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EXAMPLES OF COMPLETE MANIFOLDS
WITH POSITIVE RICCI CURVATURE

DETLEF GROMOLL & WOLFGANG T. MEYER

Dedicated to Wilhelm Klingenberg on his sixtieth birthday

A long standing question in riemannian geometry has been: Does a com-
plete manifold Mn with positive Ricci curvature Ric also admit a complete
metric with nonnegative sectional curvature KΊ It is generally believed that
this is not always true, but counterexamples were not known. The answer is
actually affirmative for the dimension n = 3 (cf. [6], [16]). Note that K > 0 is
sometimes known to be obstructed when a metric with Ric > 0 exists. Simple
examples are Sk X R' in the noncompact case [5], and RPk X RPι in the
nonsimply connected compact case for k, I ^ 2, as a consequence of Synge's
Lemma [4].

Examples of complete manifolds with K > 0 remain fairly scarce. One way
or another, they can all be obtained using classical spaces and quotients of
isometric group actions (cf. [3] for a detailed list of references). There are
several additional methods to produce complete metrics with Ric > 0. Certain
fiber bundles were treated in [14] and [15], and a large class of Brieskorn
varieties in [7]. Finally, by Yau's work, Kaehler metrics with Ric > 0 exist on
any compact Kaehler manifold with first Chern class cλ > 0 (cf. [17]). Interest-
ing examples arise as complete intersections in CPn+r, notably hypersurfaces.
In particular, the ΛΓ3-surface (quartic) in CP3 admits a Ricci flat metric, but
this is a true border line case: Since the A -genus does not vanish, we have
Ric Ξ 0 whenever Ric> 0 (cf. [8]). It follows that K ^ 0 would imply K = 0,
which is impossible. Therefore one can distinguish at least between the
conditions Ric ^ 0 and K > 0, in a weak sense.

In this paper we present new classes of complete manifolds with Ric > 0.
First of all we construct noncompact examples many of which cannot carry
metrics with K ^ 0. This settles the above question in the noncompact case.
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Although there are no compact counterexamples as yet, we obtain series of
closed manifolds with Ric > 0 and Euler number χ < 0. They are either
counterexamples, or contradict the global Hopf conjecture, i.e. χ> 0 for
K ^ 0. Spaces of the last type also arise from complete intersections. The
lowest dimensional is the cubic in CP 4 with cλ > 0, χ = -6. The only known
invariant so far to distinguish between Ric > 0 and K > 0 is the homotopy
type in the noncompact situation, due to the structure theory in [2].

Our starting point is somewhat reminiscent of the discussion for Brieskorn
varieties given in [7]. We will consider the "stable" geometry and topology of
certain real algebraic varieties with codimension 2 in euclidean space Wι+p + q.
Let/(z) be any multihomogeneous polynomial in Rm for which the origin is an
isolated critical point, and let F(z, x, y) = f(z) + \x\2 - \y\2, x e R^7, y <= R«.
Intersecting the zero set F = 0 of this polynomial with a suitable ellipsoid in
Rm+/7+<7, we obtain a compact manifold Vo with positive Ricci curvature (in the
induced metric), as soon as/? + q is large compared to \p — q\. Vo bounds the
set F < 0 in the ellipsoid whose interior is denoted by V_. The metric of V_
can be warped near the boundary to yield a complete metric of positive Ricci
curvature, provided/? - q and/? + q are sufficiently large, depending on/.

The above warping problem is delicate in general (cf. also [9]). In §1 we
discuss it to the extent needed for our asymptotic estimates. §2 deals with the
class of examples for which the boundary problem can be solved. The
geometric estimates are obtained in §3, topological invariants in §4, and
finally, in §5, we look at some special examples.

We are indebted to B. Lawson for some valuable suggestions in connection
with this work. We would also like to acknowledge helpful conversations with
A. Durfee and J. H. Eschenburg.

