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MAPPINGS THAT MINIMIZE AREA
IN THEIR HOMOTOPY CLASSES

BRIAN WHITE

Let /: M -> X be a continuous map from a compact connected oriented

m-dimensional manifold M into a compact Riemannian manifold X. In this

paper we consider the problem: does there exist a lipschitz map g: M -> X that

minimizes m-dimensional mapping area (or some other parametric elliptic

functional) subject to the condition that g be homotopic to/? If so, what is the

minimum area attained? And, if not, what is the infimum? It has long been

known that in each homology class of X, there is an integral current that

minimizes area (in that class). In this paper we show that, for m > 3, the

homotopy problem reduces to the homology problem. For instance, if X is

simply connected, the infimum area of mappings homotopic to / is equal to the

minimum area among integral currents homologous to/ # ([M]) (where [M] e

3?m(M) is the m-dimensional integral cycle orienting M). Furthermore, if the

current solution T is sufficiently regular, then the infimum is attained by a map

whose image is the support of T together with a lower-dimensional singular set.

More generally, we allow M to be a compact manifold with (possibly empty)

boundary. In this case, the homotopy problem is to minimize area among all

maps g that are homotopic to/under homotopies H: [0,1] X M -» X that are

fixed on dM (i.e., such that H(t, x) = f(x) for x e 3M). Note that if M =

B"2(0,1) and X is R", this is the classical Plateau problem of minimizing area

among maps g: B w -> Rn with boundary values/|3Bm. Our main result is:

Theorem. Suppose M is a compact connected oriented m-dimensional (m ^ 3)

manifold with boundary, X is a Riemannian manifold (or more generally any local

lipschitz neighborhood retract), and f: M —> X is a lipschitz map. If X is simply

connected (or if f *\ π^M) -» π^X) is surjective), then

inf { Area( g ) : g is homotopic to f under a homotopy fixed on dM }

= inf{Area(Γ): T — / * ( [ M ] ) is an integral boundary in X) .
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Furthermore, if f\dM is one-to-one and the current infimum is attained by an

integral current T that is the image of a polyhedral chain under a one-to-one

lipschitz map that is bilipschitz on 3Γ, then the mapping infimum is attained by a

map g whose image is T together with a singular set of dimension < m — 1.

(See [11] for an example of a smooth embedding/: B 3 -+ R4 (with/(3B3) c

9B 4 ) for which the infimum is attained, but only by mappings g whose

singular sets have positive two-dimensional area.)

Even if / * : ^ ( M ) -> π1(Λr) is not surjective, the theorem still provides

information because we can always lift / to a map /: M —> X into a covering

space X of X so that / * is surjective. Analogous results are also true for

nonorientable M (with flat chains modulo two replacing integral currents), but

there are some surprising differences (see §4).

The case m = 2 is very different. For example our main result is false even

when M is a two-dimensional disk and X is R3: the area minimizing integral

current can have higher genus and less area than the area minimizing mapping

(cf. [6, p. 56]). Of course much is known about the two-dimensional case. For

instance Sacks and Uhlenbeck [7] and Schoen and Yau [9] independently

showed that if/*: πx(M) -> πλ(X) is injective and X is a compact manifold,

then there is a branched minimal immersion that minimizes area among all

maps g such that g * = / * on πλ(M). (In case X is 3-dimensional, the

minimizing map has no branch points.) See [4] for an elegant unified treatment

of the known results for 3-dimensional X.

In the special case X = R", M orientable, the results of this paper were

proved in [11].

The organization of the paper is as follows. §1 contains the simplicial version

of the main theorem. This is the heart of the paper and the proofs are purely

topological. The main tool is the homotopy extension theorem, which says that

if A c B are nice subsets of Euclidean space and if

H: ([0,1] XA) u({0} XB) -* X

is lipschitz, then H may be extended to a lipschitz homotopy H:[0,l]X B ^ X

on all of B. Here "A is nice" means it is a lipschitz neighborhood retract, i.e.,

there are an open set U containing A and a lipschitz retraction of U onto A (see

[5, p. 13] for a proof)- In §2 (the only technical part of the paper), the general

theorem is deduced from the results of §1. Here we use Federer's strong

approximation theorem, according to which any integral current coincides

(except on a set of arbitrarily small measure) with a curvilinear polyhedral

chain. §§3 and 4 extend the results to nonsimply connected X and nonorienta-

ble M. §5 contains applications and open questions.

