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CUSPS OF THE PROJECTIVE GAUSS MAP

CLINT McCRORY & THEODORE SHIFRIN

0. Introduction

Let M be a smooth algebraic surface in complex projective space P>. Let y:
M - P3* be its Gauss map and IT C M the parabolic curve (the locus of
singular points of y). The image of v is the classical dual surface of M. We call
the critical points of y|II the cusps of the Gauss map y. A (nonplanar) cusp P
is characterized by the fact that the (unique) asymptotic direction at P is
tangent to II. We have the following local interpretation of the cusps of the
Gauss map, which we prove for smooth real surfaces as well.

(0.1) Theorem. For a generic smooth surface, the cusps of the Gauss map are
precisely the parabolic points which are the limits of flex points of asymptotic
curves.

This theorem is the complex projective version of a theorem for real smooth
surfaces due to Arnold [3], Banchoff, Gaffney and McCrory [6], Kergosien and
Thom [13], Landis [17], and Platonova [21]. A discussion of this and related
results for real surfaces, from the viewpoint of singularity theory, is contained
in a recent survey article of Arnold [4,§15]. Theorem (0.1) was originally
observed by Salmon [22, §588 ff.], using global techniques.

The novelty of our approach lies largely in the application of techniques of
projective differential geometry in the spirit of Cartan [9], rather than those
exclusively of singularity theory. We begin in §1 by developing the necessary
tools, discussing in particular the projective Gauss mapping and its relation to
the projective second fundamental form. As in the classical differential geome-
try of surfaces in R%, the notions of parabolic points and asymptotic curves
prove essential. In order to prove Theorem (0.1), we assume M has no planar
points and let M C P(TM) be given by M = {v € P(T,M): v is an asymptotic
direction at x}. Then M — M is a branched double cover with branch locus the
parabolic curve. Lie considered such a construction in studying implicit
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ordinary differential equations (cf. [2, pp. 14 ff.]). It turns out that we should
view M as a submanifold of P(T*M ), which is naturally isomorphic to P(TM),
in order to exploit the contact structure arising from the symplectic structure
on T*M. Then the Gaussian cusps and asymptotic flex points have natural
geometric interpretations, and the theorem follows. Indeed, we prove a more
precise statement: the curve of asymptotic flex points is tangent to the
parabolic curve at the points of intersection of the two curves.

In §2 we pass from the local to the global. We begin by combining the
theory of the projective second fundamental form with a Chern class computa-
tion to prove a result of classical enumerative geometry (cf. [22], [20]):

(0.2) Theorem. A generic surface of degree d in P> has 2d(d — 2)(11d — 24)
Gaussian cusps.

For example, a quadric has none (having, in particular, no parabolic points
at all); a cubic has 54 cusps, as the parabolic curve meets each of the
twenty-seven lines on the surface (which comprise the asymptotic flex curve)
precisely twice. (Kulikov gives a beautiful modern singularity-theoretic deriva-
tion of (0.2) in [16] (cf. also [16a]), arriving at several other formulas of interest
as well.)

Indeed, after proving (0.2) we proceed to discuss the example of the general
cubic surface quite carefully from a classical standpoint. It is natural, then, to
consider the Fermat cubic x3 + x; + x3 + x3 = 0. While it fails to meet our
genericity assumptions, we are nevertheless able to carry out our geometric
constructions with the asymptotic double cover and obtain the same count. In
this case, it is interesting to note that the parabolic curve is reduced, but
reducible, with 18 nodes, which are of necessity planar points. M is smooth
and blows up each of the nodes.

When we pass to the Fermat quartic, however, the situation is more
subtle—the parabolic curve becomes unreduced and M singular. Nevertheless,
the count in (0.2) goes through. In fact, understanding this more involved
example leads us to the more general

(0.3) Theorem. Let M C P be a smooth surface which is neither a plane nor
a quadric. Then the (homological) intersection number of the parabolic curve and
the curve of asymptotic flexes is precisely 4d(d — 2)(11d — 24).

The proof involves an intrinsic reinterpretation of our computations with M
in §1 and a straightforward continuity argument. In this regard, we remark
that while our proof involves computing the intersection number of three
surfaces in P(7*M), Salmon employs elimination theory to do an analogous
computation in P? itself.

The precise generic properties which we need to require of the surface are
that IT be smooth and that the cusp points be nondegenerate points of
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tangency of the asymptotic line field with the parabolic curve. These properties
are equivalent to the statement that the locus of local singularities of the dual
surface is a cuspidal edge with isolated swallowtail points. Using techniques of
singularity theory developed by Mather [19], we prove in §3 that, for each
degree d > 1, surfaces with these properties form a nonempty Zariski open
subset of the space of all smooth surfaces of degree d. This is a refinement of a
theorem of Bruce [8], and we use his work in an essential manner. We also
include, for completeness, the appropriate genericity statement for the real,
smooth case. We note that our genericity hypothesis is weaker, and therefore
more easily computable, than the hypothesis arising in [6, Theorem 7.6).

A pleasant aspect of these investigations is the interplay among several
closely related geometric viewpoints: the dual surface, contact with planes or
lines, versal unfolding of tangent hyperplane sections, integral curves of the
asymptotic line field. Much of this geometry was perceived by Klein in his
study of cubic surfaces [15, §14].

We wish to thank Robert Varley for several valuable conversations, and for
his continued interest.

1. Local theory

We are interested here in the local projective differential geometry of
surfaces in three-space; our results in this section are equally valid in the real
and complex cases, but we will write just C (when necessary). We begin by
relating the projective Gauss mapping of a surface M C P? and the projective
second fundamental form of M.

