BRILL-NOETHER-PETRI WITHOUT DEGENERATIONS

ROBERT LAZARSFELD

Introduction

The purpose of this note is to show that curves generating the Picard group of a $K 3$ surface X with $\operatorname{Pic}(X)=\mathbf{Z}$ behave generically from the point of view of Brill-Noether theory. In particular, one gets a quick new proof of Gieseker's theorem [5] concerning the varieties of special divisors on a general algebraic curve.

Let C be a smooth irreducible complex projective curve of genus g. One says that C satisfies Petri's condition if the map

$$
\mu_{0}: H^{0}(A) \otimes H^{0}\left(\omega_{C} \otimes A^{*}\right) \rightarrow H^{0}\left(\omega_{C}\right)
$$

defined by multiplication is injective for every line bundle A on C. Roughly speaking, this condition means that the varieties $W_{d}^{r}(C)$ of special divisors on C have the properties one would naively expect. Specifically, it implies that $W_{d}^{r}(C)$ is smooth away from $W_{d}^{r+1}(C)$, and that $W_{d}^{r}(C)$ (when nonempty) has the postulated dimension $\rho(r, d, g)={ }_{\text {def }} g-(r+1) \cdot(g-d+r)$. We refer to [1] for the definition of $W_{d}^{r}(C)$, and for a detailed discussion of Petri's condition and its role in Brill-Noether theory. One of the most basic results of this theory is Gieseker's theorem [5] that Petri's condition does in fact hold for the generic curve of genus g.

We prove here the following
Theorem. Let X be a complex projective $K 3$ surface, and let $C_{0} \subset X$ be a smooth connected curve. Assume that every divisor in the linear system $\left|C_{0}\right|$ is reduced and irreducible. Then the general curve $C \in\left|C_{0}\right|$ satisfies Petri's condition.

[^0]The hypothesis is satisfied in particular when $\operatorname{Pic}(X)$ is infinite cyclic, generated by the class of C_{0}. But for any integer $g \geqslant 2$ there exists a $K 3$ surface X with $\operatorname{Pic}(X)=\mathbf{Z} \cdot\left[C_{0}\right]$ for some curve C_{0} of genus g, and thus the theorem implies Gieseker's result [5].

The study of special divisors on a general curve has traditionally centered around degeneration arguments. One of the first results in this area was due to Griffiths and Harris [7], who proved the assertion of Brill and Noether that if C is a general curve of genus g, then $\operatorname{dim} W_{d}^{r}(C)=\rho(r, d, g)$ provided that $\rho(r, d, g) \geqslant 0$. Their method was to deduce the theorem from an analogous statement for a rational curve with g nodes, which in turn was proved by a further degeneration. To prove Petri's conjecture, Gieseker [5] combined some rather elaborate combinatorial arguments with a systematic analysis of the limiting linear series on reducible curves arising in a degeneration of g-nodal \mathbb{P}^{1} 's. Eisenbud and Harris [2] subsequently streamlined Gieseker's proof by using a different degeneration, and they have recently extended and given several interesting new applications of these techniques (cf. [4]).

By contrast, the proof of the theorem here does not require any degenerations. Instead the method is simply to exhibit smooth families of g_{d}^{r} 's. Specifically, we consider triples (C, A, τ) consisting of a nonsingular curve $C \subset X$ in the linear system $\left|C_{0}\right|$, a line bundle $A \in W_{d}^{r}(C)$ such that both A and $\omega_{C} \otimes A^{*}$ are base-point free, and an isomorphism $\tau \bmod$ scalars of $H^{0}(A)$ with a fixed vector space of dimension $r+1$. Such triples are parametrized by a variety P_{d}^{r}, and one has an evident map $\pi: P_{d}^{r} \rightarrow\left|C_{0}\right|$. The tangent spaces to P_{d}^{r} and the derivative of π are computed cohomologically in terms of certain vector bundles $F_{C, A}$ on X which we study in $\S 1$. One finds in particular that these bundles have only trivial endomorphisms so long as $\left|C_{0}\right|$ does not contain any reducible curves. Much as in [10] this allows us to show in $\S 2$ that P_{d}^{r} is nonsingular, and that moreover the morphism π is smooth at (C, A, τ) if and only if the Petri μ_{0} map for A is injective. The theorem then follows (§3) from the generic smoothness of π. In as much as it avoids the combinatorics involved in degenerational proofs, the present approach to Brill-Noether-Petri would seem to be simpler than the traditional one. On the other hand, as in [2] the argument only works in characteristic zero, and these techniques do not yield the theorem of Kempf [8] and Kleiman-Laksov [9] that $W_{d}^{r}(C)$ is nonempty when $\rho(r, d, g) \geqslant 0$ (which however is elementary nowadays; cf. [1, Chapter VII]).