The author would like to thank Robert Hardt for suggesting a number of

improvements.
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Definitions and assumptions

1. M is a compact connected m-dimensional Riemannian manifold with
(possibly empty) boundary.

2. [M] is the m-dimensional integral current in £3?m(M, dM) orienting M. (In
§4, where M is nonorientable, [M] is the corresponding flat chain mod 2, i.e.,
the nonzero element of «2^(M, dM.)

3. JV" is a local lipschitz neighborhood retract. That is, X is a subset of an
open U in Rn such that there exists a locally lipschitz retraction r: U -* X.

4. 08m(X) is the set of m-dimensional integral boundaries in X, i.e., {dR: R
is an (m + l)-dimensional integral current supported in X}.

5. M(Γ), spt(Γ), and ||7Ί| denote the mass (i.e., m-dimensional area weighted
by multiplicity), support, and associated Radon measure of the integral current
(or flat chain) T. See [1] for definitions.

6. A parametric integrand of degree m on a set A in R" is a continuous
function Φ: A X ΛmR" -» R such that Φ(x, tw) = /Φ(x, w) for t > 0. If T is
an m-dimensional integral current, we define

and Ίif:M-* U is a lipschitz map, we define

(Φ, /> = / Φ{f(x), (w(x), AmDf(x))) dx,

where w(x) is a simple unit m-vectorfield orienting M. For nonorientable M
and flat chains Γ mod 2, (Φ, / ) and (Φ, T) can be defined in a similar way
provided Φ is an even integrand, i.e., provided Φ(x, w) = Φ(x, -w).

1. Topological results

In this section we prove the simplicial version of the main theorem, namely:
Theorem 1. // M is oriented with dim M ^ 3, Y is a simply connected

simplicial complex, f:M-+Y is lipschitz with f(dM) c γ(m~ι\ and T is a
simplicial m-chain in Y such that

then there is a lipschitz homotopy H: [0,1] X M —> Y from f to a map g such that

H(t9x)=f(x) forx^dM, g ( M ) \ s p t ( Γ ) c y<--D?

and such that the interior of each m-dimensional simplex that occurs with

multiplicity k in T is covered < k times {with the proper orientation) by g.
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(Here a simplicial m-chain in Y is an ra-dimensional integral current T with

spt(Γ) c y ( m ) and spt(9Γ) c γ(m~ι\ where y ( / ) is the /-skeleton of y. Also,

here "simplicial complex" means what is sometimes called a triangulated

polyhedron [2]: in particular, the simplices of Y are affine simplices in

Euclidean space, not merely the homeomorphic images of such.)

First we need several lemmas. Throughout this section Y will be a simplicial

complex and M will be oriented.

Lemma 1. /// : M -> Y is lipschitz with f(dλf) c γ(m~ι\ then there is a

lipschitz homotopy H from f to a map g such that

(1) H(t,x)=f(x) forx^dM,

(2) g(M)c y<*>,

(3) g~ι(γ\ γ(m~l)) = wλ u u wk,

where Wλ, W2,
m ,Wk and dM are pairwise disjoint, and g maps each Wi

diffeomorphically onto the interior of some n-dimensional simplex of Y.

Proof. Let dim M = m + j\ so Y = γlm+j\ If j > 0, then from the interior

of each (m + j:)-dimensional simplex of Y we can choose a point not in the

image/(M) (because the m + y'-dimensional measure oϊf(M) is zero). Let the

set of points so chosen be P. Then there is a deformation retraction of Y \ P

onto y<m+/-D ( m a p each (m +y)-simplex radially outward from the chosen

point.) Thus / may be homotoped onto the (m + j — l)-skeleton. Iterating j

times, we get a map from M into Y(m\ Hence we may assume that f(M) c

Y{m\ We may also assume that the restriction of / to f-\Y\ y<WI"1)) is

smooth since / can be homotoped to such a map. (This can be seen in a

number of ways: for instance by smoothing / as in the proof of [8, Lemma

3.2].)