Let 7: C*— {0} > P? be the canonical projection. We say that a basis
Zy, Z,, Z,, Zy for C* is a frame at z € P if m(Z;) = z. A frame on an open
set U C P3 is therefore a holomorphic (or smooth) map U — GI(4) such that
7m(Zy(z)) = z. Z,: U— C* is in this way a section of the tautological line
bundle 0,(-1). Now, given a surface M C P3, it is important to have the
notion of frames adapted to M. At z € M, we require m(Z,) = z, as before, and
also that m(Z, A\ Z, A\ Z,) is the P? C P? which is tangent to M at z. To
distinguish the projective tangent space from the abstract tangent space, we
shall use the notation 7,M for the former, using it to represent both the
C? C C* and the corresponding P2 C P2,

Given a (local) adapted frame field Z,, Z,, Z,, Z, on M, define 1-forms w;,
0 <i,j<3,on M as follows:

(1.1) dzZ,= 3 w/Z;
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we shall write w) = ' and w3 = w?, and these form a (local) basis for the

1-forms on M. Note that since Z,, Z,, Z, span the tangent space to M, w3 = 0
on M. Differentiating (1.1) gives the structure equations

dol = Zof A of;
these are merely the structure equations of G/(4), transferred to M. In particu-
lar, differentiating w3 = 0 and applying the Cartan lemma (cf. [12]) gives us
(1.2) wy = Dhopf,  heg=hg,, 1<a, B<2.

In classical Riemannian geometry, the quadratic form Sw] ® w* is well defined
and is called the second fundamental form of M; in our case, since there is so
much leeway in the “ projective normal” Z,, we have the following.

(1.3) Lemma. The ( projective) second fundamental form

N=3w®w*®Z; = 2hap0* ® WP ® Z,
is an intrinsically defined quadratic form on M with values in the normal bundle
Ny of Min P2,
Proof. Consider a change of frame field Z} = Za/Z;:
Z§ = agZ,,
s =agZy+ Zafzp,

Zr=alZy+ alZ, + a3Z, + a3 Z,.

(Here the a/ are functions on M.) Writing a = (a/) and w = (w/), the

transformation rule for the connection matrix is given by [11]

*

w*=gawa™ +da-a’'.

Computing, we find
Dy ®w” ®ZF =20 ®w ®ZF sincewd =w’ =0
= Safuf(a)i ® afwy(a™),, ® aiZ,
= aggwf ®w/ ®2Z,
=alYwl®w* ® Z,, mod(Z,,Z,, Z,).

Since Z, is a section of C*/TM and since (a3)™' gives the transition functions
for the tautological line bundle, we see that this is a well-defined quadratic
form with values in

0,(1) ® C*/TM = N,,,
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where we use the Euler sequence [23] to obtain the final isomorphism.! q.e.d.
Define the projective Gauss mapping

y: M- P¥
z- T, M.

Lifting to the frame level, we compute its derivative. Since y(z) = Z, N\ Z; N
Z,, we have, using (1.1),

(1.4) dy =0 (Zy N Zy N Z,) + 03 (Zy N Z) N Z3),
mod(Z, N\ Z, N\ Z,).

In particular, the rank of y is equal to the rank of the matrix (%,z). As in
classical surface theory, define z € M to be a parabolic point if rank(dy,) =
rank(h,g) < 1, a planar point if dy, = 0. Define v € T, M to be an asymptotic
direction if 1I(v, v) = 0; we say C C M is an asymptotic curve if its tangent
vector at each point is an asymptotic direction. Note that at a nonplanar
parabolic point z, there is a unique asymptotic direction, and it spans ker d,.

It will be useful later on to have a concrete formula for the second
fundamental form. Consider the case of a graph M = {z = f(x, y)} C C? C
P3. Working in affine coordinates, we take Z, = (1,0, f,), Z, = (0,1, 5
Z; =(0,0,1), o' = dx, w* = dy. From (1.1) it is easy to see that

(1.5) 0 =f, dx®+2f, dxdy +f,dy>

i.e., the second fundamental form is given by the hessian of f. From this it is
easy to deduce the following classical interpretation of the asymptotic direc-
tions.

(1.6) Lemma. At a nonplanar point z € M, the tangent cone of TZM nM
consists precisely of the asymptotic lines in T,M. In particular, at a parabolic
point, this is a double line.

Proof. Take z=(0,0,0) and f,(0) =f(0) =0. Then the result is im-
mediate. q.e.d.

Generally the parabolic points of M form a curve II, which is called the
parabolic curve. Indeed, if we require that zero be a regular value of K =
det(h,p), then IT will be smooth and contain no planar points. We next
characterize those points of I at which the asymptotic direction is tangent to
I1. Choose a frame Z,Z,Z, Z, so that Z, is tangent to [T = {h,,hy, — h}, = 0}.
If Z,(P) is asymptotic, then we infer that &, (P) = h5,(P) = 0. From (1.4) it

In [12], Griffiths and Harris actually have this wrong, but since all their work is local, the error
is inconsequential. For us, however, it will prove essential in §2.
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now follows that dyp(Z,) = 0, whence P is a critical point of y|IL. Such a
point P is called a cusp of the Gauss map; the terminology arises from the
geometry of the image curve y(I1) C P*". Conversely, it is easy to see that if P
is a cusp, then the tangent vector to II at P is asymptotic.

We shall call a cusp P nondegenerate if the tangency of the asymptotic line
field along IT is nondegenerate at P. More specifically, choose an asymptotic
vector field which is nonzero at P and project it to Nyp; this section of Ny will
then have a nondegenerate zero at P. We shall soon make this explicit in local
coordinates.