1. The boundary problem

Let (F, 3F) be a compact riemannian manifold with boundary dV and
metric ( , >. The distance function from the boundary is denoted by t. Near
the boundary we consider the unit vector field T= -grad/. On Int(F) we
define a complete warped metric gε by

(l.i) ge(x, Y) = Ψ

2(t)(τ, x)(τ, Y) + {x- , y^>,

where ψ(ΐ) = 1 + exp(l/ί + \/{t - ε)) for 0 < / < ε, φ(/) = 1 for t ^ ε, and
X-1 denotes the component of X orthogonal to T. This metric is defined as
soon as ε is smaller than the injectivity radius of the normal exponential map
of dV. For our estimates, φ could be replaced by any other function satisfying
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the following conditions:

φ(t)>l,

ψ(t) = 1 for ί > ε,

/j 2 \ φ'(0 = -7φ < 0 for 0 < / < ε,

I ψ(t) dt = co (for completeness of g ε),
Jo
Tφ/φ3 is bounded.

Assuming that the Ricci curvature of V with respect to ( , ) is positive, it is

an interesting problem to find conditions on (V,dV) and φ under which

Int(F) has positive Ricci curvature with respect to gε. As we shall see, ΘFmust

have Ric3I/ ^ 0 with respect to the metric induced from ( , >, and the mean

curvature of 3 V with respect to the outside normal must be nonnegative. In [9],

Ingram gave certain sufficient conditions in the case when Int(F) is an open

submanifold of a euclidean sphere. They are complicated and have not been

verified as yet in any interesting example. We will use a different approach by

studying the asymptotic geometry of a sequence of open submanifolds in

suitable ellipsoids of increasing dimension.

We need formulas for the Ricci tensor with respect to gE in terms of the data

from ( , ). The sectional curvature, Ricci curvature, etc. of Fwith respect to

( , > are denoted by K, Ric, etc., and the corresponding data with respect to gε

by K, Ric, etc. The second fundamental tensor of the hypersurface Vt at

distance / from Vo = W with respect to the normal T and the metric ( , ) is

denoted by Sn i.e. StX = VXT. Then it is easy to verify the following formulas:

(1.3) Rk (Γ, T) = Ric(Γ, T) + (Γφ/φ)trS,,

(1.4) Ric (Γ, X) = Ric(Γ, X) ioτ {X, Γ> = 0,

R k ( X , X) = Ric(*, X) +(7φ/φ 3 +(1 - l/φ2)trSt)(StX, X)

+ (l/φ 2 - l)(#(*, T) +(S?X, X)) for(X,T) = 0.

Writing an arbitrary vector Z as Z = aT + βX, where (X, T) = 0, Ric(Z, Z)

becomes a quadratic form in a and β which is positive definite if and only if

(1.6) R k ( Γ , Γ ) > 0 ,

(1.7) RΪc(jr, X)>0,

(1.8) RΪc(Γ, T)RΪc(X, X) - RΪc(X, T)2 > 0.
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Since lim/_+0 T<p(t)/φ(t) = oo, (1.3) and (1.6) imply tτSt > 0 and in particular

trSΌ > 0, so the mean curvature of dV must be nonnegative. (1.5) and (1.7)

imply in the limit as / -> 0,

0 < Ric(X, X) + tτS0(S0X, X) - K(X, T)-(S$X9 X) = Ri<v(Jf, X).

Therefore the induced Ricci curvature of 3 V must be nonnegative.

2. The class of examples

Let F be a multihomogeneous polynomial on R", i.e. F is the direct sum of

homogeneous polynomials Ft on RW/ of degree /7,

k k

2 < ιλ < ι2 < • • • < / * , Σ « i = «. ^ ( « ) = Σ *;•(«,).
/ = 1 / = 1

Since vi*) is homogeneous of degree lt— 1, the only singularity of F is at the

origin as soon as all singularities of F are isolated. In this case, the Ft are

singular exactly at the origin. For a given F as above, with an isolated

singularity at the origin, we consider for any a = (α 1 ? -,ak), α, > 0 and

r > 0, the quadratic form

2

The gradients vF and vG are linearly independent on i Γ ~ 1 (0)\ (0). This can

be seen as follows: If avF = bvG, then avFt = Iba-u^ Since Ft is homoge-

neous of degree /,, one obtains (vFi9 uέ) = / ^ ( M , ) , and therefore

«Σ^(«, ) = 26Σ7lHI2-
/ = 1 ι = l i

On .p-^O) we have Σ^(w,) = F ( M ) = 0, and therefore Z> = 0. The equation

avF(u) = 0 then implies a = 0, since vF(u) Φ 0 for w # 0.

