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To Professor J. Eells on his sixtieth birthday

Introduction

A. Background. In [17], following work of A. M. Din and W. J. Zakrzewski
[9] and V. Glaser and R. Stora [20], J. Eells and the second author described, in
terms of holomorphic maps, all harmonic maps (or, equivalently, minimal
branched immersions) of the Riemann sphere S2 to a complex projective space
CP" and all harmonic maps from a two-torus T2 to CPn of nonzero degree.
(For the S2 case see also D. Burns [3], and for a moving frames interpretation,
S.-S. Chern and J. Wolfson [7], [32].) The harmonic maps were obtained by
successive differentiations of a holomorphic map; this process gave all harmonic
maps from any Riemannn surface to CPn satisfying a certain "isotropy"
property of orthogonality of iterated (1,0) and (0,1) derivatives. The vanishing
of a sequence of holomorphic differentials (cf. [34]) then guaranteed isotropy
in the S2 and T2 cases showing that all harmonic maps had been obtained.

Regarding CPn as the complex Grassmannian Gλ w + 1 of (complex) 1-planes
in Euclidean (n + l)-space C + 1 , it was natural to try to extend these results to
give a description of all harmonic maps from S2 to a complex Grassmannian
in terms of "holomorphic data". In [19] S. Erdem and the second author
showed how to construct all harmonic maps from any Riemann surface to a
complex Grassmannian Gkn which satisfy a "strong isotropy" property,
however, for k > 1, this did not give all harmonic maps from the Riemann
sphere S2 to Gk n (for further developments and related work see [10], [18],
[21]). In [25] J. Ramanthan succeeded in describing all harmonic maps from
the Riemann sphere to G2 4 in terms of " holomorphic data" by which we shall
henceforth mean holomorphic maps into a Grassmannian and holomorphic
sections of fibre bundles over the domain. A. R. Aithal then dealt with the case
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G25 [2] and also gave a description of certain harmonic maps from S2 to a
quaternionic projective space HP" [1]. The first author [4] gave a twistor
interpretation of Ramanathan's result and a description of all harmonic maps
from S2 to a complex Grassmannian in terms of maps into a twistor bundle Z
over Gk n which are holomorphic with respect to a certain nonintegrable
complex structure on Z. (For other twistor space constructions of harmonic
maps see [5], [14], [15], [26], [29], [30].)

It was to try to understand this description in more concrete terms that the
present work was started in June 1984. Then in a lecture [33] J. Wolfson
outlined his work with S.-S. Chern on the construction of all harmonic maps of
the Riemann sphere into complex Grassmannians G2n from holomorphic data
(his description was confined by the time constraint to G26), an announcement
by Chern and Wolfson of the case G2n (n arbitrary) appears in [8].

B. Results. We develop a technique of analyzing harmonic maps from a
Riemann surface into a complex Grassmannian using "diagrams" which
establishes several results, firstly a proof of the result above of Chern and
Wolfson describing all harmonic maps from the Riemann sphere to G2n in
terms of holomorphic data (Theorem 3.3). This theorem says that any harmonic
map <j>: S2 -> G2n can be obtained from a harmonic map φ0: S2 -> G2n of
simple type describable in terms of holomorphic maps (in fact, with φ0 or <J>Q

strongly isotropic) by a finite number of "replacements". A replacement
consists of replacing a holomorphic part of the map by its image under a
differentiation; the choice of such a holomorphic part is equivalent to the
choice of a holomorphic section of a CP1 bundle over S2. Thus, as in
Chern-Wolfson [8], any harmonic map is determined by a collection of
holomorphic maps and holomorphic sections of CP1 bundles. Secondly we
give a (rather more complicated) description in the same spirit of all harmonic
maps from the Riemann sphere into Gkn (k = 3,4,5) (Theorem 4.2). Thirdly,
we give some results involving degree including a simple description of all
harmonic maps of degree 0 or ±1 from S2 to G24 (Theorem 5.11) and of all
"inclusive" [14], [29] harmonic maps from S2 to G2n and T2 to G2n of odd
degree leading to a slightly more explicit version (Theorem 5.8) of a result of
Aithal [1] on harmonic maps into quaternionic projective space; also some
extensions of the results of Ramanathan [25] and Aithal to Riemann surfaces
other than S2 (Theorems 5.10 and 5.15, and Corollary 5.16).

C. Methods. The main technique is to use a "diagram" which is a directed
graph showing the relationships under differentiations of various subbundles
representing the original map of a Riemann surface into a Grassmannian and
related maps (see §1). The use of diagrams was suggested to us by S. Salamon
(cf. [29], [30]); we provide some vital new ingredients including a criterion for
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holomorphicity of the edges of the graph (Proposition 1.5) which enables us to
construct holomorphic differentials very simply by finding suitable circuits.
The vanishing of any holomorphic differential on the Riemann sphere then
allows us to "improve" an arbitrary harmonic map by successively replacing a
suitable holomorphic part of it by its image under a differentiation until we
reach a harmonic map of simple type describable in terms of holomorphic
data. The procedure can then be reversed to obtain an arbitrary harmonic map
from one of this simple type by successive replacements leading to Theorems
3.3 and 4.2. The results of §5 also employ the diagram technique but now use
degree conditions to establish vanishing of holomorphic differentials. It is
hoped that our methods will prove useful in the further study of harmonic
maps into a complex Grassmannian.

D. Acknowledgments. We should like to thank J. Ramanathan, A. R.
Aithal and J. Wolfson for informing us of their work, J. Eells and J. Rawnsley
for comments on this work, and, especially, S. Salamon for suggesting that his
diagrams could be useful in this work and pointing out a correction to
Proposition 1.6.

Lastly, we mention some recent work of K. Uhlenbeck [31] discussing
harmonic maps into complex Grassmannians and the unitary group. Here
harmonic maps into the unitary group are described in terms of holomorphic
data in a way related to this paper.

0. Preliminaries

A. Let φ: (M, g) -> (N,h) be a smooth map of Riemannian manifolds.
The energy of φ over a compact domain D of M is defined by

(1) E(φ; D) = \( Traceφ*hdv2,
JD

 8

where dυg is the volume element on (M, g).
A map φ: (M, g) -+ (N, h) is harmonic if, for each compact D c M, φ

extremizes the energy E(φ\ D) with respect to all variations supported in D.
Then φ is harmonic iff it satisfies the associated Euler-Lagrange equations

τφ = Tracevdφ = 0,

where V denotes the connection on T*M Θ φ~ιTN induced by the Levi-Civita
connections on M and N respectively. The (nonlinear) differential operator r
is called the tension field. (For information on harmonic maps see [12], [13].)

Now suppose that M is a Riemann surface with isothermal coordinate
(U, z). In this case the tension field of φ: M -* N is given on t/, up to a
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ccnformal factor, by

(2) (Φ-

Further, if (N, h) is an almost complex manifold, the type decomposition of

TCN induces a decomposition of the differential of φ:

(3) dφ = 3(1<0)φ + 3 ( ( U ) φ,

where 3(1<0)φ e C™(T£M β φ-ιT(h0)N) and 3 ( α i ) φ e C°°(T*M <8> φ-ιT{0Λ)N).

Proposition 0.1. Le/ φ: (M, g) -> (JV, A) fee a smooth map of a Riemann

surface into a Kάhler manifold. Then φ is harmonic if and only if

(4) {φ-WΆ%)d™φ(d/dz) = 0,

// and only if

(4a) (φ-V 8 ' v

/ 8 z)θ< 1 0)φ(3/9f) - 0.

Proof. If φ is harmonic, (4) and (4a) follow immediately from (2) since the

Kahler condition implies that φ~ιX7N preserves the type decomposition of

For the converse: (4) or (4a) implies that τ^ 1 0 ) = 0 whence τφ vanishes since

it is real.

Remark. The Kahler condition on N can be considerably relaxed (see [24]).

B. Let Gkn denote the Grassmannian of complex /c-planes in C". Gkn is a

Kahler manifold (in fact it is a Hermitian symmetric space). Let T -> Gkn

denote the tautological subbundle of Gk n X C" whose fibre at W e Gk n is W

itself.

As is well known, there is a natural isomorphism h: T(h0)Gkn -> L(Γ, TL)

given by

(5) Λ(Z)σ = 77Γχ(Z σ)

for σ a local section of T and Z e T(h0)Gkn. Here 77 Γ± denotes orthogonal

projection onto T1. If 77 ( 1 0 )GA : M is equipped with the Levi-Civita connection

and L(Γ, Γ -1) with the connection induced by the flat connection on Gk n X Cw,

then h is connection-preserving.

For more details on the geometry of Gk%n, see the following section.

1. Subbundles of M 2 X C" and diagrams

Let M2 be a Riemann surface.

A. We identify a smooth map φ: M 2 -> G* M with a subbundle φ of the

trivial bundle C w = M 2 x C M o f rank k which has fibre at x e M given by
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φx = Φ(x). Thus φ = φ~ιT. Conversely any rank k subbundle of Cπ induces a
map M 2 -> Gkn.

Observe that φ is a holomorphic (resp. antiholomoφhic) subbundle of Cn if
and only if φ: M2 -> Gk n is a holomorphic (resp. antiholomoφhic) map.

Definition. A rank k subbundle φ of Cn is said to be harmonic if φ:
M2 -> Gkn is harmonic.

Any subbundle φ of C" inherits a metric, denoted ( , >φ, and connection,
denoted vφ, from the flat metric ( , > and connection, 3, on Cn. Explicitly,

(*>>w)φ = (v,w), υ,w e φx, JC e Λf;

), Z e

Here πφ: C" -> φ denotes orthogonal projection.
Now let (£/, z) be an isothermal coordinate on M. We denote (V φ ) 9 / 9 z and

(V φ ) 9 / 9 f by Vφ and Vφ', respectively. Similarly, for the connection onC" we
denote 3 9 / θ , , and 39 / 9^ by 3' and 3", respectively.

Note, φ is a holomorphic subbundle if and only if. C°°(φ) is closed under
3".

