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CORRESPONDENCE OF MODULAR FORMS
TO CYCLES ASSOCIATED TO O(p9q)

S. P. WANG

Introduction

In their study of Hubert modular surfaces, Hirzebruch and Zagier [13] have
discovered a striking connection between geometry and number theory. It was
established that intersection numbers of cycles are Fourier coefficients of
modular forms for Hubert modular surfaces. Since then, the study of certain
liftings of automorphic forms and their relation to geodesic cycles in quotients
of symmetric spaces has been of great interest. The first subsequent big
advance was made by Kudla and Millson [23] for their work on SO(p,l)
which offers a systematic and fruitful approach to the general case. They took
the reductive pair O(p,l) X Sp(2r,R) as their framework and used Weil
representation to construct a theta function which has a geometric realization.
Besides technical problems, they presented a feasible scheme for the general
case.

In [33], [34], the analogous problems for SU(p, 1) were solved by Y. L. Tong
and the author. In [35], we gave a correspondence, in the form of a geometric
lifting, from Hermitian cusp forms of weight p + 2 to certain harmonic
differential forms of degree (2,2) in compact quotients of SU(p9 2). This is the
first example for symmetric spaces of higher rank. In [36], we returned to
SU(p,l) to discuss the case of noncompact quotients. In these studies, we
witnessed tremendous technical complexity and gradually shifted our reliance
on invariant theory. It should be mentioned here that we were inspired by
Howe's recent effort [14]-[16] to emphasize the importance of classical in-
variant theory.

Received December 18,1984. The author is supported in part by National Science Foundation
Grant No. MCS-83O1O53.
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In this paper, we give a satisfactory presentation of the geometric lifting for
the reductive pairs O(p, q) X Sp(2r,R) (r < p/2). Our approach here, follow-
ing [36], is to pair directly a geometric theta function and a cusp differential
harmonic form to yield a cusp form with period integrals as Fourier coeffi-
cients, this is analogous to Shintani's original construction [30] which was later
generalized by Oda for 5Ό(2, n — 2) in [26]. Note also that our result is closely
related to those of Siegel [31] that volumes of analogous cycles in arithmetic
quotients of domains associated to indefinite quadratic forms are Fourier
coefficients of Eisenstein series. Our technical tool for computation is the
representation theory of 0{p). In the following, we state our main results and
content organization. Let 3) be the symmetric space associated to O(p,q),
y(g, Z) the automorphic factor given by (1.3) and G the subgroup of O(p, q)
consisting of those g such that the function det(j(g, Z)) (z e 2) is positive.
Each Z e 2 can be identified with a maximal negative subspace (Z) of R"
(n = p 4- q). Let Kz be the subgroup of G of elements which fix elements of
( Z ) . It is easy to see that Kz is isomorphic to O(p) and acts on the space
/\rq(2)z of differential forms of 2 of degree rq at Z. Thus representation
theory of O(p) is applicable and we have the notion of a differential form of
degree rq of highest signature (defined in §4.9). The analysis of the pairing
rests on the invariant theorem (Theorem 4.9) of harmonic forms of 2 of degree
rq of highest signature invariant under certain subgroup GM of G. Technical
matters are discussed in geometric, algebraic and analytical aspects. §1 deals
with geometric preliminaries. Here we apply Flander's result [7] to construct
dual forms for cycles of quotients of 2. In §3, we study some representation
and invariant theorems of O(p) for algebraic preparation, and §5 handles the
deep involvement of analysis of period integrals. To construct the correct
geometric theta function, we set it up as follows. First we translate the
construction of dual forms of cycles into polynomials f(Z,M)(M& Mnr(R))
(Definition 2.9) of M with differential forms of 3) as values. With the aid of
Theorem 3.11, we modify f(Z,M) to obtain spherical polynomials F(Z, M)
(Definition 4.6) which yield the desired Schwartz function frZ{M) ((6.27)) by
coupling with an exponential function eτ z ((6.18)). Finally summing frZ(M)
over certain lattice points M we arrive at the geometric theta functions
0(τ, /?, Z) ((6.30)). The geometric interpretation of the lifting map is given in
§7 and the main result of this paper is Theorem 7.10.

For q = 1, our result coincides with that of [23] with improved range of r
and additional coverage of noncompact quotients of 2. For Weil representa-
tion, we follow the setup of Shintani [30] and use the results in [23]. It is clear
now that our method is suitable for all reductive pairs. We hope to discuss this
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matter elsewhere. Obviously we are indebted to the papers [19], [20], [23] which

built up some technical background needed for the present approach. The

author would like to thank R. Howe and Y. L. Tong for various valuable

conversations.

1. Geometric preliminaries

In this section, we recall some of the geometric preliminaries, needed for our

discussion, of the symmetric space associated to the group O(p, q) and present

a procedure to construct singular forms for cycles of quotients to O(p,q)

which will yield dual forms of cycles.

1.1. Let n = p + q and let Q be the symmetric matrix

Q =

where Ep and Eq are the identity matrices of order p and q respectively. Let

O(p,q) be the group given by

Here 'g denotes the transpose of g. For g e GL(«,R), let g = (££) be the

block form with A e Mpp(R), B e Mpq(R), C e Mqp(R) and D e Mqq(R).

Then the condition 'gQg = Q = Q is equivalent to

(i.i) r ' - f * ~'C

V ' \-'B <D

1.2. Let G = O(p, q) and let ^ be the symmetric space associated to G. We

realize 3) as the bounded domain

3= }zeMM(R)|'ZZ<£j.

For g G G, the translation of g on ^ is given by the fractional transformation

(1.2) gZ = (AZ + B)(CZ + D)-1.

With this action, we have an automorphic factor

g,Z) 0
J(g,z)={ o

where

(1.3) τ(g,Z) = A-(gZ)C, j(g,Z)=CZ+D.
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The action of g on 3 can also be expressed in terms of the automorphic factor

J(g,Z) and the linear action of G,

(1.4)

By (1.4), one checks readily that 3 has a G-invariant metric given by

(1.5) ds2 = tr((£ - Z*ZYxdZ(E -tZZ)~ιdtz).

1.3. Definition. Let K be a positive subspace of R" with respect to Q.

Denote by G v and 3) v the subgroup and submanifold given by

^ " ^ Dv=

1.4. Lemma. The group Gv and the submanif old 3) v satisfy the following

conditions'.

(i) Forge G,g3v = 3gV.

(ii) The identity component of the subgroup of Gv leaving elements of V fixed

acts transitively on 3 v.

(iii) 3V is a totally geodesic subsymmetric space of 3 of dimension (p - r)q

with r = d i m R ( F ) .

Proof. Same as [33, Lemma 1.2].

1.5. Let eλ, —,en be the standard basis of R". To discuss the geometric

properties of Gv and 3V, by the Witt theorem and (i) of Lemma 1.4, we may

assume that V is spanned by ep_r+ι, -,ep. For simplicity, we write Gλ and

3X for Gv and 3V in this case. For Z e ^ , we decompose the matrix Z into

Z=

z 2
with Zx G Mp_rq(R) and Z 2 G MΓί/(R). Then 3λ is simply given by

3X = {Z<Ξ3\Z2 = 0).

For g G G b we express it in the block matrix form

' Aλ 0 ^

(1.7) g = 0 w 0

with Aγ G Λ / ^ . ^ . ^ R ) , £>! G M^(R) and w G O(r). From (1.2), the action

of Gj on ^ is given by

U Z 1 + M C 1 Z 1 + A ) | ( ί S C l , Z β β ) .
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1.6. Lemma. Let H7 = (E -'ZZ)-\ A(Z) = det(£ -ιZZ\ Lz = (E -
rZlZl)~l and B(Z) = det(£ -tZ1Z1). Then we have the following conditions:

(iii) B/A is G^invariant.
Proof, (i) and (ii) are immediate from (1.4) and (iii) is an easy consequence

of (i) and (ii).
The function B(Z)/A(Z) is closely related to the distance function d(Z, Sλ)

from Z to 3>x. The same assertion in [33, Proposition 1.7] also holds here. In
particular we have the inequalities

(i)
• > ( i i )

where m = min{/%q). For later estimation, we also need the following in-
equality.

1.7. Lemma. We have the inequality

1 +r-1trZ2(£-'ZZ)"1 'Z2>
 l/

Proof. We have that

E-'ZXZX = E -'ZZ+ Z2Z2

= ( £ -'ZZ)l/2{E + ( £ -'ZZ)~l/2'Z2Z2(E

as a consequence

B/A = det{£ + ( £ -'ZZyi/2'Z2Z2(E -ιZZ)~ι/1}

= det{£r+ Z2{E- ZZ)~UZ2}.

The matrix Z2(E -tZZ)~ltZ2 is semipositive definite. It has real nonnegative
eigenvalues λ l9 , λr. Hence

1 + Itr( Z2(E-'ZZ)-UZ2)

= det{£r + Z 2 (£-'ZZ)" 1 Z 2 ) 1 A = ί | ) '.

1.8. Now consider the trivial vector bundle E = 9 X Mqr(K). We introduce
an action of G, on E suggested by (1.8). For g e Gλ and (Z, Y) e E,

(1.10)
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where u E O(r) is given in the block form of g ((1.7)). On E, Hz defines a

fiber metric

(1.11) (Y,Y)z=tτ(ΎHzY).

We have a canonical smooth section υ: 2 -> E defined by

(1.12) V(Z) = (Z,'Z2) (ZeS).

By (1.8) and (i) of Lemma 1.6, both the fiber metric and the section υ are

(^-invariant; moreover

2)x = {Ze@\υ(Z) = 0},

i.e., Dx is the zero set of v.

The existence of such a fiber metric and section enables one to construct the

dual forms of cycles associated to 9)x in quotients of 3). For this purpose, in

the following §§1.9-1.13 we sketch a procedure to construct singular forms, a

real analogy of the complex transgression formula of Chern-Bott [4], discussed

by Flander in [7].

1.9. Let I be a real manifold of dimension n and π: E -> X a vector

bundle of fiber dimension m. Suppose that E is endowed with a fiber metric

( , ) and a metric connection d. For a local frame field e = (e x, ,e m ) , let

hif = (e^e-) (1 < /, j < m), and H = (hiJ). Then there exist square matrices

ω and Ω of order m such that

(1.13) de = eω, d2e = ett.

The entries of ω and Ω are 1-forms and 2-forms of X, respectively. We call ω

and Ω the connection and curvature matrices, respectively. By (1.13) we have

(1.14) Ω = dω 4- ω A ω.

From the definition of metric connection, we have that

(1.15) dH^Hω+^H.

Conversely, (1.15) and a certain transformation law among ω define a metric

connection for E.

1.10. Let υ: X -> E be a smooth section with zero set Xv. Let Xx= X - Xυ.

Over Xx, decompose du and d2υ in the direction of v and the component

orthogonal to υ. We obtain

(1.16) dυ = θυ + β, d2v =\υ\2y,

where

β = rflog|ι;|, 7 = - L τ ( e 1 , ,em)(Ω/,)
,o.
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Here v^ • ,vm are the components of v with respect to e. Set

(1.17) K=-eQH~ι'e.

By induction, one derives readily

(dv)a = aβ"-χθυ + β",

(1.18) K=Kι + 2υy,

Kh = Kζ + 2bKζ-h>y.

Now let / = [f] . In the following, we introduce forms s, and wi whose

constructions depend on the parity of in.

Case m = 21: Set

s2k = υ(dυ)2k~1K'-k, 0 < k < /,

wik = (dυ)2kK'-k, 0 < ft < /.

^ 1 1 9 ^ = 21+ 1: Set

In both cases, let

1.20) sl = -^, wί =
\v\ \v\

1.11. Lemma. Let χ = (det H)~ι/2eλ A Aem. We have the conditions

(i) dK = 0,

(ii) dX = 0.

Proof. dK = 0 is the Bianchii identity. Observe that χ is independent of

frame field. For orthonormal frame, H = E and ω,, = 0, 1 < / < w, which

imply easily the condition J χ = 0.