As a consequence, Fo = F - 1 (0) Π G - 1(0) is a smooth hypersurface of the

ellipsoid G~x(0), and

V_= F - ^ - o c O ) Π G-^O), K + = F-^O, oo) Π G " 1 ^ )

are open subsets with common boundary Vo in the ellipsoid.

The diffeomorphism type of Fo, V+, V_ is independent of α and r, since for

different a and r the corresponding manifolds are isotopic in R". To study the

topology of these objects one can therefore choose α, = 1 and r sufficiently

small. The geometry of course depends on a and r. For our geometric

estimates, we will choose r = 1 and α7 = 2/1 r By this choice of αy, we have
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% VG) = 4F which vanishes on Vo, so the gradients vF, vG are orthogo-
nal along Vo. As a consequence, the Gauss equations for Vo simplify consider-
ably. But this choice of α, is not only convenient for computations; in fact,
some of the estimates definitely do not work in the sphere.

We now fix a multihomogeneous polynomial/ = Σf=i/, on Rm, degree(/,) =
/,, 2 < /x < /2 < < lk. For integers p > \, q ^ 1, n = m + p + q, we
consider the multihomogeneous polynomial

(2.1) F{z,x,y)

and correspondingly,

(2.2) G(z,

= /(

χ,y) =

+w 2 -

The manifolds Vo, V+, V_ now depend on /, /?, g. To emphasize this
dependence, we shall write V0(f, p, q), V+(f, p, q), V_(f, p, q) for conveni-
ence of notation. Choosing ε > 0 sufficiently small, we consider the warped
metrics gε of (1.1) on V_. Since V_ is open in G~ι(0), the data V, K, Ric, etc.,
are now data of this ellipsoid, with its standard metric.

3. Geometric estimates

Our aim is to adjust ε, /?, q so that the warped metric gε on V_(f, p,q) has
positive Ricci curvature. According to §1 we have to establish (1.6)-(1.8).
From (1.3)—(1.5) it is obvious that we need estimates for \\St\\, tτSn and Tφ/φ3.
Since an upper bound for Tφ/φ3 depends on ε, it is necessary to find a lower
bound for the injectivity radius of the normal exponential map of V0(f, p, q),
independent of/? and q.

Let us start with estimates on the ellipsoid G~ι(Q) defined by the function G
of (2.2). An elementary calculation gives the extremal values of the sectional
curvature,

min / /
lklk-\

independent ofp,q. The Ricci curvature therefore satisfies

(3.2) (n - 2)Kmin < Ric(Z, Z) < (/i - 2)Kmax

for any unit tangent vector Z of G'1^. Since Ric is positive definite sym-
metric, the following estimate holds for any pair of orthonormal tangent
vectors X, T:

μ2

min < Ric( Jf, Λ-)Ric(Γ, Γ) - Ric( Jf, T)2 < μ2

max,
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where μmin and μmax are the minimum and maximum eigenvalues of Ric. This
inequality and (3.2) imply

(3.3) (n - 2)2Klin < Ric(Ύ, X)Ric(T, T) - Ric(X, T)2 < (n - if Kia
a x .

Next we obtain estimates for curvature quantities of Vo in the ellipsoid. The
tangent space of Vo at p e Fo is the orthogonal complement of the span of the
gradients VF, VG at/?. Since (vFp, VGp) = 0, the second fundamental tensor
So of Vo is given by

(3.4) S0X =

where ( ) ^ denotes the projection to the tangent space of Vo, and V is the
derivative of R". Note that || VF|| is bounded, and bounded away from zero on
V0(f,p,q), independent oίp,q. The eigenvalues of the hessian HF of F are the
eigenvalues of Hf and the values 2, -2. Therefore, there is a constant Co such
that

(3.5) Ĥ oll < Co, independent oίp and q.

The mean curvature tr SO of Vo is given by

from which we get estimates

< trS0

As an immediate consequence we have:
Lemma 1. There is an integer s such that for p, q which p — q ^ s9 the mean

curvature tr So of V0(f, /?, q) is positive. For a fixed s0 ^ s, tτS0 is bounded for

all p, q in terms of p — q = s.