Special divisors on a curve C on a $K 3$ surface X appear to have been first considered by Reid [13], who showed that under suitable numerical hypotheses a special pencil on C is the restriction of one on X. A beautiful conjecture of Mumford, Harris and Green (see [6, §5]) asserts that all curves in a given linear
series on X have the same Clifford index. This conjecture-which would generalize the well-known fact that if $C_{0} \subset X$ is hyperelliptic, then so too is any other smooth curve in $\left|C_{0}\right|$-has been verified in special cases by Donagi and Morrison, and by Green and the author. Serrano-Garcia [14] has extended some of Reid's results to surfaces other than K3's.

I am grateful to L. Ein, D. Gieseker, M. Green and U. Persson for valuable discussions. The reader will also recognize my debt to the recent work of Mukai [10]. I would especially like to thank R. Donagi and D. Morrison for giving me an unpublished manuscript in which they had proven a special case of the corollary at the end of $\S 1$ below. The present paper in part grew out of an attempt to understand and generalize their result.

1. The vector bundles $F_{C, A}$

This section is devoted to the study of certain vector bundles that play an important role in the argument. But first some notation. Throughout the paper X denotes a complex projective $K 3$ surface, and $C_{0} \subset X$ is a smooth irreducible curve of genus g. Given a curve C, and integers d and r, we define

$$
V_{d}^{r}(C) \subset \operatorname{Pic}^{d}(C)
$$

to be the open subset of $W_{d}^{r}(C)$ consisting of line bundles A on C such that:
(i) $h^{0}(A)=r+1, \operatorname{deg}(A)=d$; and
(ii) both A and $\omega_{C} \otimes A^{*}$ are generated by their global sections.

Fix now a smooth curve $C \subset X$ in the linear series $\left|C_{0}\right|$, and a line bundle $A \in V_{d}^{r}(C)$. We associate to the pair (C, A) a vector bundle $F_{C, A}$ on X, of rank $r+1$, as follows. Thinking of A as a sheaf on X, there is a canonical surjective evaluation map

$$
e_{C, A}: H^{0}(A) \otimes_{\mathbf{C}} \mathcal{O}_{X} \rightarrow A
$$

of \mathcal{O}_{X}-modules. Take

$$
F_{C, A}=\operatorname{def}=\operatorname{ker} e_{C, A}
$$

to be its kernel. [Note that A, being locally isomorphic to \mathscr{O}_{C}, has homological dimension 1 over \mathcal{O}_{X}. Hence $F_{C, A}$ is indeed a vector bundle.]

