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A COMPLETE EMBEDDED MINIMAL SURFACE
IN R3 WITH GENUS ONE AND THREE ENDS

DAVID A. HOFFMAN1 & WILLIAM MEEKS III

1. Introduction

It has been a longstanding conjecture that the only complete embedded
minimal surfaces in R3 of finite topological type are the plane, the catenoid,
and the helicoid. This conjecture is false. We will exhibit a complete minimal
surface, conformally the square torus C/Z2 with three points removed, which
is embedded in R3. It has the following interesting geometric properties.

Its Gauss map composed with stereographic projection is
given by a constant divided by the derivative of the Weierstrass
P-function.

It contains two straight lines which meet at right angles.

It can be decomposed into eight congruent pieces, each of
which lies in a different octant and each of which is a graph.

It is invariant under the group of motions of R3 generated by

0
1
0

- 1
0
0

0
0

- 1 .
and

1 0 0
0 - 1 0

Lo o l

(which is the dihedral group with eight elements).

This surface was first written down by Costa in his thesis [3]. He established
that it was complete, and of genus one with three ends (see Theorem 1). We
computed the coordinates of the surface and drew computer pictures of it.
Observing that it looked embedded and it had dihedral symmetry, we were
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motivated to prove these observations mathematically. The symmetry of the
surface is established in Theorem 2 of §4 and its embeddedness is proved in
Theorem 3 of §5. Some computer graphics pictures of the surface appear in §6.
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2. Embedded minimal surfaces

A complete (not necessarily embedded) minimal surface M in R3 with finite
total curvature is conformally equivalent to a compact Riemann surface M
from which r points, pv- ,/?r have been removed, r ^ 1. Moreover the Gauss
mapping, defined on M as a meromorphic function, extends to M. This is a
theorem of Osserman [6] who also established that the total curvature of M
satisfies

(1) / KdA < 4*(1 -g-r) = 2ττ(χ(M) - 2r).

For each j , j = 1, ,r, let Ej be the image in R3 of a punctured disk in M
centered at pj. This is called the "y'th end" of M. Jorge and Meeks [5] proved
that ((l/t)Ej) Π S2 converges smoothly, as / -> oo, to a geodesic on S2.

This geodesic is covered with multiplicity dj9 for some positive integer dj.
Using these multiplicities it can be shown that

(2) f^
giving an interpretation of difference between the right- and left-hand sides of
(1). It is easy to see that each end Ej is embedded if and only if dj = 1, from
which it follows that a necessary condition for a complete minimal surface of
finite total curvature to be embedded is that equality holds in (1):

(3) j KdA = 4ττ(l - g - r) = 2ττ(χ(M) - 2r).

Another necessary condition is that the ends do not intersect each other, which
implies that the values of the extended Gauss map agree (up to sign) at the

We summarize these results as
Theorem 0. Suppose M = M — (pl9 - - ,pr) is a complete minimal surface of
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finite total curvature on which (3) holds and which satisfies the following property.

//g: M - ^ C U ( o o ) is the stereographic projection of the extended Gauss map,

then after a rotation o/R3, g(Pj) = 0 or 00,7 = 1, ,r. Then the ends of M are

embedded and parallel.

The principal method for constructing complete minimal surfaces is the

formula of Enneper-Weierstrass:

The Weierstrass representation formula

Let D be a Riemann surface, / an analytic function on Z>, and g a

meromorphic function on D. Suppose further that g has a pole of order m at

z e D if and only if/has a zero of order 2m at z. Form the C3-valued function

Then

(4) *(z) = Re fZ φ(z)dz

is a regular conformal minimal immersion, well-defined on the universal

covering space of D. (If the components of φ dz have no real periods then X is

well defined on D.) Furthermore g is the stereographic projection of the Gauss

normal mapping of X.

Every simply-connected minimal surface may be represented in the form (4).