This was observed already in [9].
Next we give an estimate for the Ricci curvature of Vo. By the Gauss

equation for Vo in the ellipsoid G"x(0), the Ricci curvature of Vo in direction X
is found to be

K o ( * , X) = Ric(X, X) - K(X,VF/\\VF\\)
(3.8)
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Using (3.2) and (3.6) we obtain

in - \\HF\\/\\ V i f ( M , | + 2\p - q\

Since n = m + p + q, this proves:
Theorem 1. For any integer s there is an integer r such that for any /?, q

satisfying p - q = s, p + q>r, the Ricci curvature of V0(f, p, q) is strictly

positive.

This result is also contained in [9].
We finally turn to the estimates for \\St% tr£,, and the injectivity radius of

the normal exponential map of Vo. For these estimates, a basic differential
equation for the second fundamental tensor St is useful. Consider for any
p e Vo the geodesic γ(τ) = cxp(-τTp), where T = -grad t as before, and the
tensor field r -> 5 τoγ(τ) with covariant derivative Sτ'

 o n t n e normal bundle
along γ. One has

(3.9) S/ = Λ Γ +SΛ

where RTX = R(X,T)T. This can be checked by taking the second derivative
of variational Jacobi fields X along γ, satisfying

(3.10) (X, γ) = 0 and X[ = -StXr

The following proposition contains the estimates needed.
Proposition 1. Let s be as in Lemma 1 andp — q ^ s, Co as in (3.5). Then,

independent of p and q,

(a) A lower bound for the injectivity radius of the normal exponential map of

^o(Λ p,q) is given by

(b) ||S,|| is bounded for 0 < / < p/2,
(c) trS, > 0 for 0 < / < p, and there is a constant Cx such that iτSt < trS0 +

(n - 2)Cxtfor0 < / < p/2.
Proof, (a) the injectivity radius p0 and the focal radius of the normal

exponential map coincide. Otherwise, the boundary of the tubular neighbor-
hood of radius p0 about Vo will intersect itself tangentially somewhere in F_,
thus giving rise to a geodesic of length 2p0, locally minimizing the distance
between points on Vo. But since the Ricci curvature of the ellipsoid is positive
and trS0 > 0, standard variational techniques [12] lead to a contradiction. This
is completely analogous to Klingenberg's basic argument to estimate the
injectivity radius from a point (cf. [11]).



202 DETLEF GROMOLL & WOLFGANG T. MEYER

A lower bound for the focal radius is now easily obtained by basic

comparison: Since K < Kmax and So < Co (meaning Co / - So is a nonnega-

tive operator), the first focal point of Fo along any normal unit speed geodesic

in V_ cannot come before p (cf. [18]). Part (b) contains another explicit

argument.

(b) Consider the solution of the differential equation

(3.11) h' = Kmax + h\ Λ(0) = Ao = Co,

given by h, = K}£(C0 + K&tan tK^\K^ - Qtan tK)&)-\ Note that

(3.12) h0 ± So > 0.

By (3.9) and (3.11),

(3.13) (h + S)', > 0

whenever St is defined. Similarly,

(3.14) (h - S)' = (A + S)(h - S) + (Kmax - Rτ) > 0,

certainly if h ± S > 0. Now let [0, t0) be the largest interval on which h, S are

defined and h - S is positive. Then by (3.12)-(3.14),

(3.15) (h±S)t> (h±S)o>0

and

(3.16) W < Λ , ,

0 < t < tQ. Then t0 = p, the first singular point of h: If ί0 < p, we conclude

from (3.16) and (3.10) that t0 is smaller than the focal radius of Vo. Therefore,

St is defined, and by (3.15), (h — S)t is positive, contradicting the choice of

t0. Now (b) is an immediate consequence of (3.16). The last argument sim-

plifies only slightly if we assume the estimate in (a).

(c) The equation (3.9) implies 0 < (trS,)' < (n - 2)(Kmax + ||S,||2). Since

trS 0 > 0 and \\St\\ is bounded by (b), one can choose Cλ as an upper bound for

κmax + \\s,\\2.
We are now in a position to prove our main result concerning the estimates

for Ricci curvature.

Theorem 2. Let f be α multihomogeneous polynomial Fix s so that the mean

curvature tr So of V0(f, p, q) is positive for p — q > s. Then there is a number

ε > 0 and an integer r, such that V_(f9 p, q) has positive Ricci curvature with

respect to the warped metric gεfor any p, q satisfying p — q = s andp + q > r.