Important Remark. We shall usually work in an isothermal chart but it
should be noted that all our constructions will be independent of the choice of
such a chart. Indeed, we could work without such a choice but only with a loss
of clarity due to the increased complication of notation.

B. We recall the fundamental theorem of Koszul-Malgrange [23]:
Theorem 1.1. Let E -> M be a complex vector bundle with connection V over

a Riemann surface M. Then there is a unique complex structure on E for which

E -> M is a holomorphic vector bundle and a local C°° section σ is holomorphic if

and only if

V z σ = 0 for all Z e T^l)M.

Remark. If φ is a holomoφhic subbundle of CΛ, then 3" = v φ ' so that the
Koszul-Malgrange complex structure on φ induced by v φ coincides with the
complex structure on φ qua holomoφhic subbundle of C".

Henceforth we equip all subbundles φ of C" with the complex structure
induced by v φ via Theorem 1.1. By the above remark this choice of complex
structure is unambiguous.

Now let A: φ -> ψ be a vector bundle moφhism. Observe that A is a
holomoφhic section of L(φ, ψ) if and only if A ° vφ" = Vψ" ° A for all choices
of isothermal coordinate on M.

We now collect together some useful properties of sections of L(φ, ψ), the
proofs of which are left as an (easy!) exercise for the reader.
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Proposition 1.2. Let A: φ -» ψ be a section of L(φ, ψ).

(i) // A is holomorphic and a c φ is a holomorphic subbundle, then A\a\

a -» ψ is holomorphic.

(ii) Let β c ψ be an antiholomorphic subbundle of ψ with π: ψ -> β denoting

orthogonal projection on β. If A is holomorphic, then π ° A: φ ^> β is holomor-

phic.

(iii) Let γ c φ be a subbundle with γ / c keτAx for all x e M. Then A is

holomorphic if and only if A\y: γ -> ψ is holomorphic.

(iv) Lei δ a ψ be a subbundle of ψ containing the image of each Ax, x e M.

// y4 w holomorphic, then A: φ -> δ w holomorphic. Conversely, if δ is a

holomorphic subbundle of ψ αwJ v4: φ ^> δ is holomorphic, then A is holomor-

phic.

C. Let φ, ψ be mutually orthogonal subbundles of C". We define the

3'-second fundamental form of φ in φ θ ψ as the (locally defined) vector

bundle morphism A'φ^: φ -> ψ given by

Thus, if, for subbundles α c jδ c C", πβ a denotes the orthogonal projection

from β to a, we have

Similarly, we define the 3"-second fundamental form of φ in φ θ ψ, ^4φϊψ:

φ -> ψ, by

Observe that A'φ φ is the negative of the adjoint of A'^Λ viz:

) ( ) fOΓϋ (Ξφχ,W<Ξ ψχ, X G M.

Remark. Of course, A'φ^ and A^^ are strictly only vector bundle mor-

phisms φ\U -> ψ|ί/ for some isothermal chart (ί/, z). Globally, they give rise to

L(φ, ψ)-valued 1-forms, however, in keeping with our policy of working in an

isothermal chart we will usually view these second fundamental forms as vector

bundle morphisms.

Of particular importance are the second fundamental forms of φ in Cn:
A'o= A*^ :t^t^ AΦ = Λ V : Φ ^ Φ X ,"

which, via the isomorphism of Tih0)Gkn and L(Γ, T1) of §0.(B), represent the

partial derivatives 3 ( 1 O )φ(3/3z) and 3 ( 1 O )φ(3/3z), respectively, of φ: M2 ->

Gk n. (See the proof of the following lemma.)

Lemma 1.3. Let φ: M2 -> Gkn be a smooth map.

(a) φ is holomorphic (respectively antiholomorphic) if and only if

A'ϊ = 0 (respectively A'φ = o).
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By the above observation, the first condition is equivalent to the vanishing of

(b) φ is harmonic if and only if A'φ. φ-*φL is holomorphic, i.e.,

or equivalently, Aφ: φ -> φ1- is antiholomorphic.

Proof, (a) A% = 0 if and only if θ"C°°(φ) c C°°(φ) or equivalently, φ is a

holomorphic subbundle of Cn.

(b) Recall the isomorphism A: T(mGkn -> L(Γ, 7^) in §0.(B). A pulls back

to a connection preserving isomorphism

and it is clear from formula (5) and the above development that

) = A';.

Then the first part of (b) follows from Proposition 0.1 since the holomorphicity

of A'φ is equivalent to the vanishing of V "(A'φ)9 where V is the connection on

L(φ,φ±). The second part follows similarly.

Remark. Since -Aφ± is the adjoint of A'φ and therefore antiholomorphic if

A'φ is holomorphic, we see that φ is harmonic if and only iϊ φx is harmonic. Of

course, this fact is true for any domain since the map W •-> W^ is an isometry
Gk,n ~* Gn-k,n'

D. Now let φv ,φs be a set of mutually orthogonal subbundles of Cn

whose sum is Cn. We indicate the situation thus: Cn = φx(±) © φ s .

Denote the θ'-second fundamental form of φi in φi θ φj, Aφ φ: φi -> φj, by

We call the collection of subbundles φ,., 1 < / < s, and second fundamental

forms A'jj, 1 < i Φ j < 5, a diagram {φ/5 ^ί, y}.

We represent such a diagram by a directed graph with vertices φv , φs and

for each ordered pair (/, j) an edge from φt to φ̂  representing A'Uj. The

absence of a given edge in the graph will indicate the vanishing of the

corresponding second fundamental form.

Remarks, (i) The use of directed graphs in this context was suggested to us

by S. Salamon (cf. [29], [30]).

(ii) The 5-tuple (φ x , , φs) may be thought of as a map into a flag manifold,

Φ: M2 -> F. If there is at most one edge joining each pair of vertices in the

corresponding graph, then Φ is holomorphic with respect to some almost

complex structure on F. For the relationship between almost complex struc-

tures on flag manifolds and harmonic maps into Gkn see [4].
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Convention. Henceforth we shall use the term diagram to mean either the

collection (φ,, A\ y} or a directed graph representing it.

We can use the diagram to determine the properties of various subbundles.

For example:

Proposition 1.4. Given a diagram (φ,, A\j\,

(a) φj is holomorphic if and only if there are no edges entering φz, i.e., AJJ = 0

for all i Φ j .

(b) φj is antiholomorphic if and only if there are no edges leaving φf , i.e.,

A'jj = 0 for all i Φ j .

Proof, (b) A'φ =ΣiφjA'ij whence the proposition is immediate from

Proposition 1.3(a)

(a) Aj , = 0 if and only if A"%j = 0 and A'£ = ΣiΦJA'/j whence the result

follows from Proposition 1.3(a). q.e.d.

It will be of great importance in the sequel to be able to detect whether a

given θ'-second fundamental form A\j. φt -> φj is holomoφhic. For this, a

useful criterion is given by

Proposition 1.5. Given a diagram (φ ; , A\ j), A'jf. φt -> φj is holomorphic if

the diagram contains no configurations of the following forms:

(iii)

Proof. Let TΓ,: C" -> φ7 denote projection onto φh 1 < / < A:. We have

WC00^) c C^iΦi + Σi_iΦ, ,)> where j £ {il9- -,it} since there is no config-

uration of type (iii).

Further B'C 0 0 ^, ) c C^iφf) since there are no configurations of type (ii).

Thus

Similarly

whence

and A]j is holomoφhic. q.e.d.
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As an application of Proposition 1.5 we give a sufficient condition for a
vertex to be harmonic. (We thank S. Salamon for correcting our original
version of this.)

Proposition 1.6. Given a diagram (φ,, A] j), φi is harmonic if there are no
configurations in the diagram of the form:

k

j

Proof. Put α = E{^: A\} # 0} and β = ax Πφ± . Then Λ'φi β = 0 by
definition of α and /?, A'aφi = 0 since there are no configurations of type (i)
and A'fi a = 0 since there are no configurations of type (ii). Thus we have a
diagram

from which we see that α is a holomorphic subbundle of φ± and, from
Proposition 1.5, A'φ a is holomorphic. It then follows from Proposition 1.2 that
A'φ is holomorphic, since Im A'φ c a and thus φf is harmonic.

Examples, (i) A θ'-pair (F, X) in the sense of Erdem-Wood [19] is a pair of
holomorphic subbundles of C" such that (ϊ)V<z X and (ii) 3rC°°(F) c C°°(X).
It is easy to see that the decomposition C" = F © V±Γ)X(±)X± has diagram

V V±ΠX X1

and from Proposition 1.6 we see that V± C\X is harmonic. Thus we recover the
result of Erdem-Wood that for any 3' pair (F, X), V1 CλX defines a harmonic
map.

Conversely, given a diagram of the form

Φ2

it is clear from Proposition 1.4 and the defintions that (φ l 5 ή>^) is a θ'-pair.
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(ii) Consider the diagram

It is immediate from Proposition 1.6 that all φi are harmonic. Such diagrams

correspond to maps into the flag manifold

U{rx) X U{r2) X U(n - rx- r2) '

Φ = (Φo»Φi'Φ2): M2 -> F which are holomoφhic with respect to the unique

(up to orientation) nonintegrable almost complex structure on F. In this

context, the vanishing of one of the three edges corresponds to the horizontal-

ity of Φ with respect to one of the homogeneous fibrations of F onto Grχ „,

For extensions of this result and an interpretation in the twistor context see

Burstall and Eells-Salamon [4], [15].

E. Recall that the second fundamental forms Aφ^: φ -> ψ were defined

with respect to an isothermal chart. However, like all constructions in this

paper, there is a corresponding global construction. In fact, consider the

globally defined section s/^ of T£0)M ® L(φ,ψ) given by

Clearly si^ = dz ® A'φxl, and so s/^ is holomorphic if and only if each A'φ^

is.

The following lemma follows immediately from Leibniz' rule:

Lemma 1.7. Let stf, 38 be holomorphic sections of ®kT^0)M ® L(E, F\

®ιT{?0)M ® L(F,G), respectively, where E, F, G are holomorphic vector

bundles. Then composition defines a holomorphic section 38 ° J / of ® k+iT£0)M

<8> L(E,G).