EXAMPLES. Consider the following three examples

l.Z) = C , / = l , g = 0

2./) = C , / = l , g = z

3. D = C- { 0 } , / = l , g = l / z .

From (4) it can be derived that the metric on D is given by λ2 =

|/ | 2 (1 + |g | 2) 2/2. To show that each of these examples is a complete surface it

is enough to establish that for every divergent curve γ on D,

1/1(1 +\g\2)dt 0 0 .

This computation is straightforward in each case. In Example 3, one must

verify that the components of φ have no real periods, but this is obvious. We

conclude that each example represents a regular conformally immersed com-

plete surface. Example 1 is easily seen to be the plane. Since the total curvature

is the area of the Gaussian image, it follows that both Examples 2 and 3 have

total curvature — 4π. Since r = 1 in Example 2, its total curvature is too small

for it to be embedded; in fact this surface is Enneper's minimal surface.

Example 3 satisfies the necessary conditions of Theorem 0. In fact it is the
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catenoid, an embedded minimal surface of rotation. While this is not hard to

prove, it is not immediately obvious from the Weierstrass representation. Prior

knowledge of the symmetry of the surface suggests how to go about proving it

is embedded.

In the next section we present the new embedded example. It is produced by

using the Weierstrass ^-function in the Weierstrass representation formula. To

put this example in the proper context we mention some recent progress on

embeddedness. In [7], R. Schoen proved that a complete embedded minimal

surface of finite total curvature with two ends must be the catenoid; there is no

assumption about the genus. In [5], Jorge and Meeks were able to establish that

a complete minimal surface of finite total curvature with genus 0 could not be

embedded if it had three, four, or five ends. Indeed, there are no known

complete and embedded minimal surfaces of genus 0 except the plane, the

catenoid and the helicoid. Recently, the authors have been able to show that

for every genus greater than zero, there exist complete embedded minimal

surfaces of finite total curvature, [2].

3. Existence of the surface: the φ-function

In [1], Costa established the following result.

Theorem 1. Let P(z) be the Weierstrass ty-function for the square lattice, L,

generated by 1 and i. Let T2 = C/L and p0, pv and p2 the points in T2

corresponding to 0, ωx = \ and ω2 = ^. Let a = 2τ/ϊπP(j) and D = T2 —

{Po> P\-> Pi} The conformal minimal immersion X: D -> R3 defined by the

Weierstrass representation formula (4) with f = P and g = a/P' is regular and

the surface M = X(D) c R3 is complete with total curvature equal to -1277.

We will not prove this theorem here. However, we wish to describe in a

series of remarks some of the features of the proof, emphasizing those

properties which are needed for our proof of embeddedness.

Remarks. 1. The choice of the constant a is forced by the requirement that

the components of φ have no real periods.

2. The Weierstrass ^-function for a lattice L is defined to be the function

(5) p ( z ) = l + Ω Σ o ( _ i _ _ i .

It is the unique (up to a multiplicative constant) elliptic function on C with

poles of order two exactly at the lattice points of L. In the next section we will

use various properties of P to prove that M is highly symmetric. For complete

details, see [1].
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3. The derivative of P, P\ is elliptic with poles of order 3 on L. Thus

g = a/P' covers the extended complex plane three times (considered as a map

from Γ 2 ) , so the total curvature of M is - 12ττ.

We may consider F = {u + iv\0 < u, v < 1} to be identified with T2 once

we identify opposite edges and D = T2 - {p0, pv p2} to be identified with

F - (0, ωx, ω2} where ωx = \, ω2 = j . It can be shown that eΎ = P{ωx) =

- / ) ( ω 2 ) and that eι is real and positive. In fact, to six decimal places,

ex = 6.875185 (see [1]).

4. The only zero of P occurs at ω3 = \ -h ^, and it is of order two. The

zeros of P' in F occur at ω l 5 ω2, and ω3 and are all simple. Thus the only pole

in D of g = α / P ' occurs at ω3 and it is simple. Since/ = P has a double zero at

ω3, the conformal minimal immersion given by (4) with / = P, g = a/P' is

regular on D = F — (0, ω l 5 ω2}.