In the interior of each m-dimensional simplex Δ, of y, choose a point pi that

is regular for/, and choose an ε > 0 small enough so that

where / maps each Wi diffeomorphically onto some U(/?y, ε), and so that

Wλ,W2,' - ',Wk and dM are disjoint (U(/?, ε) is the open ball of radius ε

centered at p). Now define Φ: Y(m) -> y ( m ) as follows. First let Φ map each

Δ XUί/?,, ε) radially outward from pi onto 3Δ,. (Thus if x G Δ^Uί/?,, ε),

then x lies on the line segment joining pi to φ(x).) Then extend φ to all of Y{m)

in such a way that each V(p^ ε) is mapped diffeomorphically onto Δy. Note

that the extended map φ is homotopic to the identity (on Y(m)). Thus g = φ° f

is the desired map.
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Lemma 2. Suppose, in addition to the hypotheses of Lemma 1, that T has no
null-homologous components. Then there is a lipschitz homotopy H\ [0,1] X M —»
Y from f to a map g such that

H(t9x)=f(x) forx^dM,g#([M]) = T, g(M) c y<«>.

(A current S is said to be a null-homologous component of T if S e ^ w ( 7 ) ,
S Φ 0, am/ M(Γ) = 1X1(5) + M(Γ - S).)

Proof. We may assume that / satisfies conclusions (2) and (3) of Lemma 1
(otherwise it could be homotoped to a map that did). By hypothesis,/#([M])
— T = dR for some R supported in Y. Write R = ΣJ?=ιSi, where each St is (the
current associated with) one of the (m + l)-dimensional simplices of Y.
Choose R so that N is as small as possible. If N = 0, we are done. If not,
choose some Si9 say SN, such that one of the w-dimensional faces of dSN is
f#([Wj]) for one of the W- of Lemma 1. (This is possible since otherwise dR
would be a null-homologous component of T.) Clearly there is a lipschitz
homotopy H\ [0,1] X M -> Y such that

#(O,JC) = / ( * ) for* <=M,

//( / > < x) = / ( J C ) for*

and such that i/ sweeps out £# once, i.e.,

(4) H#([0,l] X[M]) = H#([0,l]x[Wj]) = Sw.

l, ).Thenby(4),

Iterating the process we get/2, /3, with

Then g = fN is the desired map.
Lemma 3. Let h: (Bm, 3B m ) -> (Bm, 9B m ) fee β lipschitz map such that the

induced map of homology groups h#: # J B " \ 3Bm) -> // m (B m , 3BW) M 0, i.e.,
swcΛ /Λα/ rΛe current A#([Bm]) is 0. ΓΛe« there is a lipschitz homotopy H:
[0,1] X B m -> Bm such that

H(09>) = h( ) , H(t9x) = h(x) forxtΞdB™,

H(\,x) e 3B"1 /orx e Bm.

Proof. The hypothesis implies (by the long exact homology sequence for
(Bm, 3Bm)) that the restriction of h to 9Bm has degree 0 (as a map from the
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(m - l)-sphere to itself). Hence there is a map φ: Bm -> 3BW such that
φ(x) = h(x) for Λ; G 3Bm. Indeed there is a lipschitz map ψ with the same
property. For by the Stone-Weierstrass theorem there is a smooth map φ':
Bm -* Rm such that |φ' - ψ| < 1 = radius Bm. Let ψ(x) = ̂ / |^ | where

;;(*) = (2|x| - l)φ(x/\x\) + 2(1 - |*|)φ'( */W)

when 1/2 < |x| < 1, and y(x) = φ'(2x) when |JC| < 1/2. Now let H(t, x) =
(1 - t)h(x) + tφ(x).

Proof of Theorem 1. First we may assume that T has no null-homologous
components (since if it had such a component dQ, then we could replace T by
T - 9(2). By Lemma 2, we may assume f(M) c 7 ( m ) and /#([Af ]) = T.
Having gotten/(M) onto F ( m ) , we can ignore the rest of Y. In other words,
from now on we assume Y = 7 ( m ) .

Let J^ be the class of lipschitz maps g: M -> Y such that

(5) g is homotopic to/with dM fixed (i.e., as in (1)),

(6) g~1(γ\ Y(m~l)) = Wx U U Wk,

where the W^s and dM are pairwise disjoint, and g maps each Wi diffeomor-
phically onto the interior of some m-dimensional simplex Sj of Y.