1.2. From (1.18) and (i) of Lemma 1.11, the following lemma is immediate.

Lemma 1.12. We have the following conditions:

{l) | ^ | 2 " 2(1- k + 1) ^ 2 ^ " 1 )

m = 2/.

(ίϊ> dSlk + λ ~2

Wlk+ι = —JL—-{Wlkl -{2k - \)slk_λθ},

m = 2 / + 1.
set

uk = w'k+(-l)kks'kθ.
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The above lemma yields

Λ ' - „ i 2 k ~ 1

(1-21)

2(l-k + l) " 2 * " 1 ' 1<k<1-

We also obtain from (1.18) the conditions:

(1.22) W m = 0.

1.13. Let ψ* be the forms given by 4 = c\pkχ, where T(m/2)c
-(m - 1)!2 τrm / 2. Now we define the form ψ by

(2/-1) (2/-l)(2/-3)
Ψ = Ψn 2 ^ 2 ( / - 1 > 2 T 4 ψ 2 <'- 2 >

(1-23) -•• +(-l)/Λ(^~S/-V2' W = 2/'

Ψ " Σ (-l)λ(()ψ2/+l-2X, m = 2/+ 1.
λ = 0

From (1.21), one concludes the following proposition.
Proposition 1.13. We have the conditions:

(ii) Jψ = 0, m = 2 / + l .

1.14. Now we return to our vector bundle E = 3> X M^r(R) discussed in

§1.8. Line up the columns in order in a q X r matrix into a single column. We

shall view Mqr(R) as R*r. For a square matrix 4̂, let A[r] be the square matrix

with a diagonal block form such that all the diagonal matrices are A. By

(1.11), the fiber metric is given by the positive definite matrix H = H^r]

with respect to the standard frame fields e = (el9- ,er). Here et stands for

(eii> e2i>" ' 9 eqi) % a simple computation,

(1.24) dHz = Hzωλ +^XHZ9 ωx = {dlZ)Z{E -'ZZ)1.

Let ω = ω[r]. One can introduce a metric connection de = eω. For any g e G,
we have the transformation relation

(1.25) g-W l =ί/-1(g5 Z)W li/(g, Z) +!/-1(g, Z)ι/'y(g, Z).

It yields that the connection is G1-invariant. By (1.14), the curvature matrix is
given by

= Ω[rl, Qλ = -d'Z{E - ZιZ)~λdZ{E -'ZZ)'1.
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The transformation relation of Ωx takes the form

(1.26) g*Ωx =rι(g, Z)Oi!/(g, Z) (g e G).
1.15. For simplicity of notation, let

In terms of the standard frame fields, we have

o = tr(τ'Z 2),

dv = tr(τ</'Z(£ - Z'Z)'1!^ + τd'Z2),

K = tr(τd'Z(E - Z'Z)-λdZ'τ),

\v\2 = tτ(z2(ε -tzzy1'z2).

Now we construct s'k, ψA and ψ by formulas (1.19), (1.20) and (1.23).
For a fixed g e G, the function det(y'(g, Z)) is of constant sign on Si.

Denote this sign by
(1.28) sgn(g) = sign(det(7(g,Z))).

It is easy to see that sgn(g) = ± 1 and is a character of G. For g e Gv let
a(g) be the function

α(g) = det(«) (geGx),

where u is given in (1.7) of the block form of g.
Proposition 1.15. The forms \pk and ψ satisfy the invariant conditions

= sgn(g)rα(g)9ψ, ge<?i
Proof. Let u(τ, Z), ί/ϋ(τ, Z), ίΓ(τ, Z) and χ(τ, Z) be the functions υ, dυ,

K and χ with dependence on T and Z. Clearly we have that

υ(τ,gZ) = v(<uτ'Γ1(g,Z),Z),

χ(τ,gZ)=|dety(g,z) f X (τ,Z).

By (1.25) and (1.26)

dv(r,gZ) = dυ('uτ'Γ1(g,Z),Z),

K{r,gZ) = K{'uτ'j-\g,Z),Z).

Since \υ\ is G1-invariant, by our formula of .s£ and the above relations

det(«) 9det(;(g,Z)Γ^(τ,Z);
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consequently

(1.29) g*ψ, = sgn(gYa(g)qψk (g e Gx).

From the definition of ψ ((1.23)), ψ is a linear combination of ψk. Thus the
assertion on ψ is immediate from (1.29).

1.16. Let φ be a λ>form on 3 and ||ψ|| (resp. | |φ| |0) its pointwise norm
induced by the metric (1.5) (resp. the Euclidean metric). It is easy to see that
ds1 > Xx{dZdιZ)\ consequently

We know that

Λ/B = det{£ + Z2(E -tZZyUZ2}'\

and the matrix Z2(E -tZZ)~ltZ2 has real nonnegative eigenvalues λx, , λr.
It yields that

Λ/B = Π ( l + λ,)"1 > Π ( l " λ,) > 1 " Σλ, = 1 - \v\\
i i i

thus

(1.31) C/B^\υ\2, C = B-A.

Moreover the function (C/B)/\v\2 tends to 1 as \v\ tends to 0. From (1.30) and
(1.31), we have the estimations

which yields easily that

(1.32) M\\

Here < denotes the inequality < up to a positive constant factor.
1.17. For a complex number s, let hs(t) be the function given by

(1.33) *,(') = " Γ *-'{* ' r)qr/2-ldx (Re(ί) > \qr).

Obviously hs(t) satisfies the conditions:

(i) h',(t)-r>(t-r)<r/2-\

( 1 3 4 ) (ii) M y ) - ^ - . ^ - ^ ) Γ ( ^ ) ,

Definition 1.17. Let ωs be the differential form defined by
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By (i) of (1.34)

Clearly \v\rc/~ιφk A d\v\(k < rq - 1) are smooth and by (1.22), \v\rc/~ld\v\ Λ ψ

is also smooth. By Proposition 1.13, dψ is (/-invariant. It follows that ωs is

smooth. By Lemma 1.7 and (1.32),

(1.35) \\ωs\\<(B/A)r/2+rq-(**is)-qr/2\

By Proposition 1.15, the form ωs is invariant under the identity component

Gγ of Gv Let Tλ be a tension free discrete subsgroup of G® such that

vol(Γj \3>γ) < oo. The form ωs for Re(s) :» 0 can be viewed as a dual form of

Γλ \£®χ in the quotient Tλ\3t. In the sequel, we shall clarify its geometric

implication. First, we present a decomposition of the volume form on 2d and

some integral formulas.

1.18. For g G G and Z G S ,

(1.36) 1

We know that

(1.37)

Now let

' = 1 7 = 1

It follows that (1.36) and (1.37) yield

Recall yί(Z) = det(£ - ' Z Z ) . By Lemma 1.6,

Hence the invariant volume element dv@ on 3) is given by

(1.38) dvg = A-(p+q)/2{dZ}.

1.19. For (o1) ^ 21, let FZχ be its fiber

FZι = (Z ^2\ZX fixed}.

Let g G Gj be the element

( i i — jLγΔ,γ) U \ ^ ~~ 1 1/ 1

0 £, 0

v-l/2
0 -'Z^O -1/2
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Then g carries Fz isometrically onto Fo, and

0 \
Z2(E - ZιZι)-l/2)-

On Fo, the volume element is det(£ -tZ2Z2y
(r+£i)/2{dZ2}, so FZχ has the

volume element

It follows that

(1.39) dυ9={B/A){p'r)/2dυ9χdυF,

where dυ3 = B~{p + q~r)/2{dZx} is the invariant volume element of 3)v

1.20. Lemma. We have the integration formulas'.

(0

A'S//2( dZ\ == ~ ~ ττpq//2

n^fr((j + l + λ)/2)

(Ms) > -2).
(ϋ)

f {A/BY/2dvs

-=1 τ((s-p-q + i + , )/2)π;_ t
rq/2

(Rc(s)>p + q-2).

Proof, (i) Introduce f(s,p,q) = jS)A
s/2{dZ}. By (1.39) with r = 1, one

deduces the recursion relation

Now we have that

f(sΛ,q)=f

Then (i) follows by simple induction,

(ii) By (1.39), the integral has the value

(A/Bf+r-')/2dvFdo9ι.
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As A/B, dυF are G°-invariant, the integral

f (A/B)is+r-p)/2dvF

is independent of Zv At Zλ = 0, its value is

where <©2 = { Z2\
 rZ 2Z 2 < ^ } . Hence by (i), we obtain the desired formula.

1.21. Now we are ready to present the geometric meaning of the form ωs. Let
φ be any smooth((/? - r)q)-foτmof I\ \«@. Assume that

(1.40) \\φ\\<(B/A)N

for a certain integer N. By (1.35) and (ϋ) of Lemma 1.20, the integral
fτι\^Φ Λ ωs i s absolutely convergent for Re(s) » 0.

Theorem 1.21. Let φ be a smooth closed ((p — r)q)-form of Tx\@ satisfy-
ing condition (1.40). Then

f ωsA φ= f φ (Re(ί) » 0).
•TΛ0 yΓΛ^i

Proof. Let M = Tx \ 3)v Then M is a complete Riemannian manifold. Let
x 0 be a fixed point of M. For t > 0, let 2?, be the closed ball with center x0

and radius t. Let dBt be the boundary and vol(θi?,) its volume with respect to
the induced metric. Clearly we have that

Γ vol(8A) dt = vol(M) < oo.

This readily implies that

(1.41) lim vol(3Λ,) = 0.
r->oo

For t, ε > 0 and / » 0, let N(t9 ε, /) be the subset of I\ \ ^ consisting of all
Z = (1^) such that

(ϋ) |ι;(Z)| > ε,
(iii) the distance, d(Z, Sλ) from Z to ^ is less than or equal to /.
The absolute convergence condition yields that

(1.42) / ωs A φ = lim lim / ω/φ.
I—* oo

It is obvious that
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where

Now observe that

By Stoke's theorem

f

•'ΛΓίί.e./)

ψ A φ.

Let Ih Iε and /8 be the integrals on the right-hand side of the above equality
over J^, J^, ^g with proper orientations respectively. By (1.32), we may
assume that

\\hs(r+\υ\2)ψΛφ\\<(B/C)irq-l)/2(A/B)a

with a ^> 0. By an argument similar to [33, Proposition 1.10], there exists a
constant b>0 such that vol(J^) •< ebl vol(Bt). By (i) of (1.9), A/B <

)u Hence we obtain that

As a » 0, it yields that

(1.43) lim/^0.
/->oo

The same reasoning as in [33, Proposition 2.5] implies

(1.44) l im/ e = -[ φ.

To estimate |/8|, we first integrate over the fiber. Let η be the volume form of
3£,. By (1.39), \\η A dvF\\ > (A/B)c for a certain constant c. Since Re(^) » 0,
by (1.32) and (i) of Lemma 1.20 over the fiber,

(1-45) \Id\<vol(dBt).
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Now (1.41)-(1.45) easily yield

f ωs Λ φ = l im I φ = I φ

Remark. Proposition 1.13 is the main result in [7]. If X is compact and m

is even, one can construct a dual form of the zero set Xv of the section v from

Km/1. For our case, X is noncompact and m is not necessarily even. To

overcome such difficulties, we replace ψ by ftsψ, where hs is a certain function

on ^ parametrized by a complex number 5. The differential ωs = d(hs\p) by

Theorem 1.21 clearly exhibits the property of a dual form.

2. Polynomials constructed from dual forms

In this section, we define now polynomials with differential forms on 2 as

values which will be used in a later section to construct geometric theta

functions. For simplicity of formulas, we pull back the construction to a proper

vector space with a linear action of G.

2.1. Let n = p + q, V= Mnl(R) and W = Mnq(R). For X, Y e W or F,

define

(2.1) (X,Y)=tXQY,

where Q is the matrix

Definition 2.1. Let W_ be the subset of W consisting of X such that

(X, X) < 0.