We are now interested in characterizing the cusp locus more geometrically.
For the rest of this section we consider surfaces M C P* satisfying the
properties:

(1) (i) zerois a regular value of K (in particular, II is smooth);
(i)  the cusps of the Gauss map are nondegenerate.

In §3 we shall prove that the generic surface in P* enjoys these properties.
Consider the locus of inflection points of asymptotic curves in M — IT; let 9 be
its closure in M. We call 9 the asymptotic flex curve; it may be reducible or
singular. Qur main result in this section is the following

(1.8) Theorem. Let M C P? be a surface satisfying properties (1.7). Then the
cusps of the Gauss map are precisely the points of intersection of 11 and 9.
Moreover, I is smooth at these points, and 11 and 9 are simply tangent at these
points.

In order to prove this theorem, it is convenient to analyze the geometry of an
auxiliary surface M, the “asymptotic double cover” of M. It is to this task that
we turn next. First of all, given an abstract surface, there is a natural
isomorphism

(1.9) P(TM) =P(T*M),

with a line in TM corresponding to its annihilator in T*M. Now, given
M C P?, define M’ C P(TM) by M’ = {v: II(v, v) = 0}, and let M C P(T*M)
be the corresponding surface under the isomorphism above.

More specifically, choose local coordinates (and corresponding frames) so
that II = A dx? + p dy?, and take II to be given by p = 0. Clearly along IT the
asymptotic direction is d/dy and so P is a cusp of Gauss precisely when
p,(P) = 0. Now, on T*M we have coordinates x, y, X, y and, setting p = y/x
(x # 0), we obtain local coordinates x, y, p on P(T*M). In terms of these
coordinates, define M C P(T*M) by

f(x,y,p)=p+Arp*=0.
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Note that M is a smooth submanifold, for
df =dp+ p*d\+ 2p A dp,

and when p = 0, df = dp # 0, since zero is a regular value of K = Ap. On the
other hand, away from the parabolic curve in M, M % M is a double cover
(corresponding to the geometric fact that the asymptotic directions are distinct).
Indeed, lying over P & II are the two linearly independent 1-forms 7,, 1, (up
to scalars) such that II = 0, ® 7,, i.e., the annihilators of the two asymptotic
directions. As P approaches a parabolic point, this degenerates to II = 5, ® 7,,
as we expect. In sum, then, M M 1s a branched double cover, branched over
I1.

We now reinterpret the cusps of Gauss in terms of the geometry of M. Note
that on T*M we have a canonically defined 1-form © = x dx + y dy which
induces a contact structure on P(7*M), given locally by § = dx + p dy.

(1.10) Lemma. A cusp point P is a zero of 8|s;. Moreover, condition (ii) of
(1.7) implies that P is a nondegenerate zero of 0, i.e., that 8 is transverse to the
zero section of T*M at P.

Proof. (Note that we are identifying points of 7~ '(IT) = IT with their
images in I1.) When p = 0, df = dp =0 mod(dx) at a cusp P, so TpM =
ker df, = ker 8,. To prove the last equality, we rewrite 6 in terms of local
coordinates on M. Since p (P) # 0, it follows from the implicit function
theorem that in a neighborhood of P we may write x = x(y, p) on M. Then

0 =A(y, p)dy + B(y, p) dp,
where

Byt PN,

B TPA _2pA
pet PP

B(y,p)=— .
(», p) b

A(y,p)=p—
Letting P < (y, p) = (0,0), we see that @ is transverse to the zero section of
T*M at P if and only if the jacobian determinant d(A4, B)/d(y, P)lo,o 0
Since P is a cusp, p,(0) = 0; since P is nondegenerate, p,(0) # 0. Using these
data, we find that

3(4,B)| _ 2M0),,(0)
a(y, p) (0,0) ﬂi(o)

as required. Note that, conversely, if a parabolic point P is a zero of 8, then P
isacusp. q.ed.

Having given a geometric characterization of cusps in M, we proceed to
discuss the asymptotic flex curve as it appears in M.

b
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(1.11) Lemma. Let §= {A(y, p) =0} C M. Then n(T)=9.

-Proof. The main point here is that integral curves of § = 0 in M project to
asymptotic curves in M. Moreover, the p-coordinate gives the negative recipro-
cal of the slope downstairs (this is due to the presence of duality in the
isomorphism (1.9)). Since an inflection point of a plane curve is a critical point
of its slope function, we see that asymptotic flexes correspond to points on the
integral curves of § = 0 where dp/dy = 0. Since § = Ady + Bdp, this means
we require dp/dy = —A /B, and the lemma follows.

Proof of Theorem (1.8). From Lemmas (1.10) and (1.11) we infer that
$ N {p = 0} consists precisely of points such that p y = 0, i.e., cusps of Gauss.
We can, however, easily compute more. In (y, p) coordinates at a cusp (which
we take to be the origin), the slope of ¥ is

fig =_8A/8y — P‘yy(o)
dy 94/9p 0,00  p,(0)

which is neither 0 nor . Since m: M — M ramifies precisely along 1, with
ker dn spanned by 9/9p, we deduce that § = (5 ) is simply tangent to IL.
q.e.d.

In the proof of Lemma (1.11) we sought points with “horizontal tangents”
in ( p, y)-coordinates. In terms of the projective connection on M with which
we have been working, this can be phrased completely intrinsically. Consider
the bundle F(M) of adapted frames on M with the intermediate projection:

F(M) (2,2,2,Zy)

l 1
P(T™M) (2, Z))
lx |
M Z,

It is easy to check that the forms ', w?, w3 on F(M) are horizontal for the
projection F(M) — P(TM); we then define the subspace wi = 0 to be horizon-
tal for the projection P(TM) IMm (and similarly for the restriction of 7 to M).
That this gives the right notion is clear: let {Z(¢)} C M be an immersed curve,
and let Z(t) = (Z, = Z(t), Z, = Z'(t)) be the canonical lift to P(TM); then
Z(0) is an inflection point precisely when Z”(0) = 0 mod(Z(0), Z'(0)), i.e.,
when w?(Z’(0)) = 0.

