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RICCI DEFORMATION OF THE METRIC
ON A RIEMANNIAN MANIFOLD

GERHARD HUISKEN

The interaction between algebraic properties of the curvature tensor and the
global topology and geometry of a Riemannian manifold has been studied
extensively. Of particular interest is the question under which conditions on its
curvature tensor a Riemannian manifold is homeomorphic or diffeomorphic to
a space of constant positive sectional curvature.

A Riemannian manifold M with sectional curvature K is said to be δ-pinched
if δ < K < 1 holds globally on M. The famous sphere theorem then states that
a complete, simply connected \ -pinched manifold is homeomorphic to the
standard sphere [1], [6], [7]. It is also known that the homeomorphism theorem
can be sharpened to a diffeomorphism theorem, if a more restrictive pinching
condition is imposed, [3], [8]. Recently, Ruh [9] was able to show with the help
of the Calderon-Zygmund inequalities, that the global pinching condition can
be weakened to a local one: If the curvature ratios of a compact Riemannian
manifold of positive sectional curvature are close to one, then the manifold is
diffeomorphic to a spherical space form.

In this paper we use the heat flow method developed by Hamilton in [4] to
give a new proof of Ruh's result and to obtain a more precise pointwise
condition for the curvature tensor which ensures the existence of a diffeomor-
phism to a spherical space form. In [4] Hamilton showed that on a three-
dimensional manifold of strictly positive Ricci curvature the metric can be
deformed into a metric of constant positive curvature. We show that this heat
flow method works for any dimension n > 4, provided the norm of the Weyl
conformal curvature tensor and the norm of the traceless Ricci tensor are not
too large compared to the scalar curvature at each point.
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1. The result

It is well known that the curvature tensor Rm = {RiJki} of a Riemannian

manifold can be decomposed into three orthogonal components which have

the same symmetries as Rm:

(1.1) Rm= W + V+ U.

Here W = { Wijkl} is the Weyl conformal curvature tensor, whereas V = { ViJkl}

and U = {UiJkί} denote the traceless Ricci part and the scalar curvature part

respectively. Let g = { g/y} be the metric on M and denote by Re = { Rtj} and

R the Ricci tensor and the scalar curvature. Furthermore we write r for the

average of the scalar curvature, r = jMR dμ/fMdμ, and define the norm of a

tensor:

\T\2 = \T , J 2 = QimQJnQkPQl(lT- , ,T
\A I \1ijkl\ ό ό 6 3 1ijkl1mnpq

Then we have

1.1. Theorem. Let n > 4. // the curvature tensor of a smooth compact

n-dimensional Riemannian manifold of positive scalar curvature satisfies

(1.2) | n f + | F | 2 < δ , , |ί/|2

with

( 1 - 3 ) δ 4 = i , 85 = ± , S n = ( M _ 2 )

2

( w + i ) , n > 6 ,

then the evolution equation

(1.4) 2-tgu(t) = \r{t) • gij{t) - 2Ru(t), g,,(0) = glJ,

has a solution for all times 0 < t < oo and gjj(t) converges to a smooth metric of

constant positive curvature in the Cx-topology as t -> oo.

The constant δn, n ^ 6, is optimal in a certain sense: Consider the Riemann

curvature tensor as a symmetric transformation Rm: Λ2 -> Λ2 of two-forms

with eigenvalues p l 5 -,pN, N = n(n - l )/2. Then (1.2) describes a certain

cone around the diagonal {xx = x2 = = xN} in R^ in which the vector

(Pi> * '>PN) has to lie. We will see in §2 that 2/(n — 2)(n + 1) corresponds to

the cone which touches the faces {x, = 0}. In particular it will follow that this

constant in (1.2) still forces all eigenvalues of the operator (U + W)\ Λ2 -> Λ2

to be positive, which is absolutely necessary for our proof in dimension n > 4.