Moreover, the Weierstrass 1-forms (see (4))

(6) ^ ^ 1 )<&, φ ^ ^ + ^ ) * , ^ d z

have the property that at each end point 0, ωl9 ω2, at least one φf has a pole of

order two or more. This essentially implies that X(D) = M is complete.

Proposition 1.

(i) isαc/z of the ends of D is embedded and parallel.

(ii) Outside of a sufficiently large compact set K c Z>, X «• an embedding.

(iii) 77ie ίΛ/r<i coordinate function X^(z) n a s ίne following behavior as one

approaches the ends of M:

As z —» ωx, X3(z) -> — oo

Λsz -> ω 2, ^ ( z ) -• 4-00.

>l5 z -> 0, X 3(z) -> 0 α/ίJ ίΛe e«J £ 0 w asymptotic to a plane x3 = constant.

Proof, (i) D has genus 1 with r = 3 and total curvature —Ylm\ therefore

(3) is satisfied. From Remark 4, we have g(0) = oo, and g(ωλ) = g(ω 2) = 0.

Statement (i) now follows from Theorem 0.

(ii) This follows from (i) and (iii): Statement (i) says each end is embedded

and (iii) implies that the ends are mutually disjoint.

(iii) To prove this statement, we will compute X3(z). We start with the

well-known identity

P* = 4 ( P - ex){P - e2){P - e3),
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where P(ωf) = ei9 i = 1,2,3. In our case ex = -e2 and e3 = 0. Therefore

Thus using (6), we have

1/n a2P I „ α2/ \ 2αP\

(7) - I P -

aP'

It follows that

(8)

* Pf \ 1

P{z)-ex

— constant

P-ex

5 = a/eλ.

Asz -» 0, P(z) -> oo,soX3(z) converges to a constant value. As z -> ωλ (resp.
ω2), P(z) -> eλ (resp. e2 = - e ^ , so X3(z) ^ - oo (resp. 4 oo).

Remark 5. We will choose z0 = ω3. With that choice,

( 9 ) W . Λ _ - i« ^ ) " ^ i

(10) = ReJ" ^{z)dz,

Symmetries of the ^-function. The symmetries of M are a consequence of
the symmetries of P. The ones we need are collected in Lemma 1 below. For
completeness we give a construction of the ^3-function from which these
symmetry properties follow easily.

The ^-function may be constructed as follows. Consider the triangular
domain I c F with vertices ω3, ωv and 1 (see Figure 1.1). Map I onto the
positive quadrant by a Mόbius transformation, say /(z), with /(ω3) = 0,
f(ωλ) = eλ, and/(I) = oo. On the diagonal ω3, l,/(z) is purely imaginary with
|/(z) | increasing, and/(z) is real and increasing on the segments ω3ωλ and cô L.
Extend /(z) to triangle II by reflection across ω 3,l; for Z G II, /(z)
= —f(μ(z)) where μ(ω3 + z) = ω3 - iz. Now/(z) is real on the line segment
ω3, ω2 + 1. Therefore, it may be extended by reflection to III U IV, the square
with vertices co3, ω2 + 1, 1 + i, and ωλ 4- ι; /(z) = f(β(z)) where )S(ω3 4- z)
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= ω3 4- z. The function /(z) is now defined on the right half of F and is real
on ωl9 ωx 4- /. Therefore it may be extended to Fby reflection across this line.
Now extend / to C by making it periodic with periods 1 and /. The result is a
meromorphic function with poles of order two at the lattice points L, and zeros
of order two precisely at the points congruent to ω3. Thus/(z) is equal to P(z)
up to a multiplicative constant. Since/(ω^ = P(ωλ)9 f(z) = P(z). From this
construction, the following lemma is easily proved.