Proof. Let p and Cλ be as in Proposition 1, and 8 = \Kl^n < \Kmin,

compare (3.1). By (b) of Proposition 1 we can choose 0 < ε < ρ/2, so that

δ < *min " *CiHS,||Kmax and δ < Km i n - εCJI^H for 0 < / < ε.
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Using (c) we obtain for any X with ||ΛΊ| = 1,(X,T) = 0:

*ζ (n - 2)εC1\\S,\\ + A,

where/I = Tφ/φ3||S,|| + trS0||S,|| + Kmax + \\S,\\2 is uniformly bounded, inde-
pendent of p + q, 0 < t < ε.

The last estimate, (1.5), and (3.2) yield

R k ( Jf, X)>(n- 2){Kmin - εCjSjl) - Λ M « ~ 2)5 - Λ.

Similarly, (1.3)-(1.5), (3.2), and (3.3) give us

, X) Ric(:Γ, Γ) - Rk(X, Γ) 2

^ ) - ( „ - 2)KmaxA

X, ^ ) ^ t r S r +(« - 2)2δ - ( « -

By choosing p + q and hence n = m + p + q large enough we see first that
RΪc(X, * ) and in turn BAc(X, X)RΪc(T, T) - BJC{X, T)2 become positive.
For this one should note (7φ/φ)tr£, > 0 by (1.2) and (c) of the proposition.

4. The topology of the examples

In this section we study the topology of the manifolds Ko(/, /?, q),
V_(f, p,q), V+(f, p,q) introduced in §2. In the special case when p = 1 or
q = 1, some of our results follow from Proposition 4 in [10]. For topological
conclusions it is not essential that/is a multihomogeneous polynomial on Rm,/
may be any real analytic function with an isolated singularity at the origin,
/(0) = 0. However, the function G of (2.2) will be replaced by

(4.1) G ( z , x , j ) = | | z | | 2 + W 2 + ! | z | | 2 - ε 2 ,

with ε sufficiently small. For a multihomogeneous/, the topology of Vo, V_,
V+ is not changed, as pointed out in §2. For an analytic/, the topology of Vo,
V_, V+ is independent of ε, as soon as ε is small enough.

It will be more convenient here to work with the closures V± of V±. The sets
Fo, F_, V+ consist of all (z, x, y) e JT+/>+« satisfying/(z) + ||x||2 - \\y\\2 =
0, < 0, > 0 respectively, and ||z| |2 + ||x||2 + ||.y||2 = ε2. Furthermore, we con-
sider Wo, W_, W+ given by all z G Rm with /(z) = 0, < 0, > 0 respectively,
and | |z| |2 = ε2. We also need ί/0, t/_, U+ given by all (z, x) e Rm+P satisfying
/(z) 4- ||x||2 = 0, < 0, > 0 respectively, and ||z| |2 + ||x||2 = ε2.
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Clearly, the topology of Fo, F_, V+ only depends on/, /?, q. However, it is
difficult in general to determine the invariants of an arbitrary/which will enter
the computations. They are reflected in the topology of Wo, W_, W+. We will
show that the topology of Fo, F_, F + is determined by the topology of Wo,
W_, W+. For some functions/, the topology of Wo, W_, W+ and hence of Fo,
F_, V+ can be computed.

For technical reasons we introduce the set W_ given by all z e Rw satisfying
/(z) + ε2 - | |z| |2 = 0 and ||z||2 < ε2, as well as the sets C_, C+ consisting of all
z e Rw with /(z) + ε2 - | |z| |2 < 0, > 0 respectively, and ||z| |2 < ε2. They will
be needed in the following proposition.

f~\0)
w_

Figure 1 indicates the location of the last sets in Rm, when m = 2. f 1(0) is the curve having a

singularity at the origin. WQ consists of the two points where f~ι(0) intersects the circle of radius ε.

W+, W_ are arcs of this circle. W_ is the dashed curve dividing the disc of radius ε into the two

regions C_, C+.

Proposition 2. For sufficiently small ε > 0, there is a continuous function τ:
_^ (0,1] so that
(a) τz-z<Ξ W_,

(b) ΊZ = 1 if and only if z e Wθ9
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(d) C+ is homeomorphic to the m-cell Dε

m of radius ε.
In particular, W_ and W_ are homeomorphic and (W_, Wo), (W_, Wo) are

strong deformation retracts of(C_,W0).
Remark. In fact, T is differentiable and W_ is a smooth hypersurface with

boundary Wo, diffeomoφhic to W_. C_ is a topological manifold, whose
boundary W_\J W_ is the double of W_.