The constants δ 4 and δ5 can be improved slightly but for the sake of simplicity

no attempt has been made to do so. Furthermore it will become clear from the
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estimates in §3 that the constant in front of \V\2 in (1.2) can be considerably

smaller than 1, in fact it has only to be of order n~ι.

2. Evolution equations and preliminary results

From now on we will deal with the unnormalized equation

since a solution of (2.1) defers from a solution of (1.4) only by a change of

scale [4]. Hamilton already showed for all n that a solution of (2.1) exists on a

finite time interval [0, T) and that the quantity sup^ |Rm| becomes unbounded

as t -* T (see also [2] for the local existence result). Throughout the paper we

adopt the notation of [4], in particular

S = |Rc| 2, Bijkl = gPrg^sRpiqjRrksl = Rr?jRrksl.

Then we have the following evolution equations which were calculated in [4]

for all n:

2.1. Lemma. If the metric g / 7 (0 satisfies (2.1), then we have

, - Biβk - Biljk + BikJI)

^Rik = ΔRik + 2RpiqkR<"> ~ 2RpίR"k, ^R = ΔΛ + 25.

From this we deduce

2.2. Lemma. The full norm of the Riemann curvature tensor satisfies the

evolution equation

| : | R m | 2 = Δ|Rm| 2 - 2|3Rm|2 + $RlmίlJ,R'"hR"'fh + 2RlqmpR < hR"">ih.

Proof. We obtain from Lemma 2.1 and (2.1)

= Δ|Rm| 2 - 2|ΘRm|2 + ARiJk'{BlJkl - Bijlk - BUjk + BikJI).

The Bianchi identity yields

R""(BlkJI-BllJk) =

and the conclusion follows.
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The proof of Theorem 1.1 depends on a careful examination of the absolute

terms in the evolution equation above. To this end we decompose the Riemann

curvature tensor as in (1.1). Let us also agree to denote the traceless Ricci

tensor by Re and the scalar curvature free curvature tensor by Rm:

{VlJkl+

Then we have the formulas

(2.2)

Vijki =

Uijki =

1 ,
Rik8jι ~ °Ru8jk -

and an easy calculation shows

2.3. Lemma. We have the identities

(2.3)
n-2" ( « - ! ) ( « - 2 ) '

We will also need the following estimates for symmetric 2-tensors:

2.4. Lemma. Let T= {7/7 }i<, ,y<m ^ ^ symmetric tracefree operator with

eigenvalues λ1 ? ,λm:

ι = l

e have

(i)
m — \

m
|Γ| , 1 < 1

| tr(Γ 3 ) | =
- 2)

Proof. The first estimate follows from
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Since the second inequality is homogeneous we can confine ourselves to the

case \T\2 = 1 and calculate the extrema of the function/(λ1? ,λm) = ΣfL1 λ]

on the codimension-2 submanifold of Rm given by ΣJΊi λ2 = 1, ΣT=λ λ, = 0.

An easy computation shows that /is extremal if, for example,

λi = λ 2 = = λw_! = ± l \ m = +
J( 1)

Then/equals +(m - 2)/ \jm(m - 1) which proves the lemma.

We can now show that condition (1.2) in Theorem 1.1 forces the eigenvalues

of the curvature operator to be positive. A tensor T = { Tijkl} having the same

symmetries as the curvature tensor defines a symmetric operator T: A2 -> Λ2

on the space of two-forms by

(Γt/),, = i Γ V v «={M,7}eΛ2.

With this definition k is an eigenvalue of T if TiJ

kίuiJ = 2kukι for some

0 ^ w G Λ 2 a n d we have \\T\\2

Ai = \\T\2.