By Lemma 1, J^is nonempty. Let g e J ^ b e such that k (i.e., the number of
Wj's in (6)) is as small as possible. We claim that g satisfies the conclusions of
the theorem. First observe that, by (5),

But &m(Y) = 0 since dim Y = m. Thus g#([M]) = T.
Suppose g does not satisfy the conclusion of the theorem. Then there exist

two W .̂'s, say Wγ and JY2, that get mapped to the same Sp say S l9 but with
opposite orientations. Let q e sp^θ^SJX γ(m~2) and let Γ be a path in M from
W1 and W2 such that the two endpoints of Γ are mapped to q, and such that Γ
does not intersect dM or any of the W^s except at its endpoints. Note that this
implies g ( Γ ) c y(w~1).

Since Y^m~1^ is simply-connected, g|Γ can be homotoped to the point q in
y(m-i) ^j t j s jjgj ĝ  a n ( j nowhere else in the paper, that we use the condition
m > 3.) That is, there is a lipschitz homotopy H: [0,1] x Γ - > yί"1"1) such
that H(0, x) = g(jc), i/(l, x) = q and #(/, JC) = q for x G 3Γ. Extend H to
3 M U Γ U 9W\ U U dWk by setting

/, x) = g(jc) forχG3Mu3^U U dW
k.
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By the homotopy extension theorem (cf. [5, p. 13]), we can further extend this

H to a lipschitz homotopy H: [0,1] X (M\ U Wt) -> Y<m~ι\ Finally, extend

H to all of M by setting

H(t,x) = g(x) foΓjceU^-

Now let h(x) = //(I, x). Then /ie.f, h(x) = g(x) for JC G WX U U WΛ,

A(x) G 7 ^ - D for x ί ^ U - U Wk and A(JC) = ? for JC G Γ. NOW the

closed set

K=dMuί\J w\ Uh-ι(Yim~2))

does not intersect WιU W2U Γ. Hence there is an open set U containing

WλU W2UT such that Uis disjoint from K, J7 is diffeomorphic to Bm, and U

is diffeomoφhic to the interior of Bm. Note that

satisfies the hypotheses of Lemma 3. Hence there is a lipschitz homotopy H'\

[0,1] X U -* spt(SΊ) such that H'(0, x) = h(x), H'(t, x) = h(x) for x e 3Ϊ7

and //'(I, x) e spt^Sj) for x e Ϊ7. Now extend //' to all of M by setting

#'(?, x) = h{x) ύx€ U. Then the map g'( ) = //'(I, •) is in J^ and satisfies

(m-1)

But this contradicts the choice of g since g' satisfies (6) with fewer J^.'s than g
does.

2. The Main results

Theorem 2. Suppose M is oriented with dim M > 3, X is simply connected,
f:M—> X is lipschitz with f\dM one-to-one, and

where T is the image of an integral polyhedral chain P under a one-to-one
lipschitz map ψ that is bilipschitz on dP. Then there is a lipschitz homotopy H:

[0,1] X M -> X from f to a map g such that H(t, x) = f(x) for x G 3M,

g(M)\spt(Γ) has dimension < m - 1 #m/ eαc/z (curvilinear) m-dimensional

simplex that occurs with multiplicity k in T is covered < k times (with the proper

orientation) by g.

Proof. Let P be contained in the Euclidean space E. By the lipschitz

extension theorem [1, 2.10.43], we can extend ψ: spt(P) -> X c R" to a
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lipschitz map ψ: E -> R". Define Ψ: E -> £ X R" by Ψ(x) = <JC, ψ(jc)> and
Π: £ X R" -> R" by Π(JC, y) = y.

By (*), /#([3Af ]) = 9Γ = ψ#(3P). Since / and ψ are one-to-one on dM and
on spt(3P), this means/(3Af) = ψ(sρt(3P)). So ψ"1 °/: 3M -> spt(ΘP) c E is
lipschitz and can be extended to a lipschitz map u: M -> E. Then the lipschitz
map F: M -+ E X X defined by F(x) = (κ(*), /(JC)> satisfies Π ° F = / and
F#([3M ]) = * # (3P) . Hence

Since Π ^ X X - ^ X i s a homotopy equivalence and since

Π # ( * # ( P ) - F#([M])) = T-f#([M]) = 0 e <gm(X),

it follows that Ψ # (P) - F#([M]) e ^ m ( £ X X), and therefore

for some (m 4- l)-dimensional integral current Λ in £ X X
Let L: £" X R" -> £" X R" be the bilipschitz homeomoφhism defined by

L(JC, j ) = (x, y — φ(x)) and let r\ U -> X be a locally lipschitz retraction
from the open set £/ c R" to X c U. Finally, let 7 be a simply-connected
compact polyhedron in L(E X U) such that

L(F(M) U Ψ(spt(P)) U spt(Λ)) c interior(y).