Transferring this analysis to P(T*M), using the isomorphism (1.9) enables
us to give an intrinsic description of the curve & C M. Let M C P(T*M) be
defined by the equation f = 0. (Recall that viewed in P(TM), M is cut out by
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the global equation II(v, v) = 0.) For future reference, we point out that in
local coordinates x, y, p, if

Il =Adx?+ 20dxdy + pdy?,

then

(1.12) f(x,y, p) =Ap>—20p + p.
Then we claim that & is cut out on M by the equation
(1.13) NN =0

on P(T*M). For recall that x € & precisely when there is a nonzero tangent
vector v at x € M which satisfies df(v) = 8(v) = w3(v) = 0. Moreover, in
local coordinates, w? is a multiple of dp, and this equation reduces to

(1.14) o= £,=0,

which is the identical equation to that which we derived earlier for ¢/ in Lemma
(1.11).

Remark. Using the geometry of the asymptotic double cover, we may
define a modulus « of a generic Gaussian cusp as follows. Suppose P is a cusp
of the Gauss map of M C P?, and M satisfies (1.7) near P. Let P be the
corresponding point of M. Consider the following five lines in 75M. Let L, be
the tangent line of the curve IT at P. Let L, be the tangent line of the curve &
at P. Let L, be the kernel of dms. Let L, and Ly be the tangents to the two
branches of the integral curve of § = 0 through P. Set a equal to the sum of
the cross-ratios of the sets (L,, L,, L, L,) and (L,, L,, L5, Ls). Then a is
invariant under projective transformations of P>. The existence of such an
invariant was suggested to us by R. Varley.

For example, consider the germs at 0 of the (real or complex) surfaces

z=x2+xp*+c* (c€RorQ),
considered (over R) by Platonova [21] and Banchoff et al. [6]. A theorem of
Platonova [21, Theorem 1] (see also [4, p. 126]) implies that if a generic C*
surface M in RP? has a Gaussian cusp at P, then the 4-jet of M at P is
projectively equivalent to one of the above germs. These germs satisfy (1.7) if
and only if ¢ # 1/4, and then a = 5/8¢, so all these germs are projectively
distinct.

2. Global theory

Up to this point all our arguments have been local. We now restrict
ourselves to the case of a complex algebraic surface in P? in order to use
(global) algebro-geometric arguments to count the number of cusps of the



266 CLINT McCRORY & THEODORE SHIFRIN

Gauss map. The computation is based on the algebra of the projective second
fundamental form.

(2.1) Lemma. II belongs to the linear system |(4d — 8)H | on M.

Proof. Recall that IT = {K = 0}, where K = detIl. Viewing II as a section
of Sym*(T*M)® N, detll gives a section of (K, ® N)>. Now standard
adjunction formulas from algebraic geometry [11] give K,, €|(d — 4)H| and
N E€|dH|,s0 (K® N)? €]22d — 4H|. q.ed.

Let £ — M be the restriction of the tautological line bundle on P(T*M); let
£’ C 7*TM be the subbundle on M whose fibre over % is the asymptotic line in
T.M which corresponds to X. More formally, £’ = Ann(£), and standard
linear algebra gives

(2.2) T TM /L = >,

(2.3) Lemma. On IT = I we have the fundamental exact sequence
I
0-L">TM->N®L 0.

Proof. Let P be a parabolic point, and let wy, € T, M be an asymptotic
vector. Then II(v,w,) =0 for all v € T,M. Now II induces a surjective
mapping

TM->N®L, v-1v,-),

as an element of N ® £ is a 1-form with values in N which annihilates the
subbundle £’ C TM. Moreover, the kernel of this mapping is clearly £/,
finishing the proof.

(24) Lemma. If M has properties (1.7)i), (ii), then ¥ (cusps) =
¢ (N(IT, M)) — ¢,(£' |g), where N(I1, M) is the normal bundle of I1 in M.

Proof. Let N= N(II, M)=TM|,/TIl, and let p: TM|; > N be the
projection homomorphism. The homomorphism p |, defines a section of the
line bundle HOM(£’, N), and the zeros of this section are just the cusps of the
Gauss map. Therefore

# (cusps) = ¢,(HOM(L’, N)) = ¢,((R)*®N) =¢;(N) — ¢,(R’). q.ed

We now assemble these facts to prove the

(2.5) Theorem. Let M C P? be a complex algebraic surface of degree d
satisfying (1.7)(i)(ii). Then there are precisely 2d(d — 2)(11d — 24) cusps of the
Gauss map.

Proof. By (2.4), #(cusps) =c,(N(II, M)) — ¢(£) =11 - II — ¢(£’). Tak-
ing Chern classes of the exact sequence in (2.3) and using (2.2), we obtain the
relation

(L) = ¢)(TM ) — 3¢(Nlp) =-Kp - IT = 3¢,(N ).
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Therefore, using (2.1), we have
#(cusps) =II- I + K, - [T + 4¢,(N|y)
=d(4d — 8){(4d — 8) + (d — 4) + 1d}
=2d(d—2)(11d — 24). q.ed.