The following proposition, known to several authors, first appeared in

Ramanathan [25].

Proposition 1.8. Let S2 denote the Riemann sphere and let s/ denote a

holomorphic section of ® kT£0)S
2 ® L ( £ , E), where E -* S2 is a holomorphic

vector bundle. Then writing s/ as dzk ® A, A is nilpotent on each fibre and in

particular cannot be an isomorphism on any fibre.
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Proof. The coefficients of the characteristic polynomial of A give rise to

globally defined holomorphic differentials on S2. Since S2 admits no nonzero

holomorphic differentials it follows that A is nilpotent. q.e.d.

Applying Propositions 1.7 and 1.8 to θ'-second fundamental forms we have

Proposition 1.9. Let {φ,, Ai%j} be a diagram. Suppose there exist

{/!,- -,ik} such that A'^ -,A'ikjx are holomorphic. {We say φ ^ , φ i y φiχ

form a holomorphic circuit.) Then their composition gives rise to a holomorphic

section of <g> % * 0 ) M β L(φiχ, φh).

Further if M = S2

9 then A'ikJι ° • o Af

iχj2 is nilpotent and in particular is not

an isomorphism on any fibre.

Corollary 1.10. If M = S2 and dimφ, = 1 for allj, then at least one A] ,

must vanish.

Example (cf. [25]). Let φ: S2 -> Grn be harmonic. Then the map A'φ± o A'φ:

φ -> φ is nilpotent.

Example. Let M = S2 and consider the diagram:

From Proposition 1.5 we see that φ 0 , φl9 φ 2 , φ 0 is a holomorphic circuit, so if

each φ/ has rank one we conclude from the corollary that the diagram reduces

to

and so one of the φ, is holomorphic and one antiholomorphic. We will extend

this example at the end of the following section.

2. New harmonic maps from old

In this section we exhibit a technique, 'replacement', for producing new

harmonic maps from a given harmonic map.

A.

Lemma 2.1. Let C" = aQβQy and suppose that A'aβ: a -> β and A'βy:

β -> γ both vanish. Then a is harmonic if and only if γ is harmonic.
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Remark. The diagram for this situation is:

Proof. From Lemma 1.3(b) a is harmonic if and only if A'a is holomorphic.

Since γ is a holomorphic subbundle of aL and lmA'a c γ, from Proposition

1.2(iv) we have A'a is holomoφhic if and only if A'ay is holomorphic.

Since β c kerA'a+β we have from Proposition 1.2(iii) that A'a+β = A'a+βy is

holomoφhic if and only if A'a+β y\a = A'a γ is holomorphic. Thus a is harmonic

if and only if a + β is harmonic if and only if (a + β)± = γ is harmonic,

q.e.d.

To construct new harmonic maps from old, we need the following

Proposition 2.2 (cf. Wu [35]). "Filling out zeros." Let E, F be holomorphic

vector bundles over M2 and s/= A Θ dzk a holomorphic section of ® kT(*0)M

® L{E, F). Let t = m2ύixeM(άimlmAx). Then there are unique holomorphic

subbundles a and βofE and F respectively with rank a = rank E — /, rank /} = /

such that

x 2 ^I
a τ A ) with equality for all x such that dim Im Ax = t.
Px £= l m Λx j

Remark. As the proof will show, the set { x: dim Im Ax < t} is isolated.

Proof. Observe that Λ'Λ is a holomoφhic local section of L(AΈ, A'F) and

thus has isolated zeros or vanishes identically. Thus by a simple connectedness

argument we have that dim Im Ax = t off an isolated set of points.

Now let /?!, , pr be a local holomoφhic basis for E. Then each A(pt) is a

local holomoφhic section of F and for each {/1, , / / } c { V , r j ,

Λ' / = 1 A(p{ ) is a local holomoφhic section of Λ'F. Since Λ'Λ has only isolated

zeros, there exists {i v , /,} such that Λy=1 Λ(/?,-.) has only isolated zeros.

Let z 0 be such a zero. Then we have

where W is a local holomoφhic section of Λ'F such that W(z0) Φ 0 and W(z)

is decomposible for all z near z 0.
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Thus W defines a local rank t holomoφhic subbundle which coincides with
\mA off z0. In this way 1mA extends to a well-defined holomorphic sub-
bundle^ of F. a is constructed similarly.

Remark. Of course, a similar result holds with 'holomorphic' replaced by
'antiholomorphic' throughout.

Notation. Givens/= A <8> dzk as in (2.2) we shall denote by kerΛ and \mA
the holomorphic subbundles constructed in (2.2) that coincide with ker̂ 4 and
Im A almost everywhere.

B. Now let φ: M2 -> Gkn be harmonic. We apply (2.2) to j / φ ' = dz Θ A'φ
to get Im^4φ, a holomoφhic subbundle of φ1-. We call ImΛψ the d'-Gauss
bundle of φ and denote it by G'(φ). (Recall that G'(φ) coincides a.e. with the
image of 3φ(1-O)(3/3z), thought of as a local section of L(φ, φ"1).)

Similarly we call ]mAφ the 3"-Gauss bundle of φ and denote it by G"(φ).
G"(φ) is an antiholomorphic subbundle of φ1.

Proposition 2.3. // φ: M 2 -> G^ „ w harmonic, then the Gauss bundles
G\φ) and G"(φ) are harmonic. Further G"(G\φ)) c φ and G\G"(φ)) c φ

Proo/. Let £ = (φ 4- G\φ)) ^ . Since G'(φ) is a holomoφhic subbundle of
φ x = G'(φ) + Λwe have A'^^)R = 0 whence ^^^(ψ) vanishes. Further, since
imA'ψ c G'(φ) by definition, 4̂'φ Λ vanishes so that the result follows at once
from Lemma 2.1. Lastly, from the vanishing of Af^^)R, we see that Im^4^ (φ)

c φ whence G"(G'(φ)) c φ.
The proof for G"(φ) is similar, or follows from the above by reversing the

orientation on M2.
Remark. It is easily seen that G"(G'(φ)) = φ if and only if A\ has

maximal rank off an isolated set of points. Similarly G'{G"(φ)) = φ if and
only if Aφ has maximal rank. We say that φ is a 3'- (resp. d")-irreducible if
and only if A'φ (resp. Aφ) has maximal rank (cf. §3).

C. Loosely speaking, our technique for producing new harmonic maps is
the following: Let φ be harmonic and a c φ a suitable holomoφhic sub-
bundle of φ.

We then construct a new harmonic map φ given by

φ=(φΓ)a±)+ Im(Λ'φ |α).

Thus we 'replace a by its 3'-Gauss image'. We call this procedure 'forward
replacement of α\ There is of course a dual notion of backward replacement
of an antiholomoφhic subbundle of φ by its 3 "-Gauss image.

We formalise these notions in the next
Theorem 2.4. Let φ be a harmonic subbundle of Cn.
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(i) Let a be a holomorphic subbundle of φ such that a c

denoting Im(^4^|a) by Gφ(a), the bundle φ given by

x ° Aφ. Then,

is harmonic.

Dually:

(ii) Let β be an antiholomorphic subbundle of φ such that β c ker^'± ° Aφ.

Then, denoting lm(Aφ\β) by Gφ(β\ the bundle φ given by

is harmonic.

.In case (i) we say that φ is obtained from φ by forward replacement of a and

in case (ii) by backward replacement of β.

Proof. The proof of (ii) will follow from the proof of (i) by reversing the

orientation on M2.

For (i), let a c φ be a holomorphic subbundle contained in k e r ^ ± ° A'φ.

First we observe that since A'φ is holomorphic, it follows from Proposition

1.2(i) that A'aφ± = A'φ\a: a-*^ is holomorphic so that we may apply

Proposition 2.2 to construct G^(a) which is holomorphic in φ-1. Clearly we

have Gψ(α) c G'(φ) and by hypothesis Af

φ±(G^(a)) = 0.

Putting R = (φ + G'(φ))1 we summarize the situation in the following

diagram for C" = aQ(φ Π a±)QG;(a)Q(G;(a)± ΠG'(φ))QR.

(1)

G'Λa)

G'(Φ)

Here A'a±nφa, ^ ' C ; ( α ) n C ' ( φ ) i c ; ( f t ) vanish since α, Gφ(a) are holomorphic

subbundles of φ, G'(φ) respectively, A'σ{a)φ vanishes since A'G,{a)φ = Aφ±

|Gψ(α), A'φ R vanishes since lmAφ c G'{φ) ± R and A'Rσ{φ) vanishes since

G\φ) is holomoφhic in φ- 1.
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Now put R1 = (φ + Gφ(a))x . Then by inspection of the above diagram (1)
we see that the diagram for C" = φQGφ(a)QR.i is

(2)

whence Rλ is harmonic by Lemma 2.1.
Now put φ = φ Π a1 + Gφ(a). Then, again by inspection of (1) we see that

the diagram for C" = Λ j Q φ Q α is

whence again by Lemma 2.1 φ is harmonic since Rx is.
Remarks, (a) Recall that a map φ: (M, g) -» (JV, h) of Riemannian mani-

folds is weakly conformal if φ*Λ = λg, where λ is a nonnegative function on
M. In case of a map φ: M 2 -> Gk n this condition is equivalent to

We say that φ is strongly conformal if the 9'- and 3 "-Gauss bundles are
orthogonal:

G'(φ) ± G"(φ),
or equivalently if

Thus strong conformality implies weak conformality and it is clear that the
notions coincide if k = 1.

Clearly, if φ is strongly conformal, we may forward replace any holomor-
phic subbundle of φ to obtain a new harmonic map. Similarly backward
replacement of any antiholomorphic subbundle also produces a harmonic map.

(b) If M2 = S2, from Proposition 1.9 we have that A'φ± ° A'φ is nilpotent and
thus has nonzero kernel. This ensures the existence of holomorphic subbundles
of φ to which foward replacement can be applied.