The basic properties of these bundles are easily determined. Specifically, setting $F=F_{C, A}$ one has by construction the exact sequence

$$
\begin{equation*}
0 \rightarrow F \rightarrow H^{0}(A) \otimes_{\mathbf{C}} \mathcal{O}_{X} \rightarrow A \rightarrow 0 \tag{1.1}
\end{equation*}
$$

of sheaves on X. Since $\mathcal{O}_{X}=\mathcal{O}_{X}$, dualizing (1.1) gives:

$$
\begin{equation*}
0 \rightarrow H^{0}(A)^{*} \otimes_{\mathbf{C}} \mathcal{O}_{X} \rightarrow F^{*} \rightarrow \omega_{C} \otimes A^{*} \rightarrow 0 \tag{1.2}
\end{equation*}
$$

and from (1.1) and (1.2) one sees that:
(i) $c_{1}(F)=-\left[C_{0}\right], c_{2}(F)=\operatorname{deg}(A)=d$;
(ii) F^{*} is generated by its global sections [recall: $h^{1}\left(\mathcal{O}_{X}\right)=0$];
(iii) $H^{0}(F)=H^{2}\left(F^{*}\right)=0$,
$H^{1}(F)=H^{1}\left(F^{*}\right)=0$,
$h^{0}\left(F^{*}\right)=h^{0}(A)+h^{1}(A)$.
Furthermore, one has:
(iv) $\chi\left(F \otimes F^{*}\right)=2 \cdot h^{0}\left(F \otimes F^{*}\right)-h^{1}\left(F \otimes F^{*}\right)=2-2 \cdot \rho(A)$,
where $\rho(A)=g(C)-h^{0}(A) \cdot h^{1}(A)$.
Proof. The first equality follows from Serre duality. If E is a vector bundle of rank e on X, Riemann-Roch gives $\chi\left(E \otimes E^{*}\right)=(e-1) \cdot c_{1}(E)^{2}$ $-2 e \cdot c_{2}(E)+2 e^{2}$. Now compute

The presence or absence of reducible curves in $\left|C_{0}\right|$ comes into play via
Lemma 1.3. Fix a smooth curve C in $\left|C_{0}\right|$ and a line bundle $A \in V_{d}^{r}(C)$, and let $F=F_{C, A}$. If F has nontrivial endomorphisms, i.e. if $h^{0}\left(F \otimes F^{*}\right) \geqslant 2$, then the linear system $\left|C_{0}\right|$ contains a reducible (or multiple) curve.

Proof. Set $E=F^{*}$. Since $h^{0}\left(E \otimes E^{*}\right) \geqslant 2$, there exists by a standard argument a nonzero endomorphism $v: E \rightarrow E$ which drops rank everywhere on X. [Take any endomorphism w of $E, w \neq($ const $) \cdot 1$, and set $v=w-\lambda \cdot 1$, where λ is an eigenvalue of $w(x)$ for some $x \in X$. Then

$$
\operatorname{det}(v) \in H^{0}\left(\operatorname{det}\left(E^{*}\right) \otimes \operatorname{det}(E)\right)=H^{0}\left(\mathcal{O}_{X}\right)
$$

vanishes at x, and hence is identically zero.] Let

$$
N=\operatorname{im} v, \quad M_{0}=\operatorname{coker} v
$$

and put

$$
M=M_{0} / T\left(M_{0}\right)
$$

where $T\left(M_{0}\right)$ is the torsion subsheaf of M_{0}. Thus

$$
\left[C_{0}\right]=c_{1}(E)=c_{1}(N)+c_{1}(M)+c_{1}\left(T\left(M_{0}\right)\right)
$$

in the Chow group $A_{1}(X)=\operatorname{Pic}(X)$. Now $c_{1}\left(T\left(M_{0}\right)\right)$ is represented by a nonnegative linear combination of the codimension one irreducible components (if any) of $\operatorname{supp}\left(T\left(M_{0}\right)\right)$. So it is enough to show that $c_{1}(N)$ and $c_{1}(M)$ are represented by nonzero effective curves. But N and M are torsion-free sheaves of positive rank, and-being quotients of E-are generated by their global sections. Furthermore, since $H^{0}\left(E^{*}\right)=0$ neither of these can be trivial vector bundles. So the lemma follows from the elementary fact:

Let U be a torsion-free sheaf on a smooth projective surface. If U is generated by its global sections, then $c_{1}(U)$ is represented by an effective (or zero) divisor. Moreover $c_{1}(U)=0$ $\Leftrightarrow U$ is a trivial vector bundle.