For X e W, denote

(2.2) X =

with A^+e Mpq(R) and *_<E Af^(R). If X e PF_, the condition (X, Jf> < 0

implies readily that X_ is invertible. Hence we can define a map π: W_^> 3)

given by

2.2. Let G = O(p,q). Since G c GL(«,R), G acts on W from the left by

matrix multiplication. It is easy to see that W_ is G-invariant and the map π is

G-equivariant. For X e W, let Ar± be the set

, y ) = o } .
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Lemma 2.2. For X e W'_, X1 is a subspace of the tangent space TX(W_) at

X satisfying the following conditions'.

(ii) π* identifies X1 with the tangent space Tπ(^X)(3) of 3) at π(X).

Proof. Since ( , > is G-invariant, (i) is obvious. Observe that π is G-

equivariant and G acts transitively on 3). It suffices to verify (ii) with

τr(X) = 0. In this case X+= 0 and as a consequence

One concludes easily that π^X-1 is an isomorphism onto

2.3. Let r be a positive integer with r < p/2. For M e Mnr(R), denote by

(Λf > the subspace of V spanned by the columns of M and by G(M) the

subgroup of G leaving the subspace (M) invariant. Now we assume that

<M, M> > 0.

Here we consider the trivial bundle

Six Mql(R) Θ(M)

with a group action of G ( Λ / >. For g e G<Λ/>, 7 G Mql(R) and X G <M>, let

(2.4) g(Z,Y®X) = (gZ,Tl(g,Z)Y®gX)-

Let ev- —,en be the standard basis of V and Gx = G^e _ +w..te >• Identify

Af^(R)® < ^ _ r + i , , ^ > with M^r(R) in the obvious manner/Then (2.4)

coincides with (1.10). More generally for h G G, (2.4) yields a map

A: ^ x ( M ^ ( R ) ® ( M ) ) ^ ^ x ( M

By a simple diagram chasing, we have the following lemma.

Lemma 2.3. The following diagram is commutative for g e

x(hλf))

2.4. As (M, M) > 0, by Definition 1.3 there is a totally geodesic subdomain

^ Λ / ) corresponding to the positive space (M). Let @)χ = ̂ e _ + i . . . e y

Choose an element g ^ G such that

(2.5) g(ep-r+ι, ,ep) = (M).

We would like to identify M^(R) ® <M> with M^r(R) and transfer the

discussion in §1 for 3)x to the general case. Let M l 5 , Mr be the columns of

M and Mj*, , Mr* in (M> given by
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Here we introduce the identification

(2.6) ΣY^M* = {¥,-•• Yr).
i = l

Let N be the matrix N = M(M, My1/2. Here <M, M)ι/1 is the unique
positive definite matrix whose square is (M,M). Clearly N satisfies the
condition (N9 N) = Er. It follows that by using a product of g and some
element in G^My9 we may assume that

g-1N=(ep_r+1---ep).

Let M* = (Mx* M*). Then M* = ΛΓ(M, M)" 1/ 2, and

(g-ιZ,'j(8-\Z)-ιY(M,M)-1'2).

Recall the fiber metric introduced in (1.11) is given by (Y, Y)z = tt(ΎHzY).
The following lemma is immediate from (2.7) and the above metric formula.
Lemma 2.4. Let g e Gbe an element satisfying the condition

Then the pull back (g~ι)*( , ) z of ( , ) z w g/fe« Z?y the symmetric matrix

2.5. For I G W_ and M e Mπr(R), let M χ i be the component of M which
is orthogonal to X with respect to ( , > given in (2.1). In terms of matrix
product, we have

(2.8) M = X(X, X)-ι(X, M) + Mx± .

In the sequel, we pull back data on 3) to W_ through the projection map m.
Lemma 2.5. π*(E -<ZZ)1 = -X_(X, XyltX_.
Proof. We have that

= -*X:UXQXX:\

thus

) ' 1ir*(E -'ZZ)'1 = -X_(X, X)~UX_.
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2.6. For M e M,ir(R) with (M, M> > 0, let g e G with

Denote by ( 2 ? / ^ ) ^ the function given by

(2.9) (B/A)(M) = {g-

where B/A is given in Lemma 1.6.
Lemma 2.6. For X e W_, we have

π*{(B/A)<M))(X) = det(Mx, , Mx,)/det(M, M).

Proof. As in the proof of Lemma 1.7, we have

£/Λ = det{£ r + Z 2 ( £ - r Z Z ) ~ 1 / Z 2 } .

Let βr = (ep_r+ι ep). We see that

£Γ + z2(E-tzzyltz2

It follows that

= det{ Er - (M, M)-ι/2(M, X){X, X)'ι(X, M)(M, M)'ι/2}

= det(M, M)"1det{(Af, M> - <M, X)(X, X)~ι(X, M>}

A-, , Xx±)/det(M, M).

2.7. For simplicity of notation, in the following discussion, we shall often
omit the notation π* in the pull back formulas. For M e Mnι.(R) with
( M, M > > 0 and g e G with

(̂ ? [)*( ' )z yields the fiber metric

(2.10) 7/jr = -X_(X, X)-UX_® (M, A/)"1.

Lemma 2.7. Le/ f fee ίΛe smooth section given in §1,8 and vM = (g~ι)*v.

Then vM has the expression

V

in W_X Mψ.(R).
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Proof. For Z G S, we have that

~ M M M)~1/2

and by the identification (2.7)

Pulling back the result to W_, the desired assertion follows.
2.8. From the fiber metric (2.10), one can introduce a metric connection.

Note that dHx = Hxω + 'ωHX9 where ω is given fey

(2.11) ω = {'XlWX.-'Xl^dX, X)(X, X)-UX_) Θ/.

By (1.14), the curvature matrix is given by

(2.12) Ω ='X:1[(dX, dX) - (dX9 X)(X9 X)~ι(X, dX)](X9 X)'UX^ I.

In the following, let us adopt the notation

(2.13) (a,b)±-(ax.,bχί).

Then Ω has the simpler expression

ω ='X:ι(dX, dX)±(X9 X)~UX^ I.

Now let e = (ev , er) be the standard frame fields where

*/= (eu>'-,eqi) (i = l, , r ) .

With respect to the standard frame fields, we have

v = Σ e*X:ι(X, M, ), K = -eQH-ue.
1 < i < r

Here M, is the ith column of the n X r matrix M.
Lemma 2.8. We have the following conditions:
(i)dυ = Σι<i<rel'X:1(dX,Ml)±.

(ii) K = U^j^efXlXM,, Mj)(dX, dX)± X:ι'er

Proof. The assertions follow by a straightforward computation using our
expressions for ω ((2.11)) and Ω ((2.12)).

2.9. Let c, h x and χ be given by

T(rq/2)c = -(rq -

(2.14) hx= detHx= (det - (X, JVΓ»'r(detX_)2rdet<M,

••• en -" elr ••• .
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Here we consider the expansion of the rq-ίoim

tei(M,M)q/\dv)qr/cχ.

From (i) of Lemma 2.8 and (2.14), it follows that

det(M,M)"/2(dv)qr/cχ

/2

1 = 1t=\

(2.15) = ( - l ) 1 + ^ - 1 > < " - 1 > ( ) ( )

where s(X_) = sign(det(XJ).
Definition. Let f(X, M) be the polynomial of M given by

f(X, M) = (- l ) 1 + 9 r ( r - 1 ) ( ^ 1 ) / 4 ψr(^) W-^2(det - (X, X) Yr/1

±
t=l1=1

and denote by f(Z,M) the differential form on ^ whose pull back to W_ is
f(X,M).

Remark. The polynomial /(Z, M), except # = 1, in general is not suitable
yet to combine with an exponential function to form a theta function. To
obtain the right polynomial, we will notify f(Z,M) by representation theory
of O(p).

2.10. We can define ωs(M) for ^ M > as in §1.17. It is clear from our
construction that

g*ωs(M) = ωs(g-ιM).

By translation, Theorem 1.21 is also applicable for ω5(M) with a proper
orientation sM on Sf^y Let

0

0

with the q X q zero matrix at the bottom. The orientations s of 3f and Sy of
@λ used in Theorem 1.21 are determined by

Λ Λ dzIJt (-ιy{p-r)glPA Λ dzφ
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respectively. Choose g e G such that

gM(M,M)-1/2=Y0, det(y(g,z))>0 (z€=0) .

Since ω5(Mα) = sign(deta)^ωs(M) and g*s = sign(det(g))%,

*Λ/=sign(det( g))V*y o

In the sequel, we use 3)M for Sd^M) w ^ h ώe orientation sM.

3. Some invariant theorems
In this section, we discuss some representation and invariant theorems for

O(p) needed for our later investigation on geometric theta functions.
3.1. The Casimir operator of O(p, q). Let G= O(p, q) and let L(G) be its

Lie algebra. For X e MW(R), n = p + q, set

( y

ll A 1 2
with Jfn e Mpp(R)9 Xl2 e M^(R), Z 2 1 e M^(R) and X22 e Mqq(R). Then
L(G) is given by

L(G) = {* e Λfπ(R)|'jru + Jfn = 0, % 2 + X22 = 0, X21 = % 2 } .

Denote by Eab the w X « matrix with entry 1 at the {a, b)th position and zero
elsewhere. One checks easily that L{G) has a basis consisting of the following
elements:

Aij^Eij + Ejt (i<j),

Bst = Est-Ets {s<ή,

Cis = Eis + Esi.

Here we adopt the convention on indexes

l<i,j<p, p<s,t^n.

With respect to the invariant form B(X, Y) = tτ(X9 Y), the Casimir operator
C = C(/?, q) is presented by

(3.1) C-

3.2. Let V = R" and let Vr be identified with Afπr(R). Denote by r the
representation of G on the smooth functions of Vr given by

r(g)f(X)=f(g-1X) (g<ΞG, l e Γ ) .

Now introduce the differential operators
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Then we have

r{ΛtJ) = I,j - Iβ,

It follows that

Σr(Λu)r{AtJ) =

,,) = I,, - Iu, r(Cis) = -(

Z,λ / Λ

λ,!' /,5

A straightforward computation yields the following expression for r(C(p, q)).
Lemma 3.2. The image ofC(p,q) under r is given by

L λ , L r λ + ( » - r - l ) Σ Lχχ

_ y / ,„ ,„ \ / 9 3

vvΛere A"x w the \th column of X and

3 3 \ v- 3 2

3.3. Let O(π) be the real orthogonal group. To discuss the representation
theory of O(n), we consider the quadratic form

(3.2) Q(x) = xxxn + x2xn_ι + +xnxv

Set / = [n/2] and / the / X / matrix

1
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Let A be the matrix

/ /

(3.3) A = {

~Ί=E 0 - = ,

4— £ 0 ~J

(n = 2l + 1),

One sees easily that

(3.4) AO{n)A~l c O(Q,C).

The diagonal subgroup T oi AO(n)A~ι contains a maximal torus consisting of

elements of the form

(3.5) «(') = , - 1

where rf. e C with 1̂ 1 = 1 (/ = 1, •,/). It follows that S = AιTA is a

maximal torus of O(n) consisting of elements

s{t) = A~ιa(t)A.

Each character χ of S is determined by an /-tuple of integers (w l 9 , mt)

with

Let V be an irreducible complex SΌ(«)-module. It is known that the highest

weight of V with respect to S is given by (m1, , m7) satisfying

Wi > > m, ̂  0, H = 2/ + 1,
(3.6) , ,

m, > ••• ̂  ιnl_ι ^\m,\, n = 21.

3.4. Now let V be an irredicible r^/ O(«)-module. We know [39, volume 7]

that Vc= V ® R C is still irreducible as a complex 0(«)-module. Note that the

index of SO(n) in O(n) is 2. It follows from the Clifford's theorem that

Vc\SO(n) remains irreducible or breaks up into two irreducible parts. From

[39, volume 9], the latter occurs if and only if n = 2/ and Vc has a dominant

weight (m^ , nij) with m, Φ 0. In this case, the other dominant weight is

(mι, ,mm_h-mι). It follows that in all cases, Vc has a unique dominant

weight (mv , m,) with m7 > 0.