Since the manifold M is compact, the strict inequality (1.2) and (2.3) imply

that there is some ε > 0 such that

(2.4) \W\2 + \V\2 <δn-(l- ε ) 2

 w ( w

2

1 } * 2

holds everywhere on M. Thus we have the following consequence of Lemma

2.5. Corollary. Let k be an eigenvalue of the symmetric operator T: Λ2 —» Λ2,

trace(Γ) = 0. Then

/, ^ ,.2 -- N ~ ! | | T | | 2

: _ (" ~ 2)(n + ! ) | T | 2

(2.5) k < - U - M * - A n { n . x ) \n•
In particular, if k is an eigenvalue ofRm and (2.4) is satisfied with δn as in (1.3),

then we have \k\ < (1 - ε)R/n(n — 1) and since all eigenvalues of U are equal

to R/n(n - 1) we have RiJkίuiJukI > 2ε\u\2 for all u e Λ2.

3. The eigenvalues of the curvature operator

In this section we will show that the inequality (2.4) remains valid as long as

the solution of (2.1) exists. Furthermore we show that the eigenvalues of the

curvature operator approach each other at least at points where the scalar

curvature becomes large. In the case n = 3 Hamilton [4] used the quantity

S — \R2 = |Rc | 2 which measures how far the eigenvalues of the Ricci tensor
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diverge from each other. In the higher dimensional case the analogous quantity

is

3.1. Theorem. If inequality (2.4) that is

|Rm|2 < δ,,(l - ε)2

n{n

2

holds at time t = 0, then it remains so on 0 < t < T. Moreover, there are

constants C < oo and δ > 0 depending on n and the initial metric such that

|Rm| 2 < C R2δ holds onO < ί < T.

To prove the theorem, we consider the functions fσ = \Rm\2/R2~a f°Γ small

σ ^ 0. The evolution equations for |Rm|2 and for R in Lemmas 2.1 and 2.2

imply an evolution equation for/σ. The calculations are analogous to those in

[4, Lemma 10.3] and we derive

3.2. Lemma. For any 0 < σ < { we have onO < t < T the identity

γtfβ = Δ/σ +
 2 ( 1 ^ σ

where

(3.1) P = 2RRiJkiR^knRjn

ι + \RRijklR
kl™Rji - |Rm|2 S.

In order to apply the maximum principle, we have to estimate the absolute

term in this equation, i.e., the polynomial P.

3.3. Theorem. // inequality (2.4) holds for some small ε > 0 then we have the

estimate P < -ε/n R2 |Rm| 2.

Before proving the estimate, let us see how it implies Theorem 3.1:

At time / = 0 we have the strict inequalities

/o < βπ(l - e + η)
2 2

ι i ( ι i - l )

for all 0 < η < ε/2 and the first part of Theorem 3.1 is proved if this remains

true for all time 0 < / < T. Suppose it does not for some η. Then there is a first

time 0 < t0 < T and some x0 e M such that

2 2
/o(*o,'o) = δ,Λl-e + ϊ?) n { n _ ι y
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At the point (x 0 , t0) we have dfo/dt ^ 0, Δ/o < 0 and 3 ;/ 0 = 0. But by

Theorem 3.3 we have at (JC0, /0)

P « _

a contradiction to the evolution equation of/0. The second part of Theorem 3.1

now follows immediately from the first part, Theorem 3.3 and the evolution

equation of fσ if we choose δ = σ0 < ε/n and C = supMfσ | ί = 0 .

Note that by Corollary 2.5 the curvature operator and therefore the Ricci

curvature is positive, in particular we have S < R2.

Proof of Theorem 3.3. The decomposition (1.1) yields

2RiJklR""k"Rm\' + \RijklR
k"»»Rm;J

= (UIJkl + ViJkl + WiJkl) -{IR^RJJ + \Rklm"Rmnη.

The Bianchi identity RiJkt + RikIJ 4- Riljk = 0 is valid for all components of

the curvature tensor and using the formulas (2.2) we derive after long but

simple calculations

Uukl(2R""k"RjJ + \Rklm"RjJ) = n{^_λ)R • S,

ViJkl(2R""k"RjJ + \Rklm"RjJ)

4 / 1 2\ 8 . . j . ik 4 . .