Then L° F, T' = (L°Φ)#(P) and 7 satisfy the hypotheses of Theorem 1; let
H: [0,1] X M -* y be the homotopy given in the conclusion. Then

is the desired homotopy.
Theorem 3. Suppose M is oriented with dim(M) > 3, X is simply connected,

f: M -> X is lipschitz, and Φ is a parametric integrand of degree m on U D X.

Write &= { g\g is homotopic to f in X under a lipschitz homotopy fixed on dM}.

Then

Proof. First note that if g e &, then

Since <Φ, g> > (Φ, g#([M])) for every g: M -> X, this implies that the left
side of (*) is greater than or equal to the right side.

To prove the reverse inequality, let T be an integral current in X with
T — f#([M]) e <2m(X). Let AT be a compact simply-connected subset of U
with spt(Γ) u/(Λf) c interior(A:) and let ε > 0. Write Mr = M\W9 where
Wis an open collaring of dM in M. We may assume that n = άim(U) is much
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larger than m (otherwise replace X, U, R" and /by X X {0}, U X RN,Rn X RN

and x -> (f(x), 0)). Then we can find a map/': M -> int(AΓ) such that

f#(dM') is a polyhedral chain,

/'|9M' is one-to-one,

(1) f'\Whas mapping area < ε

and such that / ' is homotopic (in K) to / under a homotopy that leaves dM

fixed. By the strong approximation theorem [1, 4.2.19], there is a curvilinear

polyhedral chain P such that

(2)

By (1) and (2),

(3) M(P - T) < 2ε.

Now/'|M', P and int(A) satisfy the hypotheses of Theorem 2. Hence there is a

homotopy H: [0,1] X Λf -> int(A:) from/' to a map g': AT -> int(ϋf) such

that g#([M]) = P, <Φ, g'> = (Φ, P> and H(ί, x) = f\x) for x e 3Mr. Now

define g: M -

Then r ° g e J*"(where r is the locally lipschitz retraction from U onto X) and

(Φ, r o g) = ( φ , r o g|Mr> + (Φ, r o g|^>

< (Φ, r o g|M r) + Cε (by (1), where C depends on A')

= (Φ, r o g|Af' Π g-H A-)) + (Φ, r o g|M' X g ' H * ) ) + Cε

= (Φ, g\M' Π g " 1 ! ^ ) ) + (Φ, PL(U\ X)) + Cε

< (Φ, g\M') + (Φ, P - T) + Cε (since spt(Γ) e X)

= (Φ,P> + ( φ , P - Γ ) + C ε

<(Φ,Γ> + 2<Φ,P - Γ>+ Cε

< ( Φ , Γ > + C ' ε (by (3)).

Since we can find such an r ° g e ^ for any ε > 0, the left side of (*) is < the

right side.
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3. Nonsimply-connected X

So far we have been assuming that X (or Y in §1) is simply connected. But
we only used simple connectivity once: in the proof of Theorem 1, the closed
curve / ° Γ was homotoped to a point in Y. However, even if Y is not
simply-connected, it is possible to choose the path Γ so that / ° Γ is null-homo-
topic in F, provided/*: nx(M) -> π^Y) is surjective. Thus Theorems 1, 2, and
3 remain true (without simple connectivity) if the induced map f* of fundamental

groups is surjective.

N o w suppose Xis a compact Riemann manifold. Even if/*: πx(M) -+ π^X)

is not surjective, it is always possible to lift / to a map f:M^>X into a

covering space Xof X so t h a t / * is surjective. We then have:

Theorem 4. Suppose M is oriented with dim M > 3, X is a compact Rieman-

nian manifold, Φ is a parametric integrand of degree m on X, and / : M -» X is

lipschitz. Let π: X —> X be a covering space of X, and let /: M -> X be a map

such that f = π ° f and such that f*: π^M) —> ττ\(X) is surjective. Then

where ^ is the set of maps g: M -> X that are homotopic to f under lipschitz

homotopies where &is the set of maps g: M -> X that are homotopic to f under

lipschitz homotopies H: [0,1] X M -> Xsuch that H(t, x) = f(x)for x e 3M.