174 S. P. WANG

Definition 3.4. An irreducible real O(«)-module V is said to have signature
(ml9- , m7) if mx ^ ^ mι > 0 and (ml9- , m,) is a dominant weight of

Vc
3.5. Let Q be given as in (3.2). Let ir be a finite dimensional irreducible

complex representation of S0(£>, C). Here we compute the value π(C) of the
Casimir operator C of SO(Q, C). In the following, we discuss in detail the case
n = 2/ + 1. The Lie algebra of SO(Q, C) has a basis given by

0
Au =

lEtJ 0

0 0 0
0 0 -JEβJ

XΓ-

(0 e, 0 '

0 0 -'ej

\0 0 0 t

0 0 0
'<?,. 0 0

0 -Jet 0

[O 0 /(£,,-£„)

(1 / ) ,

0
0

0
0

0
0

0
0

0
0

o
0 (1<«

{EtJ-EJt)j 0 θ]

With respect to tr( XY\ the Casimir operator C has the form

c-\{ Σ ΛiΛι+ Σ

/).

XΓX,)- Σ (YfYtJ+γtJYi})).

By the Lie algebra structure

C = ̂ { Σ (AuAH + AH) +

+ 2 Σ Λ , ^ 7 + 2 Σ - 2

Lemma 3.5. 7/" π has dominant weight (wi1?

(3.8)

ε = 1 if n = 2/ + 1 and ε = 0ifn = 21.
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Proof. Immediate from formula (3.7) and a similar expression for n = 21.

3.6. Corollary Let V be an irreducible real O(n)-module with signature

(ml9 - - , m7). Then the Casimir operator Cv of C on V is a scalar multiple with

value given by (3.8).

Proof. If Vc is irreducible as an SΌ(«)-module and the dominant weight

is (mv- , mj), then Cv has the value given by (3.8). If Vc decomposes into

two irreducible S0(«)-modules, Vc has dominant weights (mv- , ra7) and

(mv- , m{_v -nif). In this case, n = 2/ and it is clear that both irreducible

spaces yield the same eigenvalue for C determined by (3.8).

3.7. Let G = SO(n) and let H = SO(n - 1) be the subgroup of G given by

Let / = [n/2] and TΓ(H; ml9- , m7) be the irreducible representation of SO(n)

with dominant weight (ml9- ,/W/). The spectral decomposition of τr|H is

given by the following theorem.

Theorem 3.7 [40, Theorems 2 and 3, pp. 378-379]. (i) Ifn = 2/ + 1, then

where the summation runs over mx > sλ ^ m2,-'', mι_ι

m7 > 5/ > -m7.

(ii) //« = 2/, then

w / z e r e ί /ze s u m m a t i o n r u n s o v e r m x ^ s λ ^ m 2 , , ̂ / _ 2 > ^ / - 2 ^ m / - i

S/_x >
3.8. Let r be a nonnegative integer with r < / and πn r the irreducible

representation of SO(n) with dominant weight

r / - r

Lemma 3.8. 77ie restriction mn r\SO(n — r) of π to SO(n - r) contains the

trivial representation exactly once.

Proof. For a nontrivial irreducible representation π = 77(«: m1 ? , m7), let

Λ(77-) be the /αrgetf index i such that mtΦ 0. From Theorem 3.7, it yields that

(3.9) * ( τ ) > Λ ( f l r ) - l

for any irreducible representation r of SO(w - 1) with τ < TΓ 15Ό(« - 1). Let

mn r be the multiplicity of the trivial representation in πn r\SO(n — r). From

(3.9), we have the recursion relation mnr = mn_lr_ι; hence, by a simple

induction mw r = mn_r0 = 1.
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3.9. Proposition. Let Vbe a real irreducible O{n)-module with signature

£)' a > °' ; =

r I - r

Then the multiplicity of the trivial representation of O(n — r) in V\O(n - r) is

at most 1.

Proof. Let H = O(n - r) and VH be the subspace of elements of V fixed

by //. It is easy to see

(3.10) (V")®RC = (V®RC)H.

Consider then the space Vc = F ® R C.

Case 1: Kc |SΌ(w) W irreducible. Then it is the representation π,7,. and our

result is immediate from Lemma 3.8.

Case 2: Vc\SO(n) breaks into two irreducible subspaces. It follows that Vc

has an irreducible 5Ό(«)-module W of dominant weight

r I - r

Choose an element τ in O(n - r) with det(τ) = - 1 . Then we have Vc = W θ

ΊW\ as a consequence

ySO(n-r)= ψ^ φ τ W ^

where Wλ = ^ o c / i - ^ B y Lemma 3.8, d i m c ( ^ ) = 1. Since the matrix of

T I Wλ θ TW^ is (° J), one concludes readily that the eigensubspace of T | J ^ θ

ΊWX of eigenvalue 1 is one dimensional. Hence we have that V£ is of

dimension 1 and by (3.10), ά\mR(VH) = 1.

3.10. Let M be the n X A* matrix of indeterminates M = (M / y ) and let

W = R[M] be the ring of polynomials. For a nonnegative integer s, let W5 be

the subspace of R[M] given by

(3.11) Ws = { / ( M ) e R[M]\f(Mk) = det ( ik)7(M), A: e G L ( r , R ) } .

The space Ŵ y is trivial if r > n. We assume that r < n. Let / be any subset of

Io = {1, , w} with cardinality r. Let z'l5 , /r be elements of / in increasing

order and denote by φf the polynomial

φ / ( M ) = det(M / ),

where M, is the A* X r matrix such that the *>th row of (Mf) equals the ẑ th row

of M (p = 1, , r). The fundamental theorem of invariant theory for GL(r)

[10, Theorem 7.2] yields the structure of Ws.

Lemma 3.10. The space Ws is the linear span of φ7 j φr where 71? , Is

run over subsets of {1, , n} of cardinality r.
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3.11. By the preceding lemma, the space Ws is contained in the space of
homogeneous polynomials of degree rs. Let Δλϊ, be the differential operators
given by

Recall that a function / is pluriharmonic if it satisfies

(3.12) Δ λ J = 0 ( U λ , F < r ) .

By [18, Remark, p. 18], W = H Θ R['MM], where # is the space of pluri-
harmonic polynomials. By [10, Theorems 6.9 and 6.13], the space Hs = H n Ws

is irreducible with signature

r l-r

Moreover the occurrence of ω0 in H is 1. Let W° (resp. i/°, Ws°) be the
isotypic component of the representation of O(n) with signature ω0 in W
(resp. if, Ws). It follows that

W° = H° ® R['MM] = i/5 0 R['MM],

and so all polynomials in W° have degree at least rs. As a consequence,

Theorem 3.11. Let f e ίΓs αwrf r ^ Λ/5. The following statements are equiv-
alent:

(i) / is pluriharmonic.
(ii) f is harmonic,

(iϋ)/€E »ς0.
(iv) 77= 0, Γ = Σ^ < λ > , < r <M λ > Af,)Δλ,.
3.12. Lemma. L ί̂ f(M) be a polynomial such that
(i) f(Mh) = χ(A)/(Af), λ e GL(r),

(ii)/(gM) = p(g)/(Af),geO(/i).
Ifr<n, there exist a constant c and a nonnegative integer s such that

f(M) = cdet('MM)5.

Proof. Immediate from [18, Theorems 6.9 and 6.13].

4. Harmonic forms with highest signature

4.1. Let 2 be the symmetric space associated to the group O(p,q). For
fixed g e G, the function det(y(g, Z)) has constant sign s(g) over 2. Denote
by G the subgroup 0+{p, q) of O(p, q\ where
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For Z G S , let 0z be the isotropic subgroup of G at Z. It is easy to see that
Oz is isomorphic to O(p) X SO(q). For convenience, we also realize Sf as the
space of all maximal negative subspaces of R", n = p + q. The element Z is
then identified with the subspace (Z) spanned by the columns of the matrix
( I ). Let Kz be the subgroup of G defined by

v for u e ( z ) } .

Clearly AΓZ is isomorphic to O(p).
4.2. Let Arq(@)z be the space of differential forms of degree rq at Z. By

choosing a proper orthonormal basis of the cotangent space of 3) at Z,
Arq(3)z is isomorphic to Λr<7(F) with F = Af^(R); moreover the action of
Kz on Arq(V) becomes the representation of O(p) in the tensored space.

4.3. Let / = [p/2] and r < /. For a quadratic form <2 of Rp, we consider the
representation of O(Q, C) on Arq(V) ® R C. It is easy to see that Λrήr(F) has a
unique irreducible O(/?)-submodule with signature

Let 77O be the projection of Arq(V) onto this irreducible subspace with respect
to the decomposition of Arq(V) into isotypic subspaces of O(p).

4.4. Let eij9 1 < i < p, 1 <y" < q, be the standard basis of K Let φ be the
element

(4-1) Φ= Π Π e,,

Here product means exterior product. Now let Λ and / be the matrices given
in §3.3. We have that ((3.4))

A0(p)A-l<z0(Q9C),

with Q(x) = xιxp + x2xp-2 + * * * + */,*i
Consider the element Aφ. Let Γ be the maximal torus of AO(p)A~ι in

(3.3). We have the expression

(4.2) Aφ = ( - i r - ' W - ^ Γ Π Π etJ + terms

(of lower weight with respect to T).

Since AO(p)A~1 is compact, Λ r ^(F)Θ R C has an invariant inner product
( , >. Let ψ be the element

(4-3) ψ= Π Π e,j.
! 1
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From (4.2), (Aφ, ψ> Φ 0. Note that Cψ is the weight space of Arq(V) <S> R C of

weight coo. As a consequence πo(φ) Φ 0.

Proposition 4.4. Let W° be the irreducible O(p)-module of Arq(V) of

signature ω0. Then the multiplicity of the trivial representation of O(p — r) in

W° is 1; moreover every O(p — r) invariant element of W° is a multiple of

Proof. We know that φ is O(p — r)-in variant. By the above discussion,

τro(φ) is a nonzero O(p — r)-invariant element of W°. By Proposition 3.9, the

multiplicity of the trivial representation in W \ O(p - r) is at most 1, thus our

assertion follows.

4.5. Let υ0 be a nonzero O(p - r)-invariant element of W°. Since

it yields that the coefficient of φ in v0 with respect to the basis efj is nonzero.

Let

be the ordinary * operation. Let £ be the element

1= Π Π e

Lemma 4.5. We have the following conditions:

(i) The coefficient of φ in v0 is nonzero.

(ii) The coefficient of ξ in * v0 is nonzero.

Proof, (i) is established above,

(ii) follows by a variant argument of (i).

4.6. Let M e Mnr(R). Recall that in §2.9 we have defined a polynomial

f{Z,M) such that its pull back to W_ has the expression

(4.4) 1
f\{dX,,M)±,

1

§4.3, we know that Arq(3>)z has a unique Λ^irreducible submodule

signature

( ) l=[p/2].

Definition 4.6. Let F(Z, M) be the projection of / ( Z , M) in Arq(S>)z with

respect to the decomposition of Arq(@)z into isotypic subspaces of Kz.

4.7. Lemma The form F(Z, M) satisfies the following conditions:

(i) For g G G, (g-^ FίZ, M) = F(Z, gM).
(ii) L^/ M z ± fc^ the component of M orthogonal to Z (Z as a subspace of Rn).

Then F(Z, M) is just a polynomial in Mz± .
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(iii) Fork e GL(r),

(4.5) F(Z,Mh) = det(λ)*F(Z,M).

(iv) F(Z,M)Φ0.

Proof, (i) is immediate from formula (4.4). By our construction,

hence F(Z, Λ/) is a polynomial in M z ±. Let ft(X, M) be the form

One sees easily that

and as a consequence, (iii) follows by formula (4.4). Let

0

M= Er

, 0

with upper and lower zero matrices of the size (p — r) X q and q X q

respectively. At Z = 0, f(Z,M) is a nonzero multiple of φ given in (4.1).

Then by Proposition 4.4, F(Z, M) Φ 0.

4.8. In the sequel, we consider forms of the type

(4.6) τ(a) = det(M zχ , Mz±)aF(Z, M) a = -(/> + 2q - r - l )/2.