(c) With some more work Theorem 2.4 can be improved as follows: If a is a
holomorphic subbundle of φ such that A'φ± ° A'φ(a) c α, then forward replace-
ment of a yields a harmonic map. Details will appear elsewhere.
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Forward and backward replacement are generically inverse to each other as

the following proposition demonstrates:

Proposition 2.5. Let φ be harmonic and let a c k e r ^ ± ° A'φ be a holomor-

phic subbundle of φ. Let φ = a± Πφ 4- Gφ(a) be obtained from φ by forward

replacement of a. Then, Gφ{ά) is an antiholomorphic subbundle of φ, Gφ(a) c

k e r ^ ' ± o A'£ and if rankα = rankG^(a), then φ is obtained from φ by back-

ward replacement ofGφ{a\ i.e.

The corresponding statement for backward replacement of β c φ holds also.

Proof. We see from diagram (1) in the proof of Theorem 2.4 that

A'G'(a)a± n φ vanishes so that G'φ{a) is an antiholomorphic subbundle of φ.

Further A%\G^a) = A^{a)a + Af^(a)Ri and A'^a)Ri vanishes since from

diagram (2) its adjoint -A'R^G>{a) vanishes. Thus A%\Gφ(a) c a. Now^4^±|α =

A'άφ = A"aaχ nφ + AaG'(a) and both these last summands vanish since their

adjoints do by inspection of diagram (1). Thus we conclude that Gφ(a) c

kerA'£± o A'~φ so that Gφ(a) is a candidate for backwards replacement. The rank

assumption ensures that the 9"-Gauss image of Gφ(a) is a and since G^a)1

Πφ = a1 Πφ we see that this replacement produces φ.

Note. The rank condition on a is always satisfied if φ is 3'-irreducible.

D. We conclude this section with a short proof of the classification

theorem for harmonic maps from S 2 -> CP"~ι (see [3], [9], [17], [20]) using the

methods of §§1 and 2.

For convenience, we reverse the orientation of S2 at the start of the proof.

This interchanges holomorphic and antiholomorphic quantities.

Let φ: S2 -> CPn'1 = Gln be a harmonic map. Then A'φ± ° A\\ φ -> φ is

nilpotent and since rankφ = 1 we have A'φχ ° A'φ = 0 and thus G"(φ) ± G'(φ).

(This is nothing more than the well-known fact that any harmonic map of S2

is weakly conformal; cf. Remark (a) following Theorem 2.4.)

Thus, putting R = (φ 4- G'(φ)) -1 we have a diagram:



THE CONSTRUCTION OF HARMONIC MAPS 271

Clearly we have a holomorphic circuit and so if no edge vanishes we have
Im ΛC'<Φ),Λ c kerΛ'Λ φ. Further since A'σw has image contained in Ry we see
that G'(G'(φ)) = G(2)(φ) is holomoφhic in £ from Proposition 1.2 and is
contained in kerA'R φ. Thus we have a diagram:

G'(φ)

If no edge vanishes we may repeat the procedure until we have a diagram

where all vertices have rank one and thus an edge must vanish. Thus for some
r < n - 1 we have a diagram

Φ G'(φ)

(where R = 0 if r = n - 1). Thus ψ = G(r)(Φ) is antiholomorphic and φ =
= G"(G" (G(r)(Φ))) or, restoring the orientation on S2, φ =

where ψ: 5 2 -> CPn~ι is a holomoφhic map. Conversely, any such
is harmonic from Proposition 2.3. It is also easy to see from G"(G'(φ))

= φ that the correspondence (ψ, r) ~> G ( r )(ψ) is bijective, so adding a fullness
ingredient gives

Theorem 2.6 (Eells-Wood [17], c/. Din-Zakrzewski [9], Glaser-Stora [20],
[3]). Γλere w ύf bijective correspondence between pairs (ψ,r) o//w//

holomorphic maps ψ: 5 2 -> CP " ' 1
integers r, 0 < r < Λ - 1, /w//
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harmonic maps φ: S2 -> CPn~ι given by

3. Construction of harmonic maps S2 -* G2n

In this section we show that the techniques of forward and backward

replacement can be used to construct all harmonic maps S2 -> G2n from a

very small class of harmonic maps essentially composed of holomorphic and

antiholomorphic maps into G2 „ or CPn~ι.

A. Let us first introduce some terminology.

Definition. Let φ: M2 -> Gkn be harmonic. Denote by G{r\φ) the rth

d'-Gauss bundle of φ defined by

G^(φ) = G'(φ), G<'+1>(φ) = C'(G<"(Φ))

Similarly we define the rth 3"-Gauss bundle G('r)(φ) by

For convenience put G ( 0 )(φ) = φ. φ is said to have isotropy order > r if

φ _L G(ι)(φ) for 1 < / < r. Of course, any harmonic map has isotropy order ^

ϊ.
Lemma 3.1. Ifφ: M2 -> G^ „ has isotropy order > r, /Λe«

G ( / ) ( φ ) ± G ( / ) (Φ) for alii, j such that 0 < \i - j \ < r.

Proof. The proof is a straightforward but lengthy induction using

c C°°{G

which follows from Proposition 2.3, and is left to the reader.

Definition. A harmonic map φ: M2 -> Gk n is said to be d'-irreducible if

rankφ = rank G'(φ) and d'-reducible otherwise.

Similarly φ is d"-irreducible if rankφ = rankG"(φ) and d"-reducible other-

wise.

Clearly φ is 3'- (resp. 3"-) irreducible if and only if A'φ (resp. Aφ) has

maximal rank off an isolated set of points.

Lemma 3.2. Let φ: M2 -» G^ „ Λαt e isotropy order > r. If r > n, then for

any i, β/ fcα^ o«^ of Gυ\φ\ G(/ + 1 ) (φ), , G ( / + r ) ( Φ ) ^ " ^ ϋflnwΛ. In particu-

lar there is a number r0 such that if r > r0, /Λe« flί fefl.sί o«^ of φ, , G ^ ' ^ ί φ )

w df-reducible.

Proof. By Lemma 3.1, for any /, the Gauss bundles G ( / )(φ), , G ( / + r ) ( φ )

are mutually orthogonal and thus the sum of their ranks cannot exceed rank

Cn = n. q.e.d.
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Now let Λ: M2 -> C P " " 1 be a holomorphic map. From §2D we have a
diagram

G'(h)

and we see that φ = G(r)(h) Θ G(r+1)(/z) is a harmonic bundle. In the case
that neither factor vanishes we have a harmonic map φ: M2 -> G 2 w. We say
that φ is a Frenet pair associated to h. Note that such a map is strongly
isotropic in the sense of Erdem-Wood [19] (i.e., φ has isotropy order ^ r for
all r).

Compare with [10]. Further, suppose that Λ, g: M 2 -» C P " " 1 are holomor-
phic and antiholomorphic respectively and that G\h) ± g, or equivalently
G"(g) _L h. Then we have a diagram

hV

so that ( g θ Λ ) 1 and hence g θ h is harmonic. In fact (/z, g -1) is a 8'-pair (see
§1, examples). We say that φ = g θ h is a mixed pair.

Clearly if φ is a mixed pair, then φx is strongly isotropic and in fact it can
be shown that for φ: M2 -> G2,„, Φ"1 is strongly isotropic if and only if φ is ±
holomorphic or a mixed pair (c.f. §3D).

B. We are now in a position to state our main theorem of this section.
Theorem 3.3. Let φ: S2 -> G2n be a harmonic map. Then there is a

sequence of harmonic maps φo, , φN: S2 -* G2n such that

(i) φ 0 w holomorphic, a Frenet pair associated to a holomorphic map h:

S2 -> C P " " 1 , or α mixed pair.

(ii) φ^ = φ.
(iii) For eαc/z / < ΛΓ, there is a holomorphic line subbundle Li of φ, such that

φ/ + 1 is obtained from φf by forward replacement of L ; or backward replacement

Remarks, (i) Thus to construct any arbitrary harmonic φ: S 2 -> G2n from
the 'holomoφhic data' φ0 involves the choice of a sequence of holomorphic
line subbundles of rank 2 holomoφhic bundles or equivalently, the choice of
holomoφhic sections of CPx-bundles.

(ii) In fact our proof will produce the sequence φN, φN_v- ,φ 0 by suitable
forward and backward replacements.
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C. The proof will proceed in several steps;
First. By forward replacement, if necessary, we produce from ψ a J'

reducible map.
Then. By backward replacement applied to the 3'-reducible map we pro-

duce a Frenet pair.
Holomorphic maps into Gln or nμxed pairs will appear when these proce-

dures degenerate.
Remark. It is an irritating feature of all twistor constructions that to

produce holomorphic data one must work with antiholomorphic second funda-
mental forms Aφ. We remedy this by reversing the orientation of S2 at the
beginning of the proof, working with holomorphic second fundamental forms
and then restoring the original orientation to complete the proof.

Lemma 3.2 shows that if φ: S2 -> Gk n is harmonic and of sufficiently high
isotropy order, then either φ or one of its 3'-Gauss maps is 3'-reducible. The
next proposition shows how forward replacement of a suitable subbundle
increases the isotropy order.

Proposition 3.4. Let φ: S2 -> Gln be harmonic of isotropy order > r (r > 1).
Suppose that φ, G'(φ), ,G ( r )(φ) are all d'-irreducible. Then

(i) The second fundamental form Af

G(r)^ φ is holomorphic.
(ii) Let a denote \mAf

G{r){φ)φ\ then rankα < 1.
(iii) // φ is obtained from φ by forward replacement of a, i.e. φ = α1- Πφ +

Gφ(a), then φ: S2 -> Gln is harmonic of isotropy order > r + 1.
Remarks, (i) If a = 0, φ = φ already has isotropy order > r + 1.
(ii) By Proposition 2.5, if a Φ 0, then we recover φ from φ by backwards

replacement of G^(a) which is an antiholomorphic line subbundle of φ.
Proof. For r = 1, A'G,(φ)φ = A'φ±\G'(φ) which is holomoφhic by Proposi-

tion 1.2(i) since A'φ± is holomorphic. Now A'σ(φ)^ ° Af

φσ{φ): φ-> φ is a
holomoφhic circuit and is therefore not an isomoφhism. Since A'φG,(φ) is an
isomoφhism by hypothesis we have rank a < 1, which establishes (i) and (ii)
for r = 1.

