or equivalently, as the set of
projective /c-planes in CPn. A (k 4- l)-plane H can be represented by the
following (Λ + 1)X(/C + 1 ) matrix whose columns give an orthonormal frame
for//:

(1)

7°z o

yn

7°

yn

The set of such matrices forms the Stiefel manifold

St(k,n)= U(n + 1)/U(n - k).

Change of basis for a plane is realized by right multiplication of (1) by a
matrix in U(k 4- 1) so

- S t ( * ' w ) =
U{k + 1

u { n

U(k X U(n - k)

A function on Gτ(k, n) can be viewed as a function on St(A:, n) which is
right-ί/(A: + 1) invariant. We will often use the following functions:

For simplicity, we will use the notation (/, j) = (Z ;, Zj).
The Lie algebra of U(n + 1) is u(n + 1), the set of skew-Hermitian matrices.

A basis for u(n 4- 1) over R is given by

(0 < I,

(0 /i).

The Lie algebra u(n + 1) acts by differential operators on C°°(Gr(/r,«)). On
the level of polynomial functions in the products (Z\ Zj) the above elements
act as certain first order operators A(J, /?ί7, and Cf , respectively. The operator
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The collection { Du} = { Cx} is a (maximal) commuting family of operators in
u(n + 1). A function /(Z) in C°°(Gτ(k,n)) is a weight vector if / is a
simultaneous eigenvector of {C,}. The weight of / is (w0, , mn) if

CJ^mJ (ι = 0, ••,#!).

The weight vector / ¥= 0 is a highest weight vector if / is annihilated by all

raising operators { Z>, 7 } , < /

/>,,/= 0 (all / < 7 )

A consequence of this is that mo^m1> ••• > mn, hence we say that
( m 0 , , m w ) is a highest weight.

Lemma 1.1. The highest weights occurring in C°°(Gr(/c, n)) are precisely
those of the form (mo,mv -,mk, 0, ,0, — mk, — mk_v- , — m 0 ), w/7Λ
m 0 ^ m! ^ ••• ̂ m ^ and where all the πtjS are integers.

A proof can be found in [10]. In [5] we construct explicit weight vectors.
These vectors will play a crucial role in our inversion of the Radon transform
so we review their construction.

Let m = m 0 + ••• +mk. We will consider multi-indices / of total order m
and of order m0 in the symbol 40\ , order mk in the symbol 'k\ We can
view / as a map from (0,1, , m — 1} to (0,1, , k}. Let / be the standard
such multi-index corresponding to the sequence

0, ,0,l, , l , ,*,•••,*.

Finally, for any multi-index /, let εr be the sign of a permutation of least order
in the symmetric group on m symbols which takes / to the standard multi-
index J. Put

/„„,.,«, = Σ^(/(0) , n - /(0)> (I(m - 1), n - J(m - 1)>.

Here the summation is over all multi-indices of the multi-order described
above. Each multi-index is viewed as a map from {0,..., m — 1} to (0, , k},
hence the notation 7(0), /(I), etc.

Theorem 1.2 [5]. For each highest weight (m0,- - -, mk, 0, ,0,
— mk,- - , — m0) the vector fm ...m is a highest weight vector in C°°(Gr(A:, n))
with this weight.

It will be useful to have an alternative description (quite similar to an
expression due to R. S. Strichartz) of the highest weight vectors. We will write
Z°," ,Zn to denote the rows of the Stiefel matrix (1). Then the highest
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weight vector fm ...m can be written as

det{||Z0 | |.||Zir}m0"mixdet|""°

x x det<
ψk-\

zn

n-k+l

mk-\ ~mk

X det<

Z° zn

Zn-k

This expression is clearly right-ί/(/c + 1) invariant. It is also easy to see that it
gives a highest weight vector. In fact, if 0 < 1 < fc, then the raising operator
Di_ιj applied to any matrix in the above expression results in either the zero
matrix (if the holomorphic row Z, does not occur originally) or in a matrix
with two equal rows (Zt_x) and hence zero determinant, so Di_lif=0.
Similar considerations show that D^f = 0 for any raising operator D/y. More-
over, / is clearly not identically zero (to see this, evaluate / on a Stiefel matrix
whose upper (k + 1) X (k + 1) part is diagonal), so / is a highest weight
vector.