Let C(K7) be the Casimir operator of Kz on polynomials of Mz±. Since

det(Λ/zχ, Mz± > is K^invariant and by our definition F(Z, Mz±) belongs to

the isotypic component of R[MZ±] of signature

l=[p/2],

thus

(4.7) C ( ^ , ) τ ( α ) = \qr(p + q - r - l)τ(a)

by a simple computation using Corollary 3.6. Let C(G) be the Casimir

operator of G on R[Λ/]. Note that τ(a) depends only on Mz±. By a

straightforward computation, τ(a)(Mz±) is again pluriharmonic. By Lemma

3.2, it is easy to see that

(4.8) l

where

L»- Σ
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Clearly

Lπτ(a) = (2a + q)τ(a) (1 < i < r ) ;

hence we obtain the relation

(4.9) C(G)τ(a) = f {{p + q - r - 1) +(2a + q)}τ(a) = 0.

4.9. We say a differential form ω(z) of 2) of degree AT? is of highest signature
if

(4.10) «(Z)eΛS'(0)z,

i.e., at every Z, ω(Z) belongs to the isotypic subspace of signature

By a harmonic form ω(Z) of 3), following Hodge we mean a differential form
ω(Z) of 3) satisfying dω = 0 and d(* ω) = 0. The condition is stronger than
Δω = 0 in general. We have the following theorem on harmonic forms of
highest signature.

Theorem 4.9. We have the following conditions:
(i) The form (det(Mzχ , Mz, ))-<p+*«-r-V/*F(Z9 M) is a harmonic form of

highest signature invariant under GM.
(ii) Conversely every G^invariant harmonic form of degree rq of highest

signature is a constant multiple of the form in (i).
Proof. Let τ be the differential form given by

(4.11) τ(Z, M) = det(M z , , M z χ>- ( / ? + 2 ^" r " 1 ) / 2 F(Z, M).

We prove the theorem in several steps.
Step 1. By (i) of Lemma 4.7, it yields that

(4.12) (g- 1 )*τ(Z,M) = τ(Z,gM).

Let C and C(G) be the Casimir operators of G on Λrq(@) and R(M)
respectively. From (4.12), CV = C(G)τ. Then by formula (4.9), we have the
condition Cτ = 0.

Step 2. Consider the product τΛ(*τ) .We have

(4.13) T Λ (* T) = det(M z . , M z , )- ( / > + 2 < 7 " r " 1 ) F(M, Z)Λ(*F(Z, M)).

Set

F(Z, M) Λ * F(Z, M) = *(Z, M) J%,

where h(Z,M) is a polynomial in Mz± and d% is the invariant volume
element of S). Since dv@ is G-invariant, by Lemma 4.7,

Λ(Z, Mα) = det(α)2ί7Λ(Z, M), α e GL(r),
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Appealing to Lemma 3.12, we have

Λ(Z, M) = (det(Mz± , Mz±)q)a(Z).

As a consequence of the condition

α(Z) must be G-invariant. It follows that a(Z) is a constant c such that

(4.15) τ Λ ( * τ ) = cdet(M z , , M z , ) - ( / 7 + ί 7 - r - 1 ) ^ .

3. Assume that (M, M> > 0. Let TM be a uniform discrete subgroup of
GM where

^ M = {s G G|g leaves M pointedwisely fixed}.

Then by formula (1.39) for dυ9 and Lemmas 1.20, 2.6

(4.16) f T Λ * r =

where fe is given by

Π ; , χ ( / ^ Q / Π ^ ^ y - 2r -

Step 4. Let L2

rq M be the space of G^-invariant forms φ of G of degree rq
such that

(φ,φ)dg< oo,

where dg is a fixed Haar measure on GM\G. By (4.16), the pull back of τ lies
in L2

rqM. Hence Kuga's lemma on harmonic forms [3, p. 49, Theorem 2.5] is
applicable. It follows that T is a harmonic form for (M,M) > 0. Since
τ(Z, M) depends on M and Z as a rational function, it is a harmonic form
wherever it is defined. This proves (i).

Now let ω(Z) be a differential form satisfying condition (ii). Note that
GM Π Kz is isomorphic to O(m) with m ^ p — r. Up — r < m, by Theorem
3.7, ω(Z) has to be trivial. Hence we may assume that m= p — r. By
Proposition 4.4, there exists a function b(Z) with

Then the conditions dω = 0 and J ( * ω) = 0 yield

(4.17) db(Z) Λ T = 0, Λ ( Z ) Λ( T) = 0.

With the aid of Lemma 4.5, condition (4.17) implies that db(Z) = 0, i.e., b(Z)
is a constant. Thus we have established assertion (ii).
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5. Some integral formulas

In this section, we consider various realizations and parametrizations of 3)
and present various expressions of the invariant volume element of 3. The
purpose is to evaluate some integrals which will be encountered in our study of
the Fourier coefficients of the lifting map.

5.1. Let p ^ q > 0, n = p + q and let Qx be the matrix

(0 0

0

E« o
Denote by G the orthogonal group leaving Qx invariant,

G={g<=GLn(R)\'gQi8=Qi}-

Given an n X n matrix X, we use the black form which is suitable for Ql9

Ml

V32 V33

where Xιv X33 e Mqq(R) and X22 e Mp_qp_q(K). The Lie algebra L(G)
consists of those X satisfying the conditions:

(5.1)

For t =

(5.2)

n

= 0,

= 0,

= 0,

x22
x21
X

+
+

+

Λ 2 2

%2

% 1

= 0,

= 0,

= 0.

), let us set

d{t) = ,.i. •> )̂

and denote by T the group consisting of all these d{t). We know that T is a
maximal connected R-diagonalizable subgroup of G. Let α, be the character of
T given by

Let ^ be the subalgebra of L(G) consisting of X such that X21 = 0, X31 = 0,
^32 = 0, X22 = 0 and Xn is upper triangular. Then Jί is a maximal Γ-
invariant nilpotent subalgebra of L(G) and it defines an order of the roots of
G with respect to T. From (5.1) one easily sees that the set Σ+ of positive roots
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(5.3)
« , • « , • ( ! ) ,

1 <i

where the number in the parenthesis indicates the multiplicity of the root.

5.2. Let S be the matrix given by

1 .

0

Clearly S satisfies the conditions

0 —En

o 4 i

Λ 0
0 -E

and consequently O(p, q) = SGS. Let a(t) be the element of O(p, q) given by

α(ί) = Sd(t)S. A straightforward computation shows that a(t) is of the form

where

X> = d i a β ^ — 2 — • ' " • — 2 — j '

2 ' ' 2

Consider the group action of O(p, q) on 2. We have that

5.3. Let AT = O(p)X O(q) and ^ = STS. By a theorem of Cartan,

(5.5) O(p,q) = KAK.

By [12, Proposition 1.17, p. 381] the invariant measure of O(p, q) with respect

to the Cartan decomposition (5.5) has a form

(5.6) dg = c Π sinhaadkιdadk2,
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where c is a nonzero constant. From the data of positive roots (5.3), it yields

i i

< 5 - 7 ) ' " ' / tι + r 2 - t. - t'ι\
Π ' A

J ' )dkιda{t)dk1.

Now set

In terms of λ ;, (5.7) becomes

(5.8)

5.4. Recall that Q) = O(p, q)/K and the identification is given by g •-> gO.

For any real /? X q matrix Z e 3), there exist T G O(p) and σ G O(/?) such

that

where

D(\) = diag(λ 1 , , λ ί / ) , 0 < λ 1 < λ 1 < ••• < λ ^ < l .

F r o m (5.8), the invariant measure dυ@ on ̂  in terms of the decomposition

(5.9) can be presented by

Π
(5'10) Π

where q is a nonzero constant.

5.5. For Z G 3), let {dZ} be the Euclidean measure. The invariant measure

dυ@ is also given by (1.38)

dv9=det(E-tZZyip+q)/2{dZ}.

Comparing it with (5.10), we see easily that

(5.11) {dZ} = cλX\\Γq Π {λ'-λ^dλ^. dλqdτdσ.



186 S. P. WANG

5.6. Let a: 3) -> Mpq(R) be the map

(5.12) a(Z) = Z(E-'ZZY1/2 (ZeS).

For any W e Mpg(R), W(E +'WW)-^2 lies in 9. Thus we have a map 0:
Mpq(R) -» ̂  given by

(5.13) β(^) = W(E+'WWY1/2 (lfεM

One checks readily that a, β are inverse to each other.
For Z e ® , the decomposition (5.9) yields

HT)
By a direct and simple computation,

where *>,. = λ,/ ̂ 1 - λ] (/ = 1, , q). Then it follows that (5.11) implies

(5.14) α*(det(£ + W f F ) " 1 / 2 { ^ } ) = dυ9.

Theorem 5.6. Let dυ9 be the invariant volume element

of 3) and W = Z(E - 'ZZ) ' 1 / 2 . Then we have the integral formula

f f(Z)dv&(Z)= f f(w(E +tWW)~l/2)det(E -^'
J® JM(R)

for integrable functions f{Z) of 3).
For convenience, formula (5.14) can also be written as

(5.15) {dW) = det(£ -<ZZ)- ( / 7 +*+ 1 ) / 2{dZ).

5.7. In the sequel, we discuss various realizations of 3 with the intention of
easier comprehension of the boundary of Si. Let p, q, s be integers such that
p^q>0, q>s^Q. Denote by Q2 the symmetric matrix

/ 0 0 Es

(5.16) Q2= 0 Ep_s,q_s 0

\ES 0 0

and by G the orthogonal group leaving Q2 invariant. The symmetric space
associated to G is realized as the space of all real p X q matrices Z such that

(5.17) >N(Z)Q2N(Z) < 0,
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where N(Z) stands for the matrix N(Z) = (f,). For g G G, we use the block

1matrix form g = (CD) W^ ^ G Mpp(R) and D e Mqq(
2 is the usual fractional transformation

gZ= {AZ + B){CZ + D)~\

5.8. For Z G ̂ , we decompose it into the block form

Zx Z2Ϊ

). The action of g on

(5.18) Z =

with Z! e Λf,,,.,, Z2 e MSJ, Z3 e Λf,.,,,., and Z 4 e
inequality (5.17) reads

(5.19) '(Z3Z4) L^

Note also that (5.19) is equivalent to

(5.20)
'z3z3 < £,-,.

,z4 < -('z2 + z2)-{zx +'Z4Z3)(E - z,
Let A(Z) be the function given by

(5.21) Λ(Z) = det(-W(Z)β2JV(Z)).

In terms of Z l 5 Z3, Z2, Z4, we have the expression

A = det(£ -'Z3Z3)det(M),

M = -{'z4z4 +'z2 + z2+(zι +1ZAZT){E -lz^

The invariant volume element of 2f is given by

(5.22) dv0 = A-(

where {dZ} as usual stands for Πf=1 Y\J^λ

5.9. Let Fo be the n X 5 matrix given by

F-\E

and Go the subgroup

For any g e Go, write

8 =

(Es X C

0 D Y
0 0 £.

,. Then the

ι +'z,z4).
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The condition g G 0(Q2) yields equivalently the conditions

(5.23) D e O(p-s9q-s), X- -ΎQ3D, C + 'C = -ΎQ3Y,

where Q3 = Ep_s q_s. For any Y G M w _ 2 j i J (R) and s/:ew symmetric s X s

matrix S, denote by «(y, S) the element of Go given by

Έs -ΎQ3 C(Y,SΫ
(5.24) n(Y,S) = -ln-2s

0

where C(Y, S) = - \ΎQ3Y + S. Let N be the set consisting of all n(Y, S).

One sees readily that Go is the semi-direct product, i.e., that

(5.25) G0=O(p-s,q-s)KN.

5.10. Given any (n - 2s) X s matrix Y, let

(5.26) Y=ijι

with Yλ G Mp_s, s and y2 G Mq__s S. A simple computation yields the transfor-

mation formula of n(Y, S) on i?

r - Ύ 7 - l - Ύ Z — 7 Y —lY Ύ A-ιY7 Y 4 - Λ

(5.27) Δ = - i ' y y + s .