We apply the preceding theory to the simplest examples at hand. Before
beginning, however, it will be convenient to give a classical geometric interpre-
tation of the asymptotic flex locus. A line L and a surface M in P? are said to
have k-point contact at P € M if the intersection multiplicity at P of L and M
is equal to k. (If L is contained in M, then L and M are said to have infinite
contact at each P € L.) Working in affine coordinates x, y, zwith L = {y =z
=0}, M= {g=0} and P = (0,0,0), the algebraic definition of intersection
multiplicity is

dimCC[x, b2 Z]O/ (g! Y, Z),

i.e., the length of the ideal (g, y, z) in the local ring C[x, y, z],, which is equal
to

dimCC[x]O/ (g(x’ 0’ 0))’
and this is equal to the number & such that

k i
98 0)~0 and 28(0)=0, i=0,. k-1
oxk ax'

We now relate this concept to asymptotic flexes. We shall say that L is an
asymptotic flex line of M at P if L is an asymptotic tangent line of M at P, and
the asymptotic curve through P in the direction L has a flex at P.

(2.6) Proposition. Suppose that the line L and the surface M have k-point
contact at P € M. Then L is an asymptotic tangent line to M at P if and only if
k = 3. If P is not a parabolic point, then L is an asymptotic flex line of M at P if
and only if k = 4.

Proof. We may assume P is the origin in C* and that M = {z = f(x, y)}
with £(0) = £,(0) = 0. Let L be the x-axis. By (1.5), the second fundamental
form of M is given by the hessian of f, if we use the framing Z, = (1,0, f,),
Z,=0,1,1), Z;=(0,0,1). Let a(r) be a curve on M with «(0) =0 and
«’(0) = (1,0,0). If () = B, Z, + B, Z,, then B,(0) = 1 and B,(0) = 0. Then

a’(t)=B\Zi + BiZ, + B,Z;, + B, 2,
=Bz, +BZ, + (ﬁlzf;cx + Zﬂlﬁzﬂcy + Bzfyy)za;

setting 1 = 0 we find a”(0) = B1(0)Z, + B3(0)Z, + f,.(0)Z;. Therefore f,,(0)
= 0 if and only if the curve a(¢) is asymptotic at 0. Moreover, assuming the
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curve a(t) is asymptotic, the coefficient of Z; is identically zero for all ¢.
Differentiating this coefficient, we find that 28{(0)f .(0) + f.,.(0) +
2;(0)f,,(0) = 0. Now f, (0) =0, so if we assume that the origin is not a
parabolic point, then f,,(0) # 0. Thus f,, (0) = 0 if and only if B;(0) = 0, if
and only if a”(0) is parallel to a’(0), i.e., 0 is an inflection point of a(t), as
required.

The generic cubic. Let us now consider a generic cubic surface M C P?,
According to Theorem (2.5), we expect 54 cusps of the Gauss map. Of course
these must derive somehow from the 27 lines on M. First of all, we claim that
the curve 9 of asymptotic flexes consists precisely of the 27 lines. By Proposi-
tion (2.6), the tangent line to an asymptotic curve at a flex must have
four-point contact with M. Since M is a cubic, this line must lie completely in
M. On the other hand, any line contained in a surface clearly is an asymptotic
curve and consists entirely of flex points. Now the result follows from Theorem
(1.8) and the following proposition.

(2.7) Proposition. Each line on a cubic surface meets the parabolic curve
exactly twice, and it is tangent to the parabolic curve at both of the intersection
points.

Proof. Let L be a line on the cubic surface M, and let H be a plane
containing L. Then H N M is a cubic curve containing L, so H N M = L U C,
where C is a conic. (C may be reducible, but L U C cannot contain a double
line.) Now the intersection number of L and C is 2, and H is tangent to M at
each point of L N C. If these two points coincide, i.e., if L is tangent to C, then
this point is a parabolic point of M, by Lemma (1.6).

Now define an involution ¢ of L as follows. Given p € L, T,M N M is
tangent to M at another point ¢, and we set o( p) = ¢. The involution o is
algebraic, and by the Lefschetz fixed point theorem, o has two fixed points,
which are the two parabolic points on L.

The Fermat cubic. Having discussed the case of the generic cubic surface,
we would like next to specialize to the Fermat cubic x3 + x; + x3 + x3 = 0.
The parabolic curve is given by the hessian, i.e., II is cut out on M by
XoXx,X,x3 =0, so Il is a reducible curve with (3) -3 = 18 nodes. (Thus
property (1.7)(i) fails.) It is a straightforward calculation that the restriction of
the Gauss map y to a smooth component of II has critical points only at the 9
nodes on that component. As in the generic case, the asymptotic flex curve
consists of the 27 lines. Each line passes through two nodes, and through each
node pass three lines, so the intersection number IT - & = 108. This is what we
expect from the generic case, where I and 9 meet 54 times, and each
intersection point has multiplicity 2. If we perturb the Fermat cubic, each of
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the 18 nodes of IT will produce 3 cusps of the Gauss map. (A local description
of the real locus of such a perturbation is given by [6, Example 3a, p. 17]; cf.
also [15, §14, Figure 8].)

It is interesting to examine the Fermat cubic from the viewpoint of the
geometry of M and & encountered in the proof of Theorem (1.8). Working in
the set x, =1, and in a neighborhood of (x, y, z) = (0,0,-1) (one of the
nodes of II) we can write z = —(1 + x> + »*)"/3. Then we may take the
second fundamental form to be

Il = x(1+y*)dx? — 2x*?dxdy + y(1 + x3) dy.
It follows from (1.12) that the equation of M in P(T*M) is
28)  f(x,y,p)=y(1+x>) +2x%p + x(1 +y*)p* = 0.