Since Gr(/c, n) is a symmetric space, each irreducible representation in
L2(Gτ(k,n)) occurs with multiplicity 1, hence the above weight vectors are
unique up to scalar multiplication.

2. Diagonalization of the Radon transform

We now consider the Radon transform R:

C°°(Gτ(k, n)) -+ C°°{Gr(k 4- 1, n)).

We will assume throughout that (k 4- 2) < (n — k — 1). If f[H] is a smooth
function of (protective) λ>planes, we define a function Rf(L) of (protective)
(A: + l)-planes via

Λ/(L)= ί f(H)dμ(H).
JH<zL

Here the integration is over all /c-planes H contained in L and the measure dμ
is the unique normalized [/(L)-invariant measure. Clearly R commutes with
the action of U(n + 1) on fc-planes and on (k 4- l)-planes. If W is an
irreducible subrepresentation of U(n 4- 1) in C°°(Gr(fc,«)), then there is a
(unique) copy of W in C°°(Gr(A: + 1, n)). If we identify the two copies, then R
must reduce to scalar multiplication on W. To compute this scalar, we select a
particular element / e W (a highest weight vector) and compute its Radon
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transform Rf at a particular (k + l)-plane Lo. Let Lo be the protective
(k + l)-plane whose Stiefel matrix is

1/72 0

0

0

l/v/2

0

We now consider a A>plane // contained in Lo. If [Z] is a Stiefel matrix for H
we can add a column to [Z], say (wo, ,wM)Γ, and obtain a Stiefel matrix for
Lo. This column is unique up to a scalar. Let (i, 7) be a function on Gr(Λ:, n).
We emphasize that all functions involving the (/, j) products are viewed in
this discussion as functions of λ>planes, not (k + l)-planes. We can express
these functions in terms of the added column (vv0, , wn)

τ above:

(2)
(ij) = -w,-wy

These relations follow from the fact that a square matrix is unitary by rows if
and only if it is unitary by columns, together with the observation that the top
square submatrix of a Stiefel matrix of Lo is unitary, except for a scalar factor.
Finally, from the definition of Lo we have the relations (1, n - j) = (/, j) for
all 1, j and all /:-planes //in Lo.

Lemma 2.1. Let u, υ be complex p X 1 column vectors. Then

det(/ + uυ*) = (1 + ϋ*w).

/V00/. The equality is easy to verify if u is a multiple of ex = (10 0)'.
For general w, there is a unitary p X p (Householder) matrix P with Pu a
multiple of ex. Then

det(/ 4- IIU ) = det(/>[/ + = det(/ +

= 1 +(Pυ)*(Pu) = 14- ι;*w.
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Proposition 2.2. If H c Lo, then

\ \2\mo~mι

| | )

/ l I I 2 I I 2

(i -Kl -kil -
l\ I I 2 I I 2

(i-kol -kil -
Proof. We will ignore the constant in front for the moment. Let A be the

top (k + 2) X (k + 1) part of the Stiefel matrix for H. We can adjoin a vector
W = (wo, ,v^ + 1 ) ' to Λ (on the right) to form a (partitioned) square matrix
B = (Λ|H>) with BB* = 1/2. For each j < A: + 1 we denote the top (y* + 1) X
(k + 1) part of B by B(j + 1) (this is (A(j + l ) |^(y + 1))).

In this notation, the determinantal expression in §1 for / is

/„„„.,„„ = det{A(0)A(0)*)n">-"h • • • det{A(k)A(k)*)
m,.-0

But, since 2 B(j) B(j)* = IJ+V the ( + 1) X (j -h 1) identity matrix, we
have

hence

A(j) Ά(j)* = 1/2 - W(j) W(j)*

and by Lemma 2 above, 2^det(^(» A(j)*) = \ ~ W(j)*W(j). This, com-
bined with the above expression for / proves the proposition with ck. m = ck -
2-«i *"*. q.e.d.

We now compute the value of the Radon transform on Lo.
Proposition 2.3.