Indeed, the double dual $U^{* *}$ of U is locally free, and the canonical inclusion $U \rightarrow U^{* *}$ is an isomorphism outside of a finite set (cf. [12, II.1.1]). Thus $c_{1}(U)=c_{1}\left(U^{* *}\right)$, and $U^{* *}$ is generated by its sections away from finitely many points. Therefore $H^{0}\left(\operatorname{det}\left(U^{* *}\right)\right) \neq 0$, and (by Porteous) $c_{1}\left(U^{* *}\right)=0$ if and only if $U^{* *}$-and hence also U-is a trivial bundle. q.e.d.

It is amusing to note that the lemma already yields a special case of the Brill-Noether theorem [7], namely that a general curve C of genus g does not carry any line bundle A with $\rho(A)\left[=g(C)-h^{0}(A) \cdot h^{1}(A)\right]<0$. In fact:

Corollary 1.4. Assume that every member of the linear series $\left|C_{0}\right|$ is reduced and irreducible. Then for every smooth curve $C \in\left|C_{0}\right|$ and every line bundle A on C one has $\rho(A) \geqslant 0$.

When $h^{0}(A)=2$ the corollary was proved by Donagi and Morrison (unpublished) using very different methods of Reid [13], and independently by Reid himself (private communication). Compare also [3].

Proof of Corollary 1.4. Observe that if B is a base-point free special line bundle on C, and if Δ is the divisor of base-points of $\omega_{C} \otimes B^{*}$, then $B(\Delta)$ is again base-point free. Hence we can assume in (1.4) that both A and $\omega_{C} \otimes A^{*}$ are generated by their global sections, and then the assertion follows from (iv) and (1.3).

2. Infinitesimal calculations

Keeping notation as in §1, we now fix positive integers r and d, and a vector space H of dimension $r+1$.

Definition 2.1. Let P_{d}^{r} denote the quasi-projective scheme (constructed below) parametrizing the set of all triples (C, A, λ), where:
(i) $C \subset X$ is a smooth curve in the linear system $\left|C_{0}\right|$;
(ii) $A \in V_{d}^{r}(C)$; and
(iii) λ is a surjective homomorphism of \mathcal{O}_{X}-modules:

$$
\lambda: H \otimes_{\mathbf{C}} \mathcal{O}_{X} \rightarrow A \rightarrow 0
$$

inducing an isomorphism $H \simeq H^{0}(A)$, two such homomorphisms being identified if they differ only by multiplication by a nonzero scalar.

Construction of $P_{d}^{r}: P_{d}^{r}$ is an open subset of a Hilbert scheme classifying curves in $X \times \mathrm{P}(H)$. Specifically, given a triple (C, A, λ) as above, the quotient $\lambda \mid C: H \otimes_{\mathbf{C}} \mathcal{O}_{C} \rightarrow A$ determines an embedding

$$
C \subset \mathbf{P}\left(H \otimes_{\mathbf{C}} \mathcal{O}_{X}\right)=X \times \mathbf{P}(H)
$$

and distinct triples give rise to distinct subvarieties of $X \times \mathbf{P}(H)$. The subschemes of $X \times \mathbf{P}(H)$ arising in this manner are parametrized by a Zariski-open subset of the Hilbert scheme of curves in $X \times \mathbf{P}(H)$ (with appropriate Hilbert
polynomial defined with respect to some ample divisor on $X \times \mathbf{P}(H)$). We take this open set to be P_{d}^{r}.

Observe that there is a natural morphism

$$
\pi: P_{d}^{r} \rightarrow\left|C_{0}\right|
$$

sending a triple (C, A, λ) to the point $\{C\}$. Note also that for every (C, A, λ) $\in P_{d}^{r}$, the sheaf $\operatorname{ker} \lambda$ is isomorphic to the bundle $F_{C, A}$ introduced in $\S 1$. Consequently the discussion of $\S 1$ applies to these kernels.