Now for r > 1 we have a diagram

where R = (φ θ 0G ( r )(φ))-L . Note that JR * 0 since G(r\φ) is 3'-
irreducible. By the above, and using Proposition 1.5 for r > 1, we see that the
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inner circuit {φ, ,G(r)(Φ)»Φ} ι s holomorphic with all vertices of rank 2.

Thus by Proposition 1.8, since all ^G ( / )(Φ),C ( < + 1 )(Φ) a r e isomorphisms for 0 < /

< r — 1 we have that lmAG(r)(φ)φ has dimension < 1 and so rankα < 1. This

establishes (i) and (ii).

Now observe that, as already remarked, if a and hence AG(r){φ)φ vanishes,

Im A'G(r){φ) c R whence G(r+1)(φ) ± φ and φ has isotropy order > r + 1.

So assume that rank a = 1. We must check that α is a candidate for forward

replacement, i.e., that a c keτAφ± © A'φ. For r > 1, Aφ± <> vanishes and

there is nothing to prove. For r = 1, since Aφ± o Aφ is nilpotent, we have

(Aφ± o Aφ)
2 = 0 and since a coincides with ImAφ± ° ,4'φ off an isolated set of

points we see that a c keτA'φ± ° Aφ.

Now Aφ G(φ)l« is holomoφhic by Proposition 1.2(i) so let aλ be the

holomoφhic subbundle of G\φ) defined by its image. Similarly, define

α7 c G(i\φ) by

«/_i) = «, for 1

Also, let £ = af ΠG{i)(φ) for 1 < i < r.

By Proposition 1.2, the restrictions of the ^G(/)(Φ),C;('+1)(Φ) a n c ^ (̂7(r)(Φ),Φ t 0

«»«i»' »«r

 a r e holomoφhic and thus we have a holomoφhic circuit

{«.«ir * s « r , « } with all vertices of rank 1, and so the composition vanishes.

Since each ^G ( / )(Φ),G ( '+ 1 )(Φ) ^S a n isomoφhism we conclude that ar

= ker^G ( r )(Φ),φ

Thus we have a diagram

Inspection of the diagram shows that each A'a , 0 < / < r - 1, is

holomoφhic as is and A'aR, by Proposition 1.5. Further A'a R =^ r 0

l«r i s nonzero since G(r)(φ) is 3'-irreducible, so let α r + 1 denote hnA^ R
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which is a holomorphic subbundle of R and let ]8Γ+1 = g ^ Π i . Note that

rank/? r + 1 need not be 1 in general but all other αf , βt have rank 1.

Thus we have:

βo

!±0

where the extreme vertical edges are identified. By inspection and Proposition

1.5 we see that ^ά r + 1,0o is holomorphic and we have a holomorphic circuit

{αo>" " ' α r + i > / * 0 , ,/J r,α 0}, ι ^ e composition of which must vanish. Thus

^αr+i,i80 vanishes since all other edges are nonzero being the restrictions of the

various Λ'G<,)(φ) or the restriction of Λ'G<r)(φ) φ to the complement of its kernel.

Now replace α 0 by its Θ'-Gauss image to obtain φ = β0 + av From the

diagram we see that

and since Λ'αr+1,/j0 = 0 we see that G ( r + 1 ) ( φ ) c βr+ι + α 0 .

Thus G ( / ) (φ) J. φ for 1 < i < r + 1 and so φ has isotropy order > r + 1.

This concludes the proof.

Thus combining Lemma 3.2 and Proposition 3.4 we see that by forward

replacement of line bundles if necessary we arrive at a harmonic map φ which

is 3'-reducible or has a 3 '-reducible ith Gauss bundle for some i. To complete

the first stage of the proof we must show that a Gauss bundle of a harmonic φ

may be obtained from φ by iterated forward replacement of a line subbundle.

Lemma 3.5. Let φ: S2 -> G2n be a harmonic map which is d'-irreducible.

Then there is a holomorphic line subbundle a of φ such that forward replacement

of Qί yields a harmonic bundle φ and forward replacement of α -1 Πφ yields

Remark. If φ has isotropy order > 2 any a will do, otherwise a is given by
φ o A'φ.

Proof. Let a be given by kerΛ'φ± o A\ if A'φ± o A'φ is nonzero and let a be

any holomoφhic line subbundle otherwise. Then, applying the methods of
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Proposition 3.4 we have a diagram

277

where β = a1- Γ)φ, ax = G^(a\ βλ = G^(a)L Γ\G'(φ) and A'βχOL vanishes if φ

has isotropy order ^ 2. We see that β is holomorphic in Φ = β +(*i and

A^(β) c βv Further, Af^(βγ) = 0 so/Γc k e M ^ ° Λ'ψ. Thus/? is a candidate

for forward replacement and since A'β^ is an isomorphism, by θ'-irreducibility

of φ, we see that β -1 Πφ + G^(β) = G'(φ) which concludes the proof.

Now observe that for all the forward replacements considered above we have

rank a — rankG^(a) so that we may apply Proposition 2.5 to reverse the

procedure and conclude

Proposition 3.6. Let φ: S 2 -> G2n be a harmonic map. Then there is a

sequence of harmonic maps φ 0, , φN: S2 -> G2n such that

(i) φ 0 is d'-reducible and is thus antiholomorphic (G'(φ0) = 0) or has rank

G'(Φo) = 1.

(ii) φN = φ.

(iii) For each i < N there is a holomorphic line bundle Lt of φ, such that φ / + 1

is obtained from φ, by backward replacement of L^ Cλφj.

To finish the proof of Theorem 3.2, we must deal with nonantiholomorphic

3'-reducible maps. We distinguish two cases:

(i) We show in Proposition 3.7 that if A'£(ke£A'^) = 0, then φ is, up to a

change of orientation, of the desired form, whereas

(ii) in Proposition 3.8 we show that if A'^kerA'^) Φ 0, a suitable backward

replacement produces a map of increased isotropy order so that by iterating

the procedure we eventually get a map of type (i).

Proposition 3.7. Let φ: S 2 -> G2n be harmonic with G'(φ) of rank 1. //

^'(kerΛ'φ1) = 0, then either (a) there is an antiholomorphic map g: S2 -> CP"~ι

and φ = G(~r)(g) θ G(~r~l)(g) for some integer r > 0, (it can be shown that φ

is a Frenet pair) or (b) there are maps g,h: S2 -> C P " " 1 antiholomorphic and
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holomorphic respectively such that G'{h) 1 g and φ = g θ Λ, i.e. φ /s α mixed

pair.

Proof. A'φ ° A'σ(φ)φ: G'(φ) -> G'(φ) is holomoφhic by Proposition 1.2

and the harmonicity of φ so Λ'φx(G'(φ)) c keτA'φ. Thus denoting ker^4φ by a

and putting ]8 = α 1 Π φ we have a diagram (the edge R -+ β vanishing by

hypothesis; here R = (<^+ G'(φ))-1):

The circuit {a,β,G'(φ),a) is holomoφhic and so at least one edge must

vanish. If A'a β vanishes we have a diagram

R

β G'(φ)

so that β = h, a = g, where Λ, g: S 2 -> CP" ι are holomoφhic and antiholo-

morphic respectively, and G\h) ± g.

Otherwise, since A'βG,{φ) cannot vanish without contradicting rank G'(φ) = 1,

),a = 0 and we have the diagram

β G'(Φ)
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to which the argument of §2D can be applied to conclude that a = G( r ι\g),
β = G{~r)(g) for some antiholomorphic g: S2 -> CPn~ι.

Proposition 3.8. Let φ: S2 -> Gln be harmonic of isotropy order ^ r ^ 1
with rank G ( / ) (φ) = 1, 1 < / < r. Suppose A'^kerA'^) Φ 0 and let a be the
holomorphic subbundle of φ defined by kerΛφ. Then backward replacement of
β = a± Πφ produces a harmonic map φ: S2 -> G2n of isotropy order > r + 1
"and rank<^(/)(φ) = 1,1 < / < r + 1.

Proof. We have the diagram

G\φ)

where the inner circuit is holomorphic from which we conclude that

ImΛ'c<r)(φ) φ c α = kerΛφ since all other edges are isomorphisms. Thus we

have:

We see that A^(β) c R and A^(R) = 0 so that A'^ = 0 whence β
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is a candidate for backward replacement. Thus we have

So putting φ = α + G;'(j8) we see that G'(φ) =/?, G(i)(φ) = G ( / + 1 )(φ) and
the proposition follows.

We now iterate until for some φ, A%(kGr_A'j?~) vanishes (which must happen
to avoid contradicting Lemma 3.2). Observing that all backward replacements
in Proposition 3.8 are invertible by Lemma 3.5 the proof of Theorem 3.3 now
follows by reversing the orientation on S2 (see Remark at the beginning of this
section). Note that the property of being a mixed pair is independent of
orientation, while if a map satisfies conclusion (a) of Proposition 3.7, it is clear
that it is a Frenet pair with respect to the conjugate complex structure on M2.

D. We conclude this section with an application of these ideas to the
construction of strongly isotropic harmonic maps of an arbitrary Riemann
surface into G2 „.

Recall that a map φ: M2 -> Gk n is strongly isotropic if φ has isotropy
order > r for all r. Erdem and Wood showed that all strongly isotropic
harmonic maps arise from θ'-pairs as in §1, i.e., there is a θ'-pair (F, X) such
that φ = Vx Γ\X. However, in case k = 2 we can prove a more delicate result.

Theorem 3.9. Let M2 be a Riemann surface and φ: M2 -> G2n a strongly

isotropic harmonic map. Then there is a sequence of strongly isotropic harmonic

maps φ o , -,φN: M2 -> G2n such that

(i) φ 0 is holomorphic, a Frenet pair associated to a holomorphic curve h:

M2 -* CPn~ι or a mixed pair.