Rfmo,....mί{Lϋ) = {k

x I
( m 0 + k + l ) ( m 1 + k ) ••• ( m k + 1 )

Proof. U s i n g t h e p r e v i o u s p r o p o s i t i o n , i f m = w o + ••• + m k t h e n

x (ί -KI 2 -ki l 2



60 ERIC L. GRINBERG

where W = (wo, , H ^ + 1 ) and dμ{W) is spherical measure. This integral can
be rewritten as

/•[1/2] m / 2 - κ i 2 ] 1 7 2 . . . Λ1/2-KI 2 K ^ I 2 ] 1 / 2

/ , i ,2\ mo-mj / 2 , ,2\w1-m2

χ^,«(i -Kl) (i -kol k l )
/ l I I 2 I I 2 I

χ(i - K l - K l - ••* - K - i
ι2 i i 2 i ι 2 \ m *

The innermost integral is the integral of the function |wA:+1|
2 over the sphere

in the (w^,w^+1)-plane. The measure dμ(wk,wk+1) must be a multiple of
spherical measure on S3. Taking \wk+ι\ = p^sin^), where ρ2

k = \ - |wo|
2

— ••• - | ^ _ χ | 2 , the measure dμ becomes (pkcos(θ))(pksin(θ)) ρkdθ, and
the integral is

\2mk+3

) 2(m + 1) *

The rest of the integrals can be evaluated similarly, and it is not hard to obtain
the stated formula, q.e.d.

We now consider the dual Radon transform R*. If g(L) is a smooth
function on Gτ(k + 1, n) we define a function on Gr(λ;, n) by

R'g{H)= f g(L)dμ(L),

where the integration is over all (A: + l)-planes L containing H, and dμ is the
normalized invariant measure. Let Ho be the projective A>plane whose Stiefel
matrix is given by the left-most (k 4- 1) columns of the Stiefel matrix for Lo.
Let gmQ%...%Mk be the unique highest weight vector in C°°(Gr(/c + 1, n)) with
weight (mO9'"9mk909"'909-mk9'"9-mo) and satisfying g(L0) = 2~m.
Then a calculation similar to the above shows that

Lk,n ( m 0 + n - k - \){mλ + n - k - 2 ) ( m k + n - 2 k - l ) '
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The complex codimension of Ho in CPn is n — k and this accounts for the
difference between this integral and the previous one. Combining these two
integrals we have the following result:

Theorem 2.4.

= ck n(m0 + n — k - 1) (m1 + n — k — 2)~

•(mk + n-2k- \)~\mo + k + \)~\mλ + k)~l (m* + I ) " 1 ,

where ck „ Φ 0.

3. The inverse of R}R
We wish to express the (left) inverse of KιR as an invariant differential

operator. It will prove useful to know the eigenvalues that such operators may
have. Recall that a differential operator D on C°°(U(n + 1)) is a Casimir
operator if it is bi-invariant, or equivalently, if it lies in the center of the
universal enveloping algebra of U(n + 1).

Theorem 3.1. Let P(mo, , mn) be a symmetric polynomial. Then there is
a Casimir operator D whose eigenvalue on the irreducible U(n + 1) representa-
tion with highest weight (mo, , mn) is P(m0 + n, mx + n — 1, , mn_x

+ l , m j .

A proof may be found in Zelobenko [14]. We now define a polynomial of

k + 1 variables

Q(m0,- - - ,mk) = (m0 + n - k — l)(m1 + n — k — 2) — •

• (mk + n - 2k - l)(m0 + k 4- l ) ^ + k) (mk + 1).

Lemma 3.2. There is a symmetric polynomial P(mo, - ,mn) such that

P(m0 + n,mλ + n- l,- ,mn_ι + l,/wn) = Q(mo,- 9mk)

whenever (mo, , mn) is of the form (mθ9- , mk909 - ,0, —mk, , — w0).
PAΌO/. We can pair the linear factors of Q as follows:

k

Ϋ\(mj + n-k-l -j)(mj + k + l -j)
7 = 0

k

= Π K + «-./-(* + l)](-l)[-my +; -(A: + 1)].
7 = 0

Let S(mo, - , wM) = Σj m0 -- rhj - " mn, where my indicates that wt7 is
omitted. Put