Lemma 1. Let P(z)be the Weierstrass ^-function for the unit-square lattice:
0) P(μ(<o3 4- z)) = — P(ω3 4- z), where μ(ω3 + z) = ω3 — ϊz;

P(ρ(ω3 4- z)) = -P(ω3 + z), where p(ω3 + z) = ω3 + iz\
P(β(ω2 + z))= P(ω3 + z), where β(ω3 + z) = ω3 4- z;

(ii) P(z) restricted to the vertical line segment ω3, co: is a monotonically
increasing map onto the interval [0, eλ]\ P(z) restricted to the horizontal line
segment ωl91 is a monotonically increasing map onto [el9 oo]; P(z) restricted
to the diagonal line segment ω3,1 maps this line segment monotonically onto
the nonnegative imaginary axis.

(iii) Re( JP(z)) > 0 on the interior of the two triangles A and β(A) where A is
the triangle with vertices 0, ω3, and 1; Re(P(z)) < 0 on the interior of
F - (A U β(A)) (see Figure 1.2).

(iv) Im(P(z)) > 0 on the interior of the two squares B and a(B) where
a(ω3 4- z) = ω3 4- /z = p(β(ω3 + z)) and 5 is the square with vertices ω3, ω l5

1, and ω2 4- 1 (see Figure 1.3).

FIGURE 1

Remark 6. It follows from parts (i) and (ii) of Lemma 1 that P(z) is purely
imaginary on the diagonals through ω3. Moving away from ω3, \P(z)\ is
increasing from 0 to oo as one approaches the corners of F. Furthermore the
diagonal with positive slope is mapped onto the nonpositive imaginary axis,
the one with negative slope is mapped onto the nonnegative imaginary axis. On
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P(z) real on these lines. Arrow indicates

direction of increasing P ( z ) .

Values of P(z) given at vertices.

P(z) imaginary or diagonal lines, with

" negative" values on the positively sloped

diagonal, positive values on the other.

FIGURE 2

each of the horizontal and vertical line segments bounding B, a(B), and
F - (B U a(B)), P(z) is real and monotonic (see Figure 2.)

Lemma 2. Let X3(z) denote the third component of X(z), z e D. Then
X3(z) > 0 if and only if z lies in the interior of D\(A U β(A)), and X3(z) = 0
if and only if z lies on SέΊwhere

(li) se= 0,1 + ί u 7α ,

ί/ie wtt/o/1 o/ ί/ιe ίwo diagonals of F. Moreover, X maps the diagonal with positive

slope one to one and onto the line xx — x2 = x3 = 0, and the diagonal with

negative slope one to one and onto the line xλ + x2 = x3 = 0.

Proof. By (9),

P{z)-eλ

where a is real and positive. Since ex is real and positive, X3(z) > 0 if and only
if P(z) is closer to —e1 than to ex; i.e. if and only if Re(P(z)) < 0. Also
X3(z) = 0 if and only if Re(P(z)) = 0. By virtue of Lemma 1, parts (ii) and
(iii), we have that X3(z) < 0 if and only if z e A U β(>4) and X3(z) = 0 if and
only if z c j£\ All that is left to prove is the last statement of the lemma.

Consider the diagonal line segment ω3,1 + / c £g. Parametrize this segment
by j](t) = ( i + 0 + (2 + O'> 0 < t < \. By Remark 6 following Lemma 1,
Pivit)) = /#λ(O for a real-valued function λ(ί) with λ(0) = 0, λ(τ) = — 00
and λ'(t) < 0, 0 < / < \. From (7), we have

1
0 ) < M O - ^
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which implies

Re(ΦiU(0)

117

= Re(φ 2 (η(/))^(0) .

From (10) it follows that Xλ(η(t)) = X2(η(t)). Since

is monotonic increasing, with ^(^(0)) = 0, / = 1,2. Clearly

Using the properties of P established in Lemma 1, it is now straightforward
to complete the proof of the Lemma.