We see that M is smooth, and that in fact at the nodes of IT , M is the blow-up
of M. By (1.14), ¥ is cut out on M by the equation pf, — f, = 0. The line
y = wx, p = —1/w, satisfies this equation if and only if w® = —1. (Because p is
a coordinate on P(TFM), it is the negative reciprocal of the slope in T, M.)
Thus the lines (¢, wt,-1), @* = -1, lie in J, as we expected. To see that these
three lines are the only components of J at (x, y, z) = (0,0, 1), we proceed as
follows. Let ® = { pf, — f, = 0}, the surface in P(7*M) such that & N M=9.
Let M’, ®’, §' C T*M be the inverse images of M, ®,9, respectively. In
coordinates (x, y, X, y) on T*M, the tangent cone to ®” at 0is x> — y3> = 0 (or
p3 = 1), so the tangent cone of I is a subscheme of this locus. (Here we are
using the fact that the tangent cone of X N Y at x is a subscheme of the
intersection of the tangent cone of X at x and the tangent cone of Y at x.) It
follows that the components of J at (x, y, z) = (0,0, -1) are precisely the three
lines found above.

The Fermat quartic. Let us consider last the example of the Fermat quartic
xg + x{ + x5 + x5 = 0. While it certainly fails to meet the requirements (1.7)
we imposed on our surfaces (indeed, we shall soon see to what extent!), we are
still able to compute that IT - & = 640, twice the number of cusps of the Gauss
map given by Theorem (2.5). Note, first of all, that the parabolic curve II is
unreduced, cut out on the quartic M by the surface xZx?x3x? = 0. The
underlying reduced curve has (3) - 4 = 24 nodes. Through each node of II
pass four lines on M; each line passes through two nodes, and so there are
1.24 - 4 = 48 lines. They certainly comprise part of the asymptotic flex curve
9. It is reasonable to expect that the parabolic curve will also be part of J:
since IT is unreduced, the restriction of the Gauss map to II is singular at every



270 CLINT McCRORY & THEODORE SHIFRIN

point of IT. We claim that  consists of the 48 lines together with the parabolic
curve:
48
(2.9) g=I+ 3 L,
j=1
SO

O-9=T-(0+3L)=I-T+1-(TL)=4-64+8- 48 =640,

as expected.

To justify the claim (2.9), we revert to the local differential geometric
calculations. Working with x, = 1, near the node (x, y, z) = (0,0,Vi), we
have the second fundamental form

IO =x%(1+y*)dx*—2x3%3dxdy + y*(1 + x*) dy?.

Neglecting terms of order greater than 2 (i.e., looking at the tangent cone of M’
in T*M), we see that in this case M is singular, consisting of two branches
which intersect along the p-axis and along the x-axis. In P(T*M), the equation
of the tangent cone of M’ becomes x?p? + y* = 0. A calculation shows that
the equation of the tangent cone of ®’ is xp> + y = 0. So the tangent cone of
§’ =M’ N & is a subscheme of the locus p2x3(1 + p*) = 0. This yields the
four lines mentioned above (y = wx, p = 1/w, w* = -1), plus the x and p
axes, each taken with multiplicity two. (Each of these loci is easily seen to be a
subscheme of J.) The p axis projects to zero in M, but the x axis projects to I,
as claimed. (Note that the unreduced II appears in §. We see that this occurs
because ® intersects each of the two branches of M.)

Our discussion of the Fermat cubic and Fermat quartic indicates that the
intersection number of the parabolic curve IT and the asymptotic flex curve &
should always be equal to 4d(d — 2)(11d — 24), for a smooth surface M in P3
of degree d. An obvious requirement, however, is that IT and & be 1-dimen-
sional; i.e., not every point on M is parabolic, and not every point of M is an
asymptotic flex. This merely rules out the plane and the quadric:

(2.10) Lemma. Let M C P3 be smooth. Then M consists entirely of parabolic
points only if M is a plane; M consists entirely of asymptotic flex points only if M
is a quadric surface.

Proof. (a) Suppose that the rank of the Gauss map 7y is equal to one on an
open set of M. In this set, choose a frame for M with Z, € ker dy. From (1.4)
we have w3 =0 and &} =0mod(w?). From the symmetry of the second
fundamental form, it follows that w] = 0. Using the structure equations (1.2),
we find that w? = 0 mod(w?), and so integral curves of Z, are lines in M. M is
a developable ruled surface, and is therefore a plane, cone, or tangent surface
to a space curve (cf. [12], [24]); only a plane is smooth.
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(b) Suppose M consists entirely of asymptotic flex points. Then the asymp-
totic curves must be lines and so M is ruled. Now we apply the adjunction
formula to a line C C M. First of all, K,, = (d — 4)H, where d = degree M,
and so K. = (d — 4H ®[C]|c. Computing degrees of bundles on C = P!,
we have -2=d—4+ C-C,s0 C-C=2—d. For C to be a ruling, it is
necessary that C - C = 0, whenced = 2. q.e.d.

The example of the Fermat quartic shows that in order to get the expected
answer for the intersection number IT - &, both curves must be defined as
schemes: their multiplicities are important. But such definitions arose naturally
in §1. If M C P(T*M) is defined by the equation f= 0, then II is the
intersection of M with the surface

¥ = {df N o' N\ w? =0},

and I is the projection of IT to M. The curve ¥ is the intersection of M with
the surface

®={df NI AN w=0)}

in P(T*M) (1.13), and ¥ is the projection of % to M. So II and ¥ are defined as
proper subschemes of M, provided M has degree at least 3.

(2.11) Theorem. Let M C P? be a smooth algebraic surface of degree d = 3.
The intersection number of the parabolic curve 11 and the asymptotic flex curve §
is equal to 4d(d — 2)(11d — 24).