(ii) φN = φ.

(iii) There is a /c, 0 ^ k ^ N, and holomorphic line subbundles L, of φ, for

0 ^ i < k such that φ / + 1 is obtained from φ, by backward replacement of

φ;, 0 < i < k, and for i > k, φi+1 = G\^).
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Thus any strongly isotropic harmonic map is obtained from our 'holomor-
phic data' by choosing holomorphic sections of CP1 bundles and differenti-
ating. Of course, in this context, G'(φj) is obtained from φi by forward
replacement of φ, itself since A'φ± ° A'φ vanishes by strong isotropy.

Proof of Theorem 3.9. The proof is based on observation that for strongly
isotropic maps, the procedures in the proof of Theorem 3.3 do not require the
vanishing of any holomorphic differentials and thus apply to maps of an
arbitrary Riemann surface.

For completeness, we sketch the argument in this case. Let r be the largest
number such that G(r\φ) φ 0, finite by Lemma 3.2. Then putting R =
(Σr

0G
(l)(φ)) -1 and using Lemma 3.1 we have a diagram

R Φ G'(φ)

Let / be the largest number such that rank G{i)(φ) = 2. Then G(i)(φ) is
θ'-reducible and φ = G(-°(G(/)(Φ)) by Proposition 2.3. If / = r, G(i\φ) is
antiholomorphic and a reversal of orientation complete the proof. Otherwise
put G(i)(φ) = φ and let s be the largest number such that G(s\φ) Φ 0. Then
we have a diagram

φ

where rank G(i)(φ) = 1,1 < / < s. Now if A'frkerA'i)± = 0 we put a =
and β = a± Πφ and get a diagram

β

G'(φ)

from which it is clear that φ = a Θ β is either a mixed pair, if A'a β vanishes,
or α, Ŝ are consecutive 3"-Gauss bundles of the antiholomorphic map G(5)(φ)
whence after a change of orientation φ is a Frenet pair.

Lastly, if A'^kerA'j1) Φ 0, then the backward replacement procedures of
Proposition 3.8 can be applied to find a map to which the above argument may
be applied.
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4. Reductibility and harmonic maps of S2 into Gk n, k = 3,4,5

A. Let φ: M2 -> Gkn be a harmonic map. Recall from §3 that φ is

9'-reducible if rank G'(φ) < rankφ or equivalently if kerΛ'φ Φ 0.

The following result shows that 9'-reducible or 9''-reducible harmonic maps

M2 -» Gk „ can be constructed from harmonic maps into Grassmannians

M2 -> Gt^ t < k.

Theorem 4.1 (Reduction theorem). l.(a) Let φ: M2 -> Gkn be harmonic

and ΰ'-reducible. Then there is an integer ί, 0 < t < k — 1, a harmonic map ψ:

Λ/2 -> GUn and a nonzero antiholomorphic subbundle β of (ψ + G'(ψ))-1 such

that φ = ψ®β.

(b) Conversely, given ψ: M 2 —> Gr M harmonic and a nonzero antiholomorphic

subbundle β of (ψ + G'(ψ))"1", ίΛ̂ Λ putting φ = ψ θ ]8 g/ye5 α d'-reducible

harmonic map φ: M 2 -> G^ w, k = t + rank ̂ 8.

2.(a) Lei φ: M 2 -» G^ „ be harmonic and ΰ"-reducible. Then there is an

integer /, 0 < t < k — 1, β harmonic map ψ: M -> G, w α«J α nonzero holomor-

phic subbundle a of (ψ + G"(ψ)) -1 5t/cΛ /Λαr φ = ψ θ α.

(b) G/ϋetf \p: M2 -+ Gtn harmonic and a nonzero holomorphic subbundle a of

(ψ 4- G'Xψ))-1, ίΛe« putting φ = ψ θ α gw&s α Ί$"-reducible harmonic map φ:

Λ/2 -> GA. n, where k = t + rankα.

Proof. 2. will follow from 1. by reversing the orientation.

For l.(a) let β = kerΛ'φ, nonzero by hypothesis and put ψ = /? -1 Πφ. Then

since β is a holomorphic subbundle of φ we have A^β = 0 and since A'φ\β

vanishes by definition we have A'β φ± = 0. Thus we have a diagram

whence ψ is harmonic by Lemma 2.1 since φ-1 is. Further since A^β vanishes

we see that G'(ψ) c φ-1 so that ^ c (ψ + G'(ψ))-1 and since >l^φ A vanishes

we see that β is an antiholomorphic subbundle oϊ β Θφ± and so a fortiori an

antiholomorphic subbundle of (ψ + G'(ψ)) -1 which is contained in /? θ φ - 1 .
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(b) For the converse let ψ: M2 -> Gtn be harmonic and put R =

( ψ θ G ' ( Ψ ) ) 1 . Then as usual we have a diagram:

Now if β is an antiholomorphic subbundle of R we have Aβ β± n R = 0 and

since A'R%σw vanishes we have ARnβ±G,{xί/) = 0. Thus putting φ = ψ Θ β we

have a diagram

whence φ is harmonic by Lemma 2.1 since G'(ψ) is by Proposition 2.3.

Lastly, since Λβ φJ. = Aβ β± n Λ + ^ C / W = 0 we see that β c k e r ^ so that

</> is 3'-reducible.

B. As an application of the Reduction Theorem we show how to construct

all harmonic maps of S2 into Gk „, k = 3,4,5, from harmonic maps of S 2 into

C P " " 1 and G2n which were in turn constructed in §3.

Theorem 4.2. Let φ: S2 ^> Gk n be a harmonic map, k = 3,4,5. Then there

is a sequence of harmonic maps φ 0 , , φN: S2 -> Gkn such that

(i) φ 0 is either holomorphic or there is a harmonic map ψ: S2 -* Gt n,

1 < t < k, and a holomorphic subbundle α o / ( ψ + G ^ ψ ) ) 1 such that φ 0 = ψ

θ a.

(ii) φN = φ.

(iii) For each /, 0 < / < iV, /Λere w α holomorphic subbundle αy o/ φy .ywcΛ /Λαί

φ / + 1 « obtained from φy by forward replacement of a..

Remark. Thus to construct any harmonic map S2 -> GΛ<W, A: = 3,4,5,

from the 'holomorphic data' of §3 involves the choice of a sequence of

holomorphic subbundles (not necessarily of rank one). For simplicity we shall

prove only the case k = 3. The cases k = 4,5 are similar but longer.
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Again the proof will proceed in several steps. As usual we reverse the
orientation of S2 for the duration of the proof so as to be able to work with
holomorphic second fundamental forms.

By the reduction theorem, it suffices to produce from a given harmonic map
S2 -> G3 n a 3'-reducible harmonic map. For this we argue as in §3 showing
how forward replacement of a suitable holomorphic subbundle increases
isotropy order.

Proposition 4.3. Let φ: S2 -* G3n be harmonic of isotropy order > r (r ^ 1).

Suppose that φ, G'(φ), , G ( r ) ( φ ) are all V-irreducible. Then:

(i) The second fundamental form AG(r)(φ)φ is holomorphic.

(ii) Let γ denote ImAAG(r)(φ)φ; then rankγ < 2.

(iii) // rank γ < 1, then there is a holomorphic subbundle δ of φ contained in

kerΛ'φ_L © Aφ forward replacement of which gives a harmonic map φ of isotropy

order > r + 1.

(iv) // rankγ = 2, there is a holomorphic subbundle δ of φ contained in

ker_A'φ± ° A'φ forward replacement of which yields a harmonic map φ of isotropy

order > r such that rank AG(r)(φ) φ < 1.

Corollary 4.4. Let φ satisfy the hypotheses of Proposition 4.3. Then one or

two forward replacements yields a harmonic φ such that either

(i) φ has isotropy order ^ r + 1, or

(ii) some G(i)(φ) is d''-reducible, 0 < / < r.

Proof. Arguing exactly as in Proposition 3.4 we have a diagram

where R = (φ + +G ( r )(Φ))"L and the inner circuit {φ,G'(φ), ,
G ( r )(φ),φ} isholomoφhic with all vertices of rank 3. By the irreducibility
hypothesis each AGυ){φ)Gu+i){φ) is an isomorphism for 0 < / < r - 1 so that
γ = JτnA'Gιn(φ)tφ has rank < 2. This establishes (i) and (ii).
" Now suppose rankγ < 1. Firstly, if γ = 0, G ( r + 1 ) (φ) l φ so that φ has
isotropy order > r + 1 already and we take δ = 0.

So assume that rankγ = 1. From Proposition 1.2 we have that A'yGXφ) is



THE CONSTRUCTION OF HARMONIC MAPS

holomorphic, so define γx = }*nA'y σ{φ) and define γ,, 1 < / < r, by

285

Thus each γ, is a holomoφhic rank one subbundle of G(i\φ) and each A'

0 < / < r - 1, is an isomoφhism by the irreducibility hypothesis. Let §.'=

Gu)(φ) Π γ> . Arguing as in Proposition 3.4 we see that {γ,Yi, ,γΓ,γ} is a

holomoφhic circuit so that A^y vanishes, whence yr c kerΛ'c, (φ) φ. Thus we

have a diagram

where the horizontal edges are all isomoφhisms. By inspection and Proposi-

tion 1.5 we see that all the horizontal edges A' R and AR8 are holomoφhic,

so we put γ r + 1 = lmAA'Ύr R and δ r + 1 = γ,.^ ΠR. Note that yr+ι is nonzero

and A'γ is an isomoφhism since G ( r ) (φ) is 3'-irreducible. We now have a

diagram:

Just as in Proposition 3.4 we have a holomoφhic circuit {γ,γχ, -,yr+v *,

βi, ,δ Γ ,γ} all edges of which are isomoφhisms except A'Ύr+ιδ and Λ'δ γ

which last is a surjection. Thus either ^γ r + 1, δ vanishes or its image is contained

in the kernel of the composition { δ, δ x, , δ r, γ }.