~ n(n - 1 ) I n j ( „ _ 2 ) 2 ° k + n - 2 ik »

Wijkl\lR Rnln+ϊR Rmn

J)

— 2W wimknw J ι 4. I jf/; \yklmnγy U _μ _____Jj Jj p̂ /

An expression for |Rm| 2 is given in Lemma 2.3 and we obtain from (3.1)

P = -ίR2\W\2 + 2RWuklW
imknWm

JJ •

; 4 τ τ r R ( s R ) ^
n{n-\){n-2) \ n ) n -

^-^RRuR
j

kR
ik - \W\Hs - -R2) + -^rRR^R

(n - 2) ^ " i " ~ 2
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3.4. Lemma. We have the estimate

i(n - l)(π - 2)

Proof. From formula (2.2) we calculate

=M=,\w\[s--RΛ.
n-l)(n-2) V n J

The tensor (V°V)iJkl = VijmnV
mn

kl has the same symmetries as the Riemann
curvature tensor and therefore also decomposes into three orthogonal parts
F o F = Γ 1 + Γ 2 + Γ 3 . Here 7\ denotes the 'scalar' part, T3 the 'WeyΓ part
and T2 the 'traceless Ricci' part. The conclusion of the lemma follows if we
show that

since Tγ and T2 are orthogonal to W. From (2.2) we derive

(VoV)IJkl =
(n- 2)

kimk\gβ - RimRm

lg
jk

(n — 2)

Now we introduce the notation Z =
formulas in Lemma 2.3

ιτ, τ,|2 16

and obtain analogous to the

,2 32

\T2\
2 4

n(n-l)(n-

4

(« - 2Γ
ί(n - 4)2Z +(3« - 8)ίs - ^R

16

ι ι ( f i - 2 ) ( « -

„ i

(n-2)5
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Thus we conclude

32 ί „ . (n2-3n + 3) (a 1 2 ^

{n-2)5
-nZ + S--R

n

32

which proves the lemma.

From Lemma 2.4(ii) we obtain

( « - 2 ) 2 lJ

such that

/«(« - 1)

2RWijklW
imk"Wn{J + \

(3.3)
n-

v/(n - l)(n - 2)

We have now to distinguish the cases n > 6, « = 5 and « = 4.

(i) « > 6: We use an idea of Tachibana in [10] and define for fixed m, n,p,q

a local skew symmetric tensor field ujj'"ί"l) by

u ( m n p q ) _ J J Λ g . + ^ . g . + f f . g . + f f g .
w/y inpqσjm mipqojn mniqojp r r mnptojq

-W 2 - W 2 - W 2 - W 2
jnpqoim mjpqoin mnjqoip mnpjoiq'

Then it is not hard to see that

|w|2 =

In view of Corollary 2.5 this can now be estimated by

J
16 V / i ( n - l ) n(n-l)
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Using then the inequality

(3.4) xy < Wιx2 + ηy2, η > 0,

with η = (1 - ε) {n(n - l)(n - 2)(n + 1)}"1 / 2 we obtain from assumption

(2.4) that

W
lVY

imknW J ι 4- —4- — RW WklmnW
^ 2 'Jki

(3.5)

1 ( 1 - β ) *

Moreover, choosing η = {2jn + 1 } ' we get

(3.6) 4

n — 2 \ «

n(n - 1)(« - 2) I ^ Γ

where we used (2.4) again. Thus we derive

P^--R2\W\ -

- h/n + 1 +

n(n - 1)(« - 2)
1 +

n + + 1

1_
J

n

(

^ R\W\[S-±RA.
« - 1 ) ( Λ - 2) \ n '2)

Once again we use (3.4) to estimate the last term in this expression and we

have only to check that

-1

< l)/n + 1 +(3.7) —
8 Γ

" + 1

This strict inequality holds for « > 6, which proves Theorem 3.3 in that case

since ε is small. Moreover it becomes clear from (3.5), (3.6) and (3.7) that

instead of 1 we could have some constant of order n~ι in front of the term \V\2

in assumption (2.4).