For m <Ξ O(p - s,q - s), let

m = C,

with y4t G Mp_s p_s and D x G Mq_sq_s. Identify m with the element of Go

defined by

£ 5 0 0

0 m 0
0 0

Then the transformation formula of m on ® is given by

(5.28) z 2 -

5.11. Now let X be the n X r matrix (r ^ 5) given by X = (Q')> a n d Gx the

subgroup of G leaving X fixed. Clearly G^ c Go. Denote by ̂  the subgroup

of TV consisting of all n(Y, S) such that Yλ in (5.26) is of the form
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where Y{ is a (p - r) X s matrix. Then one readily shows that

(5.29) Gx-Oip-nq-s)*^.

5.12. For Z3 and Z4, we decompose further

(5.30) Z3 =
Z 3

with Z3' e M r M _ , and ZJ e M,.,,,.

By condition (5.20), we have that 'Z3Z3 < Eq_s. As a consequence, there

exists m ^ O(p — r,q — s) such that mZ3 = 0. Then choosing Y, 5 properly

with /i(y, S ) e i^!, one can bring Z into W = Λ ( Y , S)mZ satisfying the

conditions:

(5.31) w1 = 0, *w2 = w 2̂, w '̂ = 0, w; = 0.

Now denote by F the subset of 3) consisting of all Z satisfying (5.31). By the

above discussion, we have that

(5.32) 0 = GXF.

From (5.27) and (5.28), one sees easily that an element g ̂  Gx satisfies

gF Π F Φ 0 if and only if g e #(/? - r) X O(q - s); moreover O(p - r) X

- s) leaves F invariant. Set

[ 0
(5.33) ^ = G^Z0.

Here we view 3) as a fibered space over ^ x . For each Z E: 3)v there exists

g E G ^ with gZ0 = Z. Then the fiber Fz over Z is determined by Fz = gi7.

The above discussion indicates that it is independent of our choice of g.

Now let

(5.34)

and a be the form

(5.35) a = B

Examining the transformation formulas (5.27) and (5.28), one concludes easily

that a is (/^invariant. Thus we can view a as a (^invariant measure dv^ on

Sdv For Z G £&l9 let dvF be the form over the fiber Fz given by

(5.36) A,-B-< '- '^<iZ, ' ' } {dZ;
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By our construction, it is also Gyinvariant. From (5.22), (5.35) and (5.36), we

have the following decomposition of dv^, with respect to the fibered structure

mentioned above,

(5.37) dvB=(B/A)ip+")/2dυFdυBι.

5.13. Let SP* be the space of all positive definite real / X / matrices. The

group GL(/, R) acts on Sff by

T[g] ='gTg, Γ e ^ \ g e GL(/,R).

Let dμ(T)be the measure on y,+ defined by

(5.38) dμ(T) = det(Γ)" ( / + 1 ) / 2{ dT},

where {dT} is the Euclidean measure on 5^+. It is easy to see that dμ(T) is

GL(/, R)-invariant and moreover it satisfies the condition

(5.39) dμ(T) = dμ(T~ι).

For T e y,4", we can express

(5.40) T=D[B],

where

D = diagίλ^ jλ/) (λ, > 0),

1 b12 ••• b

B = l

\ 1 /
With respect to this parametrization,

(5.41) {dT}= λ'fι • • λ,-1dλ1 • • • dλ, Π <B>ij

Lemma 5.13. For η e y7

+, we Λ̂ ί e /Λe integral

f e-tr^det(T)a{dT} = Γ /(α)det(r ?)- ( / + 1 + 2 α ) / 2,

/. Changing the variable W = η1 / 2Γi]1 / 2 in the integral, we obtain that

the integral has the value

det(η)- ( 1 + / + 2 o ) / 2

= det(ηy
ia+l+2aV\<v-wίir(2a V + ' ) .
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5.14. For X = (£') e Mnr(R), clearly we have

For Z e F , recall that Z satisfies condition (5.31)

Z x = 0,

Z 2 = S, 'S = S,

z; = o, z; = o.
Let Z3" = ί f and Z^' = V. A straightforward computation shows that

-(N(Z),N(Z))=ίE-'WW ~'WV )

(5.43) Γ

= IE-'WW θ\ [£ -{E-'WW)~UWV

where

Thus (5.21) and (5.43) yield

(5.44) A = det(£ -'WW)del(T).

5.15. Set

( 5 4 5 ) (Xz, Xz) = (X, N(Z))(N(Z),N(Z)y1(N(Z), X),

(xz,,xz,) = (x,x)-(xz,xz).
From (5.42) and (5.43),

(5 46) (X χ)-l(E-'WWr1 0 | f ( 0 'W
(5.46) - < J f z , J T z ) - ^ o r ^ | £ r^.^W

Now make the change of variable

(5.47) U=(E-W'W)'1V.

Note that B = 1 on F. By the formula (5.36),

(5.48) Λ-<'+«>/2<Λv

= A-^+")/2άet(E - W'W)s2-s(s+1)/2{dW}{dU}{dT)

on F.
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In terms of W, U, T,

-(XZ,XZ) =

(5.49) (XZ,,XZ,) =

-\ τ-uu

j-ltjj

uτ-ι

τ-ι

0

υ

(E

0

- w

r + (£

wyι

- W'W)

E V
0 E

-1

by (5.42). This implies in particular,

(5.50) det(* z χ, Xz±) = detΓ-Ήet^ - W'W)'1 = A~ι.

Finally we set L = W(E - tWWy1/1. From Theorem 5.6,

{dL} = det(£ -'WW)'^^

and consequently by (5.48) we have the expression

-tWW)(r+q+1)/2{dL}{dU}{dT)

on F.
5.15. Now we are ready to consider integrals of the form

(5.52)

where η e £fr

+ and Γ^ is a lattice of Gx. To evaluate the integral, we appeal to
the decomposition of dv3 ((5.37)). Clearly the function involved in the integra-
tion is G ̂ -invariant. It follows that

(5.53) J(η,a)= f

By (5.50) and (5.51),

1,*) = 2-'<' VLLY
(5.54) ^

•e[-2itτη(Xz,Xz)] {dL}{dU} {dT},

with Γ G ̂ + , ί/ e MΓ_JϊS(R) and L G Mr_5 ^_5(R). Decompose η into the

block form

V =
^22
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where η π <= MSS(K) and η22 e Mr_sr_s(R). Then we have that

(5 55) " t r ( η ^ z ' * z > ) = tτ^T-1 + VnUT-1)

+ tr('τ) l2Γ-1 'U + η22L'L + i)22UT-1 *U).

Set Y = ηι/2

2UT'ι/2. We have

tr(η12t/Γ-') + tτ('ηuT-uU + η22UT-uU)

(5.56) = tr(y + T Γ ^ V Γ - ^ X ' Y + T-

We integrate (5.54) first over U. By (5.55) and (5.56),

J(η,a) = l-^-^'^^dct^Y^J, • J2,

where

Jχ = / (detrr-^
(5.57)

J2= f det(E+'LL)"e[2itr(r)22L'L)]{dL}.

Assume that a = 0. By Lemma 5.13,

y, = / ^ e[2/tr((τ,n -

( 5 5 8 ) = det(τ,n - 1 2 ^ 1 2 ) 7 +
s

The value of /2 in this case is easily seen to be

(5.59) J2 = det(η22y
{q-s)/22-

Observe that

detη = det7722det(ηn -

and by (5.57)-(5.59)

J(η,0) = l - ^ - ^ + ^ Λ r ^ - ^

Theorem 5.15. We have the integrals

f det(* zχ , ̂ z .)- ( / 7- r- 1 ) / 2e[-2/trτ ?(X z, Xz)] dυ9
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5.16. Let M e Mnr(R) such that dim(M> = r and <M, M) > 0. Let s be
the dimension of maximal isotropic subspaces of (M). With respect to proper
basis, we may assume that Q = Q2 and there exists g G G with g(M) = (A r),
where * = ( £ • ) • L e t I(^M) be the integral
(5.60)

d e t ( M z , , M z , ) - ( / 7 ~ r - 1 ) / 2 ^ [ - 2 t r η / ( M z , M z > ] ^ .

As g(M> = (X), there exists /? e GL(r,R) satisfying the condition

(5.61) gM=Xβ.

By the property of invariance of J% and functions in the integral /(η, M), it

follows that

( 5 6 2 )

= |det)SΓ(/7"r~1)/(/)βηyβ, X) (by substitution (5.61)).

By Theorem 5.15 (on I('βηβ, X)\ (5.62) yields that

(5.63) /(η.Λf) = cldetiS

where c is given by

/ = i

6. Theta functions and the geometric lifting

In this section, we recall some of the basic results on Weil representations
and theta functions for the reductive pair O(p,q) X Sp(2r,R) in a form
convenient for our presentation of the geometric lifting.

First we briefly discuss spherical polynomials with respect to a quadratic
form. The result will be used to derive the desired transformation formulas for
our theta functions.

6.1. Let A be a nondegenerate symmetric n X n matrix and let Q be the
quadratic form Q(x) ='xAx. Denote by Δ^ the Laplacian

where A-1 = (biJ).

Definition 6.1. A polynomial f(x) is called a spherical polynomial with
respect to Q if Δ^/ = 0.
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6.2. Since A is nondegenerate symmetric, there is a matrix B with A = ιBB.
By changing variables y = Bx, one can translate the assertions for spherical
polynomials with respect to ιyy to the general case.

Theorem 6.2 [28, Theorem 18]. Let f(x) be a homogeneous polynomial of

degree I in xx, , xw wzϊλ complex coefficients. Then the following statements are

equivalent:

(i) f(x) is a spherical polynomial with respect to *xAx.

(ii) f is a linear sum of functions of the form i^ζAx)1 with rζAζ = 0.

6.3. Let f(x) be a polynomial in x1? , xw and A e G L ( H , C). Set

(6.2) (./)(*) =

Lemma 6.3. Let f(x) be a homogeneous spherical polynomial of degree I with

respect to ιxAx. Then we have the condition

( * ) e λ ' ^ (λ e C).

Proof. By (ii) of Theorem 6.2, we may assume that / is a linear sum of
polynomials of the form HζAx)1 with ιξAζ = 0, f e C". The assertion is easily
verified in this case by straightforward differentiation.

6.4. Let N be the p X r matrix of indeterminates and f(N) a polynomial
satisfying

(6.3) f(Nh) = det(h)qf(N) {h G GL(r,C)).

Proposition 6.4. Let f(N) be a spherical polynomial with respect to tr(WJV),
rA = A ^ Mrr(C). Then we have the condition

Proof. From (6.3), / is homogeneous of degree rq. By continuity, we may
assume that A is nondegenerate. Choose B such that A = BιB. Let M = NB.
Then /(Λf) is a spherical polynomial with respect to tr *MM. It follows that

(6.4) /ί 9 ^

However we have that

(6.5) dM
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By (6.4) and (6.5),

Now we return to the discussion on Weil representations. For convenience, we
explain briefly the pertinent results in [23] and notations used here.

6.5. Let R be a finite dimensional commutative algebra over R. Assume that
R is isomorphic to R Θ θ R ( m copies). Let V be a finite ^-module and
( , ): V X V ^> R a nondegenerate bilinear form. Denote by O(V) the
orthogonal group

O(V) = { g E GLR(V)\g preserves ( , ) } .

Let et be the irreducible idempotents of R and let F ( / ) = etV (i = 1, , m).
Clearly we have the conditions:

1 = 1 ι = l

Now let

F r = F θ ••• ΘV (rcopies).

For X=(Xl9'-,Xr) and Y = (71? , 7r), define an r X r matrix with
entries in Z£ by

We have a bilinear form σ: Vr X F r -> R,

(6.7) σ ( ^ , y ) = t r Λ / R ( t r (X,y»,

and by which Vr is identified with its dual. We introduce an alternating form
A on V X F r by

where Z = (X, Y) and Z r = (X\ Y') G F r X F r .
Let / be the skew symmetric matrix

\-Er 0

and Sp(2r, R) the symplectic group

Sp(2r,Λ) = {gG GL(2r,J

The symmetric space associated to Sp(2r, R) is realized as the Siegel upper half
space 3Fr{R) of genus r given by

(6.9) 3K(H) = {V = T G Afr(Λ (g)R C)|(τ -W)/i
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Here an element υ G Mr(R) is positive if efυ > 0 (j = 1, , m). Clearly

For g G Sp(2r, R), set g = (" h

d) with 0, b,c,d <Ξ Mr(R).