Proof, ε will be determined so that

(4.2) ( vi7, /> < 2||/||2 on C_, and v/, / independent on Wo,

where / denotes the position vector field. Assuming this estimate we proceed as
follows: As a consequence of (4.2), we conclude that W _ is a differentiable
manifold with boundary Wo. Furthermore, the position field / is transversal to
W _, and the function g(z) = f(z) + ε2 — ||z| |2 decreases radially in C_. For
z e W_ we define τ(z) = max{ί |0 < f < 1, tz G ί^_}. Note g(z) < 0 and
g(0) = ε2 > 0. By transversality, T is continuous, also { ίz |τ z < ί < 1} c C_,
τzz EL W_, and (b) holds. To check (c), take any z e C_, so g(z) < 0. Since g
decreases along the radial ray through z, the ray stays in C_ until it meets W_
at the point εz/\\z\\. To prove (d), we give a homeomorphism h of the ε-ball D™
with C+. Let Λ(0) = 0. For z Φ 0, let Λ(z) = z if εz/||z|| e PΓ+ and A(z) =
τ(z/||z||)z if εz/||z|| e Ŵ _. A is a homeomorphism which carries W_ to W_.

To establish the first statement of (4.2), it suffices to find ε so that

(4.3) (v/,/> < 2 / ( z ) + 2ε2 f o r z G C . ,

since f(z) + ε2 < ||z||2 on C_. Write / = / , / + ( / - /</), where /^ is the lowest
order term of the Taylor expansion about the origin, of degree d. Note that
d > 2, since the origin is a singular point of/. Then (4.3) becomes

(4.4) (d-2)fd~2(f-fd) + (V(/-/J, /> < 2ε2.

The left-hand side of (4.4) is of order ^ 3, therefore if ε > 0 is sufficiently
small, the inequality holds for all z e C_.

The second statement of (4.2) follows immediately from §2, when / is
multihomogeneous. The general algebraic case is contained in Corollary 2.9 of
[13]. For analytic functions, one can use the "Curve Selection Lemma" (cf.
Theorem 1 of [1], for example).

The following lemma contains all the topological information we need.
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Lemma 2. (a) U_ is homotopy equivalent to W_y

(b) Uo is homeomorphic to

(W_X Sp~ι) U(WO X DP) = d(W_X DP),

(c) U+ is homeomorphic to (Dε

m X Sp~ι) U (W+X Dp\

where Dε

m is the closed m-cell of radius ε and W+a dDε

m = Se

m~ι.

(a') V+ is homotopy equivalent to U+,

(b') Vo is homeomorphic to 3(ί/+X Dq),

(c') V_ is homeomorphic to (Dε

m+P X Sq~l) U (£/_X Dq).

Proof. We will prove (a), (b) and (c). The corresponding statements (a'),
(b'), (c') can be obtained similarly by observing that the roles of U_ and U+ in
the proof of Proposition 2 are interchanged if /(z) + ||jt||2 is replaced by
f(z)-\\x\\2.

(a) ί / _ = { ( i , z ) | z G C _ , \\x\\2 = e2-\\z\\2} = \J{z}XSΓ\ * e C_,

where Sf~ι denotes the sphere of radius (ε2 - | | z | | 2 ) 1 / 2 in R ,̂ i.e. U_ is a
singular sphere bundle over C_. The spheres Sf~ι degenerate to points on
W_. For z e W'_, the union of the sets {tz} X Sf'1, τ(z) < r < 1, is homeo-
morphic to {z} X /)/, where Df denotes the/7-cell of radius ε(l - τz). Using
(c) of Proposition 2, one can see that U_ is homeomorphic to the singular disc
bundle U{z} X Df, z e Ŵ _, over P^_. The cells degenerate to points on
WQ = dW_. Clearly this bundle is homotopy equivalent to W_.