(ii) n = 5: We proceed as in (i) but now the stronger assumption

\W\2 + \V\2 < (1 - ε)2 -LIU\2 = (1 - ε) 2 ^ t f 2
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leads to

2RWiJklW"nknWjn

ι + \RWiJklW
klm»Wj-

- ε)\R2\W\2 - \6,

Furthermore we get

such that

25'
- 2,5\W\\s -

P < -fR2\W\2 - - ι

5R
2) - 19\W\\S -

and the conclusion is easily checked.
(iii) n = 4: In the four-dimensional case we have the following improve-

ment:
3.5. Lemma. On a four-dimensional manifold we have the estimate

(3.8) \2WiJklW
imk"Wjn' + hWijklW

klm"Wji\ < \S\W\\

Proof. As in §2 we regard the Weyl conformal curvature tensor as a linear
symmetric transformation on the bundle of two-forms Λ2 defined by

W(ei A βj) = \Wijkιek A et.

The theorem on the normal form of the Weyl tensor on a four-dimensional
Riemannian manifold (see for example [5]) then states that there exists a local
orthonormal basis el9 —,eA such that relative to the corresponding basis
{eλ A e2, eλ A e3, ex A e4, e3 A e4, e4 A e2, e2 A e3) of Λ2, Stakes the form
[£jj], where

λ i

0
B=

0

μ2

0

We have Σju/ = 0 in view of the Bianchi identity and Σλ, = 0 since the
trace of Evanishes. In this setting the expression in (3.8) is a cubic polynomial
in μ,, λ7 and we obtain

2WiJklW""k"Wjn' + \WijktV
klmnWj>

= 48{λiλ2λ3 + X^ 2 ^ 3 + λ2μ1μi + λ^μiμi}

+ 8{M + λ3

2 + λ3

3} + 24{λxμ
2 + λ2μ

2

2 + λ3μ
2}

= :8P(λ,,μ,).
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Inequality (3.8) is invariant under scaling and so we may confine ourselves

to the case where 1 = \W\2 = 8 Σ * = 1 (λ2. 4 μ 2).

Obviously it is then enough to show inequality (3.8) for all stationary points

(λ, , μ,) of P which lie in the set given by

8'
(3.9) Σλ, = o, ΣM, = O,

For such a stationary point (X,, μ,) of P we must have

2 λ 2 λ 3 4 2μ 2 μ 3 4 X2 4 μ2 = ax\x 4 α 2 ,

2XXX3 4 2μ xμ 3 4 λ2

2 4 μ2 = aιλ2 4 o 2 ,

2λ x λ 2 4 2μ xμ 2 4 X2 + μ\ = 0̂ X3 4 α 2 ,

(3.10) 2 λ 2 μ 3 4 2 λ 3 μ 2 4 2X^X = α ^ 4 α 3 ,

2λ x μ 3 4 2λ 3 μ x 4 2 λ 2 μ 2 = aλμ2 4 α 3 ,

2λ x μ 2 4 2λ 2 μ x 4 2λ 3 μ 3 = α x μ 3 4 α 3 ,

where α1 ? α 2 , α 3 are Lagrange multipliers. If we multiply the first equation by

λx, the second by λ 2 and so on, then we see after summation from (3.9) that

αx = 8P. Furthermore, summing up the first three equations and then the last

three equations we conclude from Σμ, = Σ λ ; = (Σ λ,) 2 = 0 that a2 = a3 = 0.

Now we subtract the first three equations from each other to obtain

(3.11)

- 3 λ 3 4 3μ
( M 2 - M i )

if λx Φ λ 2 ,

-3λ2 4 ^2TΓ-zP\ i f λ i φ λ 3 '

l λ 3 ~ λ2)

and similarly, after subtracting the last three equations from each other, we

obtain

(3.12) «i =

- 3 λ 3 + 3μ3

(λ.-λj

-3λ 2 + 3μ2

if Mi

if μi

( λ 2 ~ λ 3 )
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It is not hard to see that these six equations can only hold simultaneously if