On J^.( #), Sp(2r, R) acts by fractional linear transformation

(6.10) gτ = (aτ + b)(cτ + d) .

We have an automorphic factor

(6.11) j(g,τ) = det(cτ + d) ^ R.

For x G /?,

V = V V P

with xf. G R(/ = 1, ,m).

Given an invertible x ^ R and m-tuple / = (/l5 , tm) of integers (or half

integers), let

V° 1 Z 7 Λ — Λ1 Xm'.

Then we write

(6.13) y ( g , τ ) ' = ( d e t ( c τ + rf))'

by the above convention.

6.6. We have a homomoφhism p of O(K) X Sp(2r, Λ) into Sp(F r X FΛ, A)

defined by

( 6 * 1 4 ) ( ^ y ) P ( g ) = ( j f β + r c , Λ & + y β ) , g = ( j * ) G S P ( 2 Γ , Λ ) .

Then the Weil representation of Sp(F r X Kr, A) on L 2 (F r ) gives rise to a

representation (projective unitary representation) of O(V) X Sp(2r, R) via p.

This representation r will be normalized as in [30].

Now introduce subsets Ω, Ω° and Ωr of Sp(2r, R) defined by (g = (a

h

 c

d))\

Ω = (g e Sp(r, R)\c is nonsingular},

(6.15) Ω°= { g e S p ( r , 7 0 | c = 0},

Ωr = {g ^ Sp(r, Λ)|c ¥= 0, c is singular and d is nonsingular}.

Let (/?,, <?,) be the signature of ( , )\Vin and 3f the space of maximal negative

definite subspaces of V. For Z ^ 3), Z^ is the orthogonal complement of Z

in V. Now we define the majorant ( , >z of ( , ) on Vr by
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For T <ΞJί?r(R\ write

(6.17) T = u + iυ

with 'u = u,'u = υ e Mr(R) and Ϊ; > 0. Define a Schwartz function

(6.18) e T i Z ( * ) = e[\ trΛ/R(tr(iι< Jf, X> + fo(*, *>

Here έ?[x] = exp(2flV-Fx) (x e R).

Let /? and # be the tuples

(6.19) p = (/>i, -,/>„), ? = (?i, - , 9 w ) .

6.7. Lemma [23, Lemma 8.1]. Fo/'g = (a

b

 c

d) e Sp(2r, Λ),

Here

ω =

//g e Ω'.

0 -E,

Er 0

and we use the convention (6.12) and (6.13) for the exponential notations.

6.8. Let A: be a totally real number field with [k:Q] = m. Let W be an

^-dimensional vector space over k and ( , ) : W X W -> k a nondegenerate

bilinear form. Let R = A: <8>Q R and F = ΪΓ Θ Q R. Clearly i? = R θ ΘR

(m copies) and ( , > extends to a nondegenerate bilinear form V X V -> R. Let

0 be the ring of integers of k and L o an 0-lattice of W. Assume that

(L0,L0) c Θ. Then L o is contained in its dual lattices

Now set

(6.19)

Let/τ(Λ-),τe

(6.20)

L = Uo c

, be Schwartz functions satisfying the condition

τ = e(g)j(g,τ)-'\j{g,τ)-'\fgr,
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where ε(g) is given in Lemma 6.7, and

Define fr* = (det u)'/2/T> where v is the imaginary part of τ ((6.17)). Then /τ*
satisfies the condition

(6.21)

For A G L*/L, define a theta function

(6.22) θ(τ,f,h)= Σ /*(*).
X^h(L)

Let TV be a positive integer such that

NL* c Lo,
ί6 23)

J V t r ( ( X y ) ) = 0(mod2) for Jf.

Denote by Γ0(iV) the subgroup of Sp(2/% Θ) consisting of g = (" h

d) such that

c = 0

(6.24) σ(tr<

σ(tr<

Here σ(x) =_trΛ/R(tr(^)).
Now let Γ(Λ )̂ be the subgroup of T0(N) consisting of γ = (" h

d) with
a = Er,b = 0 (N). For γ = (a

c

 h

d) e f (ΛT), let

χ(γ) = ε(γ)-1 1 / 2

( 6 2 5 ) • Σ

Then we have the following transformation formula [23, Proposition 8.4].
Proposition 6.8. Let γ G f (N\ fτ G ̂ ( F r ) satisfying (6.20) awd fl(τ, /, A)

defined as in (6.22). ΓAeH we

6.9. Now we assume that

sgn«,

s g D « , > | κ ω ) - ( n , 0 ) O = 2, ,m).

Let G = O + (F ( 1 ) ) X Π y

m

= 2O(F ( Λ), where O+(F(1>) is the subgroup of O(Vm)
consisting of g satisfying

d e t O ( g , Z ) ) > 0 ( Z ε S ) .

Here 7(g, Z) is the automorphic factor defined in (1.3).
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In this section, up to now, we have used X for a variable in Vr. Now we

switch back in notation from X to M. For any M e V\ let M{1) = eλM. By

choosing an orthonormal basis in Va\ we may assume that O(F ( 1 )) = O(p, q)

and our discussions in previous sections are applicable to O(V{1)). Now let

M ( 1 ) -> F(Z, M ( 1 )) be the polynomial defined in §4.6. Here we introduce

(6.27) fτ,z(M) = F(Z,M™)eτ,z(M),

where eτ Z ( M ) is the exponential function given by (6.18). In the following, we

assume that r < [p/2].

Lemma 6.9. For g e Ω° U Ω' U Ω c Sp(2r, R),

where P = (n/2, n/2,- , n/2\ and Q = (tf,0, • ,0).
Proof. By our construction, F(Z, M ( 1 )) is a differential form of degree rq

of highest signature

and F(Z, M ( 1 ) ) is actually a polynomial in Mgl. For g G O+(K ( 1 )), by (i) of

Lemma 4.7,

This implies that F(Z, M ( 1 )) as a polynomial in M£l also lies in the isotypic

component of signature ω0.

It yields by Theorem 3.11, that F(Z, M£l) is a spherical polynomial in M^i

with respect to the bilinear form tr(( , ^^Z^y. Moreover by (iii) of Lemma

4.7, F(Z, M ( 1 ) ) satisfies the condition

h G GL(r). Now let JC stand for M£l. Consider coordinates of x with respect

to an orthonormal basis. By Proposition 6.4,

F(Z,d/dx){e[\o{tr(M + JC, M + x)S)]er,z(M + x)} v = 0

(6.28) = (277z)rV(

Clearly we also have the condition

(6 29) F(



CORRESPONDENCE OF MODULAR FORMS 201

Now as a consequence of Lemma 6.7, (6.28), (6.29) and a standard argument
as in [20, Proposition 4.2], our assertion follows.

6.10. For h e L*/L, we define a theta function

(6.30) θ(τ,h,Z) = dct(vY"/2 0 -0) Σ fr,z(M).
M = h(L)

Proposition 6.10. The theta function satisfies the conditions:

(i) 0(γτ, A, Z) = χ(γ)y(γ, τ)^(τ, Λ, Z), γ e f (N).
(ii) // g G G satisfies the conditions (a) gL = L, and (b) g αcto trivially on

L*/L, then

g*0(τ,Λ,Z) = 0(τ,Λ,Z).

Proof. Immediate from Proposition 6.8 and Lemma 6.9.

7. The geometric interpretation of the lifting map

7.1. Recall that G = O+(F ( 1 )) X ΠJL2O(V^). Let Γ be the subgroup of G
given by

Γ = (γ e G|γL = L and γ acts trivially on L*/L}.

Replacing Γ by a subgroup of finite index if necessary, we assume that Γ is
neat; in particular Γ is torsion free. For M e Vr, let

By our assumption, F ( / ) (/ = 2, , m) are positive definite, YlJL2O(VU)) is
compact; hence we identify Γ with its image in O+(F ( 1 )). By [2, Corollary
13.2],

vol(Γ\^) < oo.

Let Hάq(T\@) be the space of harmonic differential forms φ of T\@ of
degree rg satisfying the conditions:

(i) φ is of highest signature (defined in §4.9),

(7.1) (ii) ί φ Λ ( * φ ) < α > ,

(iii) φ is a cusp form.

We define a lifting map if* of H^(T \ 0 ) by

(7.2) ^ * ( φ ) = ί ( < M > = ( ΦΛ(*0),
T2 T\#

where 0 is given in (6.30). By Proposition (6.10),

(7.3) JS?*(φ)(γτ) = χ(y)j(y,τ)"/2<?*(φ)(τ), y e Γ(ΛΓ).



202 S. P. WANG

Here n/2 stands for (w/2, , n/2). The Fourier expansion of the lifting and
its geometric interpretation are the main task of this section.

7.2. Let G = O+(p,q) be as defined in §4.1, V = R", (n = p 4- q) and
M e Mnr(R) = V. In §4.6, we have constructed a differential form F(Z, M).

For differential forms a and β of 3) of the same degree, let

(7.4) <α,jβ> = αΛ( jB).

The following lemma of F(Z, M) has been established in Step 2 of the proof
of Theorem 4.9.

Lemma 7.2. There exists a nonzero constant cλ such that

(F(Z, M), F(Z, M)) = F(Z, M) A * F(Z, M)

= c1det(Mz± , Mz±)qdug,

where dv@ is the invariant measure on 3).
7.3. Let hs(t) be the function defined in (1.33)

hs(t) = -Γ JC-*(JC - r)qr/2-ιdx (Re(j)
Λ

Recall that ωΛ. (Definition 1.17) is the differential form

where ψ is given in (1.23). For M G Mwr(R) with (M, M) > 0, one can define
ωv as in §2 for ^ ( Λ / ) .

Lemma 7.3. Le/ (ω 5 ) 0 foe //?e component of ωs in the K^irreducible space of

the highest signature. Then

Proof. By Lemma 2.8, K yields contribution of Λ^invariant form. From
Proposition 1.13, it follows that

( + I I ) k Γ̂ 7
( r + I ^ I ) k Γ̂ 7 rf| ^ I Λ ψ r ί ? + terms involving K.ωA. = , / x ( r + I ^ I ) k Γ rf| ^ I Λ ψ r ί ?

The condition urq = 0 ((1.22)) and the definition of uk readily imply

\υ\rq~ld\Ό\/\ψrq = —

as a consequence, we have the desired form
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7.4. Let M e Mnr(R) with (M, M) > 0. Here we consider the integral

(7.5) 1= ί (ωs,άet(Mz,,MzΛ-(p + 2"-r-l)/2F(Z,M)).

Since by (1.35) and Lemma 2.6, we have

||det(Mz, , Mz,)-^-r-l)'2F(Z, M) || < {B/A){M)

for a certain positive integer t (t = p + g - r - 1), the integral is absolutely

convergent for Re(s) ^> 0. Let b = - \(p + 2q - r - I). By Lemmas 7.2 and

7.3,

/ =

(7.6) = / ( ( ω J 0 , d e t ( M z , , M z , ) / ? F ( Z , M ) )

= C2άei(M,M)-q/2( (r + | ί ; | 2 ) "

where

C

Let 7 = Λ/(M, M)~ 1 / 2 . We have that by a straightforward computation

(7.7) t r ( Y z , , y z , ) = r + M 2 .

Hence / is given by

(7.8) / = C2άet{M,M)b+q/2( iτ(Yz,, 7 z , ) " 5 d e t ( 7 z , , 7 z , ) /

7.5. Choose an element g G G such that

0 \

gY = Yo = £Γ ,

0/

where the zero matrix at the bottom is of size q X r. By translation, replacing

ΓM by Γt = gTMg~ι, we may assume that Y = 70 and ΓM = I\. In this case,

( 7 9 )

M\® [tr(£r + Z2(E -'ZZ)'UZ2)Y
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In the following, we adopt the decomposition Z = (f^) with Zλ e Mp_rq(R)
and Z 2 e Mr q(JX).