Proof. Let n = 4d(d — 2)(11d — 24). By Theorems (1.8) and (2.5), I - §
= n if M satisfies (1.7): (i) zero is a regular value of K and (ii) the cusps of the
Gauss map are nondegenerate. In Theorem (3.1) we shall prove that, for d = 2,
the set of surfaces satisfying (1.7) is a nonempty Zariski open subset of the
moduli space of smooth surfaces in P? of degree d. Suppose M, C P* is a
surface of degree d which does not satisfy (1.7). Then for a generic line L
through M, in the moduli space of all surfaces of degree d (which is a
projective space), a punctured neighborhood of M, in L will consist of surfaces
which satisfy (1.7). So we have the following situation: {M,},c, is an analytic
family of degree d surfaces, parametrized by the unit disc A, and for 1 € A* =
A — {0}, M, satisfies (1.7), so II,-J,=n in M,. We wish to show that
II, - 9, =nin M,. )

To this end, consider the family of 3-folds X -4, h7'(t) = P(T*M,), to-
gether with the three families of hypersurfaces Y, I:»A, i=1,2,3h'(t) =M,

h3'\(t) = ¥,, h3'(¢) = ®@,. The fibering theorem of J. King for holomorphic
maps [14, Theorem 3.3.2] implies that for each i, the currents defined by ()
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and h;'(t), t € A*, are homologous in Y;, and therefore in X. Now II, =
(7)), (h7'(2) - h3'(2)) and G, = (m,),(h7'(?) - h3'(2)) (intersection in P(T*M,)).
Therefore the currents defined by I1; and II,, t € A*, are homologous, as are
the currents defined by 9, and J,, ¢ € A*. (Note that the family {P(T*M,)} is
topologically trivial). So I1, - 9, =1II, - 9, t € A*.

3. Genericity

In this section we will show that properties (1.7)(1) and (ii) are generic
properties of complex algebraic surfaces in P>. More precisely, let 91, be the
moduli space of smooth surfaces of degree d in P>,

(3.1) Theorem. For each integer d = 2, the set of degree d surfaces with
properties (1.7)(i), (i) is a nonempty Zariski open subset of O ,.

The key of proving the openness part of this result is a proposition of
Mather on local stability of morphisms of varieties [19]. First we recall the
classical construction of the dual variety of M.

Let M be a smooth surface in P>, Let (P3)* be the dual projective space, and
let T' C M X (P?)* be the correspondence

I'={(x,H): x € H}.

The variety I' is a smooth 4-fold, since it is a bundle over M with fiber
(H|x € H} =P2 Let

(3.2) f=f: T - (P?)*

be projection to the second factor. The singular locus Z(f) is {(x, H): H is
tangent to M at x}, which we identify with M by projection to the first factor.
The restriction of f to 2( f) = M is the Gauss map y(x) = f(x, TXM) = TXM,
and the image of the Gauss map is the dual variety of M.

(3.3) Lemma. The set of degree d surfaces M such that f,, is locally stable at
each point of T is a Zariski open subset of I .

An elementary discussion of local (infinitesimal) stability for C* maps can
be found in [10, p. 73]. The complex algebraic version of local stability is
presented in [19, p. 179].

Proof of (3.3). Let & CP? X (P*)* X 9, be the subvariety & =
{(x, H, M)|x € HN M}, and let

F:6 - (P*)* X O,
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F(x, H M) = (H, M). The map F is just the family of maps f,,, parametrized
by 9M,. By [19, Proposition 1, p. 180], the set of M € 9N, such that f,, is
locally stable at each finite subset of I is Zariski open, provided that the maps
S(F) - (P*)* X 9, and (P?)* X M, > M, are projective. A projective map
f: X - Y is one which factors as the composition of an embedding of X onto a
closed subvariety of PV X Y, followed by projection on Y. So (P3)* X m, -
M, is projective, and Z(F) - (P*)* X 9N, is projective since F is. A slight
simplification of Mather’s proof shows that the set of M such that f,, is locally
stable at each point I is a Zariski open subset of 9,. q.e.d.

Now f: T' - (P?)* is locally stable at each point of T if and only if the germ
of f at each point of I' has one of the following four normal forms. In other
words, for each x € T there exist analytic coordinate charts ¢: (C*,0) - (T, x)
and ¥: (C3,0) - ((P*)*, f(x)) such that the germ at 0 of ¢! o fo ¢ is one of
the following;:

(X1, X3, X3, x4) = (1) (x5, %3, x4),
(2) (x?+x3, x5, x4),
(3) (xl2+x%+x2x3,x3,x4),

(4) (xl2 + x5+ x3xy + x,%,, X3, X4).

(3.4)

(1) is a nonsingular (submersive) germ of f, (2) is a nondegenerate singularity
of f, (3) corresponds to a point on the cuspidal edge of the critical locus of f,
and (4) corresponds to a swallowtail point of the critical locus of f.

The classification of the germs of f follows from Mather’s theorem that f is
locally (infinitesimally) stable at each point of I' if and only if f is transverse to
the family of contact classes in the jet space J%(T, (P*)*) for k sufficiently large
(k = 3 is large enough). The contact classes in J¥(C*, C*) of codimension < 7
and rank 2 correspond to unfoldings of contact classes in J*(C?,C) of codi-
mension < 4 and rank 0. These classes are the types A4, (fold), 4, (cusp), and
A, (swallowtail), which have the normal forms (3.4) (cf. [18, XVII, §6], [5)).

Remark. Mather’s theorem states that f is locally stable at each finite
subset of T if and only if f is multitransverse to the family of contact classes in
JK(T, (P?)*). Multitransversality implies that the image singularities of f are
mutually transverse. So we obtain as a corollary that the set of surfaces in p?
whose dual varieties have the classical singularities (double point curves, triple
points, cuspidal edges, cuspidal double points, swallowtail points) is a Zariski
open subset of I, (cf. [20, p. 229], where this description is assumed).