For the proof of (b), note that Uo = {(z, x) \ z e J^_, ||x||2 = ε2 - ||z||2} =
U{z} X S / " 1 ^ e ί̂ _, whichishomeomoφhicto(J^_X Sp~ι) U (PΓ0 X Dp).
This can be seen by using a collar neighborhood of Wo in W_. Observe again
that the spheres Sf~ι degenerate to points on Wo = dW_. Dp is the union of
the spheres along a normal geodesic in such a collar, starting orthogonal from

w0.
For (c), we first describe U+ as a singular sphere bundle over the cell C+:

U+= {(z, x) I /(z) + ε2 - | |z| |2 > 0, ||x||2 = ε2 - ||z||2} = U{z} X Sξ~\ zβ
C+. The spheres over points of W+<z C+ degenerate to points. Since W_
intersects the ε-sphere transversally in Wo, there is a nonvanishing vector field
in a neighborhood of W+ in C+, which is transversal to fΓ+ and tangent along
W_. Using the flow of this vector field, a neighborhood Ns of W+ in C+ is seen
to be homeomorphic to W+X[0,δ]9 such that Nδ n ί̂ _~ PΓ0 X [0, δ]. The
part of the degenerate sphere bundle over Nδ is homeomorphic to U(w, ί) X
S/"1, (w, ί) e W+X[0, 8]. SP~ι is the sphere of radius t. The homeomorphism
carries {z} X S/"1 to (w, ί) X S/1"1. The closure of the complement of Nδ in
C + is still homeomorphic to C+, and U{/} X S/*"1, / e [0, fi], is homeomor-
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phic to Dp. From this we obtain that I/+ is homeomorphic to (C + X Sp~ι) U

(W+X Dp). By (d) of Proposition 2, C+ is homeomoφhic to Dε

m. The

homeomorphism D ε

w -» C + given there leaves W+ fixed. This completes the

proof of (c).

As an immediate consequence we have

Corollary 1. Let k0 = min{ p — 1, q — 1}.

(a) U+ and V+ are(p — Y)-connected,

(b) V_ is (q — V)-connected,

(c) Vo is ko~connected.

Proof. For 0 < k < p, a map Sk -> U+~ (DE

m X S^"1) U (W+X Dp) is

homotopic to a map S* -> 2)ε

m X Sp~ι

9 since it can be approximated by a map

with an image not intersecting W+X {0}, for dimension reasons. But then it is

homotopic to a constant, since it can be first deformed into {w} X S^"1,

where w e W+, and then to a point in {w} X DΛ The argument for V_ is

analogous.

For 0 < k < k09 a map 5^ -> Vo « (ί/+X S''7"1) U (£/0 X Z)9) is homotopic

to a map ψ: SA -> l/ + x S^"1, as above. The map m o ψ, where TΓ. ί/+x 5 ^ - 1

-> i/+ denotes the projection, is homotopic to a constant mapping of Sk to

some point u0 e ί/0, since t/+ is (/? - l)-connected. Hence ψ is homotopic to a

map 5^ -» {w0} X S^"1, which in turn is homotopic to a constant in {M 0 } X

Dq.

Let A denote any of the three W, U,V. Ao, A +, A _ are submanifolds of a

sphere S\A + U A_= SV,A+Π A_= Ao, where v = m - I ίoτ A = W, v = m

+ p — \ tor A = U and ί' = m + /? + q — 1 for Λ = V. In the following H

means homology, H reduced homology, with coefficients in a field of char-

acteristic zero. Now we have

Lemma 3. Hk(A+) - Hv_k_λ(A_l Hk(A0) - Hk(A_) Θ Hv_k_λ(A_).

Proof. By duality, for any closed A <z S\ Hk(A) - Hv_k_x(Sv - A).

Hence

The last isomoφhism holds, since Ao — dA + = dA _ has a collar neighborhood

in S",anάS" = A + L)A _. Similarly

and thus Hk(A0) = H^.4 _) θ H^^A _).
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Corollary 2. The Euler characteristics satisfy

χ(A+) = χ(A_), χ ( Λ 0 ) = 2χ(Λ_) for p odd.

Lemma 3 and (a), (a') of Lemma 2 show that the homology of all the nine

spaces Wo, W+, W_, Uo, U+, U_, Vo, V+, V_ is determined by the homology

of any one of these spaces. Since we are mainly interested in Vo and V_, we

only note:

Theorem 3.

Hk{V0) = Hk(V_) Θ Hm+p+q_k_2(V_).

If m is even andp, q are odd, then

χ(V0) = 4 - 2χ(W_) = 4 - χ(W0).

Proof. The proof is obvious from (a), (ar) in Lemma 2, Lemma 3, and its

Corollary 2.