Furthermore, iff\dM is one-to-one and if the infimum is attained by a current

T that is the one-to-one image of a polyhedral chain P under a lipschitz map that

is bilipschitz on 3P, then it is also attained by a map m ° g e Ĵ *, where g:

M —» X, g # ([M]) = T, and each m-dimensional (curvilinear) simplex that occurs

with multiplicity k in T is covered < k times by g.

(Here we use Φ to denote both the integrand on X and its lift to X.)
Proof. Let # be the set of maps g: M -> X that are homotopic to / under

lipschitz homotopies H: [O,1]XM->1 such that H(t, x) = f(x) for x e ΘM.
Then by the homotopy lifting theorem,

But (Φ, 77 o g) = (φ, g) for every g: M -* X, so Theorem 4 follows im-
mediately by applying Theorems 2 and 3 (and the first paragraph of this
section) to/.

Example. Let M be S3, Jf be the connected sum of two copies of S1 X S3,
and let /: M -> X be an embedding whose image is the 3-sphere along which
the two copies are joined. (In other words, the two components of X\f(S3)
are each diffeomorphic to (Sι X S 3)\{a point}.) Then /#([Λf]) e &m(X\
but /#([M]) £ 3Sm(X) (where ^ is the universal cover). Thus the infimum
mapping area is positive.
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4. Nonorientable domains
In the foregoing we have been assuming that M is orientable. The results for

nonorientable M are analogous, but there are a few surprising differences.
Theorem 5. Suppose M is nonorientable with dim M > 3, Y is a simplicial

complex, f:M-^>Y is lipschitz with /(3M) c γ(m~ι\ and T is a simplicial
m-chain mod2 in Y such that Γ-/ # ([M]) e SS^X). Suppose also that /*
maps the orientation-preserving subgroup πf(M) of π^M) onto π^Y). Then
there is a lipschitz homotopy i/:[0,l]XM-> Y from f to a map g such that

H(t,x)=f(x) forx^dM, g(M)\spt(T) a Y(m~ι\
and such that the interior of each m-dimensional simplex in spt(Γ) is covered at
most once by g.

Proof. Lemmas 1 and 3 of §1 do not use orientability of M. Also Lemma 2
remains true (with the same proof) if we replace @m(Y) by ^ ( 7 ) . The proof
of the present theorem is, for the most part, the same as the proof of Theorem
1. As in that proof, we get open sets W1 and W2 in M that are mapped to the
same m-dimensional simplex Sx of Y. Now give Wx and W2 orientations so that
g\Wλ and g\W2 determine opposite orientations on Sv Then the assumption
about/* guarantees that we can find an orientation-preserving path Γ joining
Wλ to W2 (as in the proof of Theorem 1) such that/|Γ is contractible in X. The
rest of the proof is as before.

It follows that Theorems 2 and 3 remain true for nonorientable M and
nonsimply-connected X (with integral currents replaced by flat chains mod 2)
provided/* maps iτ^(M) onto ΊTX{X). There is, however, a new twist. Let Xbe
a compact Riemannian manifold. Then we can always lift /: M -> X to a map
f.M^X into a covering space X so that /* is surjective. But /* does not
necessarily map π±(M) onto πλ(X). If it does, then the conclusions of
Theorem 4 (with flat chains mod 2 instead of integral currents) follow. If not,
then we must lift again.

Theorem 6. Suppose M is nonorientable with dim M > 3, X is a Riemannian

manifold, Φ is an even parametric integrand of degree m on X, /: M —> X is

lipschitz', and f\ maps π^M) onto π^X) but f\{iTγ{M)) Φ πλ(X). Let m\

M —> M be the oriented double cover of M and let π: X -> X be the covering

space of X corresponding to the subgroup f *(τr1

+(M))of πλ(X). Let γ denote the

nontrivial covering transformation of both M and X (so that π(y(x)) = π(x) and

y(x) Φ x for x G M or x e X). Then f lifts to a map f: M —» Xso that

M



444 BRIAN WHITE

is commutative, / * is surjectiυe and

(1) inf { (Φ, g) : g is homotopic to f in X with dM fixed }

is equal to

iinf{<Φ,Γ>:Γ-/#([Ar]) = 9/i,

R an integral current in X with y#(R) = -R}.