4. The symmetries of M

Let G be the dihedral group with 8 elements. We may consider G as acting
on the square F by reflections through the horizontal, vertical, and diagonal
lines through ω3 and rotation by integer multiples of ττ/2 about ω3. In complex
notation,

β(ω3 + z) = ω3 + z is reflection about the horizontal line,

is rotation by kπ/2 about ω 3 , k = 1,2,3,

is reflection through the positive diagonal,

p ( ω 3 + z) = ω3 + (/) z

α ( ω 3 + z) = p ( β ( ω 3 + z)) = ω3 4- iz

ά ( ω 3 + z) = p 2 ( 0 ( ω 3 + z) ) = ω3 - z

μ ( ω 3 4- z ) = p 3 ()8(ω 3 + z)) = ω3 + iz

Clearly G is generated by β and p.
We may also consider G as acting on R3 by identifying the generators β and

p with the orthogonal motions

is reflection through the vertical line, and

is reflection through the negative diagonal.

(13) B =
1
0
0

0
- 1
0

0
0
1

, R =
0
1
0

- 1
0
0

0
0

- 1

B is reflection in the (JC1? jc3)-plane and R is rotation by ττ/2 about the jc3-axis
followed by reflection in the (xv jc2)-plane. It is easy to see that G, acting on
F, induces an action of G on D = T2 — { /?0, pv p2).

Theorem 2. G, acting on R3, is a symmetry group of M = X{D) c R3. The
immersion X: D —> R3 z'5 compatible with the action of G on D and R3.
Specifically (ϊ) X° p = R° X and (ii) X <> β = B ° X. In the metric on D induced
by X, G acts by isometries.
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Proof. All that is necessary to establish the proof of the theorem is to prove

(i) and (ii). By Lemma l(i), P(ρ(ω3 + z) = -P(ω3 + z)). By formula (7) we

have

z) - ί

From (14.1) it follows that iφ2(ρ(ω3 + z)) = /φ2(ω3 + / z ) = Φι(ω3 ~ z )

Φ(ω3 + z) = Φ(ω3 — z) since P(ω3 + z) = P(ω 3 - z). Hence

(14.2)

Using (14.1) and (14.2) and (10) we have

(15)

= yRe

= Re Γ - (

= Re Γ ( -
ω 3

By (9),

= fin = -X3(ω3

This together with (15) is statement (i) of the Theorem. Statement (ii) is proved

in a similar fashion. By Lemma l(i), P(β(ω3 + z)) = P(ω3 + z). Using (7)

and the fact that a is real, we have

(16.1)

(16.2)

z) - e\

= φχ(«3 + z) ,

Φ2(β(ω3

P 2 ( « 3

= - φ 2 ( ω 3 + z) .
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Hence

(17)
(Xu X2)(β(o>3 + z ) ) = ~ Re f ( φ 1 ( - φ 2 ) ( ω z + ξ) dξ

By (9),

X 3 ( β ( ω 3 + z ) ) = - I n

{ω3 + z)-eλ

This establishes statement (ii).

Corollary 1. (i) The (xv x3)-planes and the (x2, x3)-planes are planes of

symmetry for M = X(D). The line segments ω 2 ,1 + ω2 and 0,1 are mapped into

the (xv x3)-plane. The line segments ωl9 ωλ + / and 0, i are mapped into

the (x 2 , x3yplane.

(ii) The isometry a = p ° β of D which is reflection across the positive diagonal

of F, is compatible with the symmetry of M given by the Euclidean motion RB,

which is rotation by π about the line xλ — x2 = x3 = 0.

Remark 7. If we decompose F into eight triangles I, ,VIII as in Figure

1.1, it follows from Theorem 2 that each of the triangles is isometric to all of

the others by an isometry in G.

From Theorem 2 and the above remark, the following corollary is im-

mediate.

Corollary 2. M is made up of eight congruent pieces. Each piece is isometric

to X(T), where T c F is the triangle

( 1 8 ) {w + iυ\\ < « < M < " < u) - { ( ( ω 2 + 1 ) , ( 1 + ι ) ) }

and is produced from X(T) by moving X(T) by a symmetry in G.

Note. T is the triangle III in Figure 1.1.

5. M is embedded

In this section, we will prove that M is an embedded surface.

Theorem 3. Let X: D -> R3 be as in Theorem 1. X is an embedding.