In the first case forward replacement of γ (clearly in the kernel of Aφ± ° Aφ)

yields a harmonic map of isotropy order > r + 1 (cf. Proposition 3.4). Other-

wise put η = lmA'y δ, a holomoφhic subbundle of δ. Denote by η, its
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images under the A'δι_it8ι to get a diagram where δ/ = i\f Πδ,.

A Λ

L
<rί

Ί̂r-l \

7 r - l Vr ϊr+1 ϊ

Again inspection shows that the 'zig-zag' circuit {γ, , γ r + 1 , η, , η r + i ,

δ', ,δ/,γ} is holomorphic and, in this circuit, all edges are isomorphisms

except A' δ>, and all vertices are of rank 1. Thus A' δ, vanishes.

N o w ker^c(φ),φ D Vi + Yi (with equality if r = 1) so that η + γ is con-

tained in kerΛ'φX © A'φ and so is a candidate for forward replacement. So let φ

be obtained from φ by forward replacement of η + γ. Then we have

Φ = δ' + η_x + γ l f

δ/ + γ/ + 1 for 1 < / < r and, in particular,

γ r + 1 .

Then since Λ η + ι δ vanishes, G ( r + 1 ) ( φ ) c δ/+ 1 + η 4- γ ± φ and so φ has

isotropy order > r + 1. This concludes the proof of (iii).

For part (iv): Define γ, and δ7 as before so that γy = ImΛγ._ Gu)W and

γ ^ Π G'(φ) = δz and we get a diagram

where the circuit {γ, , γ r , γ } is holomorphic and so rankΛ'γ γ = 1 since all

other edges are isomorphisms and A'Ί y cannot vanish without contradicting



THE CONSTRUCTION OF HARMONIC MAPS 287

the rank assumption on A'G(r)(φ)φ. So put a = InyΓγ γ which is holomorphic in

γ and define ax = ImΛ'α,γi, «.+ 1 = ImΛ'α <γ. for 1 < / < r, /?, = α/1 Πγ, . Then

we have a diagram:

a

Here we have noted that the circuit {α, αx, , ar, a) is holomorphic and so

since all vertices are of rank one and all horizontal edges are isomorphisms we

have Af

a a = 0. Now from Proposition 1.5 and inspection we see that all

A'Ά
s δ + i

Aβnβi+l and are holomoφhic and indeed are isomoφhisms by

the irreducibility hypothesis. Further A'8β and A'β a are holomoφhic and are

isomoφhisms by the assumption on rank γ.

Lastly A'a Λ and ARδ are holomoφhic so that we have a holomoφhic

circuit {α, , α r, R, δ, , δ r, β, , βr, a) and we conclude that lmA'a R

Cϋ leer A

Now it is easy to see that a c ker^^± ° Aφ, so let φ be obtained from φ by

forward replacement of a. Then φ = δ + β +ax and G ( r ) (φ) = δ r 4- βr

4- \mA'a R. Thus since AR δ(Im^4'α Λ ) = 0 we see that

whence )m_A'G(r){~φ)~φ = jS and therefore has rank one. This completes the proof

of Proposition 4.3.

Proof of Theorem 4.2. Given an arbitrary harmonic map φ: S2 -» G3 „, by

Corollary 4.4 and Lemma 3.2 we may forward replace holomoφhic subbundles

until we obtain a map φ: S2 -» G3n which has a θ'-reducible Θ'-Gauss bundle

G ( / ) (φ). It remains to show that 3'-Gauss bundles may be obtained by forward

replacement but the arguments of Lemma 3.5 carry over word for word to

show that G'(φ) may be obtained from φ by at most two forward replace-

ments. Thus we arrive at a 3'-reducible map φ to which the Reduction
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Theorem 4.1 may be applied. It remains only to observe that all replacements

used are invertible and to restore the original orientation on S2 to complete

the proof.

5. Surfaces of higher genus and other extensions

A. Degree of a map φ: M2 -> Gkn. Let M2 denote a compact Riemann

surface of genus p e (0,1,2, } and let φ: M2 -* Gk n be a smooth map.

Definition. The degree of φ, denoted degφ is the degree of the induced

map φ*: H2(Gkn,Z) = Z -+ H2(M2,Z) = Z on second cohomology. Note

that a holomorphic map has nonnegative degree (see, for instance, [13]).

Now let E -> M2 be a complex vector bundle over M2. We denote by cx{E)

the first Chern class of E evaluated on the canonical generator of H2(M2, Z).

Note the minus sign in the following

Lemma 5.1. Let φ: M2 -> Gk n be smooth.

(a) degφ = -cλ(φ)= -cλ(Akφ).

( b ) d e g φ ± = -degφ.

Proof. Let T -> Gk n be the tautological /c-plane bundle over Gk n. The

first Chern class of devaluated on the canonical generator of H2(Gk n,Z) is

- 1 . Thus, by the functoriality of Chern classes we have

The other assertions follow from well-known properties of Chern classes (see,

for example, Hirzeburch [22]). q.e.d.

To obtain vanishing second fundamental forms for surfaces of higher genus

we need

Lemma 5.2. Let E, F be holomorphic vector bundles over Mp of the same

rank r and let s?= dzk Θ A be a holomorphic section of <g) kT(fQ)Mp Θ L ( £ , F).

Then if A is an isomorphism on any fibre,

In particular, if E and F have rank one and cx(F) < cx(E) + k(2 — 2p), then

A is identically zero on each fibre.

Proof. Ars/ is a holomorphic section of the line bundle L = <g> rkT£Q)Mp

(8) L ( Λ Έ , Λ T ) . Now

and if this is negative, Ars/ vanishes identically so that A cannot be an

isomorphism on any fibre.
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B. Inclusive harmonic maps Mp -> G2n. In this section we consider
harmonic maps φ: M2 -» G2n such that φ1 is strongly conformal. Such maps,
if non-± holomorphic, are precisely the 'inclusive maps' in the sense of
Eells-Salamon [14] with respect to the quaternionic Kahler structure of G2 n

(see below). For surfaces of low genus such maps are often very easy to
describe.

Proposition 5.3. Let φ: S2 —» G2n be harmonic and suppose φx : S2 ->

Gn_2n is strongly conformal. Then φ is ± holomorphic, a Frenet pair or a mixed

pair. In particular either φ or φx is strongly isotropic.

Proof. If φ x is ± holomoφhic there is nothing to prove so we suppose
that this is not the case. Then Gr(φ±) and G//(φ±) are mutually orthogonal
and must have rank one. Denote these bundles by α, β respectively. Then we
have a diagram

with Aφ± a and Aβφ± nonzero. If A'a β vanishes, then φ is the mixed pair
a θ β. Otherwise, we have a holomoφhic circuit with all edges of rank one so
that ~A'φ± a ° Aβφ± = 0, i.e., ]mAβφ± c ker^ψx ϊβ. So set γi =
γ / Πφ1 to obtain a diagram

where rank 8λ = 1 and all edges except possibly 4 ' γ i Λ are nonzero. If Λ'γ i Λ = 0,
then 8λ is holomoφhic and φ = a θ β is an associated Frenet pair. Otherwise,
again, we have a holomoφhic circuit and ]mAβyι c ker-d^. In this case set
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γ 2 = ker>Γγi β , 82 = γ2"
L Γiyi and we have a diagram

with all vertices of rank one except γ 2 and all edges nonzero except possibly

A'yi 8Ί. We repeat this procedure reducing the dimension of γ, each time so

eventually for some /, A'γ^Sj vanishes and we have a diagram

δ,

*ll

so that δ, is holomoφhic and φ = G ( / )(i f.) θ G ( / + 1 ) ( ί l ).

Thus φ is a Frenet pair and the proposition is proved.

Adding a hypothesis on degree we can prove a similar result for maps

T2 - G2,n

Theorem 5.4. Let φ: T2 -> (?2 M 6e α harmonic map of odd degree. Suppose

that φx is strongly conformal. Then φ is ±holomorphic, a Frenet pair or a

mixed pair.
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Proof. Assuming that φ is not ± holomorphic and not a mixed pair we see
that just as in Proposition 5.3 we have a diagram

with all edges nonzero. In particular dz ® A'aβ is nonzero so that cλ{β) ^
q(α) + 0 by Lemma 5.2. Now if A'φ± a<> A'β^Φ 0, dz2 <8> A^ao A'β~± is
nonzero so that, again by Proposition 5.3, q(a) ^ cx(β) + 0, whence c^a) =
cλ(β) and degφ = -(^(α) + c^β)) is even. Thus if φlias odd degree \mA'βφ±
c ker_A'φx a and setting yλ = keivl^ α and 8λ = γ/ Πφ-1 we get diagram (1)
of Proposition 5.3. Again, if A'Ίχ Sι <> A'βΊχ Φ 0 we get cx(a) ^ cλ(β) so we
repeat the argument of Proposition 5.3 to conclude thatφ is a Frenet pair.

C. Application to HP". A quaternionic Kaher manifold, N, is a 4n-
dimensional Riemannian manifold whose holonomy group is contained in
Sρ(«)Sp(l) c SO(4«). Thus End(7W) has a rank 3 subbundle Q, stable under
covariant differentiation, locally spanned by sections /, /, K satisfying

(i) I2==J2 = K2 = _ I d ?

(ii) // = K, JK= /, KI = /,
(iii) /, /, K skew-symmetric.

A subspace W c TXN is called quaternionic if QXW c W.
Definition. A map φ: M2 -> N is inclusive if dφ(TxM) is contained in a 4

(real) dimensional quaternionic subspace of Tφ(x)N for each x e M. For more
information on quaternionic Kahler manifolds and inclusive maps see Salamon
[28], [29] and Eells-Salamon [14].

Now G2n is quaternionic Kahler with the bundle Q being given by right
composition with skew Hermitian endomorphisms of Γ, the tautological 2-plane
bundle. (Here, of course, we identify TG2n with L(T,TL).)