The basic fact for us is that one has good infinitesimal control over P_{d}^{r} and π :

Proposition 2.2. Fix any point $(C, A, \lambda) \in P_{d}^{r}$, and let $F=\operatorname{ker} \lambda$. Assume that $h^{0}\left(F \otimes F^{*}\right)=1$. Then:
(i) P_{d}^{r} is smooth at (C, A, λ), of dimension $\rho(A)+g+\left\{h^{0}(A)^{2}-1\right\}$; and
(ii) The map π is smooth at (C, A, λ), i.e. $d \pi_{(C, A, \lambda)}$ is surjective, if and only if the Petri homomorphism

$$
\mu_{0}: H^{0}(A) \otimes H^{0}\left(\omega_{C} \otimes A^{*}\right) \rightarrow H^{0}\left(\omega_{C}\right)
$$

is injective.
Remark. Observe that there is no assumption on the integers r and d. However it may well be that P_{d}^{r} is empty [cf. Corollary 1.4].

Proof of Proposition 2.2. Consider the embedding $C \subset X \times \mathbf{P}(H)$ determined by λ. Denoting by $\Phi: C \rightarrow \mathbf{P}(H)$ the projection of C to $\mathbf{P}(H)$, one has a canonical exact sequence of tangent and normal bundles:

$$
\begin{equation*}
0 \rightarrow \Phi^{*}\left(\Theta_{\mathbf{P}(H)}\right) \rightarrow N_{C / X \times \mathbf{P}(H)} \rightarrow N_{C / X} \rightarrow 0 \tag{*}
\end{equation*}
$$

and $d \pi_{(C, A, \lambda)}$ is identified with the resulting homomorphism

$$
T_{(C, A, \lambda)} P_{d}^{r}=H^{0}\left(N_{C / X \times \mathbf{P}(H)}\right) \rightarrow H^{0}\left(N_{C / X}\right)=T_{(C)}\left|C_{0}\right| .
$$

Grant for the time being the following
Claim. If $h^{0}\left(F \otimes F^{*}\right)=1$, then the map

$$
(* *)
$$

$$
\begin{equation*}
H^{1}\left(N_{C / X \times \mathbf{P}(H)}\right) \rightarrow H^{1}\left(N_{C / X}\right) \tag{**}
\end{equation*}
$$

determined by (*) is bijective.
Then first of all one gets an isomorphism coker $d \pi_{(C, A, \lambda)} \simeq H^{1}\left(\Phi^{*}\left(\Theta_{\mathbf{P}(H)}\right)\right)$. But $\Phi=\Phi_{A}$ is the morphism determined by the complete linear system associated to A, and hence $H^{1}\left(\Phi^{*}\left(\Theta_{\mathbf{P}(H)}\right)\right)$ is Serre dual to $\operatorname{ker} \mu_{0}$. This proves (ii).

For (i) we argue much as in [10] that the obstructions to the smoothness of the Hilbert scheme of $X \times \mathbf{P}(H)$ at (C, A, λ) vanish. Specifically, let R be a local artinian \mathbf{C}-algebra, let $I \subset R$ be a one-dimensional square-zero ideal, and set $S=R / I$. Consider an infinitesimal deformation

$$
(+)
$$

$$
\underline{C} \subset X \times \mathbf{P}(H) \times \operatorname{Spec}(S)
$$

of C in $X \times \mathbf{P}(H)$ over $\operatorname{Spec}(S)$. The obstruction to extending (+) to a deformation over $\operatorname{Spec}(R)$ is given by an element $o_{(+)} \in H^{1}\left(N_{C / X \times \mathbf{P}(H)}\right)$. On the other hand, $(+)$ determines by projection an infinitesimal deformation
(\#)