Proof. Let Γ c D b e the triangle defined in (18). We will show in Proposi-

tion 3 below, that X\Tis an embedding, that X(T) lies in the positive octant of

R3, and X takes ΘΓinto the boundary of the positive octant. The eight elements
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of G, acting on R3, each moves the positive octant into a distinct octant of R3..
Theorem 3 then follows from Corollary 2 to Theorem 2.

To prove Proposition 3, we will need some preliminary results. Loosely
stated, the point of these four technical results is to show that X(dT) lies on
the boundary of the positive octant.

Lemma 3. For 8 > 0 sufficiently small, X is an embedding on

{ z ^ D \ \ X 3 ( z ) \ < 8 } .

Proof. We know by Proposition l(ii), that X is an embedding outside of a
compact set K and that X(K) and X(D\K) are disjoint sets. We have
established in Lemma 2 that the set 0^= 0,1 + / U /, 1 is equal to X3~

ι(0) and
that X is one-to-one on ££. Since X is an immersion it is locally one-to-one.
Restricting our attention to K, the closed subset £fn K is compact and
therefore must have a neighborhood TV in K on which X is one-to-one. For
8 > 0 sufficiently small, the set (z e K\ \X3(z)\ < 8} must lie in N. Since X is
one-to-one on both N and D\K, and X(N), and X(D\K) are disjoint, it
follows that X is one-to-one on

(19) { z e | | * 3 ( z ) | < « } .

Note. It is possible to prove this lemma by arguing directly from the form
of the third coordinate function X3(z), given in (10). We know that X3~

ι(0)
consists of the two diagonal lines through ω3 and we choose K to contain ω3.
The level curves of X3 (at nonzero values) are given by the inverse image under
P of circles in the complex plane which are at constant distance from both ex

and —ev Using these facts one can given an alternate proof of the lemma.

Lemma 4. The line segment ω3, ω3 + \ is mapped by X in a one-to-one

manner onto a curve lying in the nonnegatiυe quadrant of the (JC1? x3)-plane. The

curve meets an axis only at X(ω3) = 0.

Proof. By Corollary l(i), ω3,ω3 + \ is mapped into the (xv x3)-plane.
Parametrize this line segment by y(t) = ω3 + t, 0 < t < \. By Lemma 1, parts
(i) and (ii), P(y(t)) = λ(/) with λ(0) = 0, λ(£) = -el9 and λ'(t) < 0 on (0, \).
From (7) and (10) we have

- e\

(21)
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Clearly X3(y(t)) is monotonically increasing on [0, j) with X3(y(ί)) = 0 if

and only if t = 0. Therefore X(y(t)) is one-to-one and X3(y(t)) > 0 with

equality if and only if t = 0. To complete the proof of the lemma we now show

that Xx(y(t)) > 0 with equality if and only if t = 0.

In fact, we will show that the integrand of (20) is strictly positive, from

which the lemma follows. For/ e [0, H M O G [~el90]. Letj(λ) = λ(λ2 - e2)

and consider y(λ) on [-e^O]. The positivity of the integrand of (20) is

equivalent toy(λ) < a2/A on [ - el9 0]. We will now show this is the case.

Since y(0) = y(-e1) = 0,y(λ)> 0 on [-el90], and/(λo) = 0 on [-^,0]

only at λ 0 = —ex/j39

However a2/4 = 2*πe\ and eλ < 6.9, by Remark 3. Hence >>(λ) < a2/4. We

are done.

Lemma 5. The line segment ω2, i is mapped by X into the upper half of the

(x2, x3)-plane. It is a graph over the positive x3-axis and the value of X2 tends to

+ oo as one approaches ω2 or i. ^

Proof. By Corollary l(i), X(ω2, i) lies in the (x2, x3)-plane. Parametrize

ω2, i by ti9 \ < t < 1. By Lemma 1 and Remark 6, P(ti) = K(t) for some

real-valued function # ( 0 with K'(t) < 0, limit,_1 / 2 K(t) = -ev and

limit t^xK(t) = -oo.

Using these facts together with (7), (9) and (10) we have

(22)

(23) * 2 ( , 0 = *

(24) X^ti) = 0.