either (μ, - μ,) = + ( λ , - λ y) or (μ, - μj) = -(λ, - λ y) for all /, j . But

summation then shows that in this case ax = 8P = 0 and the inequality (3.8)

holds trivially. So let us assume that, for example, μλ = μ2. If μ, = 0 it follows

from (3.11) that two of the λ/s have to be equal, say \ = λ 2 , λ 3 = -2λv

Then from (3.9) we get

4V^

In this case we have from the second equation in (3.11) that 8P = OLX = -3λ 2

= _3λχ = + 1/3" and the inequality (3.8) is satisfied. If μ, m 0, then 0 Φ μ3

= -2μx and we obtain after subtracting the fifth from the fourth equation in

(3.10) that \x = λ 2, λ 3 = -2\v We may assume \λ Φ 0, since otherwise

P = 0. Subtracting the fourth from the first equation in (3.10) then yields

2\\x — Mi/ = 3^iv^i — Mi/

If λx Φ μ1? then -2μλ = μ3 = λx which leads quickly to a contradiction if we

subtract the first from the sixth equation in (3.10). So we have A; = μ, ,

λj = λ 2 = - ^λ3 and we get from (3.9) that now

1 3 Λ

8 , -i

Then we have 8P = ax = -3λ 2 - - μ 2 = -6XX = + ^v^ and inequality

(3.8) is satisfied. If we start with λx = λ 2 instead of μλ = μ2, then we are led to

the same cases as considered above which completes the proof of Lemma 3.5.

Now proceeding as in (i) and (ii) we obtain

\J6R\W\* < (1 - ε)\R2\W\2 - \A,2\W\\s - \R2).

Furthermore, we calculate

where we again used assumption (2.4). So we have

P < - f R*\W\2 - ±

and the conclusion follows with inequality (3.4).
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4. Gradient estimate and conclusion

Once Theorem 3.1 is established, we get the same estimate on the gradient of
the scalar curvature as in [4]:

4.1. Theorem. For every η > 0 we can find C(η) depending only on η, n and
the initial value of the metric, such that on 0 < / < T we have 13,^12 < ηR3 +
C(η).

Proof. The evolution equation for the gradient of the scalar curvature is the
same in all dimensions and we take from Lemma 2.1 and [4]:

4.2. Lemma. We have the equations

(ii) | - S = ΔS - 219,.*,/ + ARiJRklR
ikJ'.

In particular we have

+ 4 R.jRuR""1,

and RijRklR'kJί < R(S — R2/n) as can be easily seen from assumption (2.4)
and decomposition (1.1).

As in [4] we bound the function

where Λf depending only on n is sufficiently large. We need the following
higher dimensional analogue of [4, Lemma 11.6].

4.3. Lemma. We have the inequality

and therefore
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Proof. As in Hamilton's paper we decompose the gradient of the Ricci

n-2

curvature: ^Rjk = Eijk + FiJk with

Then the contracted second Bianchi identity giJΰiRJk = \ΰkR leads to

(Eιjk, Fijk) = <£,,*, ^ - Eijk) = 0,

• . 2 _ 3κ - 2 , 2
| £ ' ^ " 2(« - 1)(« + 2) M l

which proves the lemma.
Using this lemma we derive as in [4] that df/dt < Δ/ + C(η). This implies a

bound on/since the maximal time Γcan be estimated as in [4, Lemma 11.11],
and therefore proves Theorem 4.1.

Having established the gradient estimate for the scalar curvature, we use
Meyer's theorem as in [4] and conclude R^/R^n -> 1 as t -> T.

For this step of the proof it is necessary to know that the eigenvalues of the
Ricci tensor are bounded from below by εR with some fixed ε independent of
time. But we have already seen in Corollary 2.5 that assumption (2.4) implies
such a lower bound even for the eigenvalues of the curvature operator, which
implies the bound on the Ricci curvature.

All the remaining arguments in [4] carry over almost unchanged to the
higher dimensional case.

Added in proof. More recently, the author learned that the higher dimen-
sional Ricci flow has also been studied in [11], [12].
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