$$
\underline{C} \subset X \times \operatorname{Spec}(S)
$$

of C in X, and one has a corresponding obstruction class $o_{(\#)} \in H^{1}\left(N_{C / X}\right)$. Furthermore, $o_{(+)}$maps to $o_{(\#)}$ under the homomorphism (**); this can be checked, e.g., using the explicit description of the obstruction classes in [11, Lecture 23] by observing that the local equation of \underline{C} in $X \times \operatorname{Spec}(S)$ can be taken as one of the equations locally cutting out \underline{C} in $X \times \mathbf{P}(H) \times \operatorname{Spec}(S)$. But the Hilbert scheme $\left|C_{0}\right|$ of C in X is smooth, and hence $o_{(\#)}=0$. Therefore $o_{(+)}=0$ thanks to the claim, and this proves that P_{d}^{r} is smooth at (C, A, λ). (One could also deduce (i) from Theorem (0.1) of [10].)

It remains to verify the claim. Denoting by p and q the projections of $X \times \mathbf{P}(H)$ onto X and $\mathbf{P}(H)$ respectively, note first that C is defined in $X \times \mathbf{P}(H)$ as the zero-locus of the evident section of $p^{*}\left(F^{*}\right) \otimes q^{*}\left(\mathcal{O}_{\mathbf{P}(H)}(1)\right)$. Therefore

$$
N_{C / X \times \mathbf{P}(H)}=F^{*} \mid C \otimes A .
$$

We next compute $h^{1}\left(C, F^{*} \mid C \otimes A\right)=h^{1}\left(X, F^{*} \otimes A\right)$. To this end, observe that since F^{*} is locally free, λ determines an exact sequence

$$
0 \rightarrow F \otimes F^{*} \rightarrow H \otimes_{\mathbf{C}} F^{*} \rightarrow A \otimes F^{*} \rightarrow 0
$$

of sheaves on X. Using the computations of $H^{i}\left(F^{*}\right)$ in §1 one sees that $H^{1}\left(X, A \otimes F^{*}\right)=H^{2}\left(X, F \otimes F^{*}\right)$, and so by duality plus the hypothesis on $F \otimes F^{*}$ one finds that $h^{1}\left(N_{C / X \times \mathbf{P}(H)}\right)=1$. Since also $h^{1}\left(N_{C / X}\right)=h^{1}\left(\omega_{C}\right)=1$, the claim follows. Finally, using facts (iii) and (iv) from §1, one gets the stated value for $h^{0}\left(X, F^{*} \otimes A\right)=\operatorname{dim}_{(C, A, \lambda)} P_{d}^{r}$.

Remark. Suppose that the linear system $\left|C_{0}\right|$ does not contain any reducible members. Then it follows from the proposition and Lemma 1.3 that P_{d}^{r} (if nonempty) has pure dimension $g+\rho(d, r, g)+\left\{(r+1)^{2}-1\right\}$. Observing that the fiber of π over a point $\{C\} \in\left|C_{0}\right|$ is a $\operatorname{PGL}(r+1)$-bundle over $V_{d}^{r}(C)$, one can use this to give a proof of the Brill-Noether theorem of Griffiths and Harris [7]. But at this point it is quicker for us to get dimensionality via Petri.

3. Proof of the Theorem

We assume that the linear system $\left|C_{0}\right|$ does not contain any reducible or multiple members, and we wish to show that almost every curve in $\left|C_{0}\right|$ satisfies Petri's condition.

To begin with fix arbitrary positive integers r and d. We claim that there is a nonempty Zariski-open set $U_{d}^{r} \subset\left|C_{0}\right|$ of smooth curves such that for all $C \in U_{d}^{r}:$

$$
\begin{gathered}
\mu_{0}: H^{0}(A) \otimes H^{0}\left(\omega_{C} \otimes A^{*}\right) \rightarrow H^{0}\left(\omega_{C}\right) \text { is injective } \\
\text { for every line bundle } A \in V_{d}^{r}(C) .
\end{gathered}
$$

Indeed, it follows from Lemma 1.3 and the assumption on $\left|C_{0}\right|$ that for any point $(C, A, \lambda) \in P_{d}^{r}$, the bundle $F=\operatorname{ker} \lambda$ satisfies $h^{0}\left(F \otimes F^{*}\right)=1$. Thus by Proposition 2.2 the variety P_{d}^{r} is nonsingular (or empty). As we are in characteristic zero the theorem on generic smoothness applies, and there exists a nonempty open set $U_{d}^{r} \subset\left|C_{0}\right|$ over which the map $\pi: P_{d}^{r} \rightarrow\left|C_{0}\right|$ is smooth. Invoking the proposition again, it follows that U_{d}^{r} has the stated property.