P(m o , , m J = q i r t ( - l ) ^ ( m 0 - k - 1,--,mn- k - 1).
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Assume now that /Πj = —mn_j (for all j) and my• = 0 for k < j < n — k

(and of course mo> mx> > mk > 0). Since mn_k_1 = 0, among the

summands in the expression P(m0 + n,m1 + n - 1, , mn) only the one

with mn_k_λ omitted is nonzero. This summand is clearly of the form

c ' Q(mo>'' '>mk\ where c = 1 2 (n - k - 1). Combining this with the

diagonalization of R% in the previous section we obtain

Theorem 3.3. Let ΔΛ + 1 denote the Casimir operator of U(n + 1) whose

eigenvalue on the irreducible representation with weight (m0,- —,mn) is

P(m0 + n, mx + n - 1, , mn). Then

for allf e C ° ° ( G r ( A : , w)) and some constant ckn Φ 0 .

We now consider the Radon transform Rkl\ C 0 0 (A:,«)^C 0 0 (/,«), where

k < I < n — I — 1. Λ^7 and its dual Rk/ are defined by integration as before.

Until now we have been considering the case / = k + 1. In fact, all these

transforms are related:

This fact essentially asserts the uniqueness of invariant measures, since the

right-hand side of the above equation is an integration operation with invariant

measure. A corresponding fact holds true for R*.

Theorem 3.4. Let Rk , denote the Radon transform from functions on Gr(/c, n)

to functions on Gr(/, n). Let R* denote its dual. Assume I < k ^ n - k — 1.

Then there are Casimir operators ΔΛ + 1,Δ j k + 2»""»^/ wn°se eigenvalues are

given in Theorem 3.3 above such that

Δ f t + 1ΔΛ +2 Δ,Λ'Λ = / .

The order of Δy is 2j.

4. An inversion formula for the Penrose correspondence

Consider the double fibration

C P 3 Gr(l,3)

Here F(0,1) is the flag manifold of projective points in projective lines in CP 3 ,

while m and p are the standard fibrations. This correspondence comes up in

twistor theory and is known as the Penrose correspondence (see Wells [13]).

The Radon transform Roι is a composition of the pull-back 77* with the push

forward (integration over the fiber) p*. Our calculations in §2 show that



RADON TRANSFORMS ON HIGHER RANK GRASSMANNIANS 63

^0,1^0,1 i s inverted by the multiplier (m0 + 2)(m0 + 1) (up to renormaliza-
tion). On the other hand, the renormalized Laplace-Beltrami operator Δ on
CP 3 acts as the multiplier mo(mo+ 3) (see Grinberg [4]). Thus if R is the
Radon transform attached to the Penrose correspondence then we have the
inversion formula

[A + 2]RtR = L

One can consider other Radon-like transforms attached to the Penrose corre-
spondence. For example, one can replace functions by sections of line bundles
or vector bundles (see Gelfand [1] for some results in this direction). Indeed, it
may be possible to extend the harmonic analysis arguments of the present
paper to such situations.

5. Real Grassmannians

We now consider the analogous Radon transform for Grassmannians over
the real numbers. Although much of the analysis is similar, there is a parity
consideration (related to Huygens' principle) which makes the results look
somewhat different.

Our group of isometries here is SO(n + 1) and its Lie algebra so(n +1) is
the algebra of skew-symmetric (/I + 1 ) X ( H + 1) matrices. Let v = [(n + l)/2]
— 1. A Cartan subalgebra for so(n) is spanned by (C, }Q=1, where

C/ = eii+v- ei+vi (i = 0, -,*>).

The highest weights occurring in C°°(Gτ(k, n)) for k < v are those of the form
(2mo, -,2mk) with mo> m2> > rnk ^ 0 and all nij's are integers.
Consider now a real Stiefel matrix

X =

Λk

γn γn
A 0 * ' ' Λk

whose columns represent an orthonormal basis for a projective /c-plane H. Let
Xj denote the yth row of X (j = 0, , n). Finally, let A{\) be the (/ + 1) X
(k + 1) matrix whose yth row is X2J + yf^ΛX2^1 (j = 0, ,1). Then a
highest weight vector in C°°(Gr(A:, n)) with weight (2m0, , 2mk) is given by

fnio...nίk = d e t [ , 4 ( 0 ) A{θy\m*~mχ - d e t [ ^ ( l ) • ^ ( l ) ί ] m i ~ m 2 •••