5. The special examples

From the geometric point of view, interesting examples arise when Vo has

negative Euler characteristic, and V_ is not a vector bundle over a closed

manifold. According to Theorem 3, χ(V0) is negative as soon as m is even, /?, q

are odd, and χ(W0) > 4. The simplest examples of this type occur when/is a

function on C = R2 so that Wo consists of more than 4 points on the unit

circle.

For an integer / > 2, we consider the function /: C -> R, f(z) = Re(z').

Then Wo consists of 2/ points on the circle. Both W_ and W+ are unions of /

disjoint arcs on the circle. In this context we also write F(/, p, q) instead of

V(f, p, q)
Theorem 4. (a) χ ( F 0 ) = 4 - 21 forp, q odd.

(b) For q ^ 2, V_(l, p9 q) is a simply connected manifold, which is not of the

homotopy type of any closed manifold, if I ^ 3. In particular, V'_ does not admit

any complete metric of nonnegative sectional curvature.
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(c) For any integer /, there is an integer sQ such that for any fixed s > sθ9 there

exist ε > 0 and an integer r so that whenever p — q = s and p + q ^ r, the

following holds'.

(i) Vo(/,/?, q) has positive Ricci curvature with respect to the natural metric of

§2;

(ii) F_(/, p,q) has positive Ricci curvature with respect to the warped metric gε

introduced in §1.

Proof, (a) is obvious from Theorem 3.
(b) V_ is simply connected for q > 2 by Corollary 1. The Betti numbers of

V_ can be computed as follows: bo(W_) = /, bk(W_) = 0 for k ^ 1, since W_
consists of / arcs on the circle. From Theorem 3 we obtain bo(V_) = 1,
bq(V_) =1—1, and bk(V_) = 0 for k Φ 0, q. Since V_ is simply connected,
any closed manifold of the same homotopy type must be orientable and hence
satisfy Poincare duality. This is excluded by the Betti numbers, as soon as
l> 3.

(c) is the statement of Theorem 2 in the case of the special examples.
Remarks, (i) It is a curious fact that some Fo(/, /?, q) contain an exotic

Brieskorn sphere of codimension p — q + 1 with positive Ricci curvature,
given by the equations

where zo, ,z are complex variables (cf. [7]). In this context z0 corresponds
to the variable z of /(z), and zk = xk + iyk, where xk, yk are the variables in
our equations, 1 < k < q.

(ii) Lemma 2 can be used to show that Vo is homeomorphic to a manifold
obtained from Sp+ι X S"7"1 by surgery. Take /disjoint (p + l)-cells Dp+1 in
5^+ 1, remove int(Dp+1 X Sq~λ) from Sp+ι X S"7"1, and attach / disjoint
copies of Sp X Dq along the common boundary:

Vo = ( S ^ 1 X Si'1 - l(Dp+1 X S*-1)} U l(Sp X

This can be seen as follows. According to Lemma 2, Vo = d{[(Dm X Sp~ι) U
(W+X Dp)] X /)«}. Since W+= Sm-ι-mt(W_), we have

F o = 3{[i)m X S^"1 U S"1'1 X Dq - m\{W_X Dp)] X Dq)

= [Dm X Sp~ι U 5""-1 X Dp - int(W_X Dp)}

XSq~ι u(3(ίF_X Dp)) X Dq.

NowD m X Sp~ι U Sm~ι X Dp = 3(DW X
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In our examples, m = 2 and W_ consists of / disjoint 1-cells, so W_X Dp is
a union of / disjoint (p + l)-cells.

(iii) The number of diffeomorphism types of compact manifolds V0(f, p, q)
with positive Ricci curvature is increasing rapidly with the dimension n,
although still finite for any fixed n. The possible homotopy types seem quite
general, in a stable sense (cf. §3.) Similar considerations apply to the complete
examples V_(f, p9q). They are of finite type by construction. We finally point
out that the Vo arise metrically as submanifolds of euclidean spaces, with the
smallest interesting codimension 2. A positively Ricci curved hypersurface in
R" has necessarily positive sectional curvature, and is therefore the boundary of
a strictly convex body. Furthermore, it is easy to see that V_ with the metric gε

arises isometrically with optimal codimension 2 in Rw + 1 as the graph of a
function on V_ in the ellipsoid.
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