Furthermore, if f\dλf is one-to-one, and the infimum in (2) is attained by a

sufficiently regular T {i.e., a T as in Theorem 2), then the infimum in (1) is

attained by a map whose image is π(spt(T)) together with a set of dimension <

(m - 1).

Proof. Observe that any homotopy / / : [ 0 , l j x M - > I lifts to a homotopy

H: [0, 1] X M-> £ that is γ-equivariant in the sense that y(H(t,x)) =

H(t, y(x)). Thus the infimum (1) is equal to

(3) ^inf{ ( Φ , g ) : g is γ-homotopic to/ in X with 3M fixed},

where "γ-homotopic" means "homotopic by a γ-equivariant homotopy". But

now Lemmas 1 and 2 and Theorems 1, 2 and 3 (and their proofs) remain true

if we replace X, M and / by X, M and /; homotopies by γ-equivariant

homotopies; and integral currents by integral currents Q such that y#(Q) = -Q.

Then (2) and (3) are equal, and the rest of the theorem follows immediately.

5. Applications and open questions

As immediate consequences of the preceding sections we have:

Corollary 1. //

(1) M is orientable or dM is empty,

(2) 3 < dim M = d im(^) - 1 < 7;

(3) X is a smooth compact Riemannian manifold or X = R";

(4)/: M -> X is lipschitz, andf\dM is smooth and one-to-one',

(5)/*(ττ"i(M)) is of finite index in π1(Ar),

then there exists a map g: M -> X of least mapping area in the (dM fixed)

homotopy class of f, and the image of g is a smooth submanifold of X together

with a singular set of dimension < (m — 1).

Proof. Theorems 2-6 reduce the existence and regularity of g to existence

and regularity of solutions to a homological minimization problem. Conditions

(3) and (5) guarantee existence for the homology problem (by the compactness

theorem for integral currents and flat chains mod 2 [1, 5.1.6]). Conditions (1)

and (2) guarantee that the homological minimizer is sufficiently regular (by [1,

5.4.15, 16], [3] and [10]).
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Corollary 2. Let M be a connected compact manifold with boundary dM =
N. Let /: JV -> Rw be lipschitz, and Φ be a parametric integrand of degree m on
R". Then

inf { (Φ, g) \g: M -> R" is lipschitz and g\dM = f }

is equal to the infimum of (Φ, T) among integral currents {or flat chains mod 2 if
M is not orientable) T such that dT = f#([N]).

Open questions

1. Must every homologically area-minimizing integral current (or flat chain
mod 2) be a curvilinear polyhedral chain? If so, hypotheses (1) and (2) in
Corollary 1 are unnecessary.

2. Let X be a covering space of a compact Riemannian manifold X, and let S
be an integral current (or flat chain mod 2) in X. Does there exist a T that
minimizes area subject to the condition T - S e &m(X) (or &^(X))Ί If so,
we could drop hypothesis (5) from Corollary 1. The difficulty is that if X is not
compact, a minimizing sequence Tt might tend to wander off to infinity. If
f*(πλ(M)) is a normal subgroup of π^X), then X will have deck transforma-
tions with which we can translate the Ti back to some compact region. Using
this idea one can prove that it suffices to assume, in place of (5), that π^X)
has a subgroup K of finite index such that/^π^Λί)) is normal in K. But can
(5) be eliminated altogether?

3. What if, instead of minimizing the mapping area of g, we try to minimize
the area (i.e., Hausdorff measure) Jfm(g(M)) of the image? The same proofs
given above show that for simply connected X,

inf { 3tf m (g (M)): g is homotopic to / with dM fixed}

= inf{jr«(spt(Γ)): Γ - / # ( [ M ] ) e 0m(X)}.

But the proofs of Theorems 4, 5 and 6 break down, since when we lift g:
M ^ Xtog: M -* X, J(Tm(g(M)) and JίTm(g(M)) need not be equal.

Now suppose M is not connected but is the union of finitely many
connected components My. If we are minimizing the mapping area of g, we can
apply Theorems 2-6 to the components separately since

mapping area of g = Σ (mapping area of g\Mt).
i

(Note, however, we are not claiming that Theorems 2-6 are true as stated for
nonconnected M Theorem 3, for example, is not.) But this reduction to the
connected case is not possible if we are minimizing Jίfm(g(M)), since in
general it is not equal to
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