To complete the proof of the openness part of Theorem (3.1), we need to
check that the germ of f has one of the forms (3.4) if and only if the Gauss map
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vy has properties (1.7)(i) and (ii). This is true because y is the restriction of f to
its singular locus Z( f).

More precisely, if we assume that the germ of f has a normal form (3.4), then
properties (1.7) for y can be checked. First of all, the singular locus II of y is
the set of points at which the germ of f has the form (3) or (4) (cuspidal edge
swallowtail of the dual surface), and this locus is indeed a smooth curve. We
need more for property (1.7)(i): zero should be a regular value of the curvature
K. This is equivalent to the statement that dy: T(M) — T((P*)*) defines a
section of the bundle HOM(T(M), T((P*)*)|,,) which is transverse to the
subbundle of homomorphisms of rank 1. Now T((P3)*) |, =
HOM(T(M), N(M)), and dy factors to induce a map T(M) -
HOM(T(M), N(M)) (cf. [12, p. 379]), which can be identified with the
restriction of df to T(Z( f)) — Image (df ). (Note that df has rank 2 on Z(f).)
It is easy to check that for f of the form (3) or (4), this restriction defines a
section of the bundle HOM(T(Z( f)), Image(df)) which is transverse to the
subbundle of homomorphisms of rank 1.

To check property (1.7)(ii) for the germs (3) and (4), note that the kernel line
of dy becomes tangent to the singular locus of y precisely at points where the
germ of f has type (4) (a swallowtail of the dual surface). It is easy to check
using the normal form (4) that this tangency is nondegenerate. In fact,
Yy = f|2(f) has rank1 along the smooth curve II = Z( f|(Z(f))), and the
tangency is nondegenerate because 0 is a regular value of the restriction of dy
to T(IT) —» Image(dy). The normal form (4) also shows that the curve y(II) in
(P*)* has a cusp wherever ker(dy) is tangent to IT. This is why we call these
points “cusps” of the Gauss map (although “swallowtails” might be more
appropriate).

Now suppose that y = f| 2( f) has properties (1.7)(i), (ii). The jet extension
of f is automatically transverse to the contact class 4,. A standard argument
shows that it is transverse to 4, if and only if (i) holds, and transverse to A4, if
and only if (ii) holds (cf. [10, Chapter VII, §3]).

To complete the proof of the theorem, we must show that for each d =2
there exists a surface with properties (1.7)(i)(ii). Rather than trying to construct
such surfaces, we appeal to a topological transversality argument of Bruce [8].
His result implies that (1.7) holds for all M in the complement of a real
subanalytic subset of real codimension at least one in 9N ,. The basic idea is to
think of the family of hyperplane sections of M locally as a family of “height
functions” on M, and to show that by perturbing M this family can be made
transverse to strata of the space of k-jets of functions on M [8, Theorem 2.4].
Some choices are necessary to define the family of height functions locally on
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M, but Bruce shows that different choices give equivalent germs of families [8,
Lemma 2.1]. To apply his theorem to the Gauss map, we must explain the
relation between his construction and the map f,, (3.2). Since his construction
is local, we can replace M by an affine neighborhood N of P, say N C C? with
coordinates (x, y, z), P = 0, and the plane z = 0 tangent to N at P. Choose a
linear map L: C2 > (C*)* so that the image of L does not contain the
coordinate function z. Then Bruce defines a germ of a family of functions H
(N X C2,0) - (C,0) by H(u, v) = (z + L(v))(u). Define

(3.5) H':(NXC2%0)-(CxC2%0), H*(u,v)=(H(u,v),v).

It is easy to see that the map germ (3.5) is equivalent to the germ of f,, (3.2) at
(x, T.M).

An immediate corollary of Bruce’s transversality theorem [8, Theorem 2.4] is
that for M € 9N, — B, B a proper real subanalytic set of 9, the family germ
H is transverse to the singularities 4,, 4,, and 4, in J4(C?, C), and misses the
other strata of the jet space. (A special argument is needed for d = 3 [8, pp.
52-53]) It follows that the map germ f,, ~ H' must be equivalent to
(3.9)(1)(2)(3) or (4). This completes the proof of Theorem (3.1).

Remark. Bruce proves a corresponding multitransversality theorem only
for surfaces of sufficiently large degree (d = 9).

For real surfaces there is a similar result:

(3.6) Theorem. Let M be a compact C* surface. The set of embeddings of M
in RP3 with properties (1.7)(i), (ii) is an open dense subset of C*(M,RP?)
(Whitney topology).

Proof. Bruce’s construction of the germ H of a family of height functions
works equally well in this case, as well as his proof that the germ of H is
independent of the choices involved. (It is not necessary to have M algebraic.)
But for a surface in R%, the germ H at x € M is equivalent to the germ of the
family of orthogonal projections to oriented lines in R® at the point (x, /), / the
normal line to M at x. Bruce [8, §1] shows, using results of Looijenga, that the
set of embeddings of a smooth surface N in R® for which the family of
orthogonal projections to lines is transverse to a stratified subset of J*(R%, R) is
open and dense in C*(N, R?). The theorem follows by the compactness of M.

The result for surfaces in R® also follows from the work of Bleeker and
Wilson [7]. They give an elementary proof that property (1.7)(i), (ii) is generic
for surfaces in R® by direct analysis of the classical Gauss map M — S2.

Remark. Another approach to the singularities of the Gauss map is via
Arnold’s theory of Legendre singularities [1], [5]. The Gauss map M — (P*)* is
a Legendre mapping, and so it can be expected to have Legendre
singularities—cuspidal edges and swallowtails.
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