Using (23) and the properties of K(t) we also have

(25) lim Xi(ti) = limXi(/i) = oo.
r- l/2 r-*l

From the properties of K(t) and equation (22) it follows that X3(ti) is positive,

monotonically decreasing and

lim X3{ίi) = +00, hτaX3(ti) = 0.
t-Ί/2 ί->l
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Therefore X(ti) one-to-one. Moreover, we can reparametrize by s = X3(ti),

0 < s < oo, and write the curve in question as

(26) T(s) = X(X;ι(s)) = (0, X2{Xϊι(s))9 s).

As s -> 0, T(s) is a divergent curve in the embedded end Eo and as s -> oo,

T(s) diverges in the embedded end E2. Since these ends are asymptotically

parallel to the (xl9 jt2)"Pla n e>

l i m | Γ 2 ( ϊ ) | = lim | Γ 2 ( J ) | = oo.
j-*0 ,s->oo

By (25) it follows that

(27) l imΓ 2 (s) = lim T2(s) = + oo.
s—*0 s-* oo

As a consequence of Proposition 2 below, ω2, / is actually mapped into the

interior of the positive quadrant of the (x 2 , jc3)-plane.

Let T be the triangle defined in (18) and let R = T U ά(Γ). In Figure 1.1,

R = III U VI.

Proposition 2. Xmaps R into E = {(x^ x 2, Λ:3)|Λ:2 > 0, JC3 > 0).

Proof. Let

(see Figure 3). According to Proposition 1 and Lemma 3, if we chose ε > 0

small enough and N large enough then X is an embedding of the complement

of Se^N in {z <= D\X3> 0}. In particular X, restricted to Cε = X3~
ι(ε) and to

CN = X3

ι(N), is an embedding. By (9), these curves are level sets of ln|w(z)|,

where

P{z)-eλ

and are easily seen to be simple closed curves. Furthermore, Ce and CN are

symmetric under reflection across <o2, ω2 4- 1 and their images under X, which

we shall label Cε' and C'N, are symmetric with respect to reflection through the

(xv x3)-ρlane and the (x2, x3)-plane. These facts are an immediate conse-

quence of^Theorem 2. Since they are simple, each of the arcs Cε and CN meet

ω 2 , ω2 4- 1 exactly twice at points symmetric with respect to the midpoint, ω3.

We label these pairs of points qε, ά(qε) and qN, όc(qN), respectively.
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1 + / 1 + i

Level curves of X3(z) Se N is region bounded by
Ce and CN.

FIGURE 3

The points qε and &(qε) divide Cε into two arcs one of which, Cε

+, is mapped

by X into the half-space {x2 > 0}. It must be the arc which cuts ω 2, /' since we

are free to choose ε small enough, by Lemma 5, so that Cε must cut ω 2, / at a

point where X2 is positive. Applying the same argument to CN, we can assert

that the subarc, C^, of CN on which X2 > 0 is the one which crosses ω2, /.

Let WeN be the intersection of R with Sε^N. We now know that

= x(c;

c 3( (x1 0, e
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By the convex hull property for minimal surfaces, WεN is contained in

{ {xι,x1,x?)\x2 > 0, ε < x3 < N).

Letting ε -> 0 and N -> oo finishes the proof.

Proposition 3. Let T be the triangle defined in (18)

T= { u + iυ\\ < t t < M < ϋ < i ι } ~ { ( ω 3 + i ) , ( l + / ) } .

Then X\τ is an embedding of T into the nonnegatiυe octant of R3, taking T into

the boundary of the octant, and t into the interior. ^

Proof. The boundary of the T consists of the line segments ω3, ω3 + \,

ω 3 ,1 4- /, and ω 2 , i. ω3, ω3 + \ is mapped monotonically onto a curve in the

nonnegative quadrant of the (xv x3)-plane, meeting the axes only at X(ω3) = 0

(see Lemma 4.) ω 3 ,1 + / is mapped monotonically onto the ray xx — x2 = x3

= 0, xx ^ 0 (see Lemma 2.) ω 2, / is mapped monotonically into the interior of

the positive quadrant of the (x l 5 jc3)-plane. (This follows from Lemma 5 and

Proposition 2.) Let Q denote the closure of the positive octant of R3. We have

established that X(dT) c dQ.