χ d e t [ ^ ( f c ) ^ ( ^ ) / ] m A .
This form of the highest weight is easily deduced from the form given in

Strichartz [9].
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The evaluation procedure for the real Radon transform Rkyk+ιf is quite

similar to that of its complex counterpart. If L o is the k + 1 plane consisting

of a l l p o i n t s [p0,- ,pn] in RPn w i t h pι=p3= = p2k+1 = 0 a n d p2k+2

= Plk + 3 = * * ' =P2r=Pn = Q> t h e Π

T(m0 + (* + l J / Σ j Γ K + */2) • • Γ ( ^ , + 1/2)

1 +(k + l)/2) Γ(m* + 1) '

This multiplier does not lead to an inversion formula involving a Casimir

operator. However, if we consider the transform Rktk+2

 =
 * H U + 2 ° ^ M + I

we find

D f ( T \ — r J-m i

(m 0 +(fc + l)/2)(m1 + Λ/2) (mk + 1/2)

A similar calculation can be done for R'k%k+2

 a n ^ ^ leac*s to the following
diagonalization:

Ik x - l

= Π K +(n -7 - 2)/2)(m7 + ( * + 1 -j)/2) fmo^m,
\J=0 )

To obtain a useful left inverse to R*R we need the following fact.

Lemma 5.1. Let P(tOi- ,tv) be a symmetric polynomial. For each vector

of the form m = (2mo, -,2mv) let tj(m) denote the expression {mj +

(n — 1 — j)/2)(mj — j/2). Then there exists a Casimir operator Δp of the group

SO(n + 1) which acts as the scalar P(to(m),- -,tv(m)) on the irreducible

representation with highest weight (2mo, , 2 m J , where v = [(n + l)/2] — 1.

Again, a proof may be found in Zelobenko [14]. Now let Qk(m0, , mk) be

the polynomial given by the expression

Π K +(« - k - 2 -j)/2)(mj+(k + 1 -j)/2)
7 = 0

= Π {(«;+(» - 1 -j)/2)(mj-j/2) + cnΛ)
./=o

where cn k = (n - k - 2){k 4- l )/4; in particular, ck does not depend on j

(or wiy). As in the complex case, it is easy to find a symmetric polynomial

^('o,'••-,*,), so that
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whenever m* + 1 = = mv = 0. Let ΔA be the Casimir operator correspond-

ing to Pk as in the above lemma.

Theorem 5.2. Let Rkl denote the Radon transform on real Grassmannians

{here 0 < k < I < (n + l)/2). Let Rkl be the dual Radon transform and let

ΔA., , Δ, 6e Casimir operators as above. If I — k is even then we have the

inversion formula

Δk+2Δk+4 . . . ΔtRklRkι = I,

valid on, say, C°°(Gr(k, n)). The degree of Δj is 2j (j = 0, , v).

6. Quaternionic Grassmannians

We now consider the Radon transform on Grassmannians over the skew-field

of quaternions. We will use the same notation as in the real and complex cases

above for the various constructions involving the base field. Moreover, we will

use the conventions for Cartan subalgebras and weights described in [5] (see

also [10], [4]).

Theorem 6.1. The highest weights occurring in C°°(Gr(λ:, n)) for k + 1 ^ n

— k are precisely those of the form (m 0 , m 0 , , mkmk, 0, , 0). Each weight

occurs with multiplicity one.

As before, we refer to Strichartz [10]. The highest weight vectors can be

constructed explicitly as before and the Radon transform can be diagonalized

by the same general procedure. Thus we obtain the following result.

Theorem 6.2. On the irreducible subrepresentation of Cco(Gτ(k,n)) with

highest weight (m0, mo, , mk, mk,0,- ,0) the operator Rk k+ιRk k + ι acts

by the scalar

k

Π (mj + 2k- 2j)(mj + In - 2k - 2j + l)(m • + 2k - 2j + l)
./=o

As usual, we have a recipe for Casimir operators.