We assert next that there is a nonempty open set $U \subset\left|C_{0}\right|$ of smooth curves such that for any $C \in U$:
μ_{0} is injective for every line bundle A on C such that both A and $\omega_{C} \otimes A^{*}$ are generated by their global sections.

In fact, for a fixed genus g the injectivity of μ_{0} for A is nontrivial for only finitely many values of $d=\operatorname{deg}(A)$ and $r=r(A)$ [e.g., $0 \leqslant 2 r \leqslant d \leqslant 2 g-2$]. It suffices to take U to be the intersection of the corresponding U_{d}^{r} 's.

Using the remark at the beginning of the proof of Corollary 1.4, the theorem now follows from the observation that if D is any effective divisor on C, and if Δ is the divisor of base-points of $|D|$, then the injectivity of μ_{0} for $\mathcal{O}_{C}(D-\Delta)$ implies the injectivity of μ_{0} for $\mathcal{O}_{C}(D)$.

Remark. It is not generally the case that Petri's condition holds for all smooth curves in $\left|C_{0}\right|$. Furthermore, one cannot avoid the hypothesis on $\left|C_{0}\right|$: e.g. for $n \geqslant 2$ the general member of $\left|n \cdot C_{0}\right|$ does not satisfy Petri. Similarly one can not expect to weaken too greatly the hypothesis that X be a $K 3$, since for instance the theorem already fails for the general surface of degree $\geqslant 5$ in \mathbf{P}^{3}.

References

[1] E. Arbarello, M. Cornalba, P. Griffiths \& J. Harris, Geometry of algebraic curves, Volume 1, Springer, Berlin, 1985.
[2] D. Eisenbud \& J. Harris, A simpler proof of the Gieseker-Petri theorem on special divisors, Invent. Math. 74 (1983) 269-280.
[3] _ On the Brill-Noether theorem, in Algebraic Geometry-Open Problems, Lecture Notes in Math., Vol. 997, Springer, Berlin, 1983, 131-137.
[4] . Limit linear series: basic theory, to appear.
[5] D. Gieseker, Stable curves and special divisors: Petri's conjecture, Invent. Math. 66 (1982) 251-275.
[6] M. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geometry 19 (1984) 125-171.
[7] P. Griffiths \& J. Harris, The dimension of the variety of special linear systems on a general curve, Duke Math. J. 47 (1980) 233-272.
[8] G. Kempf, Schubert methods with an application to algebraic curves, Publ. Math. Centrum, Amsterdam, 1972.
[9] S. Kleiman \& D. Laksov, On the existence of special divisors, Amer. J. Math. 94 (1972) 431-436.
[10] S. Mukai, Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. Math. 77 (1984) 101-116.
[11] D. Mumford, Lectures on curves on an algebraic surface, Annals of Math. Studies, No. 59, Princeton University Press, Princeton, NJ, 1966.
[12] C. Okonek, M. Schneider \& H. Spindler, Vector bundles on complex projective spaces, Birkhauser, Basel, 1980.
[13] M. Reid, Special linear systems on curves lying on a K-3 surface, J. London Math. Soc. 13 (1976) 454-458.
[14] F. Serrano-Garcia, Surfaces having a hyperplane section with a special pencil, Thesis (Brandeis), 1985.

University of California, Los Angeles

[^0]: Received January 14, 1986. This work was partially supported by a Sloan Fellowship and National Science Foundation Grant DMS 84-05304.