Consider Γε J V = WεN Π T. It is straightforward to restate the argument of

Proposition 2 applied now to TεN to show that X{TεN) is contained in Q. We

conclude that Xmaps Γinto Q (and necessarily takes Γinto Q).

To complete the proof we need to show that X is an embedding; we will do

this by actually proving that X(T) is a graph over the plane P = {x e R3|JC u

= 0}, where u = (1,1/2,0). Let IT denote the projection of R3 onto P. We

assert that π <> X; Tε^N -> P is actually a submersion which is one-to-one on the

boundary of TεN. Since Tε^N is simply connected this implies that π ° X is

actually one-to-one on Γe ̂  and that X{TεN) is a graph over P. Since the disks

Γε ^ exhaust Γ, Γ itself is embedded as a graph over P.

Proof of the assertion. Let σ: S 2 -» C U {oo} denote stereographic projec-

tion. Recall that the Gauss map of Xis given by σ" 1 ° g where g = a/P'. From

Lemma 1 which lists properties of P, it is easy to show that g(T) is one of the

regions in C U {oo} bounded by the lines {ti\t < 0} and {t(-l + i)\t > 0}.

By Remark 3 and Corollary 2 the total curvature of X(T) is - 3τr/2. Since the

total curvature of X(T) is the area of the Gaussian image it follows that g(T)

is the "smaller sector" which contains the negative real axis. Therefore

σ " 1 © g(T) is a region lying in the hemisphere H = {n\n u < 0} which meets

dH = P Π S2 only at the points (0,0, +1). Noting that σ" 1 ° g(z) = (0,0, ± 1)

on T only at ω3 where g(ω3) = 0 and that ω3 £ Γe ̂ , we conclude that

σ ~ 1 o g ( Γ ε ; v ) is a compact subset of the interior of H. This means that
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projection of X{TεN) onto P is regular: hence π <> JΠs a submersion of Tε N.

To complete the proof of the assertion we must show that X is one-to-one on

dTε N. This boundary consists of four arcs two of which are line segments. The

line segment qεqN is mapped by X one-to-one into the (xv x3)-plane which

projects one-to-one onto P. The other line segment bounding Tε N lies on ω 2, /

which is mapped one-to-one into the (x2, x3)-plane and this plane also

projects one-to-one onto P. Now let's look at the subarc^of Cε

+ which bounds

Tε N. Since X maps ^ one-to-one into the plane x3 = N, π ° X maps Sf'mlo the

line P Π (x3 = N). But the projection π is locally one-to-one along X{&*) so it

must be globally one-to-one. A similar argument shows that TΓ ° X is one-to-one

on the subarc of C^ which bounds TεN.

FIGURE 4

Remark 8. We note that in the proof of Proposition 3, the choice of the

plane P is somewhat arbitrary. In fact we could use the same argument to show

that X(T) is a graph over the plane Pn the plane orthogonal to ut = (1, ί,0),

for t, 0 < t < 1. With slightly more work, it can be shown that X(T) is a graph

over P o , the (x 2 , x3)-plane.

It is also the case that X(R) is a graph over Pn 0 < t < 1.
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Mn{x\\χ\<3}

MΠ{χ\\χ\ <3,x2 Π < 3 , J C 3

6. Computer graphics

All of the images are viewed from above the (jq, jc2)-plane, looking toward the origin. The
quadrilateral pattern on the surface is the image of a checkerboard pattern on the parameter
domain D. Applying the symmetry B of (13) to the half of M in the second illustration produces
the other half of the surface. Similarly R of (13) moves the half of the surface in the third
illustration into the other half.

These images were created by James T. Hoffman. Assistance in the production of the photo-
graphs was provided by Richard Newton and the Digital Image Analysis Laboratory at the
University of Massachusetts, Amherst.
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