Theorem 6.3. Let P(t0,- ,tn) be a symmetric polynomial. Then there exists

a Casimir operator Δp of the group Sp(« 4- 1) whose eigenvalue on the irreducible

representation with highest weight ( m o , m o , ,mn,mn) is

P{{m0 + n + l ) ( m 0 + Λ) , (mx + n){mλ + n- 1), ,(mn + l)(mn)).

Using this criterion, it is easy to see that there are Casimir operators Δk + λ and
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E* + i whose eigenvalues on the irreducible with highest weight (ra 0, m o , , mk,

mk, 0, , 0) are respectively

k

Π (m • + Ik - 2j)(nij + In - 2k - Ij + l),
ι = O

w
Π (w + 2fc - 2 7 + l)(m • + 2/i - 2k - 2j).

7 = 0

Theorem 6.4. Lei Λ ^ denote the Radon transform from functions on Gr(/c, «)

to functions on Gr(/,«). Let R* denote its dual. Assume k < I < n - I - 1.

Then there are Casimir operators ΔA: + 1 D A : + 1 , ΔA r + 2>
 π / + 2 > * ' '> Δ/>α/

eigenvalues are given in (*) flfowe ̂ wcΛ ί/iαί the inversion formula

w valid on, say, C°°(Gr(A:, «)). The order of both Δy α«ί/ Dy is 2j.

7. Concluding remarks

We have considered Radon transforms involving pairs of Grassmannians

Gr(/c, n) and Gr(&, /) with the restriction & < / < Λ - / - 1 . The general case

can be easily reduced to this one using the duality Gr(/c, n) = Gτ(n — kyn)

and the harmonic analysis developed above.

Our discussion centered around the inversion problem for these Radon

transforms. Another interesting question involves a range characterization:

Which functions on Gr(/, n) are Radon transforms of functions on Gr(fc, n)Ί

The answer can be given in terms of differential operators coming from the

universal enveloping algebra of the group of isometries G of the corresponding

projective space (see Grinberg [5]).

Finally, we observe that a further generalization of these Radon transforms

is possible. If {rij}^ is a sequence of nonnegative integers, we have the flag

manifold

' v < 1 ' • " * ' U(ni)x XU(nk)

Geometrically, this is the space of all ascending chains of vector subspaces of

C", Vx c V2 c c Vk, where the C-dimension of Vj is nλ + +n} (or

the corresponding projective analog). Given two such flag manifolds, say
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F{nx,- ,nk) and F(ml9- -,mk) with nx + +nk = mx + + mA, one

can define an incidence relation between them as follows: a flag {Vj}j=

F(nv- , ΛΛ) is said to be incident to a flag {Wy}*«i e F(ml9- ,mk) if each
pair (Vj, Wj) belongs to a preassigned orbit of the underlying general linear
group. For example, if n- < rrij for j < k one can require that Vj be a
subspace of Wj for all y (this is trivial for j = k). For the case k = 2, this
gives the Grassmannians we have been studying. But further generalizations
are possible. For instance, one can require that Vj intersect Wj in some
subspace of fixed dimension dj. For dj < dim(Vj) the angle of intersection
introduces some analytic problems (see Helgason [6]), so it seems desirable to
require further that the vector spaces V- and Wj intersect orthogonally (i.e. to
require that the pair (VpWj) lie in an orbit of the underlying orthogonal or
unitary group). This approach (with k = 2) is taken in Gonzalez [3] and
Strichartz [12] (see also Petrov [8] and Gelfand et al. [1]). Another interesting
variation is found in [2]. There the authors replace functions by sections of
certain line bundles. The resulting Radon transform on real Grassmannians is
intertwining for the larger group SLn(R). The authors give an inversion
formula which is SLn(R) invariant.

Finally, one can even consider incidence relations between flag manifolds
F(mv- - ',mk) and F(nv- , nf) with k Φ /, or indeed, between any two
homogeneous spaces G/K and G/L over a Lie group G. It appears quite likely
that the methods of this paper can be extended to the generalizations involving
flag manifolds. Now flag manifolds which are not Grassmannians are not
symmetric spaces, so their harmonic analysis is more complicated: for instance,
we can no longer expect that irreducibles occur without multiplicity. Still, it
seems plausible that highest weight vectors and their Radon transforms can be
computed explicitly.
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