By formula (1.39), we have

where dv@ and Jι;F are the volume element of 3>λ and fiber over Z l 5

respectively. As everything involved in (7.9) is G^-invariant, it follows that

(7.10) A =
•'f [tr(£ + Z 2 ( £ - r Z Z ) Z 2 ) |

The integral in (7.10) is

det(£-Z 2 'Z 2)" 1 / 2

2 Z 2 )

z)t '
= W-T ί ί°° det(£ - Z2'1 (5) •'F -Ό

by Theorem 5.6 and consequently

h = J-T ί e-^
(7.11)

Lemma 7.5. We have the integral value

I ( ωs,det(Mzx , Afz±

= ^ 7 2 ) ^ v o l ( Γ - \
/or (M, M) > 0 am/ Re(^) » 0.

PλΌ6>/. By substitutions (7.8) to (7.11), the assertion is immediate.
7.6. In the sequel, we assume that vol(rM\ GM) < oo. Let / be a continuous

function of TM \ 9) such that

ί f(Z)dvg(Z)<oo

is absolutely convergent.
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Lemma 7.6. Let IM(f){Z) = JΓ^GM f(gZ) dg. Then

f f(Z)dυB(Z) = v n ΐ * r J lM)(Z)dυB(Z).
JrM\® v o l ( ΓΛ/ \ GM) JτM\®

Proof. Consider the projection map π: G -* G/K = Q) and the pull back
of / on G. The assertion is immediate from the corresponding obvious
assertion in G.

In the sequel, we give the Haar measure on GM such that

(7.12) vo\(TM\GM) = vol(TM\$M).

7.7. Now let <f> e HtfiT \2). We consider the orbit integral

(7.13) IM(φ) = l ί g*φdg.

It is Gy^invariant. Since φ satisfies dφ = 0 and d(* φ) = 0, so does IM(Φ)>
Theorem 4.9, there is a constant cφ such that

(7.14) IM{φ)(Z) = cφdet(Mzχ , Mz,y
(p+2q-r~l)/2F(Z, M).

In the following, we determine cφ first in the cases (M,M) > 0 or (M, M)
ψ 0. For the latter case, det(Mzχ, M zχ>' ( / ? + 2 ί 7 ~ r " 1 ) / 2 F(Z, M) has singular-
ity, hence cφ = 0. Then we discuss the case (M, M) > 0. We have that by
Lemma 7.6,

(ωsJM(φ))

~ r~ 1 ) / 2vol(ΓΛ /\ @>M) (Lemma 7.5).

While by Theorem 1.21,

/ = / φ.

Therefore

^ = q 1 (

(7.15)

Here the orientation of ^ M is given in §2.10.
7.8. Let T be an element in the Siegel upper half space of genus r. Set

T = u 4- /ϋ, with fu = u and 't; = v e Mr(R).
Recall that /τ Z (M) is given by

(7.16) fτ,z(M) = F(Z> M)e[\tτ(u(M, M) + iυ(M, M)z)].
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Here we study the integral

Since fτ Z{M) is a G^-invariant differential form, by Lemma 7.6,

(φ,fτ,z(
M))=f (lM(φ)Jτ<M(M))

rM\s>

= cj

( 7 1 7 ) (from (7.14))

= cφcλ ί det(Λ/z, , Mz±)-(p-r-1)/2e[-triv(Mz, Mz)] </%

•e[\Xτ{τ(M,M))\.

Now let dimR(M> = d be the dimension of the column space of M. If
d < r, IM(φ) is invariant under Kz M =• O(p — d). By Theorem 3.7, the
irreducible representation m of O(p) with signature

satisfies the condition I £iτ\O(p — d). Hence

(7.18) cφ = 0 if dimR(M> < r.

In 7.6, we know also

(7.19) cφ = 0 if(M,M)^0.

Thus to compute I(φ, M), it suffices to study the case (M, M) > 0 and
dimR(M) = r.

Lemma 7.8. Let I(φ, M) be the integral

l(φ,M)=ί

(i) //dimR«M» < r or (M, M) > 0, then I(φ, M) = 0.
(ii)//(M,M> >0, then

*φ.

(iii) In general, there exists a constant c(φ, M) such that

, M) = c(φ, Λ/)(det υyq/1e[\Xτ(7(M,

c(φ,Ma) = c(φ,M)sign(detα)9.
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Proof, (i) follows from (7.18) and (7.19).

(ii) follows from (7.17) and (5.63). Note that in this case s = 0 and

(iii) We have that by (7.14)

with b=p + 2q — r— 1.

Since Im(φ) = IMa(Φ)>iι follows that

(7.20) c φ M a = φ

Then by (7.17),

/(φ, M) = clCφMe [έtr(τ(M, M»] J(M)9

where J(M) is the integral

J(M) = /* det(Mzx ,M z,)- ( / ?- r- 1 ) / 2e[-tr(/i;(M z ?M z>)] J ^ .

By (5.63),

(7.21) J(Ma) =\deta\~(P+q~r~1)J(M).

Clearly if we set

(7.22) c{φ9M) = Cιc^MJ(M)(detυ)q/\

/(φ, M) has the desired form and (7.20), (7.21) yield the condition for

7.9. Now we return to the general case that G = O+(V{1)) X UJL2O(VU))

as in §6. By our assumption (6.26), if m > 1, then

(7.23) (χW9X<n)Φ0

for 0 Φ X G Lo.

Consider the case A: = Q (m = 1). For M e F r with the conditions

(7.24) dimR(M) = r, (M,M>^0, ( M , M ) > O ,

the subspace ( M ) J - Π ( M > ^ 0 . Choose a basis Mv , Mr of (M) such that

(7.25) Mι^{M)^Cλ(M)cM^ MλeL0, λ = 2,- -,r.

Denote by M(y') the sequence of elements in L such that the λth component

M(j)λoϊ M(j) satisfies

(7.26) M(j)λ=jMx, M ( y ) λ = Λ/λ, λ = 2, ••,/•.
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It follows that

for all j and the M(y)'s are not Γ-related.

Lemma 7.9. Let M e L* satisfying condition (7.24). Then IM(Φ) = 0 for

Proof. We consider the theta function

(7.27) ^ d e t ^ r 7 2 I /T,Z(M),

and the lifting <£?* defined by (7.2). Since φ is a cusp form, by the unfolding

argument

<2>*(φ) = d e t ( » ) « / 2 L ί (φ,/ T ι Z (Af)>,
Γ\L ^Λ/V^

where the summation runs over Γ-orbits in L; moreover the summation is

absolutely convergent. The sequence M(j) constructed in (7.26) is in L and

(7.28) TM(j)φ TM(i)

for / Φ j . It follows that

(7.29) < 00.

By (iii) of Lemma 7.8, all the absolute values coincide with one another. Hence

(7.28) implies that

l(φ,M(j)) = 0 for ally.

By (iii) of Lemma 7.8, it follows that /(φ, M) = 0; as a consequence c(φ, M)

= 0. Since by (7.22), c(φ, M) is a product of cφ M and a positive number, thus
CΦ M = 0 ^ e know that

φ , M ) .

Thus IM(φ) = 0.

7.10. Let SΓ(MP)betheset

Sr(7V(P) = { l G MΓ(A:)|rAr= X, X = 0(NΘ)}

and Sr*(NΘ) the set given by

<V*(MP) = {X^ Mr(k)\X= X, trk/Qtr(XSr(NΘ)) c z ) .

For /i E I * and τ| G Sr*(NΘ), let

(7.30) L η Λ = ( M G L* |M = A(L), (M,M>
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It is known that for η > 0, Lηh has only finitely many Γ-orbits

Kv)
(7-31) L,,Λ = U TXi

i = l

Theorem 7.10. Let S£* be the lifting map given in (7.2). Assume that

k Φ Qor (p,q)Φ (2.1). For φ e Hζq(T\Θ)9 we have the conditions

(i) j£?*(φ) is a cusp form of t(N) satisfying the condition

), γeΓ(JV).

(ii) <JS?*(φ) has the Fourier expansion

V T ) \ ) ^^ η L V V

η>0

. , /(η)

I = 1 * Λ| \ ~ Λ;

Proof. The theta function 0(τ, Λ, Z) is given by

0(τ,i/, Z) = det(v)(q/2^'"'0) Σ fr,z(M)

and «^*(Φ) is the integral

Since φ is a cusp form, by the unfolding argument,

(7.32) ^*(φ) = det(,) (^ 0 '- ' 0 ) Σ ί
ΓML + Λ)

By Lemmas 7.8 and 7.9, we sum over only those orbits TM with (M, M) > 0.

The integral

/ <Φ'/τ.zW>

/ = 2 *YM\&>

= a f[e\\ix^j)(M^\ M^)](det ί;)^72'0'"^ ί * φ
7 = 1 ΓΛ/\̂ Λ/

((ii) of (Lemma 7.8)) with
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It follows that

(7.33) ^*(φ) = fl Σ [f *φL[iσ(tr((M,M>τ))].
T\L + h \ VM\UJM I

By (i) of Proposition 6.10, we have that

(7.34) -SP*(φ)(γτ) = χ(y)j(y9 τ)(n/2^n/2)<?*(φ)(τ) (γ e T(N)).

Thus by (7.34), in (7.33) we sum only over those M with

(M,M)SΞ 2Sr*(NΘ).

Hence

Σ If
T\Li

By a usual argument [27, p. 114] one shows that the constant terms of

at other cusps are zero. Then (i) and (ii) have been established.

7.11. Let <S^/2(Γ(N), χ) be the space of cusp form φ(τ) satisfying

Φ(yr) = x(γ)y(γ,τ) ( π / 2••-'1 / 2 )φ(τ) ( γ

Theorem 7.10 shows that the lifting map J?* is a map

(7.35) T

Let o^: STn/2(T(N),χ)-+ Hζ«(Γ\@) be the adjoint map of &*. Now

assume that n = p + q > Ar. In this case, one can present a concrete descrip-

tion of the map J^. Let Γ^ be the subgroup of f (N) given by

For/3 e S*(NΘ), let

(7.36) Φys(τ) = c ; ^ Σ x ( γ ) ~ 1 ( γ . τ ) " W / 2 ^ [ σ ( t Γ ( i 8 * ϊ τ ) ) ] 5

where the summation runs over T00\T(N) and

The function φβ(τ) is the /3th Poincare series. In the range n > 4r, it is

absolutely convergent and the function φβ (β e S*(NΘ)) span ^ / / 2(Γ(iV), x).

Let ( , ) be the Petersson inner product of Sfn/1. For

φ =

>8>0
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by [23, (10.2)] we then have

(7.37) (φ,φβ)
 ( t t )

where ΐ = \( p + q - r - 1), and

Observe

(7.38)

For/? e

(7.39)

where C
that

that

s,*(

M i s

NΘ\ let

the cycle of the

= abάtiβ (Λ' ^ Σ 1
T\Lβ h

 Γ/ι

M = h (L)

modΓ

image 2)M in Γ \ 3. Let such

(7-40) (φ,Φβ)= Σ f Φ-

Note that φ^ is the component of the highest signature of the finite part of the
dual form of Cβ.

Theorem. Let <£\ S?n/2(T(N), χ) -> H^(T\9) be the adjoint map of <£*
and φβ, φβ given by (7.36) and (7.40) respectively. Then

where t = \(p 4- q - r - 1).
7.12 Remarks, (i) The lifting map if* ((7.2)) is meaningful for any cusp

harmonic differential forms φ of Γ \ 3) of degree rq. However Λ^invariant
bilinear forms between nonisomorphic irreducible modules are trivial. It fol-
lows that <£?* always factors through H^(T \ 0 ) .

(ii) For q = 1 and Γ \ Q) compact, geometric lifting has been studied by
Kudla and Millson [23]. For our presentation, in this case K = 0 which is
immediate from (1.27), and condition (i) of Theorem 3.15 is easily checked to
be true for f(Z,M). Hence F(Z, M) = /(Z, M). Our result then coincides
with that given in [23] except a constant factor and our additional information
that c^7* factors through HQq{T\3>) of the space of cusp harmonic differen-
tial forms of Γ \ 9) of degree rq of highest signature.
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