Rawnsley has shown
Lemma 5.5. A weakly conformal non~± holomorphic map φ: M2 -> G2n is

inclusive if and only if φ1: M2 -> G2n is strongly conformal.

Thus Proposition 5.3 and Theorem 5.4 apply and we have
Theorem 5.6. Let φ: S2 -> G2n be harmonic and inclusive. Then φ is +

holomorphic, a Frenet pair, or a mixed pair.
The same conclusion holds if φ: T2 -> G2n is inclusive conformal and

harmonic of odd degree.
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Now let H P " " 1 denote quaternionic projective (n - 1) space which we
regard as the subset of G22n consisting of complex 2-planes W e G22n closed
under the action of /: C2n -> C2n given by

J(x,y) = (-**)> (x,y) e C " x C " = C2".

Under the identification C2" - H" given by ( c, y) -> (x + yj), J is just left
multiplication by j .

Proposition 5.7. A map φ: M2 -> H P " " 1 is inclusive if and only if φ is
ΰ'-reducible.

Proof. We have (i) JA'^ = A'^J, whence JG'Xφ1) = G'Cφ^); (ii) (JC, Jx)
= 0 for all x G C 2 W . Thus from (i) we see that φ is ± holomoφhic if and only
if φ is constant in which case the proposition is trivially true.

Now φ Π G"(φ±)-L= kerΛφ so that if φ is nonconstant and θ'-reducible
rankG"^- 1 ) = 1, and from (i) and (ii) we have G'Xφ1) ± G\φL\ whence φ1

is strongly conformal, hence φ is inclusive. Conversely if φ1 is strongly
conformal and nonconstant, again rank G"{φL) = 1 whence φ is 3'-reducible,
q.e.d.

Thus we recover a theorem of Aithal [1] in a slightly more explicit form:
Theorem 5.8 (cf. [1]). Let φ: S2 -> H P " " 1 be harmonic, ^-reducible, and

nonconstant. Then φ is a Frenet pair or a mixed pair. In particular, φ or φL is
strongly isotropic.

Remark. Theorem 5.4 has no application to maps φ: Γ 2 - * H P n ~ 1 since
H2(HP"\ Z) =• 0, so degφ = 0.

D. Maps into G2A.
Proposition 5.9. Let φ: M2 -> Gk2k be a harmonic map.
(a) //deg(φ) < k{\ - p), φ is d''-reducible and φ x is d"-reducible.
(b) //deg(φ) > k(p - 1), φ is V-reducible and φ1- is d'-reducible.
Thus ifp = 0 or |degφ| > k(p - 1), either φ or φx is V-reducible.
Proof. If A'φ or, equivalently A%±, is an isomoφhism on some fibre, then

by Lemma 5.2

cι{φ±)>cι(φ)+k(2-2p)

or, by Lemma 5.1,

Thus (a) is proved. Part (b) is similar, q.e.d.

Specializing to k = 2 and applying the Reduction Theorem 4.1, we have
Theorem 5.10. Let φ: M2 -> G24 be a non-± holomorphic harmonic map.

Then if either (i) p = 0 or, (ii) p > I and |degφ| > k(p - 1), then there is a
harmonic map ψ: Mp -» CP 3 and an antiholomorphic line subbundle β of
( ψ + ^'(Ψ)) "L such that either φ or φ-1 is given by ψ Θ /?.
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Remarks, (i) Choice of β is equivalent to the choice of a holomorphic

section of a CP1 bundle.

(ii) If p = 0, then Mp = S2 and (5.10) applies to any non-± holomorphic

map S2 -> G1A.

Further, in this case we know the structure of ψ (see §2D) and we obtain the

theorem of Ramanathan [25]:

Let φ: S2 -> G2A be a non-± holomoφhic harmonic map. Then either φ or

φ± is the sum G(i)(h) Θ /?, where Λ: S 2 -> C P 3 is a holomorphic map and β

is an antiholomorphic subbundle of (G ( / )(Λ) + G ( / + 1 ) (λ)) ^ / e {0,1,2}.

(iii) If /? = 1, (5.10) applies if degφ Φ 0 (cf. [17, Proposition 7.6]).

(iv) For p = 0 and |degψ| < 1 we see from Proposition 5.9 with k = 2 that

φ and φ-1 are both 9' and 9"-reducible. In fact we can say more in this case:

Theorem 541. Let φ: S2 -> G2<4 fee harmonic with |degφ| < 1. Then either

φ or φ± is + holomorphic, a Frenetpair or a mixed pair.

To prove Theorem 5.11 it suffices to show that either φ or φ1 is strongly

conformal. This in turn follows from Proposition 5.9 (see above Remark) and

the following lemma of possibly independent interest.

Lemma 5.12. Let φ: Mp -» G 2 4 be a W-reducible weakly conformal harmonic

map of degree > 2p — 2. Then either φ or φ1 is strongly conformal.

Proof. If φ is + holomoφhic there is nothing to prove. Otherwise set β

= kervΓψ, α = β1 Πφ,y = hnA'φ and 8 = γ ± Πφ1.

Now all these bundles have rank one and by definition of /?, γ, the only

nonzero component of A'φ is A'ay. Further, by the conformality hypothesis

trace(Λ'ψ.L o A'ψ) = traced; α ° A'ay = 0,

whence A[' a = 0 and we have a diagram:

By Proposition 1.5 we see that A'y β and A's a are holomorphic so that if

neither vanish identically we have, from Lemma 5.2,

cx(a) > Cι(δ) + 2-2p, cτ(β) > q(γ) + 2-2/?

and adding and using cx(φ) = c^a) + cλ(β) we have

cx(φ) > c^φ1) + 4 - 4p
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or equivalently,

deg(φ) < 2p - 2.

Thus if deg(φ) > 2p - 2, either A'y β or A'8 a vanishes. If A'y β = 0 then

G'(φ) c γ, G"(φ) c δ and φ is strongly conformal. Similarly, if A's a = 0, φ-1

is strongly conformal.

Remark. Note that the case p = 0, |degφ| < 1 is the only one where the

hypotheses Proposition 5.9(a) and Lemma 5.12 hold simultaneously.

E. Nilpotency and degree. For a harmonic map φ: S2 -* Gkn it is clear

that the nilpotency of Aφ± <> Aφ is an important ingredient in our construc-

tions. We now examine the possibility of such nilpotency for maps from

surfaces of higher genus.

Proposition 5.13. Let φ: M2 -> Gkn be harmonic and V-irreducible and let

γ = G'(φ). Then if degγ - degφ < k(2 - 2p), Aφ± <> A'φ is not an isomor-

phism on any fibre.

Proof. Since φ is 3'-irreducible, rankφ = rankγ = k and A'Ί φ is holomor-

phic. Thus if A'y φ is an isomorphism on any fibre, we have, from Lemma 5.2,

c1(φ)>cι(G'(φ)) + k(2-2p).

Thus if degγ — degφ < k(2 — 2/?), A'yφ and Aφ± ° Aφ are not isomorphisms

on any fibre.

Corollary 5.14. Let φ: M2 -> G2n be d'-irreducible, weakly conformal and

harmonic with degγ - degφ < 2(2 - 2p). Then Aφ± <> Aφ is nilpotent.

Proof. The coefficients of the characteristic polynomial of Aφ± ° Aφ are

trace (Aφ± ° Aφ) which vanishes by weak conformality and det(A'φ± ° A'φ)

which vanishes by Proposition 5.13, thus Aφ± <> Aφ is nilpotent. q.e.d.

As an application we extend to surfaces of higher genus a theorem of Aithal

[2] concerning maps into G2 5.

Theorem 5.15. Let φ: Mp -> G25 be a harmonic map of degree < 2(2 - 2p).

Suppose that Aφ± ° Aφ is nilpotent. Then either φ or G'(φ) is d'-reducible. Thus

one of the following holds:

(i) φ is antiholomorphic.

(ii) There is a harmonic map ψ: M2 -> CP4 and an antiholomorphic sub-

bundle β of (ψ + G'(ψ)) L and

φ = ψθjβ or φ= G"(ψθ β).

(iii) φ = C J " ( Ψ ) , where ψ: M2 -> G25 is antiholomorphic.

From Corollary 5.14 we have

Corollary 5.16. Let φ: Mp^> G25 be weakly conformal and harmonic with

degφ < 2(2 - 2p) and degγ - degφ < 2(2 - 2p). Then either φ or G\φ) is

df-reducible and one of (i)-(iii) in Theorem 5.15 hold.
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Proof of Theorem 5.15. It suffices to show θ'-reducibility of φ or G'(φ), the

rest following from the Reduction Theorem.

Suppose then that φ is 3'-irreducible, set γ = G'(φ) and consider A'yφ. If it

is zero, then rank A'y < 1 and γ is 3'-reducible; so suppose that rank A'y φ = 1.

Put βλ = kerΛ'γ φ, β2 = βf Πγ, αx = ImΛ'γ φ, a2 = af Πφ, R = (αx θ a2 θ

β\ φ ft)"1. By definition the only nonzero component of A'yφ is ^ 2 , α i and

from the nilpotency of A'φx ° A'φ it is easy to see that A'aι βi vanishes. Thus we

have a diagram

and from Proposition 1.5 we see that the following second fundamental forms

are holomorphic: A' β, A'aι%βι> A'βiOLχ and A'βι R. Further, the first three are

nonzero since φ is 3'-irreducible and rankΛ'γ φ = 1. If Aβι R Φ 0 also we have

from Lemma 5.2,

cι(βι)>cι(aι)+(2-2p),

whence

whence

cΛ«i) + 2(2 aλ) +(2 - 2p)

so that

2(2 - 2p),

cx(α2)) + 5(2 - 2p),
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i.e.,

! d e g φ > 5 ( 2 - 2 / 7 ) .

Thus if degφ < 2(2 - 2p) we have A'βι%R = 0, whence βλ c kerΛ'γ and γ =
G'(φ) is 8'-reducible.

Remark. It is clear from the foregoing that harmonic maps of Riemann
surfaces of higher genus into Grassmannians will be considerably harder to
study than